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Abstract

Physics-informed neural networks (PINNs) are

emerging as popular mesh-free solvers for partial

differential equations (PDEs). Recent extensions

decompose the domain, apply different PINNs to

solve the problem in each subdomain, and stitch

the subdomains at the interface. Thereby, they

can further alleviate the problem complexity, re-

duce the computational cost, and allow paralleliza-

tion. However, the performance of multi-domain

PINNs is sensitive to the choice of the interface

conditions. While quite a few conditions have

been proposed, there is no suggestion about how

to select the conditions according to specific prob-

lems. To address this gap, we propose META

Learning of Interface Conditions (METALIC), a

simple, efficient yet powerful approach to dynam-

ically determine appropriate interface conditions

for solving a family of parametric PDEs. Specifi-

cally, we develop two contextual multi-arm bandit

(MAB) models. The first one applies to the entire

training course, and online updates a Gaussian

process (GP) reward that given the PDE parame-

ters and interface conditions predicts the perfor-

mance. We prove a sub-linear regret bound for

both UCB and Thompson sampling, which in the-

ory guarantees the effectiveness of our MAB. The

second one partitions the training into two stages,

one is the stochastic phase and the other deter-

ministic phase; we update a GP reward for each

phase to enable different condition selections at

the two stages to further bolster the flexibility and

performance. We have shown the advantage of

METALIC on four bench-mark PDE families.

*Equal contribution 1Kahlert School of Computing, University
of Utah 2Scientific Computing and Imaging (SCI) Institute, Uni-
versity of Utah 3Department of Mathematics, University of Utah.
Correspondence to: Shandian Zhe <zhe@cs.utah.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1 Introduction

Physics-informed neural networks (PINNs) (Raissi et al.,

2019) have become a popular mesh-free approach for solv-

ing partial differential equations (PDEs). They have shown

successful in many scientific and engineering problems,

e.g., (Sahli Costabal et al., 2020; Kissas et al., 2020; Sun

et al., 2020). The recent multi-domain versions, e.g., (Jagtap

et al., 2020; Jagtap and Karniadakis, 2021), extend PINNs

with a divide-and-conquer strategy, and have attracted con-

siderable attention. Specifically, they decompose the do-

main of interest into several subdomains, place a separate

PINN to solve the PDE at each subdomain, and stitch the

subdomains at the interface. In this way, the multi-domain

PINNs can alleviate problem complexity, adopt simpler ar-

chitectures, reduce the training cost, and enable parallel

computation (Shukla et al., 2021).

However, the performance of multi-domain PINNs is sen-

sitive to the choice of interface conditions (or regularizers)

that unify the PINN solutions across different subdomains.

Quite a few conditions have been proposed, such as those

that encourage solution and residual continuity (Jagtap and

Karniadakis, 2021), flux conservation (Jagtap et al., 2020),

gradient continuity (De Ryck et al., 2022) and residual gra-

dient continuity (Yu et al., 2022). On one hand, naively com-

bining all possible interface conditions does not necessarily

give the optimal performance; instead, it can complicate

the loss landscape, making optimization more costly and

challenging. On the other hand, the best conditions can vary

across problems, which are up to the problem properties.

Currently, there is no suggestion about how to select inter-

face conditions according to specific problems, bringing

inconvenience and difficulties to the multi-domain practice.

To address this issue, in this paper we propose METALIC, a

simple, efficient and powerful method that can dynamically

determine the appropriate interface conditions for solving a

family of parametric PDEs. The contributions of our work

are summarized as follows.

• Problem Formulation and Strategy. We formulate

interface selection as a novel meta learning problem,

and propose to use the multi-arm bandit (MAB) frame-
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work to address the problem. Compared with other

complex/popular approaches, e.g., reinforcement learn-

ing with policy gradients, MAB is simple and efficient,

requiring much less training trajectories and almost no

hyper-parameter tuning. Due to the online nature, we

can apply the learned MAB to select the conditions for

solving new PDEs while continuously improving the

model. To our knowledge, this is the first time of using

MAB to address important meta learning tasks.

• Method. We develop two contextual MAB models,

where we view the PDE parameters as the context, sets

of interface conditions as the arms, and the solution

accuracy as the reward. The first model applies to the

entire training course, and online updates a Gaussian

process (GP) reward model with Upper Confidence

Bound (UCB) or Thompson sampling (TS). The sec-

ond model, according to the common PINN practice,

partitions the training into two phases, the stochastic

(ADAM) and deterministic (LBFGS) phase. We se-

quentially learn a separate contextual bandit for each

phase. In this way, we can select appropriate condi-

tions for different training stages to enhance flexibility

and to further improve the performance.

• Theory. We prove that our first MAB model, under

the PDE parameters context and with our mixed contin-

uous and categorical kernel, enjoys a sublinear regret

bound with both UCB and TS. It means that over the

course of online training, our MAB enables increas-

ingly better interface condition selections, and guaran-

tees to eventually find the optimal conditions.

• Results and Analysis. We evaluated METALIC with

four commonly used benchmark PDEs in PINN liter-

ature. Both of our MAB models exhibit a sublinear

growth of the accumulated solution error, which is

much slower than the linear growth of random arm se-

lection. We then examined METALIC after online

training. With the interface conditions determined

by METALIC, the multi-domain PINNs achieve so-

lution errors one order of magnitude smaller than using

randomly selected conditions, which also outperform

standard single-domain PINNs with more neurons (we

obtained as much as 88.5% error reduction). Finally,

we conducted a thorough analysis of the conditions

selected by METALIC and found many interesting re-

sults. Many selected conditions not only reflect the

physical properties of the problem, but also are tied to

the specific optimization procedure for PINN training.

2 Background

Physics-Informed Neural Networks (PINNs) estimate

PDE solutions with (deep) neural networks. Consider a

PDE of the following general form,

F [u](x) = h(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω, (1)

where F is the differential operator for the PDE, Ω is the

domain, ∂Ω is the boundary of the domain, h : Ω → R, and

g : ∂Ω → R are the given source and boundary functions,

respectively. To solve the PDE, the PINN uses a deep neu-

ral network ûθ(x) to represent the solution u, samples N
collocation points {xi

c}
N
i=1 from Ω and M points {xi

b}
M
i=1

from ∂Ω, and minimizes the loss,

θ∗ = argminθ λbLb(θ) + Lr(θ), (2)

where Lb(θ) = 1
M

∑M
i=1

(
ûθ(x

i
b)− g(xi

b)
)2

is the

boundary term to fit the boundary condition, Lr(θ) =
1
N

∑N
i=1

(
F [ûθ](x

i
c)− h(xi

c)
)2

is the residual term to fit

the equation, and λb > 0 is the weight of the boundary

term. One can also add an initial condition term in the loss

function to fit the initial conditions (when needed).

Multi-Domain PINNs decompose the domain Ω into sev-

eral subdomains Ω1, . . . ,ΩK , and assign a separate PINN

ûθk
to solve the PDE in each subdomain Ωk. The loss for

each PINN includes a boundary term Lk
b (θk) and residual

term Lk
r (θk) similar to those in (2), based on the boundary

and collocation points sampled from ∂Ωk and Ωk, respec-

tively. In addition, to stitch together the subdomains to

obtain an overall solution over Ω, we introduce interface

conditions into the loss to align different PINNs at the in-

tersection of the subdomains. There have been quite a few

interface conditions. Suppose Ωk ∩ Ωk′ 6= ∅. We sample a

set of interface points {xi
k,k′}

Jk,k′

i=1 ∈ Ωk ∩ Ωk′ . One com-

monly used interface condition is to encourage the solution

continuity (Jagtap and Karniadakis, 2021),

I1(θk,θk′) =
1

Jk,k′

Jk,k′∑

i=1

(
ûθk

(xi
k,k′)− ûavg

k,k′(x
i
k,k′)

)2

where ûavg

k,k′(xi
k,k′) = 1

2

(
ûθk

(xi
k,k′) + ûθk′

(xi
k,k′)

)
.

