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Abstract

Physics-informed neural networks (PINNs) are
emerging as popular mesh-free solvers for partial
differential equations (PDEs). Recent extensions
decompose the domain, apply different PINNs to
solve the problem in each subdomain, and stitch
the subdomains at the interface. Thereby, they
can further alleviate the problem complexity, re-
duce the computational cost, and allow paralleliza-
tion. However, the performance of multi-domain
PINNS is sensitive to the choice of the interface
conditions. While quite a few conditions have
been proposed, there is no suggestion about how
to select the conditions according to specific prob-
lems. To address this gap, we propose META
Learning of Interface Conditions (METALIC), a
simple, efficient yet powerful approach to dynam-
ically determine appropriate interface conditions
for solving a family of parametric PDEs. Specifi-
cally, we develop two contextual multi-arm bandit
(MAB) models. The first one applies to the entire
training course, and online updates a Gaussian
process (GP) reward that given the PDE parame-
ters and interface conditions predicts the perfor-
mance. We prove a sub-linear regret bound for
both UCB and Thompson sampling, which in the-
ory guarantees the effectiveness of our MAB. The
second one partitions the training into two stages,
one is the stochastic phase and the other deter-
ministic phase; we update a GP reward for each
phase to enable different condition selections at
the two stages to further bolster the flexibility and
performance. We have shown the advantage of
METALIC on four bench-mark PDE families.
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1 Introduction

Physics-informed neural networks (PINNs) (Raissi et al.,
2019) have become a popular mesh-free approach for solv-
ing partial differential equations (PDEs). They have shown
successful in many scientific and engineering problems,
e.g., (Sahli Costabal et al., 2020; Kissas et al., 2020; Sun
et al., 2020). The recent multi-domain versions, e.g., (Jagtap
et al., 2020; Jagtap and Karniadakis, 2021), extend PINNs
with a divide-and-conquer strategy, and have attracted con-
siderable attention. Specifically, they decompose the do-
main of interest into several subdomains, place a separate
PINN to solve the PDE at each subdomain, and stitch the
subdomains at the interface. In this way, the multi-domain
PINNs can alleviate problem complexity, adopt simpler ar-
chitectures, reduce the training cost, and enable parallel
computation (Shukla et al., 2021).

However, the performance of multi-domain PINNS is sen-
sitive to the choice of interface conditions (or regularizers)
that unify the PINN solutions across different subdomains.
Quite a few conditions have been proposed, such as those
that encourage solution and residual continuity (Jagtap and
Karniadakis, 2021), flux conservation (Jagtap et al., 2020),
gradient continuity (De Ryck et al., 2022) and residual gra-
dient continuity (Yu et al., 2022). On one hand, naively com-
bining all possible interface conditions does not necessarily
give the optimal performance; instead, it can complicate
the loss landscape, making optimization more costly and
challenging. On the other hand, the best conditions can vary
across problems, which are up to the problem properties.
Currently, there is no suggestion about how to select inter-
face conditions according to specific problems, bringing
inconvenience and difficulties to the multi-domain practice.

To address this issue, in this paper we propose METALIC, a
simple, efficient and powerful method that can dynamically
determine the appropriate interface conditions for solving a
family of parametric PDEs. The contributions of our work
are summarized as follows.

* Problem Formulation and Strategy. We formulate
interface selection as a novel meta learning problem,
and propose to use the multi-arm bandit (MAB) frame-
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work to address the problem. Compared with other PDE of the following general form,

complex/popular approaches, e.g., reinforcement learn-

ing with policy gradients, MAB is simple and efficient, Flul(x) = h(x), x e,

requiring much less training trajectories and almost no u(x) = g(x), x €99, ()

hyper-parameter tuning. Due to the online nature, we

can apply the learned MAB to select the conditions for

solving new PDEs while continuously improving the

model. To our knowledge, this is the first time of using

MAB to address important meta learning tasks. N )
+ Method. We develop two contextual MAB models, ~ al network UQ(X) to ;egresent the solution v, samplesMN

where we view the PDE parameters as the context, sets  collocation points {x;};L, from © and M points {x}};Z;

of interface conditions as the arms, and the solution from 92, and minimizes the loss,

where F is the differential operator for the PDE, () is the
domain, 012 is the boundary of the domain, A : 2 — R, and
g : 09 — R are the given source and boundary functions,
respectively. To solve the PDE, the PINN uses a deep neu-

accuracy as the reward. The first model applies to the 0* = argming A\oLo(6) + L.(6) )

entire training course, and online updates a Gaussian 0 e

process (GP) reward model with Upper Confidence where Ly(0) = 1 ZM (179 (xé ) —g (Xi ))2 s the
= M Zi=1

Bound (UCB) or Thompson sampling (TS). The sec-
ond model, according to the common PINN practice,
partitions the training into two phases, the stochastic
(ADAM) and deterministic (LBFGS) phase. We se-
quentially learn a separate contextual bandit for each
phase. In this way, we can select appropriate condi-
tions for different training stages to enhance flexibility =~ Multi-Domain PINNs decompose the domain 2 into sev-
and to further improve the performance. eral subdomains €y, ..., Qx, and assign a separate PINN
e Theory. We prove that our first MAB model, under Ug, to solve the PDE in each subdomain 2. The loss for
the PDE parameters context and with our mixed contin-  each PINN includes a boundary term L¥(6}) and residual
uous and categorical kernel, enjoys a sublinear regret term L% (8) similar to those in (2), based on the boundary
bound with both UCB and TS. It means that over the and collocation points sampled from 92, and 2, respec-

boundary term to fit the boundary condition, L,.(0) =
LN (Flue)(xh) — h(xi))2 is the residual term to fit
the equation, and A, > 0 is the weight of the boundary
term. One can also add an initial condition term in the loss
function to fit the initial conditions (when needed).

course of online training, our MAB enables increas-  tively. In addition, to stitch together the subdomains to
ingly better interface condition selections, and guaran-  obtain an overall solution over €2, we introduce interface
tees to eventually find the optimal conditions. conditions into the loss to align different PINNs at the in-

* Results and Analysis. We evaluated METALIC with tersection of the subdomains. There have been quite a few
four commonly used benchmark PDEs in PINN liter-  interface conditions. Suppose € N Qs # (). We sample a
ature. Both of our MAB models exhibit a sublinear et of interface points {xi k/};']fik/ € O N Q. One com-
growth of the accumulated solution error, which is  monly used interface condition is to encourage the solution
much slower than the linear growth of random arm se-  ¢ontinuity (Jagtap and Karniadakis, 2021),

lection. We then examined METALIC after online

training. With the interface conditions determined 1 T , ’ 4 2
by METALIC, the multi-domain PINNs achieve so-  [1(8k. 6) = — > (ﬂek (X pr) — ﬁ?!i/(xmf))
lution errors one order of magnitude smaller than using o=l

randomly selected conditions, which also outperform _ave i 1~ ; R ;
standard single-domain PINNs with more neurons (we ~ Where 5, Xpw) = 3 (UGk (X 1) + Ug,, (Xk,k’))'
obtained as much as 88.5% error reduction). Finally, ~ Other choices include the residual continuity (Jagtap and
we conducted a thorough analysis of the conditions ~ Karniadakis, 2021), gradient continuity (De Ryck et al.,
selected by METALIC and found many interesting re-  2022), residual gradient continuity (Yu et al., 2022), flux
sults. Many selected conditions not only reflect the conservation (Jagtap et al., 2020), efc. In general, the loss
physical properties of the problem, but also are tied to ~ for each subdomain % has the following form,

the specific optimization procedure for PINN training. )
LV = NLE(0x) + LE(0r) + M\ Z Z I,,(0k,01)
ki, NQp#0 nES

where S is the set of interface conditions, and A; > 0 is the
weight of the interface term. The training is to minimize
L= Zszl L. The final solution inside each sub-domain &
Physics-Informed Neural Networks (PINNs) estimate is given by the associated PINN g, , while on the interface,
PDE solutions with (deep) neural networks. Consider a by the average of the PINNs that share the interface.

