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Abstract: 3D perceptual representations are well suited for robot manipulation

as they easily encode occlusions and simplify spatial reasoning. Many manipu-

lation tasks require high spatial precision in end-effector pose prediction, which

typically demands high-resolution 3D feature grids that are computationally ex-

pensive to process. As a result, most manipulation policies operate directly in 2D,

foregoing 3D inductive biases. In this paper, we introduce Act3D, a manipula-

tion policy transformer that represents the robot’s workspace using a 3D feature

field with adaptive resolutions dependent on the task at hand. The model lifts

2D pre-trained features to 3D using sensed depth, and attends to them to com-

pute features for sampled 3D points. It samples 3D point grids in a coarse to

fine manner, featurizes them using relative-position attention, and selects where

to focus the next round of point sampling. In this way, it efficiently computes 3D

action maps of high spatial resolution. Act3D sets a new state-of-the-art in RL-

Bench, an established manipulation benchmark, where it achieves 10% absolute

improvement over the previous SOTA 2D multi-view policy on 74 RLBench tasks

and 22% absolute improvement with 3x less compute over the previous SOTA

3D policy. We quantify the importance of relative spatial attention, large-scale

vision-language pre-trained 2D backbones, and weight tying across coarse-to-fine

attentions in ablative experiments. Code and videos are available at our project

site: https://act3d.github.io/.

Keywords: Learning from Demonstrations, Manipulation, Transformers

1 Introduction

Solutions to many robot manipulation tasks can be modeled as a sequence of 6-DoF end-effector

poses (3D position and orientation). Many recent methods train neural manipulation policies to

predict 3D end-effector pose sequences directly from 2D images using supervision from demon-

strations [1, 2, 3, 4, 5, 6]. These methods are typically sample inefficient: they often require many

trajectories to handle minor scene changes at test time and cannot easily generalize across camera

viewpoints and environments, as mentioned in the respective papers and shown in our experiments.

For a robot policy to generalize under translations, rotations, or camera view changes, it needs to

be spatially equivariant [7], that is, to map 3D translations and rotations of the input visual scene

to similar 3D translations and rotations for the robot’s end-effector. Spatial equivariance requires

predicting 3D end-effector locations through 2D or 3D action maps, depending on the action space

considered, instead of regressing action locations from holistic scene or image features. Transporter
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We also validate our approach on a Franka Panda with a multi-task agent trained from scratch on 8

real-world tasks with a total of just 100 demonstrations (see Figure 2). In thorough ablations, we

show the importance of the design choices of our architecture, specifically, relative spatial attention,

large-scale vision-language pre-trained 2D backbones, high resolution featurization and weight tying

across coarse-to-fine attentions.

In summary, our contributions are: 1. A novel neural policy architecture for language-conditioned

multi-task 6-DoF manipulation that both reasons directly in 3D and preserves locality of computa-

tion in 3D, using iterative coarse-to-fine translation-invariant attention. 2. Strong empirical results

on a range of simulated and real-world tasks, outperforming the previous SOTA 2D and 3D methods

on RLBench by large absolute margins, and generalizing well to novel camera placements at test

time. 3. Thorough ablations that quantify the contribution of high-resolution features, tied attention

weights, pre-trained 2D features, and relative position attention design choices.

2 Related Work

Learning robot manipulation from demonstrations Many recent work train multi-task manip-

ulation policies that leverage Transformer architectures [1, 2, 3, 5, 17, 18] to predict robot actions

from video input and language instructions. End-to-end image-to-action policy models, such as RT-

1 [5], GATO [18], BC-Z [19], and InstructRL [3], directly predict 6-DoF end-effector poses from