Other choices include the residual continuity (Jagtap and

Karniadakis, 2021), gradient continuity (De Ryck et al.,

2022), residual gradient continuity (Yu et al., 2022), flux

conservation (Jagtap et al., 2020), etc. In general, the loss

for each subdomain k has the following form,

Lk = λbL
k
b (θk) + Lk

r (θk) + λI

∑

k′:Ωk′∩Ωk 6=∅

∑

n∈S

In(θk,θk′)

where S is the set of interface conditions, and λI > 0 is the

weight of the interface term. The training is to minimize

L =
∑K

k=1 L
k. The final solution inside each sub-domain k

is given by the associated PINN ûθk
, while on the interface,

by the average of the PINNs that share the interface.
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3 Meta Learning of Interface Conditions

While multi-domain PINNs have shown successes, the se-

lection of the interface conditions remains an open and

difficult problem. On one hand, naively adding all possi-

ble conditions together will complicate the loss landscape,

making the optimization challenging and expensive, yet

not necessarily giving the best performance. On the other

hand, different problems can demand a different set of the

interface conditions as the best choice, which is up to the

properties of the problem itself. For example, in our prelim-

inary study about a specific 2D Poisson equation (see Sec C

in Appendix), we found the best accuracy is obtained with

a novel combination of three interface conditions, giving

43.7% error reduction as compared with combining all the

interface conditions together; see Table 5 in Appendix.

Currently, there is a lack of methodologies to identify con-

ditions for different PDEs. To address this issue, we first

formulate it as a novel meta learning problem. Specifically,

we consider a parametric PDE family A, where each PDE

in A is parameterized by β ∈ X ⊂ R
d. The parameters

can come from the operator F , the source term h and/or the

boundary function g (see (1)). Denote by S = {I1, . . . , Is}
the full set of interface conditions. Our goal is, given a PDE

parameterized by arbitrary β ∈ X , to determine I(β) ⊆ S
— the best set of interface conditions — for multi-domain

PINNs to solve that PDE.

We propose to use the multi-arm bandit (MAB) frame-

work (Slivkins et al., 2019) to address this problem. One

might consider other complex and prevalent approaches,

such as deep neural network prediction and reinforcement

learning with policy gradients. However, to get well trained,

these methods usually demand massive running trajectories

of PINNs, which can be extremely costly. In addition, the

success of these methods also rely on elaborate architecture

design and intensive tuning of many hyper-parameters. By

contrast, MAB is simple and efficient, requiring much less

training trajectories and (almost) no architecture design and

hyper-parameter tuning. The online nature makes the MAB

straightforward to update incrementally with new data, and

is much more convenient than those heavy-duty models.

3.1 Multi-Arm Bandit for Entire Training

We first propose a MAB model to select the interface con-

ditions for the entire training procedure of multi-domain

PINNs. In general, MAB considers a gambler playing q
slot machines (i.e., arms). Pulling the lever of each ma-

chine will return a random reward from a machine-specific

probabilistic distribution, which is unknown apriori. The

gambler aims to maximize the total reward earned from a se-

ries of lever-pulls across the q machines. For each play, the

gambler needs to decide the tradeoff between exploiting the

machine that has observed the largest expected payoff so far

and exploring the payoffs of other machines. To determine

PDE-specific interface conditions, we build a contextual

MAB model. We consider the PDE parameters β ∈ X
as the context, all possible combinations of the interface

conditions (i.e., the power set of S) as the arms, and the

negative solution error as the reward. The problem space

can be represented by a triplet (X ,P, f(·, ·)), where X is

the context space, P is the action space (the power set of S),

and f : X × P → R is the reward function. We represent

each action by an s-dimensional binary vector a, where each

element corresponds to a particular interface condition in S .

The i-th element ai = 1 means the interface condition i is

selected in the action.

To estimate the unknown reward function f(·, ·), we assign

a Gaussian process (GP) prior,

f ∼ GP (0, κ ([β,a], [β′,a′])) (3)

where κ(·, ·) is a kernel (covariance) function. Consider-

ing the categorical nature of the action input, we design a

product kernel,

κ ([β,a], [β′,a′]) = κ1(β,β
′)κ2(a,a

′) (4)

where κ1(β,β
′) = exp(−τ1‖β−β′‖2) is the square expo-

nential (SE) kernel for continuous PDE parameters, and

κ2(a,a
′) = exp

(
τ2 ·

1

s

s∑

i=1

1(ai = a′i)

)
(5)

where 1(·) is the indicator function. Hence, the similarity

between actions is based on the overlap ratio of the selected

interface conditions, which is natural and intuitive. As in

the standard GP regression, the observed reward r is then

sampled from a Gaussian noise model,

r ∼ N (r|f, σ2
0) (6)

where σ2
0 > 0. The noise model is to capture the extraneous

randomness such as stochastic training and float rounding.

To learn the MAB, each step we randomly sample a context

β from X , and then select an action a, i.e., a set of interface

conditions, according to the current GP reward model. We

then run the multi-domain PINNs with the interface condi-

tions to solve the PDE parameterized by β. We evaluate the

negative solution error ξ as the received reward. We add

the new data point ([β,a],−ξ) into the current training set,

and retrain (update) the GP reward model. We repeat this

procedure until a given maximum number of trials (plays) is

done. To fulfill a good exploration-exploitation tradeoff, we

use the Upper Confidence Bound (UCB) (Auer, 2002; Srini-

vas et al., 2010) or Thompson sampling (TS) (Thompson,

1933; Chapelle and Li, 2011) to select the action at each
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step. Specifically, denote the current predictive distribution

of the GP surrogate by

p(f̂ |D,β,a) = N
(
f̂ |µ(a,β), σ2(a,β)

)

where D is the accumulated training set so far. The UCB

score is

UCB(a) = µ(a,β) + ct
1/2 · σ(a,β)

where ct > 0 is a coefficient at step t, and the TS score is

sampled from the predictive distribution,

TS(a) ∼ p(f̂ |D,β,a).

We can see that both scores integrate the predictive mean

(which reflects the exploitation part) and the variance infor-

mation (exploration part). We evaluate the score for each

action a ∈ P (UCB or TS), and select the one with the

highest score (corresponding to the best tradeoff).

In the online scenario, we can keep using UCB or TS to

select the action for incoming new PDEs while improving

the reward model according to the measured solution error.

When the online playing is done and we no longer conduct

exploration to update our model, given a new PDE (say,

indexed by β∗), we evaluate the predictive mean µ given β∗

and every a ∈ P . We then select the one with the largest pre-

dictive mean (reward estimate). We use the corresponding

interface conditions to run the multi-domain PINNs to solve

the PDE. Our MAB learning is summarized in Algorithm 1.

To ensure our MAB is capable of finding the optimal in-

terface conditions for different PDEs, we perform regret

analysis. Consider a sequence of PDE parameters (i.e., con-

text) in the online playing, {βt}. Denote by a
∗
t and at

the optimal and MAB-selected interface condition set for

each βt, respectively. We define an instantaneous regret

ζt = f(βt,at)− f(βt,a
∗
t ). Then we can analyze the accu-

mulated regret up to step T over the context sequence {βt},

namely, RT =
∑T

t=1 ζt. Our MAB guarantees a sublinear

regret bound for both UCB and TS.

Theorem 3.1. For δ > 0, take ct in the UCB as

ct = 2 log

(
2sπ2t2

6δ

)
t ∈ N

where d is the number of PDE parameters, and s is the

total number of interface conditions. Conditioning on every

context sequence {βt}, let {at} be the action selected by

the UCB score under the above choice of {ct}. Then, with

probability at least 1− δ, the regret RT satisfies

RT .

√
2sT (log T )d+1 log

(
2sT 2

δ

)

log(1 + σ−2
0 )

T = 1, 2, · · · , (7)

GP Reward 

Model

GP Reward 

Model

MAB-1 MAB-2

a
∗

1

(β,a)

Stochastic training

(β,a)

a
∗

2

Deterministic training
Multi-Domain

PINNs:

loss `

Figure 1: The illustration of the sequential MAB model.

where the implicit constant is absolute (does not depend on

{ct} but depends on the domain X ). In particular,

E[RT ] .