2 Background
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3 Meta Learning of Interface Conditions

‘While multi-domain PINNs have shown successes, the se-
lection of the interface conditions remains an open and
difficult problem. On one hand, naively adding all possi-
ble conditions together will complicate the loss landscape,
making the optimization challenging and expensive, yet
not necessarily giving the best performance. On the other
hand, different problems can demand a different set of the
interface conditions as the best choice, which is up to the
properties of the problem itself. For example, in our prelim-
inary study about a specific 2D Poisson equation (see Sec C
in Appendix), we found the best accuracy is obtained with
a novel combination of three interface conditions, giving
43.7% error reduction as compared with combining all the
interface conditions together; see Table 5 in Appendix.

Currently, there is a lack of methodologies to identify con-
ditions for different PDEs. To address this issue, we first
formulate it as a novel meta learning problem. Specifically,
we consider a parametric PDE family .4, where each PDE
in A is parameterized by 3 € X C R?. The parameters
can come from the operator JF, the source term h and/or the
boundary function g (see (1)). Denote by S = {I1,..., s}
the full set of interface conditions. Our goal is, given a PDE
parameterized by arbitrary 3 € X, to determine I(3) C S
— the best set of interface conditions — for multi-domain
PINNSs to solve that PDE.

We propose to use the multi-arm bandit (MAB) frame-
work (Slivkins et al., 2019) to address this problem. One
might consider other complex and prevalent approaches,
such as deep neural network prediction and reinforcement
learning with policy gradients. However, to get well trained,
these methods usually demand massive running trajectories
of PINNs, which can be extremely costly. In addition, the
success of these methods also rely on elaborate architecture
design and intensive tuning of many hyper-parameters. By
contrast, MAB is simple and efficient, requiring much less
training trajectories and (almost) no architecture design and
hyper-parameter tuning. The online nature makes the MAB
straightforward to update incrementally with new data, and
is much more convenient than those heavy-duty models.

3.1 Multi-Arm Bandit for Entire Training

We first propose a MAB model to select the interface con-
ditions for the entire training procedure of multi-domain
PINNSs. In general, MAB considers a gambler playing ¢
slot machines (i.e., arms). Pulling the lever of each ma-
chine will return a random reward from a machine-specific
probabilistic distribution, which is unknown apriori. The
gambler aims to maximize the total reward earned from a se-
ries of lever-pulls across the ¢ machines. For each play, the
gambler needs to decide the tradeoff between exploiting the

machine that has observed the largest expected payoff so far
and exploring the payoffs of other machines. To determine
PDE-specific interface conditions, we build a contextual
MAB model. We consider the PDE parameters 3 € X
as the context, all possible combinations of the interface
conditions (i.e., the power set of S) as the arms, and the
negative solution error as the reward. The problem space
can be represented by a triplet (X, P, f(-,-)), where X is
the context space, P is the action space (the power set of S),
and f : X x P — Ris the reward function. We represent
each action by an s-dimensional binary vector a, where each
element corresponds to a particular interface condition in S.
The i-th element a; = 1 means the interface condition i is
selected in the action.

To estimate the unknown reward function f (-, -), we assign
a Gaussian process (GP) prior,

f~GP(0,x([8,a],[8,a'])) 3)

where k(- ) is a kernel (covariance) function. Consider-
ing the categorical nature of the action input, we design a
product kernel,

K ([ﬁ?aL [,8/, al]) = Hl(ﬁwB/)K’?(a’ a/) (4)

where x1 (8, 8') = exp(—m1]|8 — B'||?) is the square expo-
nential (SE) kernel for continuous PDE parameters, and

1 S
ko(a,a’) = exp (7'2 s Z L(a; = aé)) &)
i=1

where 1(+) is the indicator function. Hence, the similarity
between actions is based on the overlap ratio of the selected
interface conditions, which is natural and intuitive. As in
the standard GP regression, the observed reward r is then
sampled from a Gaussian noise model,

r~N(rlf,of) (6)

where o2 > 0. The noise model is to capture the extraneous
randomness such as stochastic training and float rounding.

To learn the MAB, each step we randomly sample a context
B from X, and then select an action a, i.e., a set of interface
conditions, according to the current GP reward model. We
then run the multi-domain PINNs with the interface condi-
tions to solve the PDE parameterized by 3. We evaluate the
negative solution error ¢ as the received reward. We add
the new data point ([3, a], —¢) into the current training set,
and retrain (update) the GP reward model. We repeat this
procedure until a given maximum number of trials (plays) is
done. To fulfill a good exploration-exploitation tradeoff, we
use the Upper Confidence Bound (UCB) (Auer, 2002; Srini-
vas et al., 2010) or Thompson sampling (TS) (Thompson,
1933; Chapelle and Li, 2011) to select the action at each
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step. Specifically, denote the current predictive distribution
of the GP surrogate by

p(fID.B.2) = N (Flu(a, B), 0*(a,B))

where D is the accumulated training set so far. The UCB
score is

UCB(a) = u(a, B) + ¢;'/% - o(a, B)

where ¢; > 0 is a coefficient at step ¢, and the TS score is
sampled from the predictive distribution,

TS(a) ~ p(f|D, B, a).

We can see that both scores integrate the predictive mean
(which reflects the exploitation part) and the variance infor-
mation (exploration part). We evaluate the score for each
action a € P (UCB or TS), and select the one with the
highest score (corresponding to the best tradeoff).

In the online scenario, we can keep using UCB or TS to
select the action for incoming new PDEs while improving
the reward model according to the measured solution error.
When the online playing is done and we no longer conduct
exploration to update our model, given a new PDE (say,
indexed by 3*), we evaluate the predictive mean p given 3*
and every a € P. We then select the one with the largest pre-
dictive mean (reward estimate). We use the corresponding
interface conditions to run the multi-domain PINNSs to solve
the PDE. Our MAB learning is summarized in Algorithm 1.

To ensure our MAB is capable of finding the optimal in-
terface conditions for different PDEs, we perform regret
analysis. Consider a sequence of PDE parameters (i.e., con-
text) in the online playing, {3,}. Denote by a; and a;
the optimal and MAB-selected interface condition set for
each 3, respectively. We define an instantaneous regret
¢t = f(Bt,ar) — f(Bt,a)). Then we can analyze the accu-
mulated regret up to step 7" over the context sequence {3;},
namely, Ry = Zthl (t. Our MAB guarantees a sublinear
regret bound for both UCB and TS.

Theorem 3.1. For § > 0, take c; in the UCB as

925 2f2
ct:2log< gé )

where d is the number of PDE parameters, and s is the
total number of interface conditions. Conditioning on every
context sequence {3:}, let {a;} be the action selected by
the UCB score under the above choice of {c;}. Then, with
probability at least 1 — 6, the regret Ry satisfies

sT2
Ry < 25T (log T') %+ log (25-)
~ log(1+ 05 ?)

teN

T:1727"'7 (7)

MAB-1

MAB-2

/ Tk

(ﬁ7a)'

loss /€ Ay
v
Mullt;l—,\[‘)'\?:am Stochastic training =) | Deterministic training

Figure 1: The illustration of the sequential MAB model.

where the implicit constant is absolute (does not depend on
{c:} but depends on the domain X). In particular,

25T (log T4+ log (2572
E[Ry] < |21 U0a D) log (7TF) =g
log(1+ 04 °)
Moreover, (8) holds also for Thompson sampling.
We can see lim % = 0, i.e., the average instantaneous

T—r00
regret converges to zero. Since R > 0, it means that our

MAB is able to find the optimal interface conditions (almost
surely) for every possible sequence of PDE parameters with
enough long run.

