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Abstract. Video semantic segmentation is a fundamental and impor-
tant task in computer vision, and it usually requires large-scale labeled
data for training deep neural network models. To avoid laborious manual
labeling, domain adaptive video segmentation approaches were recently
introduced by transferring the knowledge from the source domain of self-
labeled simulated videos to the target domain of unlabeled real-world
videos. However, it leads to an interesting question – while video-to-
video adaptation is a natural idea, are the source data required to
be videos? In this paper, we argue that it is not necessary to transfer
temporal knowledge since the temporal continuity of video segmentation
in the target domain can be estimated and enforced without reference to
videos in the source domain. This motivates a new framework of Image-
to-Video Domain Adaptive Semantic Segmentation (I2VDA), where the
source domain is a set of images without temporal information. Under
this setting, we bridge the domain gap via adversarial training based
only on the spatial knowledge, and develop a novel temporal augmen-
tation strategy, through which the temporal consistency in the target
domain is well-exploited and learned. In addition, we introduce a new
training scheme by leveraging a proxy network to produce pseudo-labels
on-the-fly, which is very effective to improve the stability of adversarial
training. Experimental results on two synthetic-to-real scenarios show
that the proposed I2VDA method can achieve even better performance
on video semantic segmentation than existing state-of-the-art video-to-
video domain adaption approaches.

1 Introduction

Generating a dense prediction map for each frame to indicate specific class of each
pixel, video semantic segmentation is a fundamental task in computer vision with
important applications in autonomous driving and robotics [7,6]. Just like image
semantic segmentation [24,3,43], state-of-the-art supervised learning methods
for video semantic segmentation require large-scale labeled training data, which

† Co-corresponding authors. Code is available at github.com/W-zx-Y/I2VDA.
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is costly and laborious to annotate manually [9,10,46,22,30]. Semi-supervised
training [29,30,47,2] can help relieve the manual-annotation burden but still
requires to annotate sparsely sampled video frames from the same domain.
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Fig. 1. An illustration of the framework setting for
the proposed image-to-video domain adaptive se-
mantic segmentation (I2VDA).

One way to avoid com-
pletely manual annotation is
to train segmentation mod-
els on simulated data that are
easily rendered by video game
engines and therefore self-
annotated, and then trans-
fer the learned knowledge into
real-world video data for im-
proving semantic segmenta-
tion. Underlying this is actu-
ally an important concept of
domain adaptation – from the
source domain of simulated
data to the target domain of
real-world data – which was
initially studied for image se-
mantic segmentation [15,4,37,38,41,42], e.g., from GTA5 [33] to Cityscapes [6]
and from SYNTHIA [34] to Cityscapes with much success. This concept of do-
main adaptation also has been extended to tackle video semantic segmentation
– a straightforward approach is to treat each video frame as an image and di-
rectly perform image-to-image domain adaptation to segment each frame in-
dependently [11]. By ignoring the temporal information along the videos, these
approaches usually exhibit limited performance on video semantic segmentation.

Recent progress on video semantic segmentation witnesses two inspirational
works [11,36] that coincidentally suggest video-to-video domain adaptation. Both
of them employ adversarial learning of the video predictions between the source
and target domains and therefore consider spatial-temporal information in both
domains. While we can generate large-scale simulated videos to well reflect the
source domain, it may lead to high complexity of the network and its training in
the source domain. Motivated by such observation and with the goal to reduce
the cost, we aim to develop a new concept of image-to-video domain adaptive
semantic segmentation (I2VDA), where the source domain contains only simu-
lated images and the target domain consists of real-world videos, as illustrated
in Figure 1.

Videos contain spatial-temporal information and video-to-video domain
adaption can exploit and pass both spatial and temporal knowledge from the
source domain to the target domain. The fundamental hypothesis of the pro-
posed image-to-video domain adaptation for semantic segmentation is that we
only need to pass the spatial knowledge from the source domain to the target
domain, not the temporal one. In principle, we have two major arguments for
this hypothesis: 1) the between-frame continuity is the most important temporal
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knowledge for video semantic segmentation and such continuity can be well ex-
ploited from videos in the target domain, e.g., the optical flow along each video;
and 2) the temporal information between the source and target domains practi-
cally may not show a systematic domain gap that has to be filled by adaptation.
On the other hand, using images, instead of videos, in the source domain can
significantly reduce the required training-data size and the network complexity.