√
2sT (log T )d+1 log (2sT 2)

log(1 + σ−2
0 )

, (8)

Moreover, (8) holds also for Thompson sampling.

We can see lim
T→∞

E[RT ]
T = 0, i.e., the average instantaneous

regret converges to zero. Since RT ≥ 0, it means that our

MAB is able to find the optimal interface conditions (almost

surely) for every possible sequence of PDE parameters with

enough long run.

3.2 Sequential Multi-Arm Bandits

In practice, to achieve good and reliable performance, the

training of PINNs is often divided into two stages (Lu et al.,

2021). The first phase is stochastic training, typically with

ADAM optimizer (Kingma and Ba, 2014), to find a nice val-

ley of the loss landscape. The second phase is deterministic

optimization, typically with L-BFGS, to ensure convergence

to the (local) minimum. Due to the different nature of the

two phases, the ideal interface conditions can vary as well.

To enable more flexible choices so as to further improve

the performance, we propose a sequential MAB model, as

illustrated in Fig. 1. Specifically, for each training phase, we

introduce a MAB similar to Sec 3.1, which updates a sepa-

rate GP reward model. To coordinate the two MAB’s and

to optimize the final accuracy, the reward of the first MAB,

denoted by r1, includes not only the negative solution error

after the stochastic training phase, but also a discounted

error after the second phase,

r1 = −ξ1 + γ · (−ξ2) (9)

where γ is the discount factor, and ξ1 and ξ2 are the solution

errors after the stochastic and deterministic training phases,

respectively. In this way, the influence of the interface

conditions at the first training phase on the final solution

accuracy is also integrated into the learning of the reward

model. Next, we expand the context of the second MAB

with the training loss value ` after the first phase. In this way,

the training status of the first phase is also used to determine

4



Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks

Algorithm 1 METALIC-single(T )

1: Initialize the GP reward model, and D ← ∅.
2: for t = 1 . . . T do
3: Randomly sample the PDE parameters β ∈ X .
4: For each action a ∈ P , compute the predictive distribution

of the GP reward model,N
(

µ(a,β), σ2(a,β)
)

.
5: Compute the UCB score: UCB(a) = µ +

√
ct · σ or TS

score: TS(a) ∼ N (µ, σ2).
6: a

∗ = argmax
a∈P UCB(a) or a∗ = argmax

a∈P TS(a).
7: Use the interface conditions of a∗ to train the multi-domain

PINNs to solve the PDE parameterized by β, and evaluate
the solution error ξ.

8: D ← D ∪ {([a∗,β],−ξ)}.
9: Retrain the GP reward model on D.

10: end for

Algorithm 2 METALIC-seq(γ, T )

1: Initialize two GP reward models. Set their training sets D1

and D2 to empty.
2: repeat
3: Randomly sample β ∈ X .
4: Based on the predictive distribution of the first GP model,

use UCB or TS to select the best action a
∗
1.

5: Use the interface conditions of a∗
1 to train the multi-domain

PINNs with ADAM. Evaluate the error ξ1 for solving the
PDE parameterized by β.

6: Given the current training loss ` and β, compute the predic-
tive distribution of the second GP reward model for each
action, and use UCB or TS to select the best action a

∗
2.

7: Use the interface conditions of a∗
2 to continue the training

with L-BFGS. Evaluate the solution error ξ2.
8: D1 ← D1 ∪ {([a∗

1,β],−ξ1 − γξ2)},D2 ← D2 ∪
{([a∗

2,β, `],−ξ2)}.
9: Retrain the two GP models on D1 and D2, respectively.

10: until T iterations are done

the interface conditions for the second phase. The learning

of the sequential MAB’s is summarized in Algorithm 2.

Algorithm Complexity. The time complexity of both MAB

algorithms is O(TR+
∑T

t=1 t
3) where T is the total number

of iterations, R is the complexity of multi-domain PINNs,

and O(
∑T

t=1 t
3) is the total time complexity of updating

the GP reward model to T . In practice, T is typically chosen

as a few hundreds (see the experimental section). Under

such a choice, running multi-domain PINNs is much more

costly than GP training, and the complexity is dominant

by O(TR). Hence, the time complexity is linear in the

number of iterations. The space complexity of our algo-

rithm is O(C +T 2), including the storage of the GP reward

model and the multi-domain PINN (with constant complex-

ity O(C)).

4 Related Work

As an alternative to mesh-based numerical methods, PINNs

have had many success stories, e.g., (Raissi et al., 2020;

Chen et al., 2020; Sirignano and Spiliopoulos, 2018; Zhu

et al., 2019; Geneva and Zabaras, 2020; Sahli Costabal

et al., 2020). Multi-domain PINNs, e.g., XPINNs (Jagtap

and Karniadakis, 2021) and cPINNs (Jagtap et al., 2020),

extend PINNs based on domain decomposition and use a

set of PINNs to solve the PDE in different subdomains.

To stitch together the subdomains, XPINNs used solution

continuity and residual continuity as the interface condi-

tions. Other conditions are also available, such as the flux

conservation in cPINNs (Jagtap et al., 2020), the gradient

continuity (De Ryck et al., 2022), and the residual gradi-

ent continuity in gPINNs (Yu et al., 2022). Recently, Hu

et al. (2021) developed a theoretical understanding on the

convergence and generalization properties of XPINNs, and

examined the trade-off between XPINNs and PINNs.

Meta learning (Schmidhuber, 1987; Naik and Mammone,

1992; Thrun and Pratt, 2012) is an important topic in ma-

chine learning. The existing works can be roughly attributed

to three categories: (1) metric-learning that learns a metric

space with which the tasks can make predictions via match-

ing the training points, e.g., nonparametric nearest neighbors

(Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017;

Oreshkin et al., 2018; Allen et al., 2019), (2) learning black-

box models (e.g., neural networks) that map the task dataset

and hyperparameters to the optimal model parameters or

parameter updating rules, e.g., (Andrychowicz et al., 2016;

Ravi and Larochelle, 2017; Santoro et al., 2016; Wang et al.,

2016; Munkhdalai and Yu, 2017; Mishra et al., 2017), and

(3) bi-level optimization where the outer level optimizes the

hyperparameters and the inner level optimizes the model

parameters given the hyperparameters (Finn et al., 2017;

Finn, 2018; Bertinetto et al., 2018; Lee et al., 2019; Zintgraf

et al., 2019; Li et al., 2017; Zhou et al., 2018). The bi-level

optimization approaches are often restricted by the high

cost of computing the meta-gradient (e.g., w.r.t the model

initialization) via computational graphs. The issue has been

recently addressed by (Li et al., 2023) that uses gradient

flows to model the inner-optimization and adjoint state meth-

ods to compute the meta-gradients. Recently, Penwarden

et al. (2023) developed the first method to meta learn the

initialization for PINNs.

Multi-arm bandit is a classical online decision making

framework (Lai et al., 1985; Auer et al., 2002a;b; Mahajan

and Teneketzis, 2008; Bubeck et al., 2012), and have numer-

ous applications, such as online advertising (Avadhanula

et al., 2021), collaborative filtering (Li et al., 2016), clinical

trials (Aziz et al., 2021) and robot control (Laskey et al.,

2015). To our knowledge, our work is the first to use MAB

for meta learning of task-specific hyperparameters, which is

advantageous in its simplicity and efficiency. MAB can be

viewed as an instance of reinforcement learning (RL) (Sut-

ton and Barto, 2018), but it only needs to estimate a reward

function online. While one can design more expressive RL

models to meanwhile learn a Markov decision process (in
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MAB, we simply use UCB or TS), it often demands we run

a massive number of PINN training trajectories, which is

much more expensive. The model estimation is also much

more challenging.