2D video and language inputs. They require many thousands of demonstrations to learn spatial rea-

soning and generalize to new scene arrangements and environments. Transporter networks [8] and

their subsequent variants [20, 21, 22] formulate 4-DoF end-effector pose prediction as pixel classi-

fication in 2D overhead images. Thanks to the spatial equivariance of their architecture, their model

dramatically increased sample efficiency over previous methods that regress end-effector poses by

aggregating global scene features. However, they are limited to top-down 2D planar worlds with

simple pick-and-place primitives. 3D policy models of C2F-ARM [4] and PerAct [1] voxelize the

robot’s workspace and are trained to detect the 3D voxel that contains the next end-effector key-

pose. Spatially precise 3D pose prediction requires the 3D voxel grid to be high resolution, which

comes at a high computational cost. C2F-ARM [4] uses a coarse-to-fine voxelization to handle

computational complexity, while PerAct [1] uses Perceiver’s latent bottleneck [12] to avoid voxel-

to-voxel self-attention operations. Act3D avoids 3D voxelization altogether and instead represents

the scene as a continuous resolution 3D feature field. It samples 3D points in the empty workspace

and featurizes them using cross-attentions to the physical 3D point features.

Feature pre-training for robot manipulation Many 2D policy architectures bootstrap learning

from demonstrations from frozen or finetuned 2D image backbones [23, 24, 19, 25] to increase

experience data sample efficiency. Pretrained vision-language backbones can enable generalization

to new instructions, objects, and scenes [26, 21]. In contrast, SOTA 3D policy models are typically

trained from scratch from colored point clouds input [1, 4, 27]. Act3D uses CLIP pre-trained 2D

backbones [28] to featurize 2D image views and lifts the 2D features in 3D using depth [29, 30]. We

show that 2D feature pretraining gives a considerable performance boost over training from scratch.

Relative attention layers Relative attentions have shown improved performance in many 2D vi-

sual understanding tasks and language tasks [31, 32]. Rotary embeddings [33] implement relative

attention efficiently by casting it as an inner-product in an extended position feature space. In 3D,

relative attention is imperative as the coordinate system is arbitrary. 3D relative attentions have been

used before in 3D Transformer architectures for object detection and point labelling [34, 35]. We

show in Section 4 that relative attentions significantly boost performance of our model.

3 3D Feature Field Transformers for Multi-Task Robot Manipulation

The architecture of Act3D is shown in Figure 1. It is a policy transformer that, at a given timestep

t, predicts a 6-DoF end-effector pose from one or more RGB-D images, a language instruction,
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and proprioception information regarding the robot’s current end-effector pose. Following prior

work [36, 1, 2, 3], instead of predicting an end-effector pose at each timestep, we extract a set of

keyposes that capture bottleneck end-effector poses in a demonstration. A pose is a keypose if (1)

the end-effector changes state (something is grasped or released) or (2) velocities approach near

zero (a common occurrence when entering pre-grasp poses or entering a new phase of a task). The

prediction problem then boils down to predicting the next (best) keypose action given the current

observation. At inference time, Act3D iteratively predicts the next best keypose and reaches it with

a sampling-based motion planner, following previous works [1, 2].

We assume access to a dataset of n demonstration trajectories. Each demonstration is a sequence of

observations O = {o1, o2, .., ot} paired with continuous actions A = {a1, a2, .., at} and, optionally,

a language instruction l that describes the task. Each observation ot consists of RGB-D images from

one or more camera views; more details are in Appendix 7.2. An action at consists of the 3D

position and 3D orientation (represented as a quaternion) of the robot’s end-effector, its binary open

or closed state, and whether the motion planner needs to avoid collisions to reach the pose:

a = {apos ∈ R
3, arot ∈ H, aopen ∈ {0, 1}, acol ∈ {0, 1}}

Next, we describe the model’s architecture in detail.

Visual and language encoder Our visual encoder maps multi-view RGB-D images into a multi-

scale 3D scene feature cloud. We use a large-scale pre-trained 2D feature extractor followed by a

feature pyramid network [37] to extract multi-scale visual tokens for each camera view. Our input

is RGB-D, so each pixel is associated with a depth value. We ªliftº the extracted 2D feature vectors

to 3D using the pinhole camera equation and the camera intrinsics, based on their average depth.

The language encoder featurizes instructions with a large-scale pre-trained language encoder. We

use the CLIP ResNet50 [28] visual encoder and language encoders to exploit their common vision-

language feature space for interpreting instructions and referential grounding. Our pre-trained visual

and language encoders are frozen, not finetuned, during training of Act3D.