In this paper, we verify the above fundamental hypothesis by developing
a new image-to-video domain adaptive semantic segmentation method. In our
method, we propose a novel temporal augmentation strategy to make use of the
temporal consistency in the target domain and improve the target predictions.
Moreover, the domain gap is bridged by the widely-used adversarial learning
strategy which only considers the spatial features in the two domains. To relieve
the instability of the adversarial learning, we further introduce a new training
scheme that leverages a proxy network to generate pseudo labels for target pre-
dictions on-the-fly. We conduct extensive experiments to demonstrate the effec-
tiveness of the proposed method and each of its strategy. The main contributions
of this paper are summarized as follows:

– We propose and verify a new finding – for segmenting real videos, it is
sufficient to perform domain adaptation from synthetic images, instead of
synthetic videos, i.e., there is no need to adapt and transfer temporal infor-
mation in practice.

– We introduce for the first time the setting of image-to-video domain adaptive
semantic segmentation, i.e., which uses labeled images as the source domain
in domain adaptation for video semantic segmentation.

– We successfully develop an I2VDA method with two novel designs: 1) a
temporal augmentation strategy to better exploit and learn diverse tempo-
ral consistency patterns in the target domain; and 2) a training scheme to
achieve more stable adversarial training with the help of a proxy network.

– Experimental results on two synthetic-to-real scenarios demonstrate the ef-
fectiveness of the proposed method and verify our fundamental hypothesis.
Without simulating/adapting temporal information in the source domain,
our method still outperforms existing state-of-the-art video-to-video domain
adaptation methods.

2 Related Works

Video semantic segmentation Existing video semantic segmentation ap-
proaches can be categorized into accuracy-oriented and efficiency-oriented ones.
Optical-flow-based representation warping and multi-frame prediction fusion
have been employed to achieve more robust and accurate results [10,46,22]. An
alternative solution is to use the gated recurrent layers to extract the tempo-
ral information [9] or propagate labels to unlabeled frames by means of optical
flow [30]. Many strategies have been studied to improve efficiency. For example,
features in each frame can be reused by adjacent frames to reduce the overall
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cost [35,46,40]. Li et al. [19] further proposed to reduce both of computational
cost and maximum latency by adaptive feature propagation and key-frame al-
location. More recently, Liu et al. [23] proposed to train a compact model via
temporal knowledge distillation for real-time inference.

All of the above video semantic segmentation methods need the labeling on
densely or sparsely sampled frames from the target domain for training. In this
paper, we instead use self-labeled simulated images for training and then adapt
to the target domain for video semantic segmentation.
Domain adaptive image segmentation In recent years, many domain
adaptation approaches have been proposed for image semantic segmentation
to relieve the burden of dense pixel-level labeling. Hoffman et al. [15] introduced
the first unsupervised domain adaptation method for transferring segmentation
FCNs [24] by applying adversarial learning on feature representations, which has
become a standard strategy for domain adaptive semantic segmentation [4,25].
More recently, the adversarial learning has been further extended to image level
[14,5], output level [37,1] and entropy level [38,31] for this task.

In [48], Zou et al.first suggested the self-training in the form of a self-paced
curriculum learning scheme for segmentation by generating and selecting pseudo
labels based on confidence scores. Following this, many alter works on semantic
segmentation directly integrate self-training [20,41,18] or refine it by confidence
regularization [49], self-motivated curriculum learning [21], uncertainty estima-
tion [44], instance adaptive selection [27], prototypical pseudo label denoising
[42] and domain-aware meta-learning [12].