5 Experiment

To evaluate METALIC, we considered four commonly-used

benchmark PDE families in PINN literature (Raissi et al.,

2019; Krishnapriyan et al., 2021; Jagtap and Karniadakis,

2021). Note that our work is not about how to smartly de-

compose the domain or purposely decompose with strong

physical meanings. We followed (Jagtap and Karniadakis,

2021) to use a naive decomposition to verify the effective-

ness of our interface condition selection method.

The Poisson Equation. First, we considered a 2D Poisson

equation with a parameterized source function,

uxx + uyy = h̃(x, y; s) (10)

where (x, y) ∈ [0, 1] × [0, 1], h̃(x, y; s) =
h(x, y; s)/maxx,y h(x, y; s), and

h(x, y; s) = [erf((x− 0.25)s)− erf((x− 0.75)s)]

· [erf((y − 0.25)s)− erf((y − 0.75)s)] , (11)

where erf(z) = 2
√

π

∫ z

0
e−t2dt, and s ∈ [0, 50] is the sharp-

ness parameter that controls the sharpness of the interior

square in the source. We used Dirichlet boundary condi-

tions, and ran a finite difference solver to obtain an accurate

“gold-standard” solution. To run multi-domain PINNs, we

split the domain into two subdomains, where the interface

is a line at y = 0.5. We visualize an exemplar solution

and the subdomains, including the sampled boundary and

collocation points in Fig. 5 of Appendix.

Advection Equation. We next considered a 1D advection

(one-way wave) equation,

ut + βux = 0

where x ∈ [0, 2π], t ∈ [0, 1], and β is the PDE param-

eter denoting the wave speed. We used Dirichlet bound-

ary conditions, and the solution has an analytical form,

u(x, t) = q(x−βt) were q(x) is the initial condition (which

we selected as q(x) = sin(x)). For domain decomposition,

we split the domain at t = 0.5 to obtain two subdomains.

Fig. 6 in Appendix shows an exemplar solution and the

subdomains with the interface.

Reaction Equation. Third, we evaluated a 1D reaction

equation,

ut − ρu(1− u) = 0

where ρ is the reaction coefficient (ODE parameter), x ∈

[0, 2π], t ∈ [0, 1] and u(x, 0) = e
−

(x−π)2

2(π/4)2 . The exact solu-

tion is u(x, t) = u(x, 0) · [eρt/ (u(x, 0)eρt + 1− u(x, 0))].

We split the domain at t = 0.5 to obtain two subdomains.

Although not required for well-posedness of the ODE sys-

tem, because we are solving for the PINN space-time field

u(x, t), we use the exact solution to define a boundary loss

term. This enhances training without compromising the

time partitioning we wish to highlight. We show a solution

example and the subdomains in Fig. 7 of Appendix.

Burger’s Equation. Fourth, we considered the viscous

Burger’s equation,

ut + uux = νuxx

where ν ∈ [0.001, 0.05] is the viscosity (PDE parameter),

x ∈ [−1, 1], t ∈ [0, 1], and u(x, 0) = − sin(πx). We ran

a numerical solver to obtain an accurate “gold-standard”

solution. To decompose the domain, we take the middle

portion that includes the shock waves as one subdomain,

namely, Ω1 : x ∈ [−0.1, 0.1], t ∈ [0, 1], and the remaining

as the other subdomain, Ω2 : x ∈ [−1,−0.1] ∩ [0.1, 1], t ∈
[0, 1]. Hence, the interface consists of two lines. See Fig. 8

in Appendix for the illustration and solution example.

To evaluate METALIC, we used nine interface conditions,

which are listed in Appendix (Sec. A). For the PINN in each

subdomain, we used two layers, with 20 neurons per layer

and tanh activation function. We randomly sampled 1,000

collocation points and 100 boundary points for each PINN.

To inject the interface conditions, we randomly sampled

101 interface points for the Poisson, advection and reaction

equations, and 802 interface points for Burger’s equation.

We set λb = 20 and λI = 5, which follows the insight

of (Wang et al., 2021; 2022) to adopt large weights for the

boundary and interface terms so as to prevent the training

of PINNs from being dominated by the residual term. We

denote our single MAB by METALIC-single, and sequential

MABs by METALIC-seq. For the latter, we set the discount

factor γ = 0.9 (see (9)). For better numerical stability, we

used the relative L2 error in the log domain to obtain the

reward for updating the GP models. The running of the

multi-domain PINNs consists of 10K ADAM epochs (with

learning rate 10−3) and then 50K L-BFGS iterations (the

first order optimality and parameter change tolerances set to

10−6 and 10−9 respectively). We set ct = 1 to compute the

UCB score. We ran 200 plays (iterations) for our method.

For static (offline) test, we randomly sampled 100 PDEs

(which do not overlap with the PDEs sampled during the

online playing). We then used the learned reward model to

determine the best interface conditions for each particular

PDE (according to the predictive mean), with which we ran

the multi-domain PINNs to solve the PDE, and computed

the relative L2 error.

First, to examine the online performance of METALIC, we

looked into the accumulated solution error along with the

number of plays. We compared with randomly selecting the
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Figure 2: Online performance of METALIC-Single.
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Figure 3: Online performance of METALIC-Seq.
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Figure 4: Point-wise solution error.

arm at each play. In the case of running METALIC-seq, this

baseline correspondingly randomly selects the arm twice,

one at the stochastic training phase, and the other at the

deterministic phase. The results are shown in Fig. 2 and 3.

As we can see, the accumulated error of METALIC with

both UCB and TS grows much slower, i.e., sublinearly, than

the random selection approach (note that the reward of the

optimal action is unknown due to the randomness in the run-

ning of PINNs, and we cannot compute the regret). This has

shown that our method achieves a much better exploration-

exploitation tradeoff in the online interface condition deci-

sion and model updating, which is consist with many other

MAB applications (see Sec 4). The results demonstrate the

advantage of our MAB-based approach. First, via effec-

tive exploration, METALIC can collect valuable training

examples (rewards at new actions and context) to improve

the learning efficiency and performance of the GP reward

model. Second, the online decision also takes advantage

of the predictive ability of the current reward model, i.e.,

exploitation, to select effective interface conditions, which

results in increasingly better solution accuracy of the multi-

domain PINNs. The online nature of METALIC enables

us to keep improving the reward model while utilizing it to

solve new equations with promising accuracy.

Next, we conducted the offline test, namely, without on-
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Method Poisson Advection Reaction Burger’s

Random-Single 0.3992 ± 0.0037 0.07042 ± 0.01575 0.00612 ± 0.000278 0.04021 ± 0.00057

Random-Seq 0.3004 ± 0.0032 0.03922 ± 0.00919 0.01284± 0.000707 0.03486 ± 0.00066

PINN-Sub 0.03078 ± 0.00177 0.00130 ± 8.108e-5 0.00213 ± 0.00021 0.00738 ± 0.00313

PINN-Merge-H 0.02398 ± 0.00144 0.00098 ± 5.038e-5 0.00223 ± 0.00026 0.00951 ± 0.00390

PINN-Merge-V 0.02184 ± 0.00211 0.00079 ± 3.391e-5 0.00099 ± 0.00013 0.00276 ± 0.00041

METALIC-Single-TS 0.02503 ± 0.0002 0.00079 ± 4.5897e-5 0.00204 ± 1.013e-4 0.00109 ± 1.306e-5

METALIC-Single-UCB 0.0245± 0.0002 0.00078 ± 3.6771e-5 0.00102 ± 8.945e-6 0.00161 ± 2.939e-5

METALIC-Seq-TS 0.01639± 9.5384e-5 0.00078 ± 3.6473e-5 0.00099 ± 8.4704e-6 0.00152 ± 5.571e-5

METALIC-Seq-UCB 0.01406 ± 9.1099e-5 0.00070 ± 3.2790e-5 0.00099 ± 5.999e-6 0.00139 ± 3.948e-5

Table 1: The average L2 relative error of single-domain PINNs and multi-domain PINNs for solving 100 test PDEs. The interface
conditions of the multi-domain PINNs are provided by METALIC and random selection. {Single, Seq} indicate using a single set or two
sequential sets of interface conditions for the running of the multi-domain PINNs. {TS, UCB} corresponds to our method using TS or
UCB score to determine the interface conditions at each play.

