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ABSTRACT
Parametric fuzzing combines evolutionary and generator-based
fuzzing to create structured test inputs that exercise unique execu-
tion behaviors. Parametric fuzzers internally represent inputs as bit
strings referred to as “parameter sequences”. Interesting parameter
sequences are saved by the fuzzer and perturbed to create new in-
puts without the need for type-speci�c operators. However, existing
work on parametric fuzzing only uses mutation operators, which
modify a single input; it does not incorporate crossover, an evolu-
tionary operator that blends multiple inputs together. Crossover
operators aim to combine advantageous traits from multiple inputs.
However, the nature of parametric fuzzing limits the e�ectiveness
of traditional crossover operators. In this paper, we propose linked
crossover, an approach for using dynamic execution information to
identify and exchange analogous portions of parameter sequences.
We created an implementation of linked crossover for Java and
evaluated linked crossover’s ability to preserve advantageous traits.
We also evaluated linked crossover’s impact on fuzzer performance
on seven real-world Java projects and found that linked crossover
consistently performed as well as or better than three state-of-the-
art parametric fuzzers and two other forms of crossover on both
long and short fuzzing campaigns.
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• Software and its engineering! Software testing and debug-
ging.
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1 INTRODUCTION
Early identi�cation of software defects is crucial for mitigating
their impact and reducing the cost of repairing them. Evolutionary
fuzzing is a prominent technique for automatically generating test
inputs that leverages information about system executions to bias
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the exploration of an input space towards promising areas in order
to maximize the diversity of explored execution behaviors. Over the
course of a fuzzing campaign, inputs are “evolved” by maintaining
a population of interesting inputs that have been discovered and
creating new inputs by perturbing these interesting inputs. This
evolutionary search process depends on the assumption that an
input created by making a small change to an interesting input
is more likely to reveal new execution behaviors than a purely
random input. Evolutionary fuzzing has been shown to be e�ective
at �nding defects in real world systems [18, 25, 35, 43, 46, 47].

However, if the system under test has a highly constrained input
structure, then even small changes to an input are likely to violate
those constraints. Thus, an evolutionary fuzzer that is unaware of
the system’s input structure may struggle to create valid inputs
that exercise the core functionality of the system. Padhye et al.
[46] proposed and demonstrated the e�ectiveness of parametric
fuzzing, a technique for performing structure-aware, evolutionary
fuzzing. Parametric fuzzers use ����C���� [10]-style generators
to achieve structural awareness. In parametric fuzzing, generators
are used to map fuzzer-created bit strings, referred to as “parameter
sequences”, to structures [23, 38, 46, 49]. The parametric fuzzer
provides a means of splitting the parameter sequence into arbitrary,
primitive-typed values. These arbitrary values are then used by one
or more generators to build structured test inputs that conform to
user-de�ned constraints.

The strength of parametric fuzzing is that it supports generators
of arbitrary types without requiring developers to de�ne type-
speci�c mutation operators (operators that modify a single input)
and crossover operators (operators that combine parts from multi-
ple inputs together) to perturb inputs. Since a parameter sequence
is a bit string, parametric fuzzers are able to modify parameter se-
quences using generic mutation and crossover operators. However,
existing parametric fuzzers do not support crossover and use only
mutation operators to modify parameter sequences [23, 38, 46, 49].

Prior work has demonstrated the e�ectiveness of crossover in
structured fuzzing [8, 18, 47]. Furthermore, many unstructured
fuzzers, such as AFL [35], AFL++ [16], and ���F����� [25], utilize
some form of general-purpose crossover operator. Some fuzzers,
like AFL++ [16] and ���F����� [25], even support custom, user-
de�ned crossover operators. The e�cacy of crossover operators
stems from their ability to produce children that inherit advanta-
geous traits from multiple parent inputs — a property referred to
as heritability [48, 51].

Unfortunately, parametric fuzzing lacks an explicit tree structure
rendering tree-based crossovers operators like the ones proposed
by Pham et al. [47], Holler et al. [18], and Aschermann et al. [8]
inapplicable. Furthermore, the nature of parametric fuzzing limits
the e�ectiveness of unstructured crossover operators like the ones
found in AFL and ���F�����. Our key insight is that a tree structure
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can be extracted from the hierarchy of method calls made by gener-
ators in parametric fuzzing. Using this insight, we designed a new
crossover operator for parametric fuzzing — “linked crossover”. Em-
pirically comparing our approach to traditional crossover operators,
we found that linked crossover produces new inputs that inherit
more desirable traits from their parents. In a comparison against
three state-of-the-art parametric fuzzers, we found that applying
linked crossover increased branch coverage and defect detection
rates. Overall, this work makes the following contributions:

• A description of linked crossover, a novel crossover operator
for parametric fuzzing that leverages call tree information
to intelligently combine inputs.

• A open source implementation of linked crossover for Java.
• An empirical comparison of the heritability and e�ectiveness
of di�erent crossover operators in parametric fuzzing.

• An evaluation of the e�ectiveness of linked crossover on
seven Java projects against three state-of-the-art parametric
fuzzers: Z��� [46], B�D��F��� [38], and RLC���� [49].

2 BACKGROUND
2.1 Evolutionary Fuzzing
Algorithm 1 depicts a generic, evolutionary fuzzing algorithm that
is similar to the ones used by AFL [35] and ���F����� [25] The
evolutionary fuzzer maintains a population of interesting inputs.
The fuzzer repeatedly creates and executes new inputs. These in-
puts are created by selecting a parent input from the population
and perturbing that input by applying a number of mutation and
crossover operators to produce a child. This child is then executed
as an input to the fuzzing target and, the fuzzer observes execution
feedback. The type of execution feedback depends on the fuzzer;
branch coverage is a common choice [25, 35, 46]. If the child exer-
cises new coverage, it is saved to a corpus of coverage-revealing

Algorithm 1 A generic, evolutionary fuzzer.

1: 5 08;DA4B  {}
2: C>C0;⇠>E4A064  {}
3: ?>?D;0C8>=  {}
4: while there is time remaining in the campaign do
5: if ?>?D;0C8>= is empty then
6: 2⌘8;3  a new random input
7: else
8: ?0A4=C  select(?>?D;0C8>=)
9: 2⌘8;3  modify(?0A4=C, ?>?D;0C8>=)
10: end if
11: 2>E4A064, 5 443102:, 5 08;DA4  execute(2⌘8;3)
12: if 9G 2 2>E4A064 : G 8 C>C0;⇠>E4A064 then
13: save 2⌘8;3 to the corpus
14: C>C0;⇠>E4A064  C>C0;⇠>E4A064 [ 2>E4A064
15: end if
16: if 5 08;DA4 < ⇤ ^ 5 08;DA4 8 5 08;DA4B then
17: save 2⌘8;3 to the failures directory
18: 5 08;DA4B  5 08;DA4B [ {5 08;DA4}
19: end if
20: ?>?D;0C8>=  update(?>?D;0C8>=, 5 443102:, 2⌘8;3)
21: end while

inputs. If the child induced a new failure, it is saved to a directory
of failure-inducing inputs. Lastly, the population may be updated,
typically to include this new child input if the child revealed new
system behavior.

