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Abstract

Understanding cellular engagement with its environment
is essential to control and monitor metabolism. Molec-
ular Communication theory (MC) offers a computational
means to identify environmental perturbations that direct
or signify cellular behaviors by quantifying the information
about a molecular environment that is transmitted through
a metabolic system. We developed an model that inte-
grates conventional flux balance analysis metabolic model-
ing (FBA) and MC to mechanistically expand the scope of
MC, and thereby uniquely blends mechanistic biology and
information theory to understand how substrate consump-
tion is captured reaction activity, metabolite excretion, and
biomass growth. This is enabled by defining several chan-
nels through which environmental information transmits in a
metabolic network. The information flow in bits that is cal-
culated through this workflow further determines the maxi-
mal metabolic effect of environmental perturbations on cel-
lular metabolism and behaviors, since FBA simulates max-
imal efficiency of the metabolic system. We exemplify this
method on two intestinal symbionts — Bacteroides thetaio-
taomicron and Methanobrevibacter smithii — and visually
consolidated the results into constellation diagrams that fa-
cilitate interpretation of information flow from given envi-
ronments and thereby cultivate the design of controllable bi-
ological systems. The unique confluence of metabolic mod-
eling and information theory in this model advances basic
understanding of cellular metabolism and has applied value
for the Internet of Bio-Nano Things, synthetic biology, mi-
crobial ecology, and autonomous laboratories.

Keywords Molecular Communication e Information The-
ory e Metabolism e Flux Balance Analysis e Information
Flow

1 Introduction

Engineering biological systems at the cellular-level is essen-
tial to realize the Internet of Bio-Nano Things (IoBNT) [1],
where wearable bio-computers externally monitor and direct
biological systems in situ [2]. These external perceptions
utilize biosensing [3], optogenetics [1], or magnetic nanopar-
ticles [5], but limitations such as off-target effects on the
biological system and inherent biochemical noise compro-
mise accuracy and liability of these technologies [6,7]. The
ideal method would instead leverage native metabolism to
minimally disturb the studied system: e.g. ameliorating
dysbiosis by changing the chyme nutrient flows via dietary
intervention [8,9]. The lack of basic knowledge of infor-
mation flow, however, from an environment to behaviors in
a metabolic network [10, 11] — post-translation modifica-
tion, signal transduction [12], gene regulation, and biomass
growth [6,10,13] — remains a bottleneck to realize this vision
of environmentally controlling native metabolism [14].

Molecular communication (MC) theory in Figure S1 is
an emerging confluence of communication and information
theories [7,15—17] that quantifies information flow (or mu-
tual information) of an environment through black-boxed
channels of chemical inputs to observed outputs [18]. The
information flow IF [19] through each of these channels is
quantified in binary digits, or bits (1 or 0),

IF = H(inputs) — H (inputs, outputs)

(1)

as the excess of input uncertainty H (inputs) from the out-
put uncertainty H (inputs, outputs) from the given inputs.
Flux Balance Analysis (FBA) in Figure S2 [20], by con-
trast, is a metabolic modeling framework that mechanisti-
cally predicts reactions fluxes and cellular behaviors of a
metabolic system in a given environment [21] through lin-
ear optimization. FBA represents a metabolic system as a
matrix S of stoichiometries for all metabolites in all reac-
tions and determines the profile of reaction fluxes (2ol )

hrxgpw
as a vector v that represents steady-state metabolic activ-
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ity (Sv = 0) [22]. FBA optimizes for a sub-set of reac-
tion fluxes (conventionally those contributing to biomass
growth) and can be tailored through constraints on flux
ranges (Vimin < V < Vmax) that can represent diverse chem-
ical phenomena: e.g. reaction energetics [23] or regulatory
processes [24].