As mentioned earlier, while these image-to-image domain adaptation meth-
ods can be applied to video segmentation by processing each frame indepen-
dently [11], their performance is usually limited by ignoring the temporal infor-
mation in the videos.
Domain adaptive video segmentation Recently, Guan et al. [11] made
the first attempt at video-to-video domain adaptive semantic segmentation, in
which both cross-domain and intra-domain temporal consistencies are considered
to regularize the learning. The former is achieved by the adversarial learning of
the spatial-temporal information between the source and target domains and the
latter by passing the confident part of the flow-propagated prediction between
adjacent frames. Concurrently, Shin et al. [36] also introduced the concept of
domain adaptive video segmentation and propose a two-stage solution – the ad-
versarial learning at the clip level first, followed by the target-domain learning
with the refined pseudo labels. As mentioned earlier, while our work also per-
forms domain adaptive video segmentation, it differs from the above two works in
terms of the source domain setting – they use videos but we instead use images.

3 Proposed Method

3.1 Problem setting

The goal of image-to-video domain adaptive semantic segmentation is to transfer
only spatial knowledge from a labeled source domain S to an unlabeled target
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Fig. 2. The framework of the proposed image-to-video domain adaptive semantic seg-
mentation. During training, the framework requires three inputs including a source
image IS and two consecutive frames I0 and I1 from a target video IT. First, an in-
termediate target frame It (0 < t < 1) is synthesized using I0 and I1 via a frame
interpolation with temporal augmentation. Then, IS, I0 and It are fed into a weight-
sharing semantic segmentation networkM to obtain the corresponding predictions. A
semantic segmentation loss Lseg is computed using the prediction of IS and its label
GT S. A discriminator D is employed to distinguish outputs from the source domain S

and target domain T. Besides, a proxy network M′ takes I1 as the input to generate
its pseudo label which is used for ensuring the temporal consistency of the target pre-
dictions. Note that the parameters ofM′ are updated via copying fromM instead of
back propagation.

domain T. Same as the setting of domain adaptive video segmentation [11,36],
the target domain is in the format of video sequences IT := {IT0 , IT1 , ..., ITn, ...}
with IT ∈ T. In contrast, the source domain consists of a set of image-label pairs
that are not in chronological order, (IS, GT S) ∈ S.

3.2 Framework overview

Our work bridges the spatial domain gap between the source and the target via
adversarial learning and further considers the augmented temporal consistency
in the target domain to achieve accurate predictions for the videos. In addition,
a novel training scheme is introduced to improve the stability of the adversarial
training. The proposed image-to-video domain adaptive semantic segmentation
framework is illustrated in Figure 2. The main components include flow estima-
tion network F (for temporal augmentation and consistency learning), semantic
segmentation network M and its proxy M′, and discriminator D.

Flow estimation network In our work, the flow estimation network F is
used to obtain the optical flow between two consecutive frames and the computed
optical flow is used for two purposes: 1) synthesizing an intermediate frame It
given two consecutive target frames I0 and I1; and 2) warping the predictions



6 X. Wu et al.

to ensure temporal consistency in the target domain. Here, we use pre-trained
FlowNet2 [16] as F to estimate the optical flow.
Semantic segmentation network We adopt the widely-used Deeplab-v2
[3] with a backbone of ResNet-101 [13] (pre-trained on ImageNet [8]) as the
semantic segmentation network M. During training, M is used in a training
mode to generate the predictions for IS, I0 and It, which are denoted as P S,
P0 and Pt, respectively. Note that these predictions are upsampled to the same
resolution as the input images. In addition, the proxy network M′ has the same
architecture as M, which instead is used in an evaluation mode to generate
pseudo labels given I1 as the input. The parameters of M′ are updated via a
copy from M at a certain frequency.
Discriminator To perform the adversarial learning, we employ the discrimi-
nator D to distinguish whether the prediction is from the source domain or the
target one by following [37].