3.2 Sequential Multi-Arm Bandits

In practice, to achieve good and reliable performance, the
training of PINNSs is often divided into two stages (Lu et al.,
2021). The first phase is stochastic training, typically with
ADAM optimizer (Kingma and Ba, 2014), to find a nice val-
ley of the loss landscape. The second phase is deterministic
optimization, typically with L-BFGS, to ensure convergence
to the (local) minimum. Due to the different nature of the
two phases, the ideal interface conditions can vary as well.
To enable more flexible choices so as to further improve
the performance, we propose a sequential MAB model, as
illustrated in Fig. 1. Specifically, for each training phase, we
introduce a MAB similar to Sec 3.1, which updates a sepa-
rate GP reward model. To coordinate the two MAB’s and
to optimize the final accuracy, the reward of the first MAB,
denoted by r1, includes not only the negative solution error
after the stochastic training phase, but also a discounted
error after the second phase,

r==& 47 (&) &)

where +y is the discount factor, and &; and &5 are the solution
errors after the stochastic and deterministic training phases,
respectively. In this way, the influence of the interface
conditions at the first training phase on the final solution
accuracy is also integrated into the learning of the reward
model. Next, we expand the context of the second MAB
with the training loss value £ after the first phase. In this way,
the training status of the first phase is also used to determine
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Algorithm 1 METALIC-single(7)

1: Initialize the GP reward model, and D < ().

2: fort=1...T do

3:  Randomly sample the PDE parameters 3 € X'.

4:  For each action a € P, compute the predictive distribution
of the GP reward model, N (u(a, B), o*(a, B)).

5:  Compute the UCB score: UCB(a) = p + /¢; - 0 or TS
score: TS(a) ~ N (u, o?).

6: a" = argmax,.p UCB(a) or a* = argmax, ., TS(a).

7:  Use the interface conditions of a* to train the multi-domain
PINNS s to solve the PDE parameterized by 3, and evaluate
the solution error &.

8: D<—DU{([a*,ﬂL—§)}

9:  Retrain the GP reward model on D.

10: end for

Algorithm 2 METALIC-seq(v, 7)

1: Initialize two GP reward models. Set their training sets D

and D3 to empty.

2: repeat

3:  Randomly sample 3 € X.

4:  Based on the predictive distribution of the first GP model,
use UCB or TS to select the best action aj.

5:  Use the interface conditions of aj to train the multi-domain
PINNs with ADAM. Evaluate the error £; for solving the
PDE parameterized by 3.

6:  Given the current training loss ¢ and 3, compute the predic-
tive distribution of the second GP reward model for each
action, and use UCB or TS to select the best action a3.

7:  Use the interface conditions of a3 to continue the training
with L-BFGS. Evaluate the solution error &2.

8: D1 <+ Dy U {([ai,B],~& — &)}, D2
{([a;, ﬁa E]a 752)}

9:  Retrain the two GP models on D; and Da, respectively.

10: until 7" iterations are done

— Dy U

the interface conditions for the second phase. The learning
of the sequential MAB’s is summarized in Algorithm 2.

Algorithm Complexity. The time complexity of both MAB
algorithms is O(T R+ Zthl t3) where T is the total number
of iterations, R is the complexity of multi-domain PINNs,
and (’)(Zthl t3) is the total time complexity of updating
the GP reward model to T'. In practice, 7' is typically chosen
as a few hundreds (see the experimental section). Under
such a choice, running multi-domain PINNs is much more
costly than GP training, and the complexity is dominant
by O(TR). Hence, the time complexity is linear in the
number of iterations. The space complexity of our algo-
rithm is O(C + T?), including the storage of the GP reward
model and the multi-domain PINN (with constant complex-
ity O(C)).

4 Related Work
As an alternative to mesh-based numerical methods, PINNs

have had many success stories, e.g., (Raissi et al., 2020;
Chen et al., 2020; Sirignano and Spiliopoulos, 2018; Zhu

et al., 2019; Geneva and Zabaras, 2020; Sahli Costabal
et al., 2020). Multi-domain PINNS, e.g., XPINNs (Jagtap
and Karniadakis, 2021) and cPINNs (Jagtap et al., 2020),
extend PINNs based on domain decomposition and use a
set of PINNs to solve the PDE in different subdomains.
To stitch together the subdomains, XPINNs used solution
continuity and residual continuity as the interface condi-
tions. Other conditions are also available, such as the flux
conservation in cPINNs (Jagtap et al., 2020), the gradient
continuity (De Ryck et al., 2022), and the residual gradi-
ent continuity in gPINNs (Yu et al., 2022). Recently, Hu
et al. (2021) developed a theoretical understanding on the
convergence and generalization properties of XPINNs, and
examined the trade-off between XPINNs and PINNs.

Meta learning (Schmidhuber, 1987; Naik and Mammone,
1992; Thrun and Pratt, 2012) is an important topic in ma-
chine learning. The existing works can be roughly attributed
to three categories: (1) metric-learning that learns a metric
space with which the tasks can make predictions via match-
ing the training points, e.g., nonparametric nearest neighbors
(Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017;
Oreshkin et al., 2018; Allen et al., 2019), (2) learning black-
box models (e.g., neural networks) that map the task dataset
and hyperparameters to the optimal model parameters or
parameter updating rules, e.g., (Andrychowicz et al., 2016;
Ravi and Larochelle, 2017; Santoro et al., 2016; Wang et al.,
2016; Munkhdalai and Yu, 2017; Mishra et al., 2017), and
(3) bi-level optimization where the outer level optimizes the
hyperparameters and the inner level optimizes the model
parameters given the hyperparameters (Finn et al., 2017;
Finn, 2018; Bertinetto et al., 2018; Lee et al., 2019; Zintgraf
etal., 2019; Liet al., 2017; Zhou et al., 2018). The bi-level
optimization approaches are often restricted by the high
cost of computing the meta-gradient (e.g., w.r.t the model
initialization) via computational graphs. The issue has been
recently addressed by (Li et al., 2023) that uses gradient
flows to model the inner-optimization and adjoint state meth-
ods to compute the meta-gradients. Recently, Penwarden
et al. (2023) developed the first method to meta learn the
initialization for PINNs.

Multi-arm bandit is a classical online decision making
framework (Lai et al., 1985; Auer et al., 2002a;b; Mahajan
and Teneketzis, 2008; Bubeck et al., 2012), and have numer-
ous applications, such as online advertising (Avadhanula
et al., 2021), collaborative filtering (Li et al., 2016), clinical
trials (Aziz et al., 2021) and robot control (Laskey et al.,
2015). To our knowledge, our work is the first to use MAB
for meta learning of task-specific hyperparameters, which is
advantageous in its simplicity and efficiency. MAB can be
viewed as an instance of reinforcement learning (RL) (Sut-
ton and Barto, 2018), but it only needs to estimate a reward
function online. While one can design more expressive RL
models to meanwhile learn a Markov decision process (in
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MAB, we simply use UCB or TS), it often demands we run
a massive number of PINN training trajectories, which is
much more expensive. The model estimation is also much
more challenging.