Iterative 3D point sampling and featurization Our key idea is to estimate high resolution 3D

action maps by learning 3D perceptual representations of free space with arbitrary spatial resolution,

via recurrent coarse-to-fine 3D point sampling and featurization. 3D point candidates (which we will

call ghost points) are sampled, featurized and scored iteratively through relative cross-attention [15]

to the physical 3D scene feature cloud, lifted from 2D feature maps of the input image views. We first

sample coarsely across the entire workspace, then finely in the vicinity of the ghost point selected

as the focus of attention in the previous iteration, as shown in Figure 1. The coarsest ghost points

attend to a global coarse scene feature cloud, whereas finer ghost points attend to a local fine scene

feature cloud.

Relative 3D cross-attentions We featurize each of the 3D ghost points and a parametric query

(used to select via inner-product one of the ghost points as the next best end-effector position in the

decoder) independently through cross-attentions to the multi-scale 3D scene feature cloud, language

tokens, and proprioception. Featurizing ghost points independently, without self-attentions to one

another, enables sampling more ghost points at inference time to improve performance, as we show

in Section 4. Our cross-attentions use relative 3D position information and are implemented effi-

ciently with rotary positional embeddings [15]. The absolute locations of our 3D points are never

used in our featurization, and attentions only depend on the relative locations of two features.

Decoding actions We score ghost point tokens via inner product with the parametric query to

select one as the next best end-effector position apos. We then regress the end-effector orientation

arot and opening aopen, as well as whether the motion planner needs to avoid collisions to reach the

pose acol, from the last iteration parametric query with a 2-layer multi-layer perceptron (MLP).
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Single-task and multi-task manipulation results We show single-task quantitative results of our

model and baselines in Figure 3. Act3D reaches 83% success rate, an absolute improvement of

10% over InstructRL [3], prior SOTA in this setting, and consistently outperforms it across all

9 categories of tasks. With only 10 demonstrations per task, Act3D is competitive with prior SOTA

using 100 demonstrations per task. Act3D outperforms 2D methods of InstructRL and Hiveformer

because it reasons directly in 3D. For the same reason, it generalizes much better than them to novel

camera placements, as we show in Table 3.

We show multi-task quantitative results of our model and PerAct in Figure 4. Act3D reaches 65%

success rate, an absolute improvement of 22% over PerAct, prior SOTA in this setting, consistently

outperforming it across most tasks. With only 10 demonstrations per task, Act3D outperforms

PerAct using 100 demonstrations per task. Note that Act3D also uses less than a third of PerAct’s

training computation budget: PerAct was trained for 16 days on 8 Nvidia V100 GPUs while we

train for 5 days on the same hardware. Act3D outperforms PerAct because its coarse-to-fine relative

attention based 3D featurization of the 3D workspace is more effective than the perceiver’s latent

bottleneck attention in generating spatially disentangled features.

4.2 Evaluation in real-world

Task # Train Success

reach target 10 10/10
duck in oven 15 6/10
wipe coffee 15 7/10
fruits in bowl 10 8/10
stack cups 15 6/10
transfer beans 15 5/10
press handsan 10 10/10
uncrew cap 10 8/10

Table 1: Real-world tasks.

In our real-world setup, we conduct experiments with a Franka

Emika Panda robot and a single Azure Kinect RGB-D sen-

sor. We consider 8 tasks (Figure 2) that involve interactions

with multiple types of objects, spanning liquid, articulated ob-

jects, and deformable objects. For each task, we collected

10 to 15 kinesthetic demonstrations and trained a languaged-

conditioned multi-task model with all of them. We report the

success rate on 10 episodes per task in Table 1. Act3D can cap-

ture semantic knowledge in demonstration well and performs

reasonably well on all tasks, even with a single camera input.

One major failure case comes from noisy depth sensing: when

the depth image is not accurate, the selected point results in

imprecise action prediction. Leveraging multi-view input for

error correction could improve this, and we leave this for future work. For videos of the robot

executing the tasks, please see our project website.