MC and FBA methods offer complementary value for sim-
ulating the metabolic effects of an environment, however,
these methods have never before been integrated into a sin-
gle framework that quantifies information flow with mecha-
nistic fortification. We therefore melded MC and FBA into
a unique model that computes information flow through de-
fined mechanically-resolved channels of metabolism. We de-
fined a comprehensive MC channel from an input of con-
sumed substrates to externally perceived behaviors such as
excretions and biomass growth, and further partitioned this
comprehensive channel into two intermediary channels [25]:
one whose outputs are cytoplasmic reaction fluxes and one
whose outputs are the externally perceived behaviors. These
channels are illustrated in Figure S3. We exemplify our
model on two [26] human symbionts that are associated
with preventing metabolic diseases [27,28]: the bacterium
B. theta and the archacon M. smithii. Seven substrates were
selected for investigation on their propagation through the
metabolism, which represent carbon, nitrogen, sulfur, and
oxygen nutrient flows in chyme and have been previously
studied with these organisms [26,29]. The information flow
of these substrates through these organisms was visualized
in constellation diagrams [30] that elucidate the substrates
that optimally transmits information through the metabolic
networks. This model expands basic knowledge of cellular
behavior as the causal consequence of environmental sub-
strates, and can specifically address basic questions of molec-
ular biology: 1) how much environmental information can a
cell encode in its metabolism? and 2) how much information
about intra-cellular metabolism can be externally perceived?
These basic advances will accelerate biological engineering
for myriad applications from healthcare to space coloniza-
tion [31,32].

2 Methods

Figure 1 compares each of the MC channels to the biological
processes that they represent. The Stage I channel

Substrate

{Ul,UQ,...,UN} {7’1,7“2,...77“]\4} 5 (2)

Consumption
defines the activation of all j € M cytoplasmic reactions
rj € [0, 1] from the consumption of each substrate U; € [0, 1]
for all i € N compounds of interest, over a total of 2V
consumption profiles. The Stage IT channel
Metabolic

{ShSZa'“vS.]vGr} ) (3)

T1,72, ..., "M
{ ey } Reactions

defines external excretions S, € [0, 1] for all e € E exchange-
able compounds and/or biomass growth Gr € [0,1] from

the set of active reactions r; € [0,1] V j € M. The end-
to-end channel is the entire pipeline that joins the Stage
I and Stage II channels. The short-hand for each chan-
nel is therefore inputs = {Ui}ijil and outputs = {Tj}jj\/il
for Stage I; inputs = {rj}jM:l and outputs = ~{.S'€],~eE:1 ,Gr
for Stage II; and inputs = {Ui}f\il and outputs =
({Se}f:1 ,Gr) for end-to-end.

2.1 Information flow

The input uncertainty H (inputs) from eq. (1) is generally
defined as

I
H(inputs) = — Z (P(inputs) * logy (P (inputs))) , (4)

i=1

where I is the number of unique inputs and P() is a function
that returns the probability of the provided argument, where
we assume that all inputs and outputs are equally probable.
The conditional output uncertainty H (inputs, outputs) is
generally defined as

o
H (inputs, outputs) = — Z(P(o))

o=1
* Z (P(inputs, outputs)
x logy (P (inputs, outputs))

(5)

where O is the number of unique outputs. The P(o0) term re-
turns the probability of an output among all outputs, while
P(inputs, outputs) returns the probability of an output per
a given input. The summations in these equations become
integrals when the inputs or outputs are continuous, respec-
tively; however, our strict utilization of binary variables dis-
cretizes all domains and allows summations.

The presented general expressions for H(inputs) and
H (inputs, outputs) are tailored for FBA simulations in sev-
eral manners. First, the terms are demarcated with an as-

terisk ({r;‘ }]M: 1) to denote that the value corresponds with

the maximal information. Second, identical FBA solutions
from different consumption profiles, based on their raw (con-
tinuous) fluxes, were grouped in Figure S4 to avoid redun-
dant computations of I F*. Concentration profiles were like-
wise grouped in Figure S5, where identical substrate profiles
across multiple FBA simulations were consolidated.