S Experiment

To evaluate METALIC, we considered four commonly-used
benchmark PDE families in PINN literature (Raissi et al.,
2019; Krishnapriyan et al., 2021; Jagtap and Karniadakis,
2021). Note that our work is not about how to smartly de-
compose the domain or purposely decompose with strong
physical meanings. We followed (Jagtap and Karniadakis,
2021) to use a naive decomposition to verify the effective-
ness of our interface condition selection method.

The Poisson Equation. First, we considered a 2D Poisson
equation with a parameterized source function,

Upy + Uyy = h(T, Y5 5) (10)

where (z,y) € [0,1] x [0,1], h(z,y;s) =

h(z,y;s)/ max, , h(z,y; s), and

h(z,y; s) = [erf((z — 0.25)s) — erf((z — 0.75)s)]
- Jerf((y — 0.25)s) — erf((y — 0.75)s)] , (11)

where erf(z) = % I e~ dt, and s € [0,50] is the sharp-
ness parameter that controls the sharpness of the interior
square in the source. We used Dirichlet boundary condi-
tions, and ran a finite difference solver to obtain an accurate
“gold-standard” solution. To run multi-domain PINNs, we
split the domain into two subdomains, where the interface
is a line at y = 0.5. We visualize an exemplar solution
and the subdomains, including the sampled boundary and
collocation points in Fig. 5 of Appendix.

Advection Equation. We next considered a 1D advection
(one-way wave) equation,

uy + Bugy =0

where z € [0,27], t € [0,1], and § is the PDE param-
eter denoting the wave speed. We used Dirichlet bound-
ary conditions, and the solution has an analytical form,
u(x,t) = q(x—Bt) were q(z) is the initial condition (which
we selected as ¢(x) = sin(x)). For domain decomposition,
we split the domain at ¢ = 0.5 to obtain two subdomains.
Fig. 6 in Appendix shows an exemplar solution and the
subdomains with the interface.

Reaction Equation. Third, we evaluated a 1D reaction
equation,

ug —pu(l —u) =0
where p is the reaction coefficient (ODE parameter), x €

(z=m)2

[0,27], ¢ € [0,1] and u(x,0) = e 2/H7 . The exact solu-
tion is u(xz,t) = u(z,0) - [e’*/ (u(z,0)e’t + 1 — u(x,0))].

We split the domain at ¢ = 0.5 to obtain two subdomains.
Although not required for well-posedness of the ODE sys-
tem, because we are solving for the PINN space-time field
u(x,t), we use the exact solution to define a boundary loss
term. This enhances training without compromising the
time partitioning we wish to highlight. We show a solution
example and the subdomains in Fig. 7 of Appendix.

Burger’s Equation. Fourth, we considered the viscous
Burger’s equation,

Ut + UlUy = VUgy

where v € [0.001, 0.05] is the viscosity (PDE parameter),
x € [-1,1], ¢t € [0,1], and u(x,0) = —sin(wz). We ran
a numerical solver to obtain an accurate “gold-standard”
solution. To decompose the domain, we take the middle
portion that includes the shock waves as one subdomain,
namely, Q; : z € [-0.1,0.1],¢ € [0, 1], and the remaining
as the other subdomain, 3 : z € [-1,-0.1] N [0.1,1],¢ €
[0, 1]. Hence, the interface consists of two lines. See Fig. 8
in Appendix for the illustration and solution example.

To evaluate METALIC, we used nine interface conditions,
which are listed in Appendix (Sec. A). For the PINN in each
subdomain, we used two layers, with 20 neurons per layer
and tanh activation function. We randomly sampled 1,000
collocation points and 100 boundary points for each PINN.
To inject the interface conditions, we randomly sampled
101 interface points for the Poisson, advection and reaction
equations, and 802 interface points for Burger’s equation.
We set A\, = 20 and A\; = 5, which follows the insight
of (Wang et al., 2021; 2022) to adopt large weights for the
boundary and interface terms so as to prevent the training
of PINNs from being dominated by the residual term. We
denote our single MAB by METALIC-single, and sequential
MABs by METALIC-seq. For the latter, we set the discount
factor v = 0.9 (see (9)). For better numerical stability, we
used the relative Lo error in the log domain to obtain the
reward for updating the GP models. The running of the
multi-domain PINNSs consists of 10K ADAM epochs (with
learning rate 10~3) and then 50K L-BFGS iterations (the
first order optimality and parameter change tolerances set to
1075 and 10~? respectively). We set ¢; = 1 to compute the
UCB score. We ran 200 plays (iterations) for our method.
For static (offline) test, we randomly sampled 100 PDEs
(which do not overlap with the PDEs sampled during the
online playing). We then used the learned reward model to
determine the best interface conditions for each particular
PDE (according to the predictive mean), with which we ran
the multi-domain PINNs to solve the PDE, and computed
the relative L error.

First, to examine the online performance of METALIC, we
looked into the accumulated solution error along with the
number of plays. We compared with randomly selecting the
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—0.04494  0.00000 umm 0.015 arm at each play In the case of running METALIC—Seq, this

baseline correspondingly randomly selects the arm twice,
. . . . . one at the stochastic training phase, and the other at the
‘ : deterministic phase. The results are shown in Fig. 2 and 3.

Ground-Truth PINN-Sub Lm(kgl( Random-Seq

As we can see, the accumulated error of METALIC with
both UCB and TS grows much slower, i.e., sublinearly, than
the random selection approach (note that the reward of the

? optimal action is unknown due to the randomness in the run-
g ning of PINNs, and we cannot compute the regret). This has
o e Handom Seq BTN shown that our method achieves a much better exploration-

eq- TS

exploitation tradeoff in the online interface condition deci-
sion and model updating, which is consist with many other
MAB applications (see Sec 4). The results demonstrate the
advantage of our MAB-based approach. First, via effec-
tive exploration, METALIC can collect valuable training
NEHS MEmU© examples (rewards at new actions and context) to improve
the learning efficiency and performance of the GP reward
model. Second, the online decision also takes advantage
of the predictive ability of the current reward model, i.e

exploitation, to select effective interface conditions, which

. . . . results in increasingly better solution accuracy of the multi-

METALIC

157 domain PINNs. The online nature of METALIC enables
(d) Burgers’ equation (v = 0.0036) us to keep improving the reward model while utilizing it to
solve new equations with promising accuracy.
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Figure 4: Point-wise solution error. Next, we conducted the offline test, namely, without on-
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Method Poisson Advection Reaction Burger’s
Random-Single 0.3992 £+ 0.0037 0.07042 £ 0.01575  0.00612 £+ 0.000278  0.04021 +£ 0.00057
Random-Seq 0.3004 + 0.0032 0.03922 £ 0.00919  0.012844+ 0.000707  0.03486 + 0.00066
PINN-Sub 0.03078 + 0.00177 0.00130 =+ 8.108e-5 0.00213 £ 0.00021  0.00738 + 0.00313

PINN-Merge-H

0.02398 £+ 0.00144

0.00098 + 5.038e-5
0.00079 £ 3.391e-5
0.00079 + 4.5897e-5

0.00223 + 0.00026
0.00099 + 0.00013
0.00204 £ 1.013e-4

0.00951 £ 0.00390
0.00276 £+ 0.00041
0.00109 =+ 1.306e-5

PINN-Merge-V 0.02184 £ 0.00211
METALIC-Single-TS 0.02503 £ 0.0002
METALIC-Single-UCB 0.0245-+£ 0.0002

METALIC-Seq-TS
METALIC-Seq-UCB

0.01639-+£ 9.5384e-5
0.01406 + 9.1099¢-5

0.00078 £ 3.6771e-5
0.00078 £ 3.6473e-5
0.00070 £ 3.2790e-5

0.00102 =+ 8.945e-6
0.00099 -+ 8.4704e-6
0.00099 =+ 5.999¢-6

0.00161 +£ 2.939e-5
0.00152 £ 5.571e-5
0.00139 =+ 3.948e-5

Table 1: The average Lo relative error of single-domain PINNs and multi-domain PINNSs for solving 100 test PDEs. The interface
conditions of the multi-domain PINNs are provided by METALIC and random selection. {Single, Seq} indicate using a single set or two
sequential sets of interface conditions for the running of the multi-domain PINNs. {TS, UCB} corresponds to our method using TS or

UCB score to determine the interface conditions at each play.