4.3 Ablations

We ablate the impact of our design choices in Table 3. We perform most ablations in the single-task

setting on 5 tasks: pick cup, put knife on chopping board, put money in safe, slide block to target,

take umbrella out of stand. We ablate the choice of pre-trained 2D backbone in the multi-task setting

with all 18 tasks.

Generalization across camera viewpoints: We vary camera viewpoints at test time for both

Act3D and HiveFormer [2]. The success rate drops to 20.4% for HiveFormer, a relative 77% drop,

while Act3D achieves 74.2% success rate, a 24% relative drop. This shows detecting actions in 3D

makes Act3D more robust to camera viewpoint changes than multiview 2D methods that regress

offsets.

Weight-tying and coarse-to-fine sampling: All 3 stages of coarse-to-fine sampling are neces-

sary: a model with only 2 stages of sampling and regressing an offset from the position selected

at the second stage suffers a 4.5% performance drop. Tying weights across stages and relative 3D

positional embeddings are both crucial; we observed severe overfitting without, reflected in respec-

tive 17.5% and 42.7% performance drops. Fine ghost point sampling stages should attend to local

fine visual features with precise positions: all stages attending to global coarse features leads to a

8.3% performance drop. Act3D can effectively trade off inference computation for performance:
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Table 2: Ablations.

Average success rate in
single-task setting (5 tasks)

Core design choices

Full Act3D 98.1
Only 2 stages of coarse-to-fine sampling 93.6
No weight tying across stages 80.6
Absolute 3D positional embeddings 55.4
Attention to only global coarse visual features 89.8
Only 1000 ghost points at inference time 93.2

Viewpoint changes
Act3D 74.2
HiveFormer 20.4

Multi-task setting (18 tasks)

Backbone
CLIP ResNet50 backbone 65.1
ImageNet ResNet50 backbone 53.4

sampling 10,000 ghost points, instead of the 1,000 the model was trained with, boosts performance

by 4.9%.

Pre-training 2D features: We investigate the effect of the pre-trained 2D backbone in the multi-

task setting where language instructions are most needed. A ResNet50 [28] backbone pre-trained

with CLIP improves success rate by 8.7% over a ResNet50 backbone pre-trained on ImageNet.

For additional ablations regarding augmentations and sensitivity to hyperparameters, please see the

Appendix section 7.6. We found Random crops of RGB-D images to boost performance but yaw

rotation perturbations did not help. The model is robust to variations in hyperparameters such as the

diameter of ghost point sampling balls or the number of points sampled during training.

4.4 Limitations and future work

Our framework currently has the following limitations: 1. Act3D is limited by the motion planner

used to connect predicted keyposes with straight trajectory segments. It does not handle manip-

ulation of articulated object well, such as opening/closing doors, fridges, and ovens, where robot

trajectories cannot be well approximated by few line segments.2. Act3D does not utilize any de-

composition of tasks into subtasks. A hierarchical framework that would predict language subgoals

for subtasks [41, 42, 43] and feed those to our language-conditioned policy would allow better re-

usability of skills across tasks. Addressing these limitations is a direct avenue for future work.

5 Conclusion

We presented Act3D, a language-conditioned policy transformer that predicts continuous resolution

3D action maps for multi-task robot manipulation. Act3D represents the scene using a continuous

resolution 3D feature map, obtained by coarse-to-fine 3D point sampling and attention-based fea-

turization. Act3D sets a new state-of-the-art in RLBench, an established robot manipulation bench-

mark, and solves diverse manipulation tasks in the real world from a single RGB-D camera view

and a handful of demonstrations. Our ablations quantified the contribution of relative 3D attentions,

2D feature pre-training, and weight tying during coarse-to-fine iterations.
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grill, unplug charger, press switch, take money out safe, open microwave, put money in

safe, open door, close door, open fridge, open oven, plug charger in power supply

7.4 Further Architecture Details

Relative 3D cross-attentions We featurize each of the 3D ghost points and a parametric query

(used to select via inner-product one of the ghost points as the next best end-effector position in

the decoder) independently through cross-attentions to the multi-scale 3D scene feature cloud, lan-

guage tokens, and proprioception. Featurizing ghost points independently, without self-attentions to

one another, enables sampling more ghost points at inference time to improve performance, as we

show in Section 4. Our cross-attentions use relative 3D position information and are implemented

efficiently with rotary positional embeddings [15].