2.2 Crossover
Crossover (sometimes also referred to as recombination or splic-
ing) is an evolutionary operator that produces new child inputs
by combining multiple parent inputs with the goal of passing on
desirable traits from the parents to the children [36]. Typically,
crossover operators exchange segments from two parents between
a number of “crossover points”. For example, the crossover operator
used by AFL and AFL++ is a one-point crossover — it combines
two inputs by splicing them together at a randomly selected mid-
point [16, 35]. Evolutionary search approaches commonly use one-
or two-point crossover since performance may degrade as the num-
ber of crossover points increases [14, 15]. A crossover operator is
most e�ective when it is able to recombine high-�tness, interesting
subcomponents from separate parents into a single child [17, 36, 55].

2.3 Parametric Fuzzing
When a system under test has a highly constrained input struc-
ture, small modi�cations to an input are likely to produce invalid
inputs preventing the fuzzer from exercising the core functional-
ity of the system. Parametric fuzzing overcomes this limitation by
using����C����-style generators to achieve structural aware-
ness [23, 38, 46]. The parametric fuzzer provides a means of split-
ting parts of fuzzer-created bit strings, known as “parameter se-
quences”, into arbitrary, primitive-typed values.����C����-style
generators create complex input structures using these arbitrary
values, thereby creating a “parametric generator” that maps param-
eter sequences to generated structures. For example, consider the
generate method in Listing 1.

The method nextByte is provided by the parametric fuzzer; it
consumes and returns the next byte of the parameter sequence.
The generate method recursively creates an XML element. The
call to nextByte on line 2 selects a tag name for the XML element.
The value returned by the call to nextByte on line 4 determines
whether the element should have child elements or text content. If
the element has children, the call to nextByte on line 5 determines
the number of children. Otherwise, the call to nextByte on line 9
selects the text content of the element.

When the parameter sequence in Figure 1a is applied to the
generator in Listing 1, the generator produces the string �<a><b>x
</b><c></c></a>�. The parameter at index 0 is used to construct
the root element’s tag name, �a�. Next, the parameter at index 1
determines that the root element should have child elements, and
the parameter at index 2 determines that there should be 2 children.
The parameter at index 3 determines the �rst child’s tag name, �b�.
The parameter at index 4 determines that the �rst child should have
text content, and the parameter at index 5 determines that the text
content should be �x�. The parameter at index 6 determines the
second child’s tag name, �c�. The parameter at index 7 determines
that the second child should have children. Finally, the parameter
at index 8 determines that the second child should have 0 children.
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1 public String generate () {

2 char n = (char) nextByte ();

3 String c = ��;

4 if (nextByte () > 0) {

5 int x = nextByte () % 5;

6 for (int i = 0; i < x; i++) {

7 c += generate ();

8 }

9 } else {c += (char) nextByte ();}

10 return �<� + n + �>� + c +

11 �</� + n + �>�;

12 }

Listing 1: A simple XML document generator.

97 1 2 98 0 120 99 1 0

<a>

<b>x</b>

<c></c>

</a>

(a) Parent A. The solid line marks the crossover point. The dotted line encloses the pre�x
contributed to the child produced from the crossover operation.

100 1 1 101 90 76 102 0 121

<d>

<e>

<f>y</f>

</e>

</d>

(b) Parent B. The solid line marks the crossover point. The dashed line encloses the su�x
contributed to the child produced from the crossover operation.

97 1 2 98 0 90 76 102 0 121

<a>

<b>Z</b>

<L></L>

</a>

(c) Child produced by performing one-point crossover on Parents A and B. The dotted
and dashed lines enclose the portions of the child’s parameter sequence that were transferred
from Parents A and B, respectively.

Figure 1: A generator (left) and associated inputs (right). For each input, we depict the bytes of the parameter sequence (left of the
arrow) and the XML structure (right of the arrow) generated when the input is applied to the generator. Each parameter is colored based on
how it used by the generator. Parameters used to construct a value returned by the call to nextByte on lines 2, 4, 5, and 9 are colored green,
yellow, blue, and red, respectively. Unused parameters are colored gray. Whitespace has been added to the XML structures for readability.

Following a similar process, the generator produces the string �<d><
e><f>y</f></e></d>� from the parameter sequence in Figure 1b.

Notice that the e�ect of each parameter depends upon how it
is used by the generator. For example, the parameter at index 5 of
Figure 1a is used by the generator to create the text content �x� for
the �rst child of the root element. Whereas, the parameter at index
5 of Figure 1b is used by the generator to determine that the �rst
child of the root element should have 1 child.

Since a parameter sequence is a bit string, it can be perturbed us-
ing generic mutation and crossover operators to create a new child
sequence. Regardless of how these operators change the parent, the
structure generated from the child sequence will still conform to
any constraints imposed by the generator. For instance, the genera-
tor in Listing 1 will always create opening and closing tags. This
allows the parametric fuzzer to produce valid inputs of various
types without the need for type-speci�c operators. However, since
the e�ect of a parameter value depends on the context in which it
is used, unmodi�ed parameters in the child sequence may be inter-
preted di�erently than they were for the parent sequence. This can
limit the e�ectiveness of traditional crossover operators because
naively chosen crossover points are likely to cause the parameters
from one parent to be placed into a position in the other parent
that corresponds to an entirely di�erent context.

Consider a one-point crossover of the inputs in Figures 1a and 1b
that produces the child parameter sequence displayed Figure 1c.
This child parameter sequence generates the string �<a><b>Z</b

><L></L></a>� when applied to the generator in Listing 1. Even
though the child parameter sequence was constructed from part of
the sequence in Figure 1b, the structure generated from the child
does not resemble the structure generated for Figure 1b, because the
portion of the sequence in Figure 1b that was transferred to the child
was interpreted in a di�erent context. For example, the parameter
at index 5 of input sequence in Figure 1b, 76, was originally used
by the call to nextByte on line 4. In this context, the value 76
meant that the element should have children. However, in the child

parameter sequence, the parameter value 76 was used by the call
to nextByte on line 2. In this context, the value 76 meant that the
element should have the tag name �L� (ASCII character 76).

These context changes limit the number of crossover points that
produce children that inherit advantageous traits from both par-
ents — negatively impacting the heritability of traditional crossover
operators. This e�ect is even more pronounced as the length of
parameter sequences and the complexity of generators increase.

3 APPROACH
Our approach to crossover in parametric fuzzing, linked crossover,
leverages information about the dynamic execution behavior of
parametric generators to intelligently select crossover points. Linked
crossover aims to identify and exchange portions of parameter se-
quences that are interpreted similarly by the parametric generator.
These subsequences are identi�ed using “parametric call trees”.
A parametric call tree records caller-callee relationships between
method calls and the portion of the parameter sequence that was
used by each method call. Linked crossover is a variant of two-point
crossover — two crossover points are chosen for each parent and
the values between those points are swapped between the parents.
Unlike traditional two-point crossover, which chooses crossover
points at random [15], linked crossover computes crossover points
based on the parametric call trees of the parent inputs. This links
the choice of crossover points to the parametric generator’s execu-
tion behavior, thereby preserving logical boundaries in the input
and increasing the chance that the crossover produces a child that
inherits traits from both parents.