3.3 The temporal augmentation strategy

From our perspective, the source does not require to be an ordered video se-
quence, but the temporal patterns such as frame rate and the speed of the
ego-vehicle in the target domain do matter for performance improvements. As
stated in [26], the temporal constraint is sensitive to object occlusions and lost
frames. Here we propose a novel temporal augmentation strategy to achieve ro-
bust temporal consistency in the target domain, which is implemented based on
a well-studied task – video frame interpolation [17]. Different from images, videos
have the unique temporal dimension where more choices on data augmentation
strategies can be applied other than those only focusing on the spatial dimension,
e.g., random flipping and rotation. In [47], Zhu et al.proposed to synthesize more
image-label pairs by transforming a past frame and its corresponding label via
video prediction technique for video semantic segmentation. This method can
tackle the general video semantic segmentation task where only sparsely sam-
pled video frames are labeled – the labels can be propagated to the unlabeled
or synthesized frames. However, it is not applicable to our setting because of no
labels in the target videos.

We carefully design a temporal augmentation strategy that is suitable for
robust unlabeled video representation to improve the diversity of temporal con-
sistency in the target domain. Specifically, given two consecutive target frames
I0 and I1, we first extract the bi-directional optical flows using the pre-trained
F as follows:

F0→1 = F(I0, I1), F1→0 = F(I1, I0). (1)

By assuming that the optical flow field is locally smooth as [17], Ft→0 and
Ft→1, for some t ∈ (0, 1) randomly generated in each training iteration, can be
approximated by:

Ft→0 ≈ tF1→0, Ft→1 ≈ (1− t)F0→1. (2)

https://github.com/NVIDIA/flownet2-pytorch
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Fig. 3. An illustration of the proposed temporal augmentation strategy (Sec. 3.3) and
temporal-augmented consistency learning (Sec. 3.4) in the target domain.

Then, an intermediate frame It can be formulated as:

It = αW(I0, Ft→0) + (1− α)W(I1, Ft→1), (3)

where the parameter α controls the contribution of I0 and I1 and is set to 0.5 in
all experiments, and W(·, ·) is a backward warping function implemented using
the bilinear interpolation [45,17].

The blue region of Figure 3 illustrated the process of the proposed temporal
augmentation strategy. Next, we will show how to use the produced synthesized
frame to achieve better temporal-augmented consistency learning in the target
domain.

3.4 The temporal-augmented consistency learning

Temporal consistency learning is a commonly-used constraint for video-level
tasks [28,30,23,39,11]. In this work, we extend this idea and propose the
temporal-augmented consistency learning leveraging the synthesized frame It
obtained via Eq. (3). The goal of this operation is to not only improve the pre-
diction consistency between consecutive frames, but more importantly, fulfil the
on-the-fly self-training to stablize the adversarial training. As illustrated in the
green part of Figure 3, the temporal-augmented consistency loss computed be-
tween a propagated prediction PW

1 of It and a corresponding pseudo label PL.
Below we detail how to achieve this temporal-augmented consistency learning.

Firstly, the target frame I0 and the synthesized frame It are fed into the
segmentation network M to obtain the corresponding segmentation predictions
P0, Pt ∈ RB×C×H×W , where B, C, H and W are the batch size, the number of
categories, the height and the width of the input image, respectively.

The prediction Pt is then propagated forward to the moment 1 to generate

PW
1 = W(Pt, F1→t), (4)
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where F1→t denotes the optical flow from the moment 1 to moment t and is
computed by:

F1→t = F(I1, It). (5)

Simultaneously, the pseudo label of PW
1 is generated via another path. The

proxy network M′ first takes the other target frame I1 as input and output the
prediction P1 (More details related to the usage of M′ are introduced later in
Sec. 3.5). Then the prediction P1 is rectified according to its own confidence and
only the predictions with the high confidence will be kept as the pseudo labels.
Following [38], we first compute the entropy map E ∈ [0, 1]B×H×W via:

E = − 1

log(C)

C∑
k=1

(
P

(k)
1 · log(P (k)

1 )
)
. (6)

Since the synthesized frame It is not perfect, especially in the occlusion region,
we further exclude the occlusion region in P1 during the temporal-augmented
consistency learning. Specifically, the occlusion region O ∈ RB×H×W is defined
as:

O =

{
1, if W(F1→0, F0→1) + F0→1 < η.