2.2 Computational Tools and Workflow

The genome-scale models (GEMs) [33] of B. theta and
M. smithii, which are detailed in Figure S6, were con-
structed through the KBase pipeline [34] in Figure 2.
First, the organism’s genome sequences from the GenBank
database [35,36] were translated and mapped to functions
via KEGG [37]. Second, these initial draft GEMs were gap-
filled [3%] in a media for each consumption profile (2% dif-
ferently gap-filled GEMs), where the minimal number of re-



bioRxiv preprint doi: https://doi.org/10.1101/2023.06.28.546976; this version posted July 26, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105
and is also made available for use under a CCO license.

@® Substrate1 # Substrate 2
@ Substrate 3

@® Product 1 Product 2 # Product 3

Substrate 4

—
Biomass

OUtplIt Growth (Gr) S 1.0
<€
Input Stage II Output
<%
Biology ~ LDPUL End-to-end Output
Molecular Communication Abstraction
Transmitted Signal Received | Transmitted Received Signal

Consumption
Channel

(U ..U}

Signal
{rire,...rm}

[External changes
Channel

{Sl S], Gr}

Figure 1: A comparison of biological metabolism and its molecular communication (MC) abstraction, above and below the
dashed line, respectively. Biological pipeline depicts a) substrates consumption; b) the activation of metabolic pathways;
and c) cellular outcomes such as excreta or biomass growth. The MC pipeline depicts these same phenomena as pairs of
inputs and outputs through black-boxed channels: Stage I describes the activation of pathways from substrate consump-
tion; Stage I describes the manifestation of cellular outcomes from the set of activated pathways; and the end-to-end
channel describes the combination of Stage I and Stage II as the full pipeline.

actions that enables growth in the parameterized environ-
ment are added to the model. The seven examined com-
pounds (N = 7) in our study, similar to other studies with
these organisms [206,29] — glucose (G), hematin (He), for-
mate (F'), Ha, Vitamin (Bi2), acetate (A), and Vitamin
K (K) — yielded 27 = 128 consumption profiles for which
IF* will be computed. The 128 unique consumption pro-
files were added to a standard base media that contained:
Ca*?, Mg*2, Cl=, Na*, Kt, CO,, Co™2, Cut, Fet?,
Fet3, H,O, H*, L-cysteine, Mn*2, NH,, Nit? PO;?
5’04727 NaCOs, and Zn*2. All lower exchanges bounds of
the substrates were -100 while the upper exchange bounds
were undefined, which resulted in the substrate consump-
tions of Table S1. Third, the flux profiles and objective val-
ues from simulating these GEMs through FBA were parsed
to visualize relationships such as the network comparisons of
Hive plots [39] (http://www.hiveplot.com/) in Figures 2
and S7 that better resolve complex relationships than tradi-
tional scatter network plots. Hive plots can moreover com-
pare networks by plotting only the node-edge connections

that are common between the networks, such as Figure S8 of
common metabolite-reaction connections between two FBA
solution groupings.

3 Numerical Results

The maximal information flow I F™* for each channel was de-
termined by computing each term in eq. (1) according to the
Stage channels that are defined in egs. (2) and (3). The as-
sumed equal probability of the N = 7 examined substrates
is P{Us,Une,Ur,Un,,Up,,,Ua, Uk}) = Flg. The input
uncertainty in eq. (4) for Stage I and the 128 possible in-
puts was computed: H (inputs) = —1 x log,(128) = 7 bits.
The conditional output uncertainty for Stage I of B. theta
was calculated, from 113 unique reaction activation profiles
(M = 113) over 14 unique FBA solutions,
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Figure 2: A summary of our modeling workflow. The initial steps leverage KBase as an open-source platform for conducting
simulations and hosting our Application. Our KBase workflow involves: 1) annotating uploaded genomes through RAST
or DRAMM,; 2) reconstructing draft genome-scale metabolic models (GEMs) from the annotated genomes, via the Build
Metabolic Model Application; 3) gap-filling the draft GEMs to create operational GEMs, via the Gapfill Metabolic
Model Application; 4) acquiring FBA flux profiles in the parameterized media, via the Run Flux Balance Analysis
Application; and then 5) exporting a JSON that compares FBA solutions of the different GEMs and conditions via
the Compare FBA Solutions Application. Custom MATLAB and Python scripts then process the exported JSON of
compared FBA solutions into heatmaps that illustrate activated pathways and into network diagrams and hive plots to
illustrate input-output relationships in the metabolism, respectively.
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=—[-0.1212 + —1.0516 + —0.1814 + —0.3071 + —1.25
+ —0.2973 + —0.0743 + —0.2229 + —0.1875] = 3.693 =~ 3.7 bits ,