3.1 Parametric Call Tree
The parametric call tree for a parameter sequence represents the
execution of the generate method, the method responsible for
constructing arguments for the fuzzing target from a parameter
sequence using one or more parametric generators, when generate
is supplied with the parameter sequence. The parametric call tree
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(a) Parametric call tree and crossover points for Parent A.
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(b) Parametric call tree and crossover points for Parent B.

97 1 2 101 90 76 102 0 121 99 1 0

<a>

<e>

<f>y</f>

</e>

<c></c>

</a>

(c) Child sequence (left) and the XML structure generated when the child is applied to the generator in Listing 1 (right).

Figure 2: Parent parametric call trees (top), crossover points (middle), and the child parameter sequence (bottom) for a linked
crossover. Parametric call trees are depicted for the generator executions produced when applying the parent parameter sequences in
Figures 1a and 1b to the generator in Listing 1. Each vertex contains the name of the method called and the line on which it was called.
Parameters requests consumed by calls to nextByte on lines 2, 4, 5, and 9 are colored green, yellow, blue, and red, respectively. The third line
of each parameter request indicates the parameter sequence interval consumed by the request. Arrows represent caller-callee relationships.
Below each tree, we show the parent parameter sequence and the crossover points linked to the vertex circled in the tree. Crossover points
are marked with solid orange lines. Below the parents, we show the child parameter sequence produced from crossing over the parents at
the marked points. The dotted and dashed lines enclose the portions of the child that were transferred from Parents A and B, respectively.

consists of a set of vertices representing method calls and edges
representing caller-callee relationships. Each vertex has exactly one
parent, its caller, except the root of the tree, which has no parent
and represents the initial call to generate. Each vertex E has zero
or more child vertices representing method calls made directly by
E , i.e., its callees. A vertex E is a descendant of a vertex D if the
simple path from the root of the tree to E contains D; every vertex
is a descendant of itself. Therefore, a vertex E is a descendant of a
vertex D if the method call represented by E was made during the
execution of the method call represented by D or E = D.

Vertices corresponding to calls to methods provided by the para-
metric fuzzer that directly consume bytes from the parameter se-
quence (e.g., the nextByte method used in Listing 1) are annotated
with the interval of the parameter sequence that was consumed
by the call. We refer to these annotated vertices as “parameter re-
quests”. A parameter request has no children by construction. A
method call is represented in the parametric call tree if and only if
it is a parameter request or at least one parameter request occurred
during the execution of that method call. Therefore, for every vertex
E in a parametric call tree, there exists some parameter request D
that is a descendant of E .

In theory, the parametric call tree could be de�ned per thread
of execution. However, since parametric generators are single-
threaded (regardless of whether the application under test is multi-
threaded), parameter requests only occur in a single thread. Thus,
we will discuss only a single parametric call tree for each input
parameter sequence.

As an example, consider the generator in Listing 1 and the para-
metric input depicted in Figure 1a. The parametric call tree for

the execution of generate induced by the parameter sequence in
Figure 1a is shown in Figure 2a. The root vertex represents the call
to generate. The leftmost child of the root represents the �rst call
to nextByte on line 2. This vertex is a parameter request and is
associated with the interval [0, 1) because the �rst call to nextByte
consumed the �rst byte of the parameter sequence. The next two
leftmost children of the root vertex represent the calls to nextByte
on lines 4 and 5. The two rightmost children of the root vertex rep-
resent recursive calls to generatemade on line 7. Each of these two
vertices has three children, each representing a call to nextByte.

3.2 Linked Crossover
ComputingCrossover Points.When performing linked crossover,
the crossover points for a parent input are computed based on a ver-
tex selected from the parent’s parametric call tree using Algorithm 2.
The computed crossover points split the parent input before and
after the portion of the parameter sequence that was used by the
parameter requests made during the execution of the method call
represented by the vertex. This preserves boundaries corresponding
to method calls in the input increasing the chance that high-�tness
subsequences in parent inputs appear in their children.

For example, consider the circled vertex in Figure 2a. There
are three parameter requests that are a descendant of this vertex.
The union of the intervals associated with these requests is [3, 6)
corresponding to the crossover points depicted in Figure 2a.

Selecting Vertices. In order to leverage vertex-based crossover
points to combine inputs from a population, linked crossover begins
by selecting two vertices: a “recipient” and a “donor”. Given a parent
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Algorithm 2 Computing crossover points for a vertex.
Input: parametric call tree vertex E
Output: a pair of crossover points
1: ⇡  the set of parameter requests that are a descendant of E
2: (  {}
3: for each 3 2 ⇡ do
4: (  ( [ interval of parameter sequence consumed by 3
5: end for
6: return<8=((),<0G (() + 1

input, referred to as the “primary” parent, linked crossover begins
by selecting a recipient vertex at random from eligible vertices in
the primary parent’s parametric call tree. A vertex E is eligible to
be a recipient if the following is true:

(1) There does not exist some vertexD, such that the set of param-
eter requests descended from E is equal to those descended
fromD and themethod call represented byD happened before
the method call represented by E .

(2) E is not the root of the parametric call tree.
(3) There are at least two di�erent parameter requests that are

a descendant of E .
The �rst criterion is violated if a vertex does not have a sibling.

A vertex does not have a sibling if every parameter request that
occurred during the caller of the method represented by the ver-
tex occurred during execution of the method represented by the
vertex. The �rst criterion ensures that there is only one eligible
vertex corresponding to each distinct pair of crossover points. If
two vertices, D and E , have the same set of descendant parameter
requests, then the crossover points for E and D are the same. There-
fore, when two or more vertices have the same set of descendant
parameter requests, only the vertex corresponding to the earliest
method call is eligible to be a recipient. The second criterion guards
against producing a child that is overly dissimilar to the primary
parent: if E is the root of the parametric call tree, then selecting E
as the recipient will replace the entire parameter sequence for the
primary parent. The third criterion is a heuristic that guards against
producing a child that is overly similar to the primary parent: if
only one parameter request is a descendant of E , then selecting E
as the recipient will replace only a small portion of the parameter
sequence for the primary parent. Future work could explore other
heuristics for selecting recipient vertices.

Next, linked crossover selects a secondary parent at random
from the set of eligible members of the population. A member of
the population is eligible to be the secondary parent if its call tree
contains at least one eligible vertex. Every vertex that represents
a call to the same method as the recipient is eligible to act as the
donor vertex, even vertices that do not satisfy the recipient eligi-
bility requirements. This criterion increases the chance that the
donated subsequence is interpreted similarly by the generator for
the child as it was for the secondary parent. To reduce the per-
formance impact of selecting secondary parents, the fuzzer can
maintain a mapping from each method to the set of members of the
current population that are eligible to act as the secondary parent
for a linked crossover targeting a recipient vertex representing that
method. Once a secondary parent is selected, a donor vertex is

selected at random from eligible vertices in the secondary parent’s
parametric call tree.