0, otherwise,
(7)

where η is a hyper-parameter (set to 1 in all experiments). The final rectified
pseudo label PL is then given by:

PL =

{
ArgMax(P1), if E < δ and O = 1.

i, otherwise,
(8)

where the threshold δ = 0.8, and i is the ignored class label which is not consid-
ered during training. The rectified pseudo label PL is used to guide the predic-
tion PW

1 which is achieved by minimizing the following temporal-augmented
consistency loss Ltc:

Ltc = CE(PW
1 , PL). (9)

Different from [23,11] which compute the L1 distance for temporal consistency,
we employ the cross-entropy (CE) instead. Note that this is a non-trivial design,
since Eq. (9) is also used to achieve the on-the-fly self-training. The CE loss is a
common choice for self-training-based approaches [20,41,18] in domain adaptive
semantic segmentation.

3.5 Proxy network for on-the-fly self-training

The usage of the proxy network is motivated by two observations: 1) the instabil-
ity of the adversarial training strategy in existing domain adaptation approaches
[37,38]; and 2) the self-training technique requires multiple training stages but is
not able to improve the performance on the target domain. Therefore, in this pa-
per we propose to employ a proxy network M′ to implicitly generate the pseudo
labels for Pt on-the-fly. Specifically, M′ gets starting to work after a few training
iterations and it is used only in an evaluation mode. The parameters of M′ will
be updated via copying from M at every a fixed number of iterations.
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3.6 Pipeline and other training objectives

In summary, we describe the whole training pipeline in Algorithm 1 with the
involved loss functions listed and discussed below.

Algorithm 1 – I2VDA

Input: Source images {IS}, source labels {GT S}, two consecutive frames {I0, I1} from
target videos, the base segmentor M with parameter θM, the proxy network M′

with parameter θM′ and discriminator D with parameter θD, the max number of
training iterations MAX ITER, the copying frequency ITER COPY, the training
iterations ITER LAUNCH before launchingM′.

Output: Optimal θM
1: iter = 0
2: for iter<MAX ITER do
3: Synthesize It via Eq. (3);
4: Feed IS, I0 and It intoM to obtain the predictions;
5: if iter % ITER COPY then
6: Update the parameters: θM′ ← θM;
7: end if
8: if iter < ITER LAUNCH then
9: Update θM using (Lseg + 0.01Ladv);
10: else
11: Feed I1 intoM′ and obtain PL;
12: Compute Ltc using Eq. (9);
13: Update θM using (Lseg + 0.01Ladv + Ltc);
14: end if
15: Update θD using Ld defined in Eq. (12); iter += 1;
16: end for
17: Return θM;

We compute the Semantic segmentation loss based on CE to train M to
learn knowledge from the source domain:

Lseg = CE(P S, GT S). (10)

Minimizing the adversarial loss can close the gap between the source and
target predictions so that the target prediction can fool the discriminator. The
adversarial loss Ladv is defined as:

Ladv = (D(P0)− r)2 + (D(Pt)− r)2, (11)

where r is the label indicating the source domain which has the same resolution
as the output of the discriminator. The final loss of semantic segmentation net-
work can be expressed as L = Lseg + Ltc + 0.01Ladv. Besides, the goal of the
discriminator is to distinguish between the source and target predictions which
is trained with the following objective function:

Ld = (D(P S)− r)2 +
1

2
(D(P0)− f)2 +

1

2
(D(Pt)− f)2, (12)
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where f is the label indicating the target domain with the same resolution as
the output of discriminator.

4 Experimental results

4.1 Datasets

VIPER [32] dataset comprises 254,064 fully annotated video frames for training,
validation and testing rendered from a computer game. We use 13,367 images
marked as *0 with their labels as one of our source datasets. The frame resolution
is 1, 920× 1, 080. Following [11], 15 classes are considered for adaptation.