Methods Error Reduction % by METALIC
Poisson’s  Advection  Reaction  Burgers’
PINN-Sub 54.3 46.2 53.5 85.2
PINN-Merge-H 414 28.6 55.6 88.5
PINN-Merge-V 35.6 11.4 0 60.5

Table 2: Percentage of error reduction by METALIC as compared
with single domain PINNs.

line exploration and model updating any more after 200
plays. We compared with (1) Random-Single, which, for
each PDE, randomly selects a set of interface conditions
applied to the entire training of the multi-domain PINNS,
and (2) Random-Seq, which for each PDE, randomly se-
lects two sets of interface conditions, one for the stochastic
training and the other for the deterministic training phase.
We also tested single-domain PINNs that do not incorporate
interface conditions. Specifically, we compared with (3)
PINN-Sub, which used the same architecture as the PINN
in each subdomain, but is applied to the entire domain, (4)
PINN-Merge-H, which horizontally pieced all the PINNs
in the subdomains, i.e., doubling the layer width yet fix-
ing the depth, (5) PINN-Merge-V, which vertically stacked
the PINNS, i.e., doubling the depth while fixing the width.
While PINN-Merge-H and PINN-Merge-V merge the PINNs
in each subdomain, the total number of neurons actually
increases (for connecting these PINNs). Hence, the merged
PINN is more expressive. Each single-domain PINN used
the union of the boundary points and collocation points
from every subdomain. We used the same weight for the
boundary term, i.e., A\, = 20. The optimization of each
single-domain PINN follows the same setting of the multi-
domain PINNs (i.e., 10K ADAM epochs and 50K L-BFGS
iterations).

We report the average relative Lo solution error and the
standard deviation in Table 1. As we can see, randomly
selecting interface conditions, no matter for the whole train-

ing procedure or two training phases, result in much worse
solution accuracy of multi-domain PINNs. The solution
error is one order of magnitude bigger than METALIC in all
the settings. It confirms that the success of the multi-domain
PINNS is up to appropriate interface conditions. Next, we
can observe that while the performance of METALIC-Single
is similar to METALIC-Seq, the best solution accuracy is
in most cases obtained by interface conditions selected by
METALIC-Seq (except in solving the Burger’s equation).
It demonstrates that our sequential MAB model that can
employ different conditions for the two training phases is
more flexible and brings additional improvement. We also
observe that in most cases using UCB for online playing
can lead to better performance for both METALIC-Single
and METALIC-Seq. This is consistent with the online per-
formance evaluation (see Fig. 2 and 3). Third, among the
single-domain PINN methods, PINN-Merge-V outperforms
PINN-sub in all the equation families and PINN-Merge-H
outperforms PINN-sub in the Poisson and advection equa-
tions, showing that deeper or wider architectures can help
further improve the solution accuracy. However, their perfor-
mance is still second to the best setting of METALIC, which
uses simpler subdomain PINN architectures and fewer to-
tal learnable parameters. These multi-domain PINNs can
be further parallelized to accelerate training. By contrast,
if the interface conditions are inferior, such as those se-
lected by Random-Single and Random-Seq, the solution
error becomes much worse (orders of magnitude bigger)
than single-domain PINNs.

In Table 2, we show the percentage of the error reduction
led by METALIC (the best setting) , as compared with
single-domain PINNs. We can see that, METALIC can
give a large reduction in all the cases, except for Reaction
equation, PINN-Merge-V achieves the same error. Note
that both PINN-Merge-V and PINN-Merge-H include more
NN parameters than multi-domain PINNs. Together these
have shown the importance of the interface conditions for
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multi-domain PINNs and the advantage of our method.

For a fine-grained comparison, we visualize the point-wise
solution error of PINN-Sub, Random-Single, Random-Seq,
and our method in solving four random instances of the
equations. As shown in Fig. 4, the point-wise error of
both METALIC-Single and METALIC-Seq is quite uniform
across the domain and close to zero (dark blue). By contrast,
the competing methods often exhibit relatively large errors
in a few local regions, e.g., those in the middle (where the
shock waves appear) of the domain of Burger’s equation
(PINN-Sub, Random-Single, Random-Seq), and the central
part of the domain of the Poisson and advection equation
(Random-Single). It shows that our method not only can
give a superior global accuracy, but locally also better re-
covers individual solution values.

Analysis of Selected Conditions. Finally, we analyzed the
selected interface conditions in each equation family by
METALIC. We found that those conditions are interesting
in that they are physically meaningful, consistent with the
properties of the equations, and also tied to the specific
optimization step in the multi-domain PINN training. Due
to the space limit, we provide the details in Sec. D of
Appendix.

6 Discussion

One might be concerned about the curse of dimensionality
issue. That is, when there is a large number of subdomains
and we still learn different conditions for every interface,
a great many MAB’s are needed and the online learning
cost can explode. Here we argue that, while theoretically
possible, such issue in practical usage does not occur and
we do not need to worry about it.

In general, we have two motivations to apply domain de-
composition. The first motivation is to improve the solution
accuracy. In this case, one prefers to adopt different condi-
tions across different interfaces. However, due to the rich
expressivity of neural networks, e.g., universal approxima-
tion, PINNS are like high-order finite element methods, and
the number of subdomains should be as few as possible. For
example, the recent work (Jagtap et al., 2022) uses multi-
domain PINNSs for inverse problems in supersonic flows
(Euler equations), which largely outperforms the single do-
main PINNs. Only two interfaces and three subdomains
are used in (Jagtap et al., 2022) for this problem (see Fig.
3, 4, and 5 of that paper). Hence, to learn the interface
conditions, we only need a few more MAB’s and the growth
of the learning cost is minor.

The second motivation of domain decomposition is to enable
parallel computation so as to speed up problem solving. In
such case, one often prefers a large number of subdomains,
and each may be allocated to a separate computing unit, e.g.,

a CPU core. However, to ensure the solution is consistent
(not influenced by the number of computing units), one
needs to demand the interface conditions be identical across
all the subdomains. That means, METALIC only needs one
MAB (or two sequential MAB’s; see Fig. 1) to learn the
interface conditions shared by all the subdomains. Hence,
there is again no “curse of dimensionality” issue. Note
that the parallel computational framework for multi-domain
PINNs have been published (Shukla et al., 2021).

7 Conclusion

We have presented METALIC, a simple, efficient and power-
ful meta learning approach to select PDE-specific interface
conditions for general multi-domain PINNs. The results at
four bench-mark equation families are encouraging. In the
future, we will use the PDE residual as the approximate re-
ward so that our method can be fully unsupervised. We will
also extend METALIC to meta learn the interface locations
along with the conditions, as a function of not only accuracy
but training time so as to improve both the solution accuracy
and training efficiency of the multi-domain PINNs.
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Appendix

A Interface Conditions

We used a total number of 9 interface conditions throughout all the experiments, which are listed in Table 1. Note that I,
and I, correspond to the first and second-order derivatives w.r.t an input to the PDE solution function. Since all the test
PDE problems consist of two spatial or spatiotemporal dimensions, I, and I, give four interface conditions. There are no
mixed derivatives across different input dimensions. In the case that one I, is the same as I., such as in Poisson equation,
the de-duplication gives 9 different conditions. In the case that all I,’s are different from I., such as in Burger’s equation,
we used I. and removed one I, (z = y or z = t), so that we still maintain 9 interface conditions to be consistent with other
experiments.