Application.Algorithm 3 describes how to apply a linked crossover
between a primary and secondary input based on a selected recipi-
ent vertex and donor vertex. Crossover points are computed based
on the recipient and donor vertex, as described above. Standard
two-point crossover is then performed replacing the portion of
the primary parent’s parameter sequence that lies between the
crossover points computed for the recipient vertex with the portion
of the secondary parent’s parameter sequence that lies between the
crossover points computed for the donor.

Algorithm 3 Applying a linked crossover.

Input: primary parent G  hG0, G1, . . . , G=�1i, secondary parent
~  h~0,~1, . . . ,~<�1i, recipient vertex A , donor vertex 3

Output: child sequence
1: 8, 9  crossover points computed for A using Algorithm 2
2: :, ;  crossover points computed for 3 using Algorithm 2
3: return hG0, G1, . . . , G8�1i + h~: ,~:+1, . . . ,~;�1i +
hG 9 , G 9+1, . . . , G=�1i

Figure 2 depicts a linked crossover between the two inputs in
Figure 1. The recipient vertex is the call to the method generate

circled in orange in Figure 2a. The donor vertex is the call to the
method generate circled in orange in Figure 2b. The union of the
interval of parameter requests descended from the recipient ver-
tex is [3, 6) and from the donor vertex is [3, 9). These intervals
correspond to the crossover points marked with orange lines in
Figures 2a and 2b. The portion of the sequence in Figure 2a be-
tween the marked crossover points is replaced with the portion of
the sequence in Figure 2b between the marked crossover points
producing the child sequence depicted in Figure 2c.

When applying multiple linked crossover operations to the same
primary parent input additional considerations must be made be-
cause an operation may shift subsequent portions of the input if
the size of the donated subsequence is not equal to the size of the
replaced subsequence. Additionally, if two operations impact non-
disjoint intervals of the primary parent’s parameter sequence, only
one of the operations can be applied because the same parameter
should only be replaced once.

When applying multiple linked crossover operations on the same
primary parent, begin by sorting the operations into non-increasing
order by the start of the interval they impact (as determined by the
recipient vertex of the application). Then, process each operation
in order. If an operation targets an interval that is non-disjoint with
an interval targeted by an operation that has already been applied,
skip it. Otherwise, apply the operation as normal replacing the
portion of the primary parent within the interval targeted by the
operation with the operation’s donated subsequence.

Applying the linked crossover operations in non-increasing or-
der by the start of the interval they impact ensures that parameters
in positions before the start of the interval targeted by the last oper-
ation applied remain in their original positions. When a crossover
operation is about to be applied, the interval that it targets must
be disjoint with the interval targeted by the last operation applied,
otherwise the operation would have been skipped. Furthermore,
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the start of the interval targeted by the operation cannot be greater
than the start of the interval targeted by the last operation applied.
Therefore, when an operation is applied, the interval that it targets
must start and end before the start of the interval targeted by the
last operation applied. Thus, the operation can be applied normally
without adjusting the replacement interval.

4 IMPLEMENTATION
Although we believe that linked crossover is suitable for many lan-
guages, we implemented linked crossover as part of Z�����, a new
parametric fuzzer for Java. For the sake of simplicity, we chose to use
branch coverage feedback for Z�����. However, linked crossover
could be used with other forms of feedback such as Padhye et al.
[46]’s input-validity feedback. Z����� collects branch coverage
and method call information using the ASM instrumentation and
analysis framework to rewrite Java bytecode [44]. Like JQF [45] (the
parametric fuzzing framework used to create Z���, B�D��F���, and
RLC����), Z����� is implemented on top of ���������������
[19], a property-testing library inspired by����C���� [10]. ������
��������� leverages user-de�ned generators to create random
test inputs. These generators use a high-level API provided by
��������������� to create arbitrary values of common types.
Z����� integrates into ��������������� by using fuzzer-derived
parameter sequences to determine these arbitrary values.

Updating the Population. Z����� implements the generic
fuzzing algorithm described in Section 2.1. Branch coverage feed-
back is used to determine which inputs should be included in the
population. For each branch that has been covered by at least one
input, Z����� tracks the shortest input that covered that branch.
The set of tracked inputs form the population.

Modifying Inputs. When creating a child input, Z����� se-
lects the primary parent from the population at random. Then,
Z����� chooses the total number of mutation and crossover oper-
ations to apply to the primary parent. This number is chosen from
a shifted geometric distribution with a success probability of 0.25
(corresponding to an expected value of four). This value can be
�ne-tuned; preliminary experiments that we conducted suggested
that a probability of 0.25 was an e�ective choice across all subjects.
Z����� uses the same replacement-based mutation operator de-
scribed by Padhye et al. [46] with a mean mutation length of eight.
The mean mutation length can be �ne-tuned; preliminary exper-
iments that we conducted suggested that eight was an e�ective
choice across all subjects.

Z����� can be con�gured to use mutation only, to use tradi-
tional one-point crossover, to use traditional two-point crossover,
or to use our novel linked crossover. We describe our evaluation of
these options in Section 6. For one- and two-point crossover, the sec-
ond parent is selected at random from the population, and crossover
points are selected at random. Linked crossover is performed as
described in Section 3.2.

If Z����� has been con�gured to use mutation only, then all
the operations are mutation. Otherwise, Z����� chooses between
mutation and crossover at random with an equal likelihood of
selecting either option. If Z����� has been con�gured to use linked
crossover, then all linked crossover operations are applied �rst in
the manner described in Section 3.2, then the mutation operations

are applied. Otherwise, operations are applied in the order they are
selected.

Building the Parametric Call Tree. Z����� uses bytecode in-
strumentation to build parametric call trees allowing linked crossover
to work on unmodi�ed ��������������� generators. Z�����
adds code at the start of methods that records that the method was
entered and before method returns that records that the method
was exited. Z�����’s integration with ��������������� records
when a portion of the parameter sequence is consumed. These
recorded messages are ignored by Z����� unless it is actively
building a parametric call tree.

Parametric call trees are only needed when Z����� is con�g-
ured to use linked crossover and for inputs that will be saved to
the population. Hence, before Z����� saves an input to the pop-
ulation, it re-executes the generate method with the input and
observes messages recorded about method entries, method exits,
and parameter consumptions. A stack is used to track the call stack.
When a method is entered, a new vertex is created for the method
call and pushed onto the stack. When a parameter is consumed,
the index of that parameter is then associated with the vertex at
the top of the stack and the top vertex is marked as a parameter
request. When a method is exited, the top vertex is popped o� of
the stack. If the popped vertex is not associated with the index of at
least one parameter, and it has no children, then the vertex is not a
parameter request and no parameter requests occurred during the
execution of the method call represented by the vertex. As noted
in Section 3.1, a method call is included in the parametric call tree
only if it is a parameter request or at least one parameter request
occurred during the execution of that method call. Therefore, the
popped vertex is discarded. If the popped vertex is not discarded,
then the vertex on the top of the stack is marked as the parent of the
popped vertex. If there is no vertex on the top of the stack, i.e., the
stack is empty, then the popped vertex is recorded as the root of
the tree.