SYNTHIA [34] dataset is a synthetic dataset that consists of photo-realistic
video frames rendered from a virtual city. It contains 8,000 labeled frames with
a resolution of 1, 280 × 720. We use the 850 labeled images from SYNTHIA-
SEQS-04-DAWN as another source dataset. Note that we remove the temporal
constraint by randomly shuffling the frames in time. Following [11], 11 classes
are considered for adaptation.

Cityscapes [6] dataset focuses on semantic understanding of real urban street
scenes. It contains 5,000 images with fine annotations that are split into 2,975/
500/1,525 for training/validation/testing. Each annotated image is the 20th im-
age from a 30 frame video snippets. The resolution of each image is 2, 048×1, 024.
We use it as the target domain in this work.

4.2 Experimental settings

We implement the proposed I2VDA method using Pytorch. Following [37], our
semantic segmentation network M is trained using Stochastic Gradient Descent
(SGD) optimizer with a momentum of 0.9 and its initial learning rate is 2.5 ×
10−4. The discriminator D is optimized using Adam with a β of (0.9, 0.99) and
its initial learning rate is 1.0 × 10−4. We employ the polynomial decay with a
power of 0.9 on the learning rates of both M and D. The images in VIPER
[32], SYNTHIA [34], Cityscapes [6] are resized to 896 × 512, 1280 × 768 and
1024× 512, respectively. We don’t perform any spatial-level data augmentation
strategy during training and testing. Each experiment in this paper is run for
50,000 iterations with a batch size of 2 on two Tesla V100 GPUs. Especially for
testing, we only feed each frame independently into M to achieve the prediction
without using optical flow. The mean intersection-over-union (mIoU) is used
as the main evaluation metric, for which the higher the better. We also report
video-specific metric of “Temporal Consistency” (TC) [23], which is again the
higher the better.

https://playing-for-benchmarks.org/download/
https://synthia-dataset.net/downloads/
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Table 1. Quantitative comparison results on the VIPER → Cityscapes domain adap-
tive video segmentation task. The best results are presented in bold, with the second
best results underlined.
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I2VDA 84.8 36.1 84.0 28.0 36.5 36.0 85.9 32.5 74.0 63.2 81.9 33.0 51.8 39.9 0.1 51.2

Fig. 4. Qualitative comparison results on the VIPER → Cityscapes domain adaptive
video segmentation task. (a) The first three columns show the predictions of three
consecutive frames. *Only one frame has ground truth in each video (30 frames). (b)-
(d) show three other independent results from the Cityscapes validation set.

4.3 Comparison with state-of-the-art methods

VIPER → Cityscapes We first compare our I2VDA method with the exist-
ing state-of-the-art methods, including [11,41,49,31,48,48,38] as in [11], for the
VIPER → Cityscapes scenario. The quantitative results are reported in Table 1.
We find our method significantly outperforms (51.2% mIoU) all the others that
are trained with VIPER videos, i.e., use additional unlabeled frames that are
adjacent to the labeled one for temporal modeling. Besides, these video-to-video
domain adaptation approaches require two images and a pre-computed opti-
cal flow as inputs during testing, while our method performs only a per-frame
inference without optical-flow computation. On the video-level evaluation, our
method achieves 66.01% on TC metric, while DAVSN [11] obtain 63.82%. This
shows that our proposed method can generate more consistent prediction across
frames. The video samples that we provide in the supplemental materials also
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Table 2. Quantitative comparison results on the SYNTHIA → Cityscapes domain
adaptive video segmentation task.
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AdvEnt [38] 85.7 21.3 70.9 21.8 4.8 15.3 59.5 62.4 46.8 16.3 64.6 42.7
CBST [48] 64.1 30.5 78.2 28.9 14.3 21.3 75.8 62.6 46.9 20.2 33.9 43.3
IDA [31] 87.0 23.2 71.3 22.1 4.1 14.9 58.8 67.5 45.2 17.0 73.4 44.0
CRST [49] 70.4 31.4 79.1 27.6 11.5 20.7 78.0 67.2 49.5 17.1 39.6 44.7
FDA [41] 84.1 32.8 67.6 28.1 5.5 20.3 61.1 64.8 43.1 19.0 70.6 45.2
DA-VSN [11] 89.4 31.0 77.4 26.1 9.1 20.4 75.4 74.6 42.9 16.1 82.4 49.5