where the uncertainty of each FBA group is separately
calculated and then aggregated into the total output un-
certainty. The grouping of the 128 FBA solutions based on
reaction fluxes in Figure S4 importantly simplifies the above
computation and can facilitate biological investigation in re-
lating consumed substrates to metabolic activation and cel-
lular behaviors. The equivalent probability of a FBA group
consumption profile (element e) among all other consump-
tion profiles in the total set of consumption profiles (7') or in
the same FBA group (g) — 7 ; — allows the terms for all
elements to be condensed with a coefficient of the number
of elements in the group: e.g. the total uncertainty for the
6 elements of FBA group 1 (FBA;) is 35 * (6 = £loga(3)),
where the coefficient 6 collapses the six element terms into
a single term. Several FBA groups also possessed the same
number of elements, which permitted further simplification
with a coefficient of the number of identically sized FBA
groups, where all FBA groups are themselves equally prob-
able: e.g. FBA groups 3 and 4 each possess five elements
and can therefore be jointly defined as 2x 3z * (5% £loga(%)),
with the coefficient 2 denoting the two FBA groups.

The [F* for Stage I of B. theta then finally equates
H (inputs) — H (inputs, outputs) = 7 — 3.7 = 3.3 bits. The
conditional output uncertainty for Stage I of M. smithii was
computed to be 2.5 bits, analogously to the above derivation
for B. theta except with 136 unique reaction activation pro-
files (M = 136) over 31 unique FBA solutions. The I F* for
Stage I of M. smithii then equates 7 — 2.5 = 4.5 bits. These
results are depicted Figure S9, where B. theta reaches its
maximum information flow in the absence of formate while
M. smithii reaches its maximum information flow with all
seven examined substrates.

The FBA groupings that were defined for the Stage I cal-
culations served as the inputs for Stage IT and were used to
compute the input uncertainty: —1 *log,(14) = 3.8 bits for
B. theta and —1 % log,(31) = 5.0 bits for M. smithii. The
FBA solutions were then regrouped according to the respec-
tive output — Gr (outputs = Gr) or both S, Ve € E and Gr
(outputs = (S, V e € E,Gr)) — to calculate the conditional
output uncertainty of the Stage Il channel. Grouping by
biomass growth (outputs = Gr) in Figure 3a separately eval-
uated the probability of each group ¢ in the set of all FBA
groups G. The Stage IT I F* for biomass growth is therefore
3.8 —1 = 2.8 bits, and analogously I F* =5 — 1.1 = 3.9 bits
for M. smaithii. Grouping by both excretions and biomass
growth manifested in [F* = 3.8 —.1 = 3.7 for B. theta
and IF* = 5.0 — 1.1 = 3.9 for M. smithii. The modest
increase in [ F™ for B. theta when including metabolic ex-
cretion to the outputs, and the unchanged I F™* of M. smithiz,
is counter-intuitive, since more outcomes would seem to
capture more inputs; evidently, biomass growth captures
most of the information flow during substrate consumption

H(inputs, outputs) = Z(P(ml)uts. outputs) * Z (P(inputs, outputs) * logy (P (inputs, outputs)))
E

G
==Y (Plg)* Y (P(c € g) ¥ logs(P(c € g)))

e

1 1 1 L2 L1 1 4 1 1
=— |4% ut (1= I]{)yZ(I» + 3% * (2% §Zr)g2(§)) + ut (4% iloyg(i))