5 LIMITATIONS
Linked crossover is a heuristic approach; its e�cacy is dependent
on the structure of the generators. If the generators are not split
into methods or the methods do not correspond to logical bound-
aries, then linked crossover will be ine�ective. This limitation only
applies to the structure of the generators and not the entire system
under test. However, we do not believe that this is a signi�cant
limitation, as best practices for writing ����C����-style genera-
tors rely on composition. Claessen and Hughes [10] explain that
combinators can be used to combine simple generators into com-
plex generators. This compositional style results in method calls
that are responsible for creating a single subcomponent, and, there-
fore, likely correspond to reasonable logical boundaries. Linked
crossover’s dependency on methods could be mitigated by using
additional dynamic execution information or techniques such as
method call sites, dynamic slices, and dynamic information �ows.
This is an interesting direction for future research.
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6 EVALUATION
For our evaluation, we examined linked crossover’s impact on over-
all fuzzer performance and its ability to produce children that pre-
serve desirable traits from their parents — a property referred to
by Raidl and Gottlieb [48] as heritability. We created two novel
heritability metrics for evolutionary fuzzing, hybrid proportion and
inheritance rate, which we describe in Section 6.1.1. We also exam-
ined the impact of linked crossover on overall fuzzer performance
using traditional metrics. Our evaluation of linked crossover fo-
cused on answering the following research questions:
RQ1: How does linked crossover compare to other crossover opera-

tors with respect to heritability?
RQ2: How does Z����� with linked crossover’s ability to discover

coverage-revealing inputs compare to state-of-the-art para-
metric fuzzers?

RQ3: How does Z����� with linked crossover’s ability to detect
defects compare to state-of-the-art parametric fuzzers?

6.1 Methodology
We evaluated Z����� on benchmark suite of seven real-world Java
projects consisting of the �ve subjects used by Padhye et al. [46] in
their evaluation of Z��� (Ant, BCEL, Closure, Maven, and Rhino)
and the two additional subjects used by Nguyen and Grunske [38]
in their evaluation of B�D��F��� (Nashorn and Tomcat). We list
these subjects in Table 1. We used the latest stable release of each
subject available in the Maven Central Repository. Minor modi�ca-
tions were made to the fuzzing targets used by Padhye et al. [46]
and Nguyen and Grunske [38] to ensure compatibility with the
newer subject versions. We used the ��������������� generators
included with JQF (version 2.0) [50] for XML, JavaScript, and Java
classes. We changed the con�guration for the XML generator to
increase the maximum depth of generated XML trees to ten as
Kukucka et al. [23] found that deeper trees were necessary to exer-
cise certain functionality in Maven. No changes were made to the
generator itself.

In order to compare linked crossover against other crossover
operators, we created four variants of Z�����. The �rst vari-
ant, Z������X, does not use crossover at all. The other variants,
Z������L���, Z������1PT, and Z������2PT, use linked, one-
point and, two-point crossover, respectively. These variants di�er
from each other only with respect to the application of crossover
as described in Section 4.

Table 1: Evaluation Subjects. For each subject, we list the project
name and version (Project), the format of the input (Format), and
the number of branches as reported by J�C�C� (Branches).

Project Format Branches

Apache Ant (1.10.13) [1] XML 24626
Apache BCEL (6.7.0) [4] Java class 5975
Google Closure (v20230502) [13] JavaScript 129376
Apache Maven (3.9.2) [5] XML 14886
OpenJDK Nashorn (11.0.19) [39] JavaScript 28191
Mozilla Rhino (1.7.14) [33] JavaScript 26690
Apache Tomcat (10.1.9) [6] XML 39020

6.1.1 RQ1: Heritability. In an evolutionary search, an e�ective
crossover operator produces children that preserve desirable traits
from their parents — a property referred to by Raidl and Gottlieb
[48] as heritability. For an evolutionary fuzzer, the primary trait of
interest for an input is its ability to cover program features (typ-
ically branches or statements). We propose two coverage-based
heritability metrics for evolutionary fuzzing: inheritance rate and
hybrid proportion. Inheritance rate considers the percentage of pro-
gram features covered by at least one of an input’s parents that
were also covered by the input for a typical input produced by
a crossover operator. Hybrid proportion measures the likelihood
that a crossover operator produces a child that covers at least one
feature exclusively covered by each of its parents.

Inheritance rate and hybrid proportion aim to measure common-
alities between a child and its parents — they do not try to measure
whether the child covers new program features. Although addi-
tional coverage is generally positive in fuzzing, it is not necessarily
indicative of a high-quality crossover. The additional coverage could
represent an undesirable deviation from the parents’ behavior, or
it could be a positive e�ect of combining parts of the parents’ be-
havior. Therefore, program features covered by the child but not
its parents are neither penalized nor rewarded when computing
inheritance rates and hybrid proportions.

Consider a child 2 produced by applying a crossover operator to
parents ?1 and ?2. Let - be a set of “common” features — program
features that are covered by a high percentage of random inputs.
Common features are excluded when computing inheritance rate
and hybrid proportion because covering a common feature does not
necessarily represent a unique, desirable property of a particular
input. Let %1, %2, and ⇠ be the set of program features not in -
covered by ?1, ?2, and 2 , respectively. We de�ne the inheritance rate,
denoted IR, of a crossover as the percentage of program features
covered by either parent that were also covered by the child:

IR(%1, %2,⇠) =
| (%1 [ %2) \⇠ |

|%1 [ %2 |
We say that a crossover is a hybrid, denoted HY, if the child covers
at least one feature that is covered by the �rst parent but not the
second parent, and the child covers at least one feature that is
covered by the second parent but not the �rst parent:

HY(%1, %2,⇠) = (9G 2 ⇠ : G 2 %1 ^ G 8 %2)
^(9~ 2 ⇠ : ~ 2 %2 ^ ~ 8 %1)

These metrics are extended to the operator itself by considering
the distribution of inheritance rates and the proportion of children
that are hybrids for some sample of parents.

In order to collect a representative sample of parent inputs, we
performed twenty fuzzing campaigns using Z������X on the sub-
jects listed in Table 1 and recorded the state of the corpus after �ve
minutes. We chose to use the state of the corpus after �ve minutes
because we found that, on average, over half of the inputs saved to
corpus after three hours were saved in the �rst �ve minutes (mean
= 57.8%, median = 61.8%, minimum = 29.8%, maximum = 78.2%). We
collected branch coverage using Z�����’s instrumentation, and
considered all coverage including system classes. To ensure that
non-repeatable coverage due to class loading did not impact the
results, if a class was loaded during the execution of an input, the
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input was re-executed, and the coverage recording from the second
execution was used.We identi�ed the set of common features, - , by
executing 1,000 random inputs for each subject. Any branch that
was covered by a majority of these random inputs was marked as
common.

To compute the heritability metrics, we sampled 1,000 pairs of
parents for each subject. Each sample was selected by choosing two
parents at random from a randomly selected corpus produced for
the subject. Samples were re-selected until both parents covered at
least one branch not in the common feature set and not covered by
the other parent to ensure that it was possible to produce a hybrid
child from the pairing. For each sample, we produced one child
for each of the three crossover operators — linked, one point and
two point — and recorded whether the child was a hybrid and its
inheritance rate.