I2VDA (Ours) 89.9 40.5 77.6 27.3 18.7 23.6 76.1 76.3 48.5 22.4 82.1 53.0

Fig. 5. Qualitative comparison results on the SYNTHIA → Cityscapes domain adap-
tive video segmentation task. (a) The first three columns show the predictions of three
consecutive frames. *Only one frame has ground truth in each video (30 frames). (b)-
(d) show three other independent results from the Cityscapes validation set.

verify this conclusion. We also present sample qualitative results for VIPER →
Cityscapes scenario in Figure 4. It can be observed that our method visually
achieves better performance than the second best approach DA-VSN (but the
best among all existing ones). Although our method does not contain temporal
modeling during testing, our predictions in Figure 4 (a) still show better tem-
poral consistency than those by DA-VSN. In the spatial level, our segmentation
results look also more accurate, e.g, bus in (a), person in (a) and (c), car in
(a)-(d).

SYNTHIA → Cityscapes The quantitative comparison results for SYN-
THIA → Cityscapes scenario are reported in Table 2, where our method still
achieves the best performance and surpasses the second best (DA-VSN) by 2.6%
mIoU. Sample qualitative comparison results for this adaptation scenario are
shown in Figure 5, and our method still achieves more consistent and accurate
segmentation results.
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4.4 Ablation studies

On the framework design To verify the effectiveness of each component
of the I2VDA framework, we conduct a comprehensive ablation study with sev-
eral model variants. The results under the VIPER → Cityscapes scenario are
reported in Table 3. The variant in the first row serves as the baseline which
trains the semantic segmentation network with the labeled source domain and
employs the adversarial learning to close the domain gap [37], and the last row is
the I2VDA method with full settings. We find that the proposed temporal aug-
mentation strategy and temporal consistency learning are both very effective
and can achieve 4.2% and 5.6% gains, respectively, over the baseline. Another
observation is that the temporal augmentation strategy only obtain 1.6% mIoU
gain on its own, but it will play a much greater role (51.2% vs. 44.0%) when
combined with the temporal consistency learning. In addition, rows 4-5 show the
effectiveness of some designs inside the temporal consistency learning including
the consideration of occlusion and entropy.

Table 3. Ablation study on the I2VDA framework designs under the
VIPER → Cityscapes scenario.

Variants mIoU (%)

Baseline 44.0

w/o Temporal Augmentation 47.0
w/o Temporal-augmented Consistency 45.6

w/o Occlusion O in Eq. (8) 49.7
w/o Entropy Map E in Eq. (8) 49.6

Full I2VDA settings 51.2

On the proxy network The proxy network also plays an important role in
the temporal-augmented consistency learning. We conduct experiments on the
choice of copying frequency (ITER COPY) and the training iterations before
launching (ITER LAUNCH). From Table 4, we find that copying every 8,000
iterations and launching the proxy network after 8,000 iterations achieves the
best performance. In addition, as shown in Figure 6, the use of the proxy network
does improve the training stability effectively. The baseline here is the same as
the one in Table 3.

Table 4. Ablation study on ITER COPY and ITER LAUNCH for the proxy network
under the VIPER → Cityscapes scenario. The ITER LAUNCH is fixed to 8,000 for
the first sub-table and the ITER LAUNCH is fixed to 8,000 for the second sub-table.

ITER COPY 1k 8k 15k

mIoU(%) 48.9 51.2 49.6

ITER LAUNCH 1k 8k 15k

mIoU(%) 48.3 51.2 50.2
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Fig. 6. The mIoU performance vs. varying adaptation iterations.