Table 3: Interface Conditions of Multi-domain PINNs

I, Solution continuity (12)
l,,,, Average solution continuity (13)
I, Residual (14)
I Residual continuity (15)
Iy, Gradient-enhanced residual (16)
1. Flux continuity (17)
I, First-order spatial/temporal derivative continuity (18)
I, Second-order spatial/temporal derivative continuity (19)
1 o 2
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(01, 05) = : F ¢ , : Flig, (x5 . ,
g (O, 0x') Tt L 3"2,1«[1] ( [uek](xk,k) J (X )) + ax}c’k,m [Uek ](Xk,k) (X k ))
(16)
1 i ; ; 2
(61, 01) = 57— ; (¢ (do, (%)) - 1 — & (To,, (X} 1)) - 1) an

where ¢(tg) - n are fluxes normal at the interface

13



Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks

—0.04467 0.00000
—

U'&OO

(a) Solution at s = 20 (b) Subdomains

Figure 5: The Poisson equation. The interface is the green line at y = 0.5. Blue and black dots show the sampled boundary points in

each subdomain, and the internal dots (red and cyan) are the sampled collocation points inside each subdomain.

(a) Solution at 8 = 30 (b) Subdomains

Figure 6: Advection equation. The interface is the green line at ¢ = 0.5.

1 Tt 9 2
Iz(Gk,Ok/ = J_ Z ( (X;c,k’) — @’agk, (X;c,k’)
where 2* = Xi,k’ [1]orz' = x};’k, [2].
Jiwt
1 kok 82 92 R ) 2

I..(0k,0y) = Z ——5 e, (X ) — Ug,,, (X, 1)

0zt 071

where 2 = x}, ;. [1] or z* = xj, ;.. [2].
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(a) Solution at p = 5.0 (b) Subdomains

Figure 7: Reaction equation. The interface is at t = 0.5.

X X

(a) Solution at v = 0.001 (b) Subdomains
Figure 8: Burger’s equation. The interfaces are at z = —0.1 and z = 0.1. The middle portion (filled with cyan dots) is the first

subdomain, and the remaining parts constitute the second subdomain.

B Regret Bound Proof

Recall that X C R? is a compact set denoting the parameter (context) space associated with the parametrized PDE, and S is
the state space consisting of a finite number of interface conditions, i.e. |S| = s € N. The action space P is defined as

P=2%={(q1,--~ . qs) €{0,1}°} CR".
In our paper, the reward at time ¢ is modeled as

re = (B, a¢) = f(Be, ar) +ny (Bt ar) € X x P, (20)

where 3, is the context revealed at time ¢, a; is the selected action, f is a function on X x P sampled from an appropriate
prior, and 7, is a white noise process used to model the extraneous randomness (e.g. neural network implementation, error
rounding, etc.)

In our case, the true reward is the negative error metric computed for the learned PDE solution, which is too complicated for
analysis. Alternatively, we use the above model (20) as a substitute for approximation. As a result, the reward model is
misspecified. Nevertheless, we assume that (20) is reflective of the true reward and do not consider the model misspecification
effects in the subsequent analysis for ease of demonstration; ideas from (Bogunovic and Krause, 2021) can be used to obtain
refined analysis for misspecified models but we do not pursue them here.

We now state the technical assumptions on the model parametrization as used in the METALIC algorithm:
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* f(B,a) is sampled from a GP(0, k) prior, where  is a kernel function on X' x P C R4+s:

K((ﬂ7 a)’ (ﬂlaa/D = Kl(ﬁ»ﬂ/)ﬁé(a7 a/)a

where k1 and k9 are Gaussian kernels:
T2
w1(8,8) = exp(—n 8~ ) o) = exp (=2 la— a'|1 ).

(Note: The key assumption we will be using the is the tensor product structure as well as the form of x1; since ko
is discrete, it does not encode much of geometry and changing to other alternatives should not affect the subsequent
analysis. )

* 1 are i.i.d. Gaussian with variance o3:

m K N(0,02).

Under the above assumptions, for T € N and historical observations x; = (B;,a;) € X x P, 1 <t < T, yr =

ri,---,r7) ", the posterior distribution of f atx = (3,a) € is a normal random variable with mean and variance
T, the post distribut f f at Ré+s 1 rand ble with d

given below:

pr(x) = k(%) (051 + K1)~ 'yr

o7 (x) = K(x,%) = kg (x) (05 I + K1)~k (%),
where
Kr = (k(xi,xj)h<ij<r € RTT kr(x) = (k(x,%1), -, K(x,x7)) " € R

The following quantity, which measures the maximum uncertainty reduction of f7 = (f(x1),---, f(xr)) when observing
yr, will appear in the regret analysis:

= H —H

T {thflca%Xp (fr) (frlyr)
= max H(yr)—H(yr|fr)  H(yr|fr)isindependent of {x;}
{x:}CXXP

1
= ma Zlog|Ir + 0 2 K|,
{xt}C))((X’PQ g' T 0 T|

where H is the Shannon entropy.

We are now ready to state the main result:
Theorem B.1. For ¢ > 0, take ¢; in the UCB algorithm as

28 2t2
ct—210g< g& > teN.

Conditioning on every context sequence {3:}, let {a:} be the action selected by the UCB algorithm under the above choice
of {ct}. Then, with probability at least 1 — 0, the regret Rr satisfies

25T (loa T)4+1 ] 2572
Rr < (log T) ‘E( ) T=12, @1
log(1+ 04 7)

where the implicit constant is absolute (does not depend on {3:} but depends on the domain X ). In particular,

E[Ry] < 25T (log T)+1 log (25T2) 22)
T log(1 + a5 ?) ’

Moreover, (22) holds also for the Thompson sampling algorithm.
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Proof. We first prove the statement concerning the UCB algorithm. The proof is similar to (Krause and Ong, 2011) overall.
Owing to a few subtle differences, we provide a sketch of the proof. In our setting, contexts are revealed in a random fashion
that is independent of the reward noises. For convenience, we condition on the context sequence {3; }teny C X throughout
the analysis, i.e., we treat {3 }ten C X as deterministic and arbitrary sequence.

Firstly, a standard application of concentration inequalities and a union bound (Krause and Ong, 2011, supplement, Lemma
5.2) yields that, with probability at least 1 — 4,

1F(Br,a) — (B, a)| < ¢t/ *04-1(By, a) teN, a€P, (23)

which immediately implies an upper bound for the regret:

Il
N

Rr =Y (f(Brai) ~ f(Brar))  af = argmax f(Br.a)

o
Il

1

(Mt—l(ﬁtv a:‘) + Ci/QUt—l(ﬁta a;f)) - (Ht—l(ﬁt, at) + Cz/Qat—l(ﬁh at)) +2Ci/20't—1(/3ta af,)
<0

M=

o
Il

1

IN

T
2zci/20t71(ﬁt7at)
t=1

IN

T 1/2
2T |er Z o (B, at)] (Cauchy—Schwarz; c; is increasing in t)
t=1
(2) 8TCT’}/T
=\ log(1+a5?)
1
S K(oo)vV/Teryr K(oo) =\ | —
log(1+ 04 “)

where the (%) follows from (Krause and Ong, 2011, Theorem 5) and an intuitive way to understand it is that the total
information gain (i.e. the predictive variance term; see (Srinivas et al., 2009, Lemma 5.3)) is bounded by the maximum
information gain under the optimal design.