6.1.2 RQ2 and RQ3: Coverage and Defects. Our second and third re-
search questions evaluate the impact of linked crossover on branch
coverage and defect detection ability. In addition to the three vari-
ants of Z����� without linked crossover, we also compared our
approach against Z��� [46], B�D��F��� [38], and RLC���� [49].
We used the latest releases at time of writing of Z��� (version 2.0)
and B�D��F��� (commit c06eaca) which include improvements
to the coverage instrumentation. For B�D��F���, we evaluated
both of the con�gurations described by Nguyen and Grunske [38]:
B�D���S����� and B�D���S�����. Because our reported values
are based only on saved inputs, we modi�ed B�D��F��� to en-
sure that all inputs that reveal new coverage are saved — not just
“valid” inputs. For the same reason, we choose to use the “grey-box”
version of RLC���� because the grey-box version saves coverage-
revealing inputs to a corpus. We did not compare Z����� against
C������� [23] because C������� only supports Java version 8, and
the latest release of Z��� requires Java version 9 or greater.

B�D��F��� and RLC���� cannot use ��������������� gener-
ators out of the box; they require the generators to be manually
modi�ed. For the XML and JavaScript generators, we used the gen-
erators created by Nguyen and Grunske [38] and Reddy et al. [49]
to evaluate B�D��F��� and RLC����, respectively. Neither Nguyen
and Grunske [38]’s evaluation of B�D��F��� nor Reddy et al. [49]
evaluation of RLC���� included a Java class generator. Therefore,
we created a modi�ed version of the Java class generator included
with JQF for B�D��F���. Unfortunately, the documentation for
RLC���� did not provide su�cient detail for us to create a modi-
�ed Java class generator for RLC����; therefore, we do not include
results for RLC���� on BCEL.

Following best practices suggested by Metzman et al. [34], we
used an independent code coverage metric — branch coverage
collected with J�C�C� (version 0.8.7) [37]. In order to calculate
branch coverage, we reran inputs saved by the fuzzer in a J�C�C�-
instrumented Java Virtual Machine (JVM) after the campaign �n-
ished. Coverage was measured only in application classes (those
found in the JAR �les associated with the subject). For Nashorn, we
further limited coverage to only include classes related to Nashorn,
those with the package pre�x jdk.nashorn. Nashorn is part of the
Java Class Library (JCL) and including all JCL coverage would bias
results in favor of fuzzers that heavily depend on parts the JCL

Table 2: Heritability Metrics. For each crossover operator, we
report the proportion of samples that were hybrids (HY) and the
median inheritance rate (IR) on each subject. The largest value for
each metric on each subject is highlighted in blue. Values that di�er
signi�cantly from that of linked crossover are colored red.

Linked One Point Two Point
Subject HY IR HY IR HY IR

Ant 0.561 0.923 0.459 0.124 0.493 0.069
BCEL 0.283 0.512 0.660 0.347 0.756 0.286
Closure 0.742 0.717 0.661 0.101 0.712 0.094
Maven 0.446 0.589 0.404 0.497 0.399 0.453
Nashorn 0.622 0.646 0.548 0.117 0.591 0.132
Rhino 0.611 0.502 0.599 0.263 0.643 0.255
Tomcat 0.322 0.775 0.350 0.276 0.328 0.279

(e.g., java.lang.String and java.util.HashMap) in�ating their
coverage.

In order to measure defect detection ability, we collected the
failures detected for each campaign by rerunning inputs saved by
the fuzzer in a new JVM after the campaign �nished. If a saved
input induced a failure, we recorded the type (e.g., java.lang.
RuntimeException) and stack trace of the failure induced by the
input. Failures with the same type and top �ve stack frames were
initially marked as the same failure. We then manually inspected
the set of distinct failures to map the failures to a set of unique
defects. All of the identi�ed defects were reported and con�rmed
by a developer for the associated project.

Twenty trials were conducted for each fuzzer on each subject in
accordance with current best practices [22]. Each campaign was
performed on its own virtual machine with four 2.6 GHz AMD
EPYC 7H12 vCPUs, with 16 GB of RAM, running Ubuntu 20.04.3,
and using the Oracle Java Development Kit (JDK) version 11.0.19.
No seeds were provided for any subject. The original dictionaries
created by Padhye et al. [46] and Nguyen and Grunske [38] were
used for the XML subjects. Similar to the evaluation performed by
Padhye et al. [46] and Kukucka et al. [23], generators were limited
to producing inputs that used 10,240 or less raw input bytes.

Because parametric fuzzing is typically used for property-based
testing, the e�ectiveness a parametric fuzzer on relatively short
campaigns is of particular interest [38, 49]. However, longer cam-
paigns may be more indicative of general performance trends [22].
Therefore, we chose to evaluate the e�ectiveness of linked crossover
on both short (�ve minute) campaigns like Reddy et al. [49] and
long (three hour) campaigns like Padhye et al. [46].

6.2 RQ1: Heritability
Table 2 summarizes the results of our heritability experiment. We
performed pairwise comparisons of the inheritance rates and hybrid
proportions measured on each subject for the di�erent crossover
operators using two-tailed Mann-Whitney U tests and Fisher’s ex-
act tests, respectively. Following current best practices as described
by Arcuri and Briand [7], a base signi�cance level of 0.05 was ad-
justed for three comparisons resulting in a Bonferroni-corrected
signi�cance level of 0.05

3 = 0.0167 per test. Inheritance rates for
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linked crossover were statistically signi�cantly greater than for
one- and two-point crossover on all subjects. Linked crossover had
a signi�cantly greater hybrid proportion compared to one-point
crossover on Ant, Closure, and Nashorn; and compared to two-point
crossover on Ant. However, linked crossover had a signi�cantly
lower hybrid proportion compared to one- and two-crossover on
BCEL. All other di�erences between linked crossover and the other
operators were not signi�cant. Full results of the pairwise com-
parisons are included in the supplemental materials for this paper.
Overall, linked crossover produced children that inherited more
desirable traits from their parents (i.e., covered a higher percentage
of the branches covered by their parents) while still combining
traits from both parents.

6.3 RQ2: Coverage
Figure 3 and Table 3 summarize the results of our coverage exper-
iment. Figure 3 shows median, minimum, and maximum branch
coverage across the twenty trials over time for each fuzzer on each
subject. Table 3 shows median coverage values for each fuzzer after
�ve minutes (short duration) and three hours (long duration). On
each subject, we performed pairwise comparisons of the branch
coverage for short and long campaigns for the di�erent fuzzers
using Mann-Whitney U tests. A base signi�cance level of 0.05 was
adjusted for 28 comparisons resulting in a Bonferroni-corrected sig-
ni�cance level of 0.05

28 = 0.00179 per test except on BCEL. For BCEL,
the signi�cance level was adjusted for 21 comparisons (due to the
exclusion of RLC����) resulting in a corrected signi�cance level
0.05
21 ⇡ 0.00238. Statistically signi�cant di�erences between the
branch coverage of Z������L��� and the other fuzzers are colored
red in Table 3. We also used the Vargha-Delaney �̂12 statistic [53]
to quantify e�ect sizes for these comparisons. The full results of
these tests are included in our supplemental materials.