Methods Error Reduction % by METALIC

Poisson’s Advection Reaction Burgers’

PINN-Sub 54.3 46.2 53.5 85.2
PINN-Merge-H 41.4 28.6 55.6 88.5
PINN-Merge-V 35.6 11.4 0 60.5

Table 2: Percentage of error reduction by METALIC as compared
with single domain PINNs.

line exploration and model updating any more after 200

plays. We compared with (1) Random-Single, which, for

each PDE, randomly selects a set of interface conditions

applied to the entire training of the multi-domain PINNs,

and (2) Random-Seq, which for each PDE, randomly se-

lects two sets of interface conditions, one for the stochastic

training and the other for the deterministic training phase.

We also tested single-domain PINNs that do not incorporate

interface conditions. Specifically, we compared with (3)

PINN-Sub, which used the same architecture as the PINN

in each subdomain, but is applied to the entire domain, (4)

PINN-Merge-H, which horizontally pieced all the PINNs

in the subdomains, i.e., doubling the layer width yet fix-

ing the depth, (5) PINN-Merge-V, which vertically stacked

the PINNs, i.e., doubling the depth while fixing the width.

While PINN-Merge-H and PINN-Merge-V merge the PINNs

in each subdomain, the total number of neurons actually

increases (for connecting these PINNs). Hence, the merged

PINN is more expressive. Each single-domain PINN used

the union of the boundary points and collocation points

from every subdomain. We used the same weight for the

boundary term, i.e., λb = 20. The optimization of each

single-domain PINN follows the same setting of the multi-

domain PINNs (i.e., 10K ADAM epochs and 50K L-BFGS

iterations).

We report the average relative L2 solution error and the

standard deviation in Table 1. As we can see, randomly

selecting interface conditions, no matter for the whole train-

ing procedure or two training phases, result in much worse

solution accuracy of multi-domain PINNs. The solution

error is one order of magnitude bigger than METALIC in all

the settings. It confirms that the success of the multi-domain

PINNs is up to appropriate interface conditions. Next, we

can observe that while the performance of METALIC-Single

is similar to METALIC-Seq, the best solution accuracy is

in most cases obtained by interface conditions selected by

METALIC-Seq (except in solving the Burger’s equation).

It demonstrates that our sequential MAB model that can

employ different conditions for the two training phases is

more flexible and brings additional improvement. We also

observe that in most cases using UCB for online playing

can lead to better performance for both METALIC-Single

and METALIC-Seq. This is consistent with the online per-

formance evaluation (see Fig. 2 and 3). Third, among the

single-domain PINN methods, PINN-Merge-V outperforms

PINN-sub in all the equation families and PINN-Merge-H

outperforms PINN-sub in the Poisson and advection equa-

tions, showing that deeper or wider architectures can help

further improve the solution accuracy. However, their perfor-

mance is still second to the best setting of METALIC, which

uses simpler subdomain PINN architectures and fewer to-

tal learnable parameters. These multi-domain PINNs can

be further parallelized to accelerate training. By contrast,

if the interface conditions are inferior, such as those se-

lected by Random-Single and Random-Seq, the solution

error becomes much worse (orders of magnitude bigger)

than single-domain PINNs.

In Table 2, we show the percentage of the error reduction

led by METALIC (the best setting) , as compared with

single-domain PINNs. We can see that, METALIC can

give a large reduction in all the cases, except for Reaction

equation, PINN-Merge-V achieves the same error. Note

that both PINN-Merge-V and PINN-Merge-H include more

NN parameters than multi-domain PINNs. Together these

have shown the importance of the interface conditions for

8



Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks

multi-domain PINNs and the advantage of our method.

For a fine-grained comparison, we visualize the point-wise

solution error of PINN-Sub, Random-Single, Random-Seq,

and our method in solving four random instances of the

equations. As shown in Fig. 4, the point-wise error of

both METALIC-Single and METALIC-Seq is quite uniform

across the domain and close to zero (dark blue). By contrast,

the competing methods often exhibit relatively large errors

in a few local regions, e.g., those in the middle (where the

shock waves appear) of the domain of Burger’s equation

(PINN-Sub, Random-Single, Random-Seq), and the central

part of the domain of the Poisson and advection equation

(Random-Single). It shows that our method not only can

give a superior global accuracy, but locally also better re-

covers individual solution values.

Analysis of Selected Conditions. Finally, we analyzed the

selected interface conditions in each equation family by

METALIC. We found that those conditions are interesting

in that they are physically meaningful, consistent with the

properties of the equations, and also tied to the specific

optimization step in the multi-domain PINN training. Due

to the space limit, we provide the details in Sec. D of

Appendix.

6 Discussion

One might be concerned about the curse of dimensionality

issue. That is, when there is a large number of subdomains

and we still learn different conditions for every interface,

a great many MAB’s are needed and the online learning

cost can explode. Here we argue that, while theoretically

possible, such issue in practical usage does not occur and

we do not need to worry about it.

In general, we have two motivations to apply domain de-

composition. The first motivation is to improve the solution

accuracy. In this case, one prefers to adopt different condi-

tions across different interfaces. However, due to the rich

expressivity of neural networks, e.g., universal approxima-

tion, PINNs are like high-order finite element methods, and

the number of subdomains should be as few as possible. For

example, the recent work (Jagtap et al., 2022) uses multi-

domain PINNs for inverse problems in supersonic flows

(Euler equations), which largely outperforms the single do-

main PINNs. Only two interfaces and three subdomains

are used in (Jagtap et al., 2022) for this problem (see Fig.

3, 4, and 5 of that paper). Hence, to learn the interface

conditions, we only need a few more MAB’s and the growth

of the learning cost is minor.

The second motivation of domain decomposition is to enable

parallel computation so as to speed up problem solving. In

such case, one often prefers a large number of subdomains,

and each may be allocated to a separate computing unit, e.g.,

a CPU core. However, to ensure the solution is consistent

(not influenced by the number of computing units), one

needs to demand the interface conditions be identical across

all the subdomains. That means, METALIC only needs one

MAB (or two sequential MAB’s; see Fig. 1) to learn the

interface conditions shared by all the subdomains. Hence,

there is again no “curse of dimensionality” issue. Note

that the parallel computational framework for multi-domain

PINNs have been published (Shukla et al., 2021).

7 Conclusion

We have presented METALIC, a simple, efficient and power-

ful meta learning approach to select PDE-specific interface

conditions for general multi-domain PINNs. The results at

four bench-mark equation families are encouraging. In the

future, we will use the PDE residual as the approximate re-

ward so that our method can be fully unsupervised. We will

also extend METALIC to meta learn the interface locations

along with the conditions, as a function of not only accuracy

but training time so as to improve both the solution accuracy

and training efficiency of the multi-domain PINNs.
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Appendix

A Interface Conditions

We used a total number of 9 interface conditions throughout all the experiments, which are listed in Table 1. Note that Iz
and Izz correspond to the first and second-order derivatives w.r.t an input to the PDE solution function. Since all the test

PDE problems consist of two spatial or spatiotemporal dimensions, Iz and Izz give four interface conditions. There are no

mixed derivatives across different input dimensions. In the case that one Iz is the same as Ic, such as in Poisson equation,

the de-duplication gives 9 different conditions. In the case that all Iz’s are different from Ic, such as in Burger’s equation,

we used Ic and removed one Iz (z = y or z = t), so that we still maintain 9 interface conditions to be consistent with other

experiments.