It remains to bound v for the kernel «. Since « is a tensor product of k1 and k2, with k5 being a kernel on a discrete set
with cardinality 2° (i.e. has rank 2°), according to (Krause and Ong, 2011, Theorem 2),

1 < 2°(rls, +10gT),
where 47|, is the maximum information gain defined for the GP with kernel function k1. Note %4 is the Gaussian kernel.
(Srinivas et al., 2009, Theorem 5) tells us that yr|,., = O((log T')¢*1), where the implicit constant depends on the domain

X. Hence, vy < 2°(log T)%*1. Plugging this into the above bound for Ry yields the high-probability bound (21). For (22),
note that (21) and \/z +y < \/z 4+ \/y, 2,y > 0 together imply that there exists an absolute constant C' > 0 so that with

probability at least 1 — 4,
- ’RT — OK(00)/2°T(log T)™ 1 log (QSTQ)’ )
Ry = < 4/log <>,
CK(00)\/25T (log T)d+1 4

ie. P(Rp > z|{B;}) < e=*". Integrating the tail probability yields

o0

Elfr|{B.)] = / T P(Br > 2l{B))de < / o~ dz — .

Taking expectation over {3;} yields E[R7] < /7. (22) follows by rearrangement.
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For a; chosen according to the Thompson sampling, we employ a similar technique that appears in (Lattimore and Szepesvari,
2020, Theorem 36.1). First, note that for any two random variables Z;, Z; with the same mean,

E[f (Bt ar) — f(B¢, as)] = E[f (Bt,ar) — Zy + Zt/ — f(Bs, ar)].

Conditioning on the historical actions {as}1<s<¢—1 and rewards {r;}1<s<¢—1 up tot — 1 (i.e. the o-field F;_1), a; and
aj are the argmax of f(B3;,a) and f'(B3;,a), respectively, where f(3;,a) and f’(3;,a) have the same distribution (i.e.
posterior distribution of f). As a result, a; and a; have the same F;_1-conditional distribution. Now take Z; and Z; as the
UCB scores of a; and a; att — 1, respectively:

Zy = ,utfl(ﬂh a:) + ci/zat,l(ﬁt,af) Zé = Mtfl(,gtvat) + ci/QUtfl(/Btvat)

It is easy to verify using the tower property that E[Z;] = E[E[Z;|F;_1]] = E[E[Z}|F:-1]] = E[Z;-1]. On the other hand,
according to (23), it holds with probability at least 1 — 26 that

F(Bryal) = Zo + Z) — f(Bryas) < ¢ *a1—1(Br, a) teN.

Using a similar analysis in the UCB case, we conclude that

¢ s d+1 s2
ElRr) =) _Elf(Bra}) = Zi+ 2= f(Bra)] S \/ : T(lolig?l : ;%)@ =
0

t=1

C Preliminary Study of the Interface Conditions

We conducted a preliminary study on a 2D Poisson equation ,; + 1,, = 1 with the solution shown in Figure 9.

0.0 0.5

Figure 9: Poisson solution.

Given this PDE problem, we compared three types of boundary and collocation point sampling methods: random, grid, and
Poisson disc sampling, as shown in Figure 10. The comparison was done between a standard PINN and XPINN, where
the number of collocation points in each XPINN subdomain is the same as the total number of collocation points used by
the PINN. We trained the two models with the boundary loss term weight A, set to 1 and 20. We also varied the interface
loss term weight Ay from {1, 20}. The interface loss term is computed from (13) and (15). Table 4 shows the L, relative
error averaged over 10 runs to minimize the variance in network initialization and optimization. We can see that the XPINN
performance is relevantly less variant to differences in sampling and weights, but for PINNs these differences result in order
of magnitude changes in error. For this reason, we have conducted all the evaluations fairly by using random sampling and
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larger boundary weights for PINN’s which was the best overall setting. We also make the insight that random sampling
allows a PINN to see higher frequencies according to the Nyquist-Shannon sampling theorem which may be the reason for
increased performance over the other sampling methods. The XPINN includes an additional complexity of subdomains and
interface conditions which may dominate the training, resulting in less variance as a function of collocation points.

10 !.. - 030_-40..’0‘:_-’ ’;.-"-"..",‘.".’.‘-'.‘ﬁ"_& 10
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i
5 ‘3
e 1
oot & [
AP TS o
| s ': >
H ]
‘ 3
o] 8 H 02 02
i :
. §
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X X X
(a) Random (b) Grid (c) Poisson Disc

Figure 10: Random, grid, and Poisson disc sampling for the Poisson equation problem. The interface is the green line at
y = 0.5. Blue and black dots show the sampled boundary points in each subdomain, and the internal dots (red and cyan) the
sampled points inside each subdomain.

Random
Model Nos =1 Aor =20
PINN | 9.0325e-4 4.3223e-4

Grid Poisson Disc
)\b7]=l >\b7I=20 )\b7]=l >\b7j=20
6.0278e-3  2.3699e¢-3 | 5.3902e-3 2.2375e-3

XPINN | 5.0884e-3 5.3205e-3 | 6.0764e-3 4.7829¢-3 | 6.5061e-3 4.4888e-3

Table 4: Average L relative error over 10 runs for different sampling techniques and loss term weights.

C.1 Interface Condition Combination

For the same PDE problem with random sampling, we ran multi-domain PINNs with different sets of conditions. We used
the generalized interface condition notations for multi-domain PINNs as described in Table 3. For example, an XPINN
can be described as I, + I,.. The weights on all terms are unity. As seen by the results in Table 5, the multi-domain
PINNs with interfaces I, + I. + I, outperforms other combinations as well as the PINN. We can see that with the
correct interface conditions, the multi-domain PINN can greatly improve upon the standard XPINN. In fact, the additional
residual continuity term, a trait of XPINNSs, performs infinitesimally better than only using the average solution continuity.
These results are the foundation of the METALIC method as we have shown that different combinations of conditions
result in drastically different performances. We can also see that multi-domain PINNs are more general and flexible than
the existing PINN decomposition models such as XPINN and cPINN. Having only used XPINNSs in Table 4, one might
conclude decomposing this problem is inferior to a standard PINN. However, we have shown that cPINN outperformed
XPINN by an order of magnitude and that adding the additional term I, improved the cPINN even further. Furthermore,
naively adding all possible terms such as in the final row, does not necessarily give the best results. This leaves three options
for multi-domain PINNs: manually tuning the interface conditions, running all possible permutations such as we have done
here, or devise a method to learn the appropriate interfaces such as METALIC.
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Model L Relative Error
PINN 1.05e-3 + 4.38¢-4
L,.,, 4.28e-3 +2.63¢e-3
Ly + Ire 3.92¢-3 +2.25¢-3
Iy,,, + 1. 9.45¢-4 + 2.85¢-4
Ly, +Ire + 1c 9.77e-4 + 3.45¢-4
Lyy,y + Irc + Iy 4.57e-3 +3.18e-3
Lyyy +1c+ Iy 5.26e-4 + 1.97e-4
Liwoy + Irc + Igr + 1o+ Iy | 9.34e-4 +3.18e-4

Table 5: Average L relative error over 10 runs for different interface
combinations. Note: I. = I,, for this problem.