Z������L��� had the highest median coverage on all subjects
except Tomcat after �ve minutes and on all subjects except Ant after
three hours. On the three JavaScript subjects (Closure, Nashorn, and
Rhino), Z������L���’s branch coverage was signi�cantly greater
than that of all other fuzzers on both long and short campaigns, ex-
cept Z������X on �ve-minute Closure campaigns. On the only Java
class subject (BCEL), Z������L��� outperformed B�D���S�����,
B�D���S�����, RLC����, and Z������2PT on long and short cam-
paigns. However, Z������L��� only performed signi�cantly better
than Z���, Z�����, and Z������1PT on long BCEL campaigns.
We carefully examined this fuzzing target and believe that, in order
to achieve further improvements in coverage, the generator should
be improved to be more likely to generate valid Java method bod-
ies. Results on the three XML subjects (Ant, Maven, and Tomcat)
were more mixed. As depicted in Figure 3, coverage for most of
the fuzzers plateaued on these three subjects. Our analysis of these
fuzzing targets revealed that limited coverage is reachable from
the drivers for these subjects. Z������L��� performed as well as
or better than the other fuzzers on all the XML subjects except on
long Ant campaigns where Z������L���’s branch coverage was
signi�cantly less than that of Z���. For all subjects, we found that
the e�ect size was large (�̂12 � 0.71) for all comparisons in which
the performance of a baseline fuzzer di�ered signi�cantly from that
of Z������L���.

B�D��F���, Z���, and RLC���� performed notably poorly on
Nashorn. These fuzzers are all built using JQF which does not add
and cannot be con�gured to add coverage instrumentation to classes
with the package pre�x jdk. Since the classes related to Nashorn
are found in jdk.nashorn, the JQF-based fuzzers did not receive
critical coverage feedback for Nashorn. Given that our primary
goal is to evaluate the e�cacy of linked crossover (as opposed
to comparing all variants of Z����� against B�D��F���, Z���,
and RLC����), we did not �nd it necessary to make the invasive
changes to JQF necessary to collect coverage in these packages.

In general, linked crossover was demonstrably e�ective at dis-
covering coverage-revealing inputs in both long and short cam-
paigns. It consistently performed as well as or better than other
forms of crossover and against state-of-the-art parametric fuzzers.
Linked crossover was generally more e�ective on subjects using
the JavaScript or Java class generator, possibly indicating that its
e�cacy may be impacted by either the nature of the generator or
the input type itself. However, this could also be a product of driver
limitations for the XML fuzzing targets. Future work may study
how to measure and improve the quality of fuzzing targets.

6.4 RQ3: Defects
Across all the campaigns, a total of twelve unique defects were
detected: two in BCEL (B0–B1), two in Closure (C0–C1), three
in Nashorn (N0–N2), and �ve in Rhino (R0–R4). Table 4 lists the
percentage of campaigns for each fuzzer in which each of these
defects was discovered (the detection rate) within the �rst �ve
minutes and after the full three hours of the campaign. For each
defect, we performed pairwise comparisons of the detection rate
for short and long campaigns for the di�erent fuzzers using Fisher’s
exact tests with the same Bonferroni-adjusted signi�cance levels
used in Section 6.3. Statistically signi�cant di�erences between
Z������L��� and other fuzzers are colored red in Table 4. Full
results of these tests are included in our supplemental materials.

Z������L��� had the highest detection rate for nine of the
twelve defects within the �rst �ve minutes (short campaigns) and
eight out of the twelve defects after the full three hours (long cam-
paigns) of the campaign. This suggests that linked crossover may
positively impact a fuzzer’s ability to detect defects. For the short
campaigns, the Fisher’s exact tests indicated that most of the di�er-
ences in detection rate between the fuzzers were not signi�cant. For
long campaigns, Z������L���’s detection rate for �ve defects (N0,
N2, R0, R2, R4) was signi�cantly higher than that of B�D���S�����,
B�D���S�����, RLC����, and Z���. Interestingly, Z������L���’s
detection rate never di�ered signi�cantly from that of Z������X,
although, in some cases, it was superior to that of Z������1PT
and Z������2PT.

6.5 Threats to Validity
We evaluated linked crossover on only seven subjects. These subject
may not be representative of all programs. However, these subjects
are all mature, well-established projects. Furthermore, we included
all the Java subjects evaluated by Padhye et al. [46], Reddy et al.
[49], Kukucka et al. [23], or Nguyen and Grunske [38].

Our evaluation featured generators for only three di�erent input
types: JavaScript, XML, and Java class. We did not evaluate the
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Figure 3: Branch Coverage Over Time. Each x-axis is time in minutes and each y-axis is the number of covered branches. Each plot
depicts the median number of covered branches (solid line) and the range of covered branches (�lled area) across the 20 trials over the
duration of the fuzzing campaign for each of the fuzzers.

Table 3: Branch Coverage. For each fuzzer, we report the median branch coverage in application classes for each subject across 20 fuzzing
campaigns after �ve minutes (5M) and three hours (3H). The largest median or medians (in the case of a tie) for each time and subject is
highlighted in blue. Branch coverage values that di�er signi�cantly from Z������L���’s are colored red.

Fuzzer
Subject Ant BCEL Closure Maven Nashorn Rhino Tomcat

5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H

B�D���S����� 755.0 899.0 1435.5 1846.5 9328.0 11863.5 590.5 738.0 3008.5 3319.5 2952.0 3235.5 274.5 341.0
B�D���S����� 786.5 896.5 1412.5 1876.5 9336.5 11904.5 578.5 641.5 2993.5 3092.0 2915.5 3237.0 161.0 242.5
RLC���� 769.0 889.0 — — 8262.5 9480.5 579.0 663.0 1298.0 1298.0 2627.0 2730.0 299.0 338.0
Z��� 820.0 927.0 1516.5 1909.5 9782.5 12352.0 778.5 1098.5 2654.5 2717.0 3108.5 3408.0 295.0 340.0
Z������X 835.5 911.0 1480.5 1927.0 10274.5 12251.0 873.0 1138.0 4259.0 7411.0 3169.0 3551.5 297.5 345.0
Z������1PT 828.0 909.5 1489.0 1917.0 10237.5 12153.5 855.5 1138.0 4166.0 7369.5 3169.0 3572.5 294.0 344.0
Z������2PT 819.5 910.0 1472.0 1915.0 10284.0 12038.0 797.0 1134.0 3962.5 7310.0 3143.0 3549.0 291.0 341.5
Z������L��� 845.5 911.5 1541.5 1959.0 10395.5 12709.0 906.0 1138.0 5568.5 7654.0 3233.5 3703.0 295.5 345.0

Table 4: Defect Detection Rates. For each fuzzer, we report the defect detection rate of each discovered defect across 20 fuzzing campaigns
after �ve minutes (5M) and three hours (3H). The largest detection rate or rates (in the case of a tie) for each time and defect is highlighted in
blue. Detection rates that di�er signi�cantly from Z������L���’s are colored red.