Table 3: Interface Conditions of Multi-domain PINNs

Iu Solution continuity (12)

Iuavg
Average solution continuity (13)

Ir Residual (14)

Irc Residual continuity (15)

Igr Gradient-enhanced residual (16)

Ic Flux continuity (17)

Iz First-order spatial/temporal derivative continuity (18)

Izz Second-order spatial/temporal derivative continuity (19)

Iu(θk,θk′) =
1

Jk,k′

Jk,k′∑

i=1

(
ûθk

(xi
k,k′)− ûθk′

(xi
k,k′)

)2
(12)

Iuavg (θk,θk′) =
1

Jk,k′

Jk,k′∑

i=1

(
ûθk

(xi
k,k′)− ûavg

k,k′(x
i
k,k′)

)2
(13)

where ûavg

k,k′(x
i
k,k′) =

1

2

(
ûθk

(xi
k,k′) + ûθk′

(xi
k,k′)

)

Ir(θk,θk′) =
1

Jk,k′

Jk,k′∑

i=1

((
F [ûθk

](xi
k,k′)− f(xi

k,k′)
)2

+
(
F [ûθk′

](xi
k,k′)− f(xi

k,k′)
)2)

(14)

Irc(θk,θk′) =
1

Jk,k′

Jk,k′∑

i=1

((
F [ûθk

](xi
k,k′)− f(xi

k,k′)
)
−
(
F [ûθk′

](xi
k,k′)− f(xi

k,k′)
))2

(15)

Igr(θk,θk′) =
1

Jk,k′

Jk,k′∑

i=1

2∑

j=1



∣∣∣∣∣

∂

∂xi
k,k′ [j]

(
F [ûθk

](xi
k,k′)− f(xi

k,k′)
)
∣∣∣∣∣

2

+

∣∣∣∣∣
∂

∂xi
k,k′ [j]

(
F [ûθk′

](xi
k,k′)− f(xi

k,k′)
)
∣∣∣∣∣

2



(16)

Ic(θk,θk′) =
1

Jk,k′

Jk,k′∑

i=1

(
φ
(
ûθk

(xi
k,k′)

)
· n− φ

(
ûθk′

(xi
k,k′)

)
· n
)2

(17)

where φ(ûθ) · n are fluxes normal at the interface
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Figure 5: The Poisson equation. The interface is the green line at y = 0.5. Blue and black dots show the sampled boundary points in
each subdomain, and the internal dots (red and cyan) are the sampled collocation points inside each subdomain.
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Figure 6: Advection equation. The interface is the green line at t = 0.5.

Iz(θk,θk′) =
1

Jk,k′

Jk,k′∑

i=1

(
∂

∂zi
ûθk

(xi
k,k′)−

∂

∂zi
ûθk′

(xi
k,k′)

)2

(18)

where zi = x
i
k,k′ [1] or zi = x

i
k,k′ [2].

Izz(θk,θk′) =
1

Jk,k′

Jk,k′∑

i=1

(
∂2

∂zi
2 ûθk

(xi
k,k′)−

∂2

∂zi
2 ûθk′

(xi
k,k′)

)2

(19)

where zi = x
i
k,k′ [1] or zi = x

i
k,k′ [2].

14



Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks

0 2 4 6

x

0.0

0.2

0.4

0.6

0.8

1.0

t

00 1

(a) Solution at ρ = 5.0

0 2 4 6

x

0.0

0.2

0.4

0.6

0.8

1.0

t

(b) Subdomains

Figure 7: Reaction equation. The interface is at t = 0.5.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

t

−1 0 1

(a) Solution at ν = 0.001
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Figure 8: Burger’s equation. The interfaces are at x = −0.1 and x = 0.1. The middle portion (filled with cyan dots) is the first
subdomain, and the remaining parts constitute the second subdomain.

B Regret Bound Proof

Recall that X ⊆ R
d is a compact set denoting the parameter (context) space associated with the parametrized PDE, and S is

the state space consisting of a finite number of interface conditions, i.e. |S| = s ∈ N. The action space P is defined as

P = 2S = {(q1, · · · , qs) ∈ {0, 1}s} ⊂ R
s.

In our paper, the reward at time t is modeled as

rt = r(βt, at) = f(βt, at) + ηt (βt, at) ∈ X × P, (20)

where βt is the context revealed at time t, at is the selected action, f is a function on X × P sampled from an appropriate

prior, and ηt is a white noise process used to model the extraneous randomness (e.g. neural network implementation, error

rounding, etc.)

In our case, the true reward is the negative error metric computed for the learned PDE solution, which is too complicated for

analysis. Alternatively, we use the above model (20) as a substitute for approximation. As a result, the reward model is

misspecified. Nevertheless, we assume that (20) is reflective of the true reward and do not consider the model misspecification

effects in the subsequent analysis for ease of demonstration; ideas from (Bogunovic and Krause, 2021) can be used to obtain

refined analysis for misspecified models but we do not pursue them here.

We now state the technical assumptions on the model parametrization as used in the METALIC algorithm:
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• f(β, a) is sampled from a GP(0, κ) prior, where κ is a kernel function on X × P ⊂ R
d+s:

κ((β, a), (β′, a′)) = κ1(β,β
′)κ2(a, a

′),

where κ1 and κ2 are Gaussian kernels:

κ1(β,β
′) = exp(−τ1‖β − β′‖22) κ2(a, a

′) = exp
(
−τ2

s
‖a− a′‖1

)
.

(Note: The key assumption we will be using the is the tensor product structure as well as the form of κ1; since κ2

is discrete, it does not encode much of geometry and changing to other alternatives should not affect the subsequent

analysis. )

• ηt are i.i.d. Gaussian with variance σ2
0 :

ηt
i.i.d.∼ N(0, σ2

0).

Under the above assumptions, for T ∈ N and historical observations xt = (βt, at) ∈ X × P , 1 ≤ t ≤ T , yT =
(r1, · · · , rT )>, the posterior distribution of f at x = (β, a) ∈ R

d+s is a normal random variable with mean and variance

given below:

µT (x) = k>T (x)(σ
2
0IT +KT )

−1yT

σ2
T (x) = κ(x,x)− k>T (x)(σ

2
0IT +KT )

−1kT (x),

where

KT = (κ(xi,xj))1≤i,j≤T ∈ R
T×T kT (x) = (κ(x,x1), · · · , κ(x,xT ))

> ∈ R
T .

The following quantity, which measures the maximum uncertainty reduction of fT = (f(x1), · · · , f(xT ))
> when observing

yT , will appear in the regret analysis:

γT := max
{xt}⊂X×P

H(fT )−H(fT |yT )

= max
{xt}⊂X×P

H(yT )−H(yT |fT ) H(yT |fT ) is independent of {xt}

= max
{xt}⊂X×P

1

2
log |IT + σ−2

0 KT |,

where H is the Shannon entropy.

We are now ready to state the main result:

Theorem B.1. For δ > 0, take ct in the UCB algorithm as

ct = 2 log

(
2sπ2t2

6δ

)
t ∈ N.

Conditioning on every context sequence {βt}, let {at} be the action selected by the UCB algorithm under the above choice

of {ct}. Then, with probability at least 1− δ, the regret RT satisfies

RT .

√
2sT (log T )d+1 log

(
2sT 2

δ

)

log(1 + σ−2
0 )

T = 1, 2, · · · , (21)

where the implicit constant is absolute (does not depend on {βt} but depends on the domain X ). In particular,

E[RT ] .

√
2sT (log T )d+1 log (2sT 2)

log(1 + σ−2
0 )

, (22)

Moreover, (22) holds also for the Thompson sampling algorithm.
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Proof. We first prove the statement concerning the UCB algorithm. The proof is similar to (Krause and Ong, 2011) overall.

Owing to a few subtle differences, we provide a sketch of the proof. In our setting, contexts are revealed in a random fashion

that is independent of the reward noises. For convenience, we condition on the context sequence {βt}t∈N ⊂ X throughout

the analysis, i.e., we treat {βt}t∈N ⊂ X as deterministic and arbitrary sequence.