D Meta Learning Result Analysis

There are 2° = 512 possible combinations of the interface conditions. For convenience, we use an integer to index each
configuration (combination), index = >~ 2'c[i] where c is a list of binaries, and c[i] = 1 means i-th interface condition is
turned on. We therefore can show how different sets of interface conditions are selected along with the equation parameters
(see Figures 11, 14, 17, and 20).

D.1 Poisson Equation

For each PDE test case, we provide three analysis plots to better understand the METALIC results. For the Poisson problem,
Figure 11 provides an overview of the interface configuration groupings as the equation parameter s varies. As opposed
to Random-Single, the various METALIC methods predict interface configurations in groupings based on parameter s.
This indicates that for these ranges, the PDE solution behaves similarly across the interfaces. It can also be seen that the
configurations chosen between METALIC-Single and METALIC-Seq are different, indicating that the optimization is an
important factor. This is logical since at the beginning of training, the PINN must first propagate information from the initial
and boundary conditions inward to the entire domain. Therefore, interface conditions during this phase may in fact make
learning more difficult in terms of the loss landscape as the network is trying to enforce continuity at a location which has
no information but is simply a set of random predictions given the random initialization of weights and bias of the network.

In Figure 12, we can see the number of times the interface conditions are selected over the 100 test cases. Random-Single
serves as a baseline with each interface being chosen roughly half of the time. The two most noticeable trends are that
the gradient-enhanced residual term is almost never chosen and the flux continuity which is equivalent to u, for this case
is always chosen by METALIC. This is interesting as the gradient term in the original gPINN paper was shown to be
beneficial to PINN training but appears to be a poor choice on a set of interface points, possibly because with all the other
terms, it simply make the loss landscape more complex and does not provide a significant accuracy benefit compared to
the other more theoretically sound terms such as flux. This result is novel as it showcases the robustness of METALIC
in being able to distinguish between valid and invalid terms, something that would take a user doing manual tuning of
these terms much trail and error to determine. We also note that the METALIC choices align with our results in Section
C.1 that the flux conditions from cPINN greatly outperforms the residual continuity conditions in XPINN for Poisson’s
equation. Flux continuity is a well studied conservation term rooted in traditional methods whereas residual continuity is a
term devised with the convenience of PINNs and automatic-differentiation(AD) in mind. We also note that when comparing
the METALIC-Seq-UCB ADAM and L-BFGS choices, L-BFGS uses more terms on average than ADAM. This confirms
our hypothesis from Figure 11 that more interface terms at the start of training may in-fact make training more difficult.
This validates the result that not only is a sequential interface predictor more accurate, but also faster as it adds in terms
when needed which would reduce computational cost. We also not that including the residual points in the overall set of
collocation points is rarely chosen, likely due to the fact that the interface point set is an order of magnitude smaller than the
collocation point set so assuming it is well sampled, its contribution is negligible. All these insights further confirm the
method is working well and is consistent with our intuition and the properties of the equation being solved.

Finally, in Figure 13, we show the L2 relative error as a function of s. This is a more detailed version of the error table in the
manuscript which tells us how the problem difficulty changes over the parameterization of the problem. For this Poisson
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problem, it is quite consistent other than the lower bound around s = 1 in which the forcing term is very smooth and as we
expect the problem is quite simple, as reflected by the lower errors there.

Poisson Interface Configuration
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Figure 11: Scatter plot of interface configuration vs. the equation parameter s.

Poisson Interface Choices
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Figure 12: Horizontal bar plot of the quantity of interfaces chosen throughout testing over 100 randomly drawn equation parameters.
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Poisson Error
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Figure 13: Scatter plot of the relative Lo error vs. the equation parameter s.

D.2 Advection Equation

For the Advection problem, Figure 15 indicates that very few terms where needed. So much so that the ADAM step of
METALIC-Seq-UCB has only one term, 1,,,,,, the weaker form of the solution continuity. We again point out the benefit of
METALIC in being able to sub-select few terms out of many while still resulting in the best accuracy as seen in Figures
14 & 16 which show that METALIC-Seq-UCB uses the fewest number of terms but has the best error. This emphasizes
that more interface terms are not always better since the loss landscape can become more complex from an optimization
standpoint. Another interesting feature is that the first derivative in space (u, ) is chosen more than the first derivative in time
(uy) despite the subdomain split being in time. This is opposite of the Poisson results in which the derivative normal to the
interface (u, ), representing the flux, was chosen in all cases. Both terms, u; and u, are part of the PDE with flux simply
being u, but the tangential derivative u, appears to be a much more meaningful term when it comes to propagating the wave
through the interface. There are also no second order terms which was the case with Poisson.
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Advection Interface Configuration
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Figure 14: Scatter plot of interface configuration vs. the equation parameter 3.

Advection Interface Choices
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Figure 15: Horizontal bar plot of the quantity of interfaces chosen throughout testing over 100
randomly drawn equation parameters.
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Advection Error
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Figure 16: Scatter plot the relative Lo error vs. the equation parameter 3.

D.3 Reaction Equation

For the Reaction problem, we note that while this is an ODE, with no spatial derivatives, they were counter-intuitively
chosen as interfaces. This emphasizes the fact that PINNs, and machine learning techniques in general, do not work the
same as traditional methods since these terms are not necessary for well-posedness of an ODE. Given this, Figure 19 shows
that METALIC outperformed the PINN while using these conditions. This is an interesting line of investigation for future
work as it shows counter-intuitive terms can provide a training benefit to PINNs even in contrast to the previous Advection
problem where almost no terms where chosen. It is not clear why in some cases only the most basic of terms are used while
in others terms which do not make physical sense are chosen, but in both, the accuracy is quite good on their respective
problems. This shows that METALIC learns something about PINN training that is not evidently clear to the human user.

Reaction Interface Configuration

Figure 17: Scatter plot of interface configuration vs.
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Reaction Interface Choices
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Figure 18: Horizontal bar plot of the quantity of interfaces chosen throughout testing over 100
randomly drawn equation parameters.
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Figure 19: Scatter plot of the relative Lo error vs. the equation parameter p.

D.4 Burger’s Equation

For the Burger’s problem, we see more of what one might expect from traditional interface continuity terms. Figure 21 shows
that the flux term is predominately chosen, just as in Poisson’s equation. Although here we see the flux is not equivalent to
the first order derivative, enforcing the idea that it is in fact the flux providing the training benefit and not a coincidence of
the first-order derivative and flux being the same for Poisson. We also see the largest improvement in error of METALIC
over PINNSs as seen in Figure 22. The trend is also consistent with our physical understanding, as viscosity () increases the
problem becomes more simple. This is because at lower viscosities a shock forms and creates a discontinuity in the solution
which is difficult for PINNS to resolve. The decomposition of this problem is therefore the most sound, in that we allow one
network to handle the sharp discontinuity in the center, and another to handle the relatively simple solution around it. This
allows for the network in the center to learn a higher frequency basis with which to approximate the discontinuity instead of
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also having to fit the lower frequencies around it which has been delegated to the second network. Given this, it makes sense
that a multi-domain PINN with the METALIC method greatly outperform PINNs here. It also emphasizes that in the less
physically motivated decompositions for Poisson, Advection, and Reaction, we still see improvement using multi-domain
PINNs and METALIC.

Burgers Interface Configuration
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Figure 20: Scatter plot of interface configuration vs. the equation parameter v.

Burgers Interface Choices
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Figure 21: Horizontal bar plot of the quantity of interfaces chosen throughout testing over 100
randomly drawn equation parameters.
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Relative L2 Error

Burgers Error
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Figure 22: Scatter plot of the relative Ly error vs. the equation parameter v.
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