Fuzzer
Defect B0 [2] B1 [3] C0 [11] C1 [12] N0 [42] N1 [40] N2 [41] R0 [31] R1 [30] R2 [28] R3 [29] R4 [32]

5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H 5M 3H

B�D���S����� 0.00 0.65 0.00 0.00 0.00 0.05 0.15 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.45 0.00 0.00 1.00 1.00 0.00 0.00
B�D���S����� 0.05 0.70 0.00 0.00 0.00 0.15 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.65 0.00 0.00 1.00 1.00 0.00 0.00
RLC���� — — — — 0.00 0.10 0.20 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
Z��� 0.00 1.00 0.00 0.00 0.00 0.40 0.10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.05 0.95 0.00 0.20 1.00 1.00 0.00 0.05
Z������X 0.05 1.00 0.00 0.00 0.05 0.25 0.60 1.00 0.00 0.75 0.00 0.00 0.00 0.05 0.00 0.75 0.15 0.80 0.00 0.95 1.00 1.00 0.00 0.90
Z������1PT 0.00 1.00 0.00 0.10 0.00 0.40 0.50 1.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.70 0.10 0.75 0.00 0.85 1.00 1.00 0.00 0.85
Z������2PT 0.25 1.00 0.00 0.10 0.00 0.40 0.80 1.00 0.00 0.45 0.00 0.05 0.00 0.05 0.00 0.60 0.10 0.90 0.00 0.70 1.00 1.00 0.00 0.85
Z������L��� 0.25 1.00 0.00 0.00 0.00 0.65 0.60 1.00 0.05 1.00 0.00 0.00 0.00 0.50 0.00 0.80 0.10 0.70 0.00 0.85 1.00 1.00 0.00 0.95

impact of generator quality or style on the e�ectiveness of linked
crossover. Generator quality is likely to impact any generator-based
technique — not just linked crossover. To avoid potential bias, we
used the generators included with JQF without modi�cation.

We used branch coverage as a metric for evaluating fuzzer ef-
fectiveness in Section 6.3. Coverage is only weakly correlated with

defect detection ability [21]. However, as noted by Metzman et al.
[34] the sparsity of bugs in programs makes it di�cult to evaluate a
fuzzer by analyzing detected defects alone. Therefore, we analyzed
both branch coverage and defect detection rate.
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7 RELATEDWORK
Crossover in Unstructured Fuzzing. Generic crossover opera-
tors are often used by unstructured fuzzers, for example AFL [35],
AFL++ [16], and ���F����� [25]. As demonstrated in Section 6,
generic crossover operators are less e�ective than linked crossover
in parametric fuzzing. Lyu et al. [26] use Particle Swarm Opti-
mization to �nd the optimal selection probability distribution of
mutation and crossover operators.

Parametric Fuzzing. Padhye et al. [46] introduce the idea para-
metric fuzzing leveraging input-validity and coverage feedback to
guide input generation. Reddy et al. [49] use reinforcement learning
to guide generators to produce a diverse set of valid inputs. Nguyen
and Grunske [38] perform structural-aware mutation which dis-
tinguishes between structure-changing and structure-preserving
mutations to increase the behavioral diversity of inputs generated
by a parametric fuzzer. Kukucka et al. [23] improve on parametric
fuzzing by using “hinting”, a form of intelligent mutation. Hints
are identi�ed based on comparisons against the input using con-
colic execution and taint tracking. Applied hints are saved to a
global dictionary shared between inputs. Like linked crossover, the
global dictionary allows high-�tness subcomponents to be trans-
ferred between inputs. Lampropoulos et al. [24] propose an alter-
native approach for guided and generator-based fuzzing that uses
type-aware mutation operators instead of mutating a parameter
sequence. These mutation operators are automatically synthesized
based on input types, allowing the fuzzer to mutate inputs at the
algebraic datatype. None of these approaches leverage crossover.

Speci�cation-Based Fuzzing. Holler et al. [18] learn code frag-
ments from a corpus of seed inputs using a context-free grammar
for the input structure. Then, they modify inputs by randomly re-
placing fragments in the input with learned fragments of the same
type. Wang et al. [54] and Aschermann et al. [8] incorporate cover-
age feedback into grammar-based fuzzing by employing tree-based
mutation. One such mutation, “splicing mutation”, proposed by
Aschermann et al. [8] is a structured crossover that swaps sub-
trees between the derivation trees of two inputs. Srivastava and
Payer [52] improve upon Aschermann et al. [8]’s coverage-guided,
grammar-aware fuzzing approach by introducing larger, more “ag-
gressive” mutations and restructuring input grammars’ production
rules to eliminate sampling bias. Pham et al. [47] use �le format
speci�cations to parse inputs into a virtual structure, a tree of �le
chunks. They then de�ne structural mutation operators that oper-
ate on a �le’s virtual structure, such as, smart splicing — a form of
structured crossover that transfers chunks between �les.

Like most structured crossover operators, linked crossover aims
to identify and exchange analogous, high-�tness subsequences
between inputs. However, linked crossover does not require an
input speci�cation and is, therefore, capable of fuzzing inputs with
constraints that cannot be represented by a particular type of spec-
i�cation. Instead, linked crossover leverages dynamic execution
information to select crossover points.

Inferring Input Structure. You et al. [57] use a dynamic prob-
ing strategy to identify �elds, regions of linked bytes, by observing
the e�ect of applied mutations while fuzzing. Identi�ed �elds are
then mutated using type-speci�c mutation strategies. You et al. [56]
identify input validity checks on portions of the input and employ

targeted mutation strategies to satisfy these checks. Blazytko et al.
[9] infer structural properties of input formats over the course of a
fuzzing campaign using code coverage feedback. Mathis et al. [27]
use dynamic taint tracking infer lexical tokens and generate seed
inputs for an input language.

Like these techniques, linked crossover infers properties of an
input structure based on system behavior observed at runtime. How-
ever, unlike these techniques, linked crossover uses relationships
between method calls and tracks input consumption to identify
analogous regions of inputs.

8 CONCLUSION
This work demonstrates that crossover point selection can have
a signi�cant impact on overall fuzzer performance and that dy-
namic execution information can be e�ectively used to inform
the selection of crossover points in evolutionary fuzzing. Linked
crossover, our approach for using dynamic execution information
to select crossover points, produced children that inherited more de-
sirable traits from their parents than traditional one- and two-point
crossover. Our evaluation of linked crossover’s impact on fuzzer
performance found that linked crossover was e�ective at discover-
ing coverage-revealing inputs and defects in both long and short
campaigns. Based on these results, we believe that linked crossover
could potentially be adapted for use in unstructured fuzzing in
cases where the input is read in a stream-like or piecewise manner
by the application. The full results of the statistical tests that we
conducted in our evaluation are available in our supplemental mate-
rials [20]. Z�����’s source code, our experimental scripts, and raw
experimental data are publicly available under the BSD 3-Clause
License: https://doi.org/10.6084/m9.�gshare.23688879.v1.
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