=— [0+ —0.4286 + —0.5714 = 1.000 ~ 1 bit ,

(a) Stage II computation for B. theta and outputs = Gr

H(inputs, outputs) = >_ (P(inputs, outputs) + y_ (P(inputs, outputs) * logy(P(inputs, outputs)))
G E
==Y (P(9)*y_ (P(e € g) # logy(P(e € )))

9 e

= 1 1 1 2 1 1 5 1 1
= 128*(] * ll()y2(]))+ 128*(2*27@2(2))4— ]28*(0*5lng2(5))

7 1 1 8 1 1 9 1 1
P - (= —_— - o ( = — ¢ - nes
o (7% 7[0_(/;(7))4—7* o (8% 8[0_1/2(8)) Fores * (9% 0[0_(]2(9))

L 16 1 1
+ 3% 123 # (16 % Elo‘qj(ﬁ))

= — [0+ —0.0156 + —0.0907 + —0.1535 + —1.3125 + —0.2229 + —2.585] = 3.2952 ~ 3.3 bits

(b) End-to-end computation for M. smithii and outputs = Gr

Figure 3: IF* computations for Stage II and end-to-end
channels for the two examined organisms.

through metabolism.

The end-to-end channel - inputs =
128 consumption profiles, outputs = Gr, and FBA
groups according to Gr — was additionally computed
to be IF* = 7 — 4.3 = 2.7 bits for B. theta and
IF* = 7 —33 = 3.7 bits for M. smithii in Figure S10,
where the conditional output was computed in fig. 3b for
M. smithii. The subtly lower I F* values are expected, since
the larger scope of this channel introduces more noise and
loss that hinder reception of the signal in the final outputs.

3.1 Visualizations

The constellation diagrams of Figure 5 statistically com-
press the IF* from all consumption profiles for rapid in-
terpretation. These diagrams were constructed by first: 1)
grouping consumption profiles by IF* from the end-to-end
channel; 2) determining the minimum and maximum IF*
for each consumption profile; and 3) graphing each of the
minimum, maximum, and average I F* (excluding the mini-
mum and maximum) by the size of the consumption profile.
These diagrams interestingly revealed that the maximum
IF* plateaus with > 5 of the examined substrates, which
suggests that there are diminishing returns to cellular con-
trol from environmental perturbations. This trend is consis-
tent with simulations from the BioSIMP software that iden-
tified substrates for growth of B. theta and M. smithii [29].
This trend is moreover echoed by Figures 4, S9, and S10 that
reveal relatively small consumption profiles with remarkably
high IF*: e.g. consuming F', Bis, and A for B. theta and
M. smithii; or consuming F', Ho, A for M. smithii. These
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Figure 4: The end-to-end upper bounds for each consumption profile. The maximal information flow is starred. The
consumption profiles with more compounds predictably manifested in greater potential information flow. The consumption
profiles are condensed on the x-axis by numbering each substrate: 1 = glucose (G), 2 = hematin (He), 3 = formate (F),
4 = Hy, 5 = Vitamin (Bj2), 6 = acetate (4), and 7 = Vitamin K (X).

basic insights from various substrate conditions would be
necessary for biomedical monitors and other systems that
use molecular transport to categorize metabolic states.

4 Conclusions and Future Work

Molecular communication theory quantifies the flow of in-
formation from extracellular environments into metabolic
activity, substrate excretions, or biomass growth. We merge
this concept with mechanistic FBA, and defined several

metabolic channels through which environmental informa-
tion likely flows in a cell, to compose a unique model for
quantifying optimal information flow through metabolic sys-
tems. Our model and constellation diagrams of the re-
sults identified consumption profiles that optimally trans-
mitted information biochemically to cellular outcomes, such
as biomass growth and chemical excretions, which can min-
imize the number of resource-intensive experiments that
are needed to find substrate profiles that desirably con-
trol cellular behaviors. Hive plot visualizations of our re-
sults further conveyed connectivity between inputs and out-
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Figure 5: Constellation diagrams for the information flow
from all consumption profiles in the end-to-end channel.
The minimum, maximum, and average values are plotted
against the number of compounds in the consumption pro-
files, which reveals that the maximum IF* increases loga-
rithmically while the average [ F* increases linearly. This
observation is intuitive where biochemical noise over the
channel defines a fundamental limit to IF* but generally
an increase in the degrees of freedom (consumed substrates)
increases the uncertainty (I F*) of a system.

puts, which empowers more detailed analyses. The Code,
KBase Narratives, and additional details are available in our
GitHub repository (https://github.com/freiburgermsu/
MetabolicMC_Supplementary_Git_v1).