Firstly, a standard application of concentration inequalities and a union bound (Krause and Ong, 2011, supplement, Lemma

5.2) yields that, with probability at least 1− δ,

|f(βt, a)− µt(βt, a)| ≤ c
1/2
t σt−1(βt, a) t ∈ N, a ∈ P, (23)

which immediately implies an upper bound for the regret:

RT =

T∑

t=1

(f(βt, a
∗
t )− f(βt, at)) a∗t = argmax

a∈P
f(βt, a)

≤
T∑

t=1

(µt−1(βt, a
∗
t ) + c

1/2
t σt−1(βt, a

∗
t ))− (µt−1(βt, at) + c

1/2
t σt−1(βt, at))︸ ︷︷ ︸

≤0

+2c
1/2
t σt−1(βt, at)

≤ 2
T∑

t=1

c
1/2
t σt−1(βt, at)

≤ 2
√
T

[
cT

T∑

t=1

σ2
t−1(βt, at)

]1/2

(Cauchy–Schwarz; ct is increasing in t)

(?)

≤
√

8TcT γT

log(1 + σ−2
0 )

. K(σ0)
√

TcT γT K(σ0) =

√
1

log(1 + σ−2
0 )

,

where the (?) follows from (Krause and Ong, 2011, Theorem 5) and an intuitive way to understand it is that the total

information gain (i.e. the predictive variance term; see (Srinivas et al., 2009, Lemma 5.3)) is bounded by the maximum

information gain under the optimal design.

It remains to bound γT for the kernel κ. Since κ is a tensor product of κ1 and κ2, with κ2 being a kernel on a discrete set

with cardinality 2s (i.e. has rank 2s), according to (Krause and Ong, 2011, Theorem 2),

γT ≤ 2s(γT |κ1
+ log T ),

where γT |κ1
is the maximum information gain defined for the GP with kernel function κ1. Note κ1 is the Gaussian kernel.

(Srinivas et al., 2009, Theorem 5) tells us that γT |κ1
= O((log T )d+1), where the implicit constant depends on the domain

X . Hence, γT . 2s(log T )d+1. Plugging this into the above bound for RT yields the high-probability bound (21). For (22),

note that (21) and
√
x+ y ≤ √

x+
√
y, x, y ≥ 0 together imply that there exists an absolute constant C > 0 so that with

probability at least 1− δ,

R̃T :=

∣∣∣RT − CK(σ0)
√

2sT (log T )d+1 log (2sT 2)
∣∣∣

CK(σ0)
√
2sT (log T )d+1

≤
√
log

(
1

δ

)
,

i.e., P(R̃T ≥ x|{βt}) ≤ e−x2

. Integrating the tail probability yields

E[R̃T |{βt}] =
∫ ∞

0

P(R̃T ≥ x|{βt})dx ≤
∫ ∞

0

e−x2

dx =
√
π.

Taking expectation over {βt} yields E[R̃T ] ≤
√
π. (22) follows by rearrangement.
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For at chosen according to the Thompson sampling, we employ a similar technique that appears in (Lattimore and Szepesvári,

2020, Theorem 36.1). First, note that for any two random variables Zt, Z
′
t with the same mean,

E[f(βt, a
∗
t )− f(βt, at)] = E[f(βt, a

∗
t )− Zt + Z ′

t − f(βt, at)].

Conditioning on the historical actions {as}1≤s≤t−1 and rewards {rs}1≤s≤t−1 up to t− 1 (i.e. the σ-field Ft−1), at and

a∗t are the argmax of f(βt, a) and f ′(βt, a), respectively, where f(βt, a) and f ′(βt, a) have the same distribution (i.e.

posterior distribution of f ). As a result, at and a∗t have the same Ft−1-conditional distribution. Now take Zt and Z ′
t as the

UCB scores of a∗t and at at t− 1, respectively:

Zt = µt−1(βt, a
∗
t ) + c

1/2
t σt−1(βt, a

∗
t ) Z ′

t = µt−1(βt, at) + c
1/2
t σt−1(βt, at).

It is easy to verify using the tower property that E[Zt] = E[E[Zt|Ft−1]] = E[E[Z ′
t|Ft−1]] = E[Zt−1]. On the other hand,

according to (23), it holds with probability at least 1− 2δ that

f(βt, a
∗
t )− Zt + Z ′

t − f(βt, at) ≤ c
1/2
t σt−1(βt, a) t ∈ N.

Using a similar analysis in the UCB case, we conclude that

E[RT ] =
T∑

t=1

E[f(βt, a
∗
t )− Zt + Z ′

t − f(βt, at)] .

√
2sT (log T )d+1 log (2sT 2)

log(1 + σ−2
0 )

.

C Preliminary Study of the Interface Conditions

We conducted a preliminary study on a 2D Poisson equation uxx + uyy = 1 with the solution shown in Figure 9.
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Figure 9: Poisson solution.

Given this PDE problem, we compared three types of boundary and collocation point sampling methods: random, grid, and

Poisson disc sampling, as shown in Figure 10. The comparison was done between a standard PINN and XPINN, where

the number of collocation points in each XPINN subdomain is the same as the total number of collocation points used by

the PINN. We trained the two models with the boundary loss term weight λb set to 1 and 20. We also varied the interface

loss term weight λI from {1, 20}. The interface loss term is computed from (13) and (15). Table 4 shows the L2 relative

error averaged over 10 runs to minimize the variance in network initialization and optimization. We can see that the XPINN

performance is relevantly less variant to differences in sampling and weights, but for PINNs these differences result in order

of magnitude changes in error. For this reason, we have conducted all the evaluations fairly by using random sampling and
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larger boundary weights for PINN’s which was the best overall setting. We also make the insight that random sampling

allows a PINN to see higher frequencies according to the Nyquist-Shannon sampling theorem which may be the reason for

increased performance over the other sampling methods. The XPINN includes an additional complexity of subdomains and

interface conditions which may dominate the training, resulting in less variance as a function of collocation points.
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Figure 10: Random, grid, and Poisson disc sampling for the Poisson equation problem. The interface is the green line at
y = 0.5. Blue and black dots show the sampled boundary points in each subdomain, and the internal dots (red and cyan) the
sampled points inside each subdomain.

Model
Random Grid Poisson Disc

λb,I = 1 λb,I = 20 λb,I = 1 λb,I = 20 λb,I = 1 λb,I = 20

PINN 9.0325e-4 4.3223e-4 6.0278e-3 2.3699e-3 5.3902e-3 2.2375e-3

XPINN 5.0884e-3 5.3205e-3 6.0764e-3 4.7829e-3 6.5061e-3 4.4888e-3

Table 4: Average L2 relative error over 10 runs for different sampling techniques and loss term weights.

C.1 Interface Condition Combination

For the same PDE problem with random sampling, we ran multi-domain PINNs with different sets of conditions. We used

the generalized interface condition notations for multi-domain PINNs as described in Table 3. For example, an XPINN

can be described as Iuavg
+ Irc. The weights on all terms are unity. As seen by the results in Table 5, the multi-domain

PINNs with interfaces Iuavg
+ Ic + Iyy outperforms other combinations as well as the PINN. We can see that with the

correct interface conditions, the multi-domain PINN can greatly improve upon the standard XPINN. In fact, the additional

residual continuity term, a trait of XPINNs, performs infinitesimally better than only using the average solution continuity.

These results are the foundation of the METALIC method as we have shown that different combinations of conditions

result in drastically different performances. We can also see that multi-domain PINNs are more general and flexible than

the existing PINN decomposition models such as XPINN and cPINN. Having only used XPINNs in Table 4, one might

conclude decomposing this problem is inferior to a standard PINN. However, we have shown that cPINN outperformed

XPINN by an order of magnitude and that adding the additional term Iyy improved the cPINN even further. Furthermore,

naively adding all possible terms such as in the final row, does not necessarily give the best results. This leaves three options

for multi-domain PINNs: manually tuning the interface conditions, running all possible permutations such as we have done

here, or devise a method to learn the appropriate interfaces such as METALIC.
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Model L2 Relative Error

PINN 1.05e-3 ± 4.38e-4

Iuavg
4.28e-3 ± 2.63e-3

Iuavg
+ Irc 3.92e-3 ± 2.25e-3

Iuavg + Ic 9.45e-4 ± 2.85e-4

Iuavg + Irc + Ic 9.77e-4 ± 3.45e-4

Iuavg
+ Irc + Igr 4.57e-3 ± 3.18e-3

Iuavg
+ Ic + Iyy 5.26e-4 ± 1.97e-4

Iuavg
+ Irc + Igr + Ic + Iyy 9.34e-4 ± 3.18e-4

Table 5: Average L2 relative error over 10 runs for different interface
combinations. Note: Ic = Iy for this problem.