Given a point p = (x, y, z) ∈ R
3 and its feature x ∈ R

d, the rotary position encoding function PE

is defined as:

PE(p,x) = M(p)x =







M1

. . .

Md/6






x (1)

Mk =















cosxθk − sinxθk 0 0 0 0
sinxθk cosxθk 0 0 0 0

0 0 cos yθk − sin yθk 0 0
0 0 sin yθk cos yθk 0 0
0 0 0 0 cos zθk − sin zθk
0 0 0 0 sin zθk cos zθk















(2)

where θk = 1

100006(k−1)/d , k ∈ {1, .., d/6}. The dot product of two positionally encoded features is

PE(pi,xi)
TPE(pj ,xj) = xT

i M(pi)
TM(pj)xj = xT

i M(pj − pi)xj (3)

which depends only on the relative positions of points pi and pj .

We extract two feature maps per 256x256 input image view: 32x32 coarse visual tokens and

128x128 fine visual tokens. We use three ghost point sampling stages: first uniformly across the

entire workspace (roughly 1 meter cube), then uniformly in a 16 centimeter diameter ball, and fi-

nally in a 4 centimeter diameter ball. The coarsest ghost points attend to a global coarse scene

feature cloud (32x32xncam coarse visual tokens) whereas finer ghost points attend to a local fine

scene feature cloud (the closest 32x32xncam out of the total 128x128xncam fine visual tokens).

During training, we sample 1000 ghost points in total split equally across the three stages. At infer-

ence time, we can trade-off extra prediction precision and task performance for additional compute

by sampling more ghost points than the model ever saw at training time (10, 000 in our experiments).

We’ll show in ablations in Section 4 that our framework is robust to these hyper-parameters but tying

weights across sampling stages and relative 3D cross-attention are both crucial for generalization.

We use 2 layers of cross-attention and an embedding size 60 for single-task experiments and 120 for

multi-task experiments. Training samples are augmented with random crops of RGB-D images and

±45.0 yaw rotation perturbations (only in the real world as this degrades performance in simulation

as we’ll show in Section 4). The cropping operation is performed on aligned RGB and depth frames

together, thus maintain pixel-level correspondence. We use a batch size 16 on a Nvidia 32GB V100

GPU for 200k steps (one day) for single-task experiments, and a batch size 48 on 8 Nvidia 32GB

V100 GPUs for 600K steps (5 days) for language-conditioned multi-task experiments. At test time,

we call a low-level motion planner to reach predicted keyposes. In simulation, we use native mo-

tion planner implementation provided in RLBench, which is a sampling-based BiRRT [38] motion

planner powered by Open Motion Planning Library (OMPL) [39] under the hood. For real-world

experiments, we use the same BiRRT planner provided by the MoveIt! ROS package [40].
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Table 3: Ablations.

Average success rate in
Model single-task setting (5 tasks)

Core design choices

Best Act3D model (evaluated in Fig. 3) 98.1
Only 2 stages of coarse-to-fine sampling:

93.6
full workspace, 16 cm ball, regress an offset
No weight tying across stages 80.6
Absolute 3D positional embeddings 55.4
Attention to only global coarse visual features 89.8
Only 1000 ghost points at inference time 93.2

Viewpoint changes
Best Act3D model (evaluated in Fig. 3) 74.2
HiveFormer 20.4

Augmentations
No image augmentations 91.6
With rotation augmentations 86.2

Hyperparameter sensitivity

Double sampling ball diameters: 32 cm and 8 cm 96.6
Halve sampling ball diameters: 8 cm and 2 cm 91.2
500 ghost points at training time 95.8
2000 ghost points at training time (need 2 GPUs) 98.4

Multi-task setting (18 tasks)

Backbone
CLIP ResNet50 backbone 65.1
ImageNet ResNet50 backbone 53.4
No backbone (raw RGB) 45.2
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