This model advances basic biological knowledge of cellu-
lar engagement with its environment, and provides a tool
to identify environmental substrate combinations that can
most effectively engineering and monitor cellular behavior.
This tool has diverse applications in biomedical wearable
technologies and ecological control through benign substrate
perturbations. Subsequent work will refine our model by
1) better compensating biochemical noise; 2) capturing dy-
namic information flows and continuous variables via the dy-
namic FBA algorithm; 3) validating predictions with exper-
imental data; and 4) exploring applications in autonomous
laboratories that predictably monitor and control cellular
behaviors through environmental perturbations.
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Figure S5: Reaction activation from FBA simulations
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is active and violet is inactive. M. smithii metabolism is ev-
idently much more activated than B. theta by the examined
media, notwithstanding a handful of media profiles that did
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B. theta seems to have exhibited at least some metabolic ac-
tivation in all of the examined media. This may be the con-
sequence of B. theta utilizing anaerobic fermentation that
expands its habitable zone beyond that of M. smithii.
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Figure S6: KEGG module of Bacteroides thetaiotaomicron
metabolic pathways. (a) Summary of the biological pro-
cesses shown in the pathway map of Glycolysis / Gluconeo-
genesis and Glyoxylate and dicarboxylate metabolism. (b)
Enlarged fine details of a section of a complete metabolic
model. (c) Part of the complete KEGG database pathway
maps of Bacteroides thetaiotaomicron. visualized parts of
a GEM (on the right) for the organisms B. theta, used in
our study, which is obtained from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database [37]. The nodes rep-
resent compounds that are inputs/outputs to the reactions,
and edges represent the chemical reactions. Inputs from the
environment taken by the organism are involved in the re-
actions of metabolic pathways, resulting in the exchange of
fluxes with the environment (uptake and secretion) or in the
production of biomass (growth).
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Figure S7: A hive plot for a configuration F is shown in the
figure. The reactions are placed on the Z axis, the reactants
on the X axis and the products on the Y axis. Further the
External compounds are placed higher on the X and Y axes
than the Internal compounds.
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Table S1: viax of minimal media compounds and important

7 compounds.

Compound Name MaxFlux (mmol/g CDW /hr)
Calcium (Ca?*) 0.180254
Chloride (C17) 16.058
Carbon dioxide (C0,) 34.00204
Cobalt (Co?*) 0.042029
Copper (Cu?*) 1
Ferrous (Fe?") 0.014
H* 1
Water (H,0) 46166.89
Potassium (K*) 100
L — Cysteine 2.8
Magnesium (Mg) 0.098375
Manganese (Mn?*) 0.050529
Sodium (Na*) 17.564
Ammonium (NH;) 7.5
Nickel (Ni?*) 1
Phosphate 100
Sodium bicarbonate 11.9
Sulfate 7.5
Zinc (Zn?%) 1
Ferric (Fe3t) 0.014
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Figure S8: In this figure we take 3 different configuration of state changing reactions, labelled F, G and Z. It shows
differential hive plots of F vs G and F vs Z. The groups F and G in F vs G hive plot has the same biomass whereas, the
groups F and Z in F vz Z hive plot have the least and highest biomass respectively. When a reaction is present in F and
absent in G or Z the reaction is represented along with its links to the compounds. When a reaction is present in the
other groups but absent in group F the reaction is shown as a node not connected to any other compounds.
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Figure S9: Upper bounds of the steady-state mutual information for all the different combinations of seven compounds in
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