D Meta Learning Result Analysis

There are 29 = 512 possible combinations of the interface conditions. For convenience, we use an integer to index each

configuration (combination), index =
∑n

i=0 2
i
c[i] where c is a list of binaries, and c[i] = 1 means i-th interface condition is

turned on. We therefore can show how different sets of interface conditions are selected along with the equation parameters

(see Figures 11, 14, 17, and 20).

D.1 Poisson Equation

For each PDE test case, we provide three analysis plots to better understand the METALIC results. For the Poisson problem,

Figure 11 provides an overview of the interface configuration groupings as the equation parameter s varies. As opposed

to Random-Single, the various METALIC methods predict interface configurations in groupings based on parameter s.

This indicates that for these ranges, the PDE solution behaves similarly across the interfaces. It can also be seen that the

configurations chosen between METALIC-Single and METALIC-Seq are different, indicating that the optimization is an

important factor. This is logical since at the beginning of training, the PINN must first propagate information from the initial

and boundary conditions inward to the entire domain. Therefore, interface conditions during this phase may in fact make

learning more difficult in terms of the loss landscape as the network is trying to enforce continuity at a location which has

no information but is simply a set of random predictions given the random initialization of weights and bias of the network.

In Figure 12, we can see the number of times the interface conditions are selected over the 100 test cases. Random-Single

serves as a baseline with each interface being chosen roughly half of the time. The two most noticeable trends are that

the gradient-enhanced residual term is almost never chosen and the flux continuity which is equivalent to uy for this case

is always chosen by METALIC. This is interesting as the gradient term in the original gPINN paper was shown to be

beneficial to PINN training but appears to be a poor choice on a set of interface points, possibly because with all the other

terms, it simply make the loss landscape more complex and does not provide a significant accuracy benefit compared to

the other more theoretically sound terms such as flux. This result is novel as it showcases the robustness of METALIC

in being able to distinguish between valid and invalid terms, something that would take a user doing manual tuning of

these terms much trail and error to determine. We also note that the METALIC choices align with our results in Section

C.1 that the flux conditions from cPINN greatly outperforms the residual continuity conditions in XPINN for Poisson’s

equation. Flux continuity is a well studied conservation term rooted in traditional methods whereas residual continuity is a

term devised with the convenience of PINNs and automatic-differentiation(AD) in mind. We also note that when comparing

the METALIC-Seq-UCB ADAM and L-BFGS choices, L-BFGS uses more terms on average than ADAM. This confirms

our hypothesis from Figure 11 that more interface terms at the start of training may in-fact make training more difficult.

This validates the result that not only is a sequential interface predictor more accurate, but also faster as it adds in terms

when needed which would reduce computational cost. We also not that including the residual points in the overall set of

collocation points is rarely chosen, likely due to the fact that the interface point set is an order of magnitude smaller than the

collocation point set so assuming it is well sampled, its contribution is negligible. All these insights further confirm the

method is working well and is consistent with our intuition and the properties of the equation being solved.

Finally, in Figure 13, we show the L2 relative error as a function of s. This is a more detailed version of the error table in the

manuscript which tells us how the problem difficulty changes over the parameterization of the problem. For this Poisson
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problem, it is quite consistent other than the lower bound around s = 1 in which the forcing term is very smooth and as we

expect the problem is quite simple, as reflected by the lower errors there.
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Figure 11: Scatter plot of interface configuration vs. the equation parameter s.
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Figure 12: Horizontal bar plot of the quantity of interfaces chosen throughout testing over 100 randomly drawn equation parameters.
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Figure 13: Scatter plot of the relative L2 error vs. the equation parameter s.

D.2 Advection Equation

For the Advection problem, Figure 15 indicates that very few terms where needed. So much so that the ADAM step of

METALIC-Seq-UCB has only one term, Iuavg
, the weaker form of the solution continuity. We again point out the benefit of

METALIC in being able to sub-select few terms out of many while still resulting in the best accuracy as seen in Figures

14 & 16 which show that METALIC-Seq-UCB uses the fewest number of terms but has the best error. This emphasizes

that more interface terms are not always better since the loss landscape can become more complex from an optimization

standpoint. Another interesting feature is that the first derivative in space (ux) is chosen more than the first derivative in time

(ut) despite the subdomain split being in time. This is opposite of the Poisson results in which the derivative normal to the

interface (uy), representing the flux, was chosen in all cases. Both terms, ut and ux are part of the PDE with flux simply

being u, but the tangential derivative ux appears to be a much more meaningful term when it comes to propagating the wave

through the interface. There are also no second order terms which was the case with Poisson.
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Figure 14: Scatter plot of interface configuration vs. the equation parameter β.
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Figure 15: Horizontal bar plot of the quantity of interfaces chosen throughout testing over 100
randomly drawn equation parameters.
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Figure 16: Scatter plot the relative L2 error vs. the equation parameter β.

D.3 Reaction Equation

For the Reaction problem, we note that while this is an ODE, with no spatial derivatives, they were counter-intuitively

chosen as interfaces. This emphasizes the fact that PINNs, and machine learning techniques in general, do not work the

same as traditional methods since these terms are not necessary for well-posedness of an ODE. Given this, Figure 19 shows

that METALIC outperformed the PINN while using these conditions. This is an interesting line of investigation for future

work as it shows counter-intuitive terms can provide a training benefit to PINNs even in contrast to the previous Advection

problem where almost no terms where chosen. It is not clear why in some cases only the most basic of terms are used while

in others terms which do not make physical sense are chosen, but in both, the accuracy is quite good on their respective

problems. This shows that METALIC learns something about PINN training that is not evidently clear to the human user.
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Figure 17: Scatter plot of interface configuration vs. the equation parameter ρ.
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Figure 18: Horizontal bar plot of the quantity of interfaces chosen throughout testing over 100
randomly drawn equation parameters.
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Figure 19: Scatter plot of the relative L2 error vs. the equation parameter ρ.

D.4 Burger’s Equation

For the Burger’s problem, we see more of what one might expect from traditional interface continuity terms. Figure 21 shows

that the flux term is predominately chosen, just as in Poisson’s equation. Although here we see the flux is not equivalent to

the first order derivative, enforcing the idea that it is in fact the flux providing the training benefit and not a coincidence of

the first-order derivative and flux being the same for Poisson. We also see the largest improvement in error of METALIC

over PINNs as seen in Figure 22. The trend is also consistent with our physical understanding, as viscosity (ν) increases the

problem becomes more simple. This is because at lower viscosities a shock forms and creates a discontinuity in the solution

which is difficult for PINNs to resolve. The decomposition of this problem is therefore the most sound, in that we allow one

network to handle the sharp discontinuity in the center, and another to handle the relatively simple solution around it. This

allows for the network in the center to learn a higher frequency basis with which to approximate the discontinuity instead of
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also having to fit the lower frequencies around it which has been delegated to the second network. Given this, it makes sense

that a multi-domain PINN with the METALIC method greatly outperform PINNs here. It also emphasizes that in the less

physically motivated decompositions for Poisson, Advection, and Reaction, we still see improvement using multi-domain

PINNs and METALIC.
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Figure 20: Scatter plot of interface configuration vs. the equation parameter ν.
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Figure 21: Horizontal bar plot of the quantity of interfaces chosen throughout testing over 100
randomly drawn equation parameters.
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Figure 22: Scatter plot of the relative L2 error vs. the equation parameter ν.
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