Table 5. Ablation study on η, δ, t and α under the VIPER → Cityscapes scenario.

η 0.1 1.0 2.0

mIoU(%) 50.4 51.2 50.2

t 0 0.25 0.5 0.75 1 random

mIoU 47.0 47.0 48.4 48.1 47.4 51.2

δ 0.1 0.3 0.5

mIoU(%) 48.5 51.2 49.7

α 0.1 0.3 0.5 0.7 0.9

mIoU 49.2 49.7 51.2 49.6 48.8

On some hyper-parameters We also conduct experiments to explore the
choice of hyper-parameters involved in the temporal-augmented consistency
learning. The results are reported in Table 5 where we find that our method
achieves better performance when η = 1.0, δ = 0.3 and α = 0.5 and using
randomly generated t.

5 Conclusion

In this paper, we found that it is not necessary to transfer temporal knowlege for
domain-adaptive video semantic segmentation and have introduced for the first
time the setting of image-to-video domain adaptive semantic segmentation which
transfers knowledge from simulated images to real-world videos. Our I2VDA
method reduces the domain gap between the source and target via adversarial
training on only spatial knowledge. On the other hand, our method enhances the
temporal consistency learning in the target domain by performing the temporal
augmentation via frame interpolation to explore more temporal patterns and
leveraging the proxy network to provide the pseudo labels on-the-fly to improve
the stability of adversarial training. Experimental results on two synthetic-to-
real scenarios showed that our method can outperform existing state-of-the-art
video-to-video domain adaptation methods.

Acknowledgment: Dr. Lili Ju’s work is partially supported by U.S. Department

of Energy, Office of Advanced Scientific Computing Research through Applied Math-

ematics program under grant DE-SC0022254. This work used GPUs provided by the

NSF MRI-2018966.



I2VDA 15

References

1. Chang, W.L., Wang, H.P., Peng, W.H., Chiu, W.C.: All about structure: Adapt-
ing structural information across domains for boosting semantic segmentation. In:
CVPR. pp. 1900–1909 (2019) 4

2. Chen, L.C., Lopes, R.G., Cheng, B., Collins, M.D., Cubuk, E.D., Zoph, B., Adam,
H., Shlens, J.: Naive-student: Leveraging semi-supervised learning in video se-
quences for urban scene segmentation. In: ECCV. pp. 695–714. Springer (2020)
2

3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE TPAMI 40(4), 834–848 (2017) 1, 6

4. Chen, Y.H., Chen, W.Y., Chen, Y.T., Tsai, B.C., Frank Wang, Y.C., Sun, M.: No
more discrimination: Cross city adaptation of road scene segmenters. In: ICCV.
pp. 1992–2001 (2017) 2, 4

5. Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: Crdoco: Pixel-level domain trans-
fer with cross-domain consistency. In: CVPR. pp. 1791–1800 (2019) 4

6. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: CVPR. pp. 3213–3223 (2016) 1, 2, 10

7. Couprie, C., Farabet, C., Najman, L., LeCun, Y.: Indoor semantic segmentation
using depth information. arXiv preprint arXiv:1301.3572 (2013) 1

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR. pp. 248–255. Ieee (2009) 6

9. Fayyaz, M., Saffar, M.H., Sabokrou, M., Fathy, M., Klette, R., Huang, F.:
Stfcn: spatio-temporal fcn for semantic video segmentation. arXiv preprint
arXiv:1608.05971 (2016) 2, 3

10. Gadde, R., Jampani, V., Gehler, P.V.: Semantic video cnns through representation
warping. In: ICCV. pp. 4453–4462 (2017) 2, 3

11. Guan, D., Huang, J., Xiao, A., Lu, S.: Domain adaptive video segmentation via
temporal consistency regularization. In: ICCV. pp. 8053–8064 (2021) 2, 4, 5, 7, 8,
10, 11, 12

12. Guo, X., Yang, C., Li, B., Yuan, Y.: Metacorrection: Domain-aware meta loss cor-
rection for unsupervised domain adaptation in semantic segmentation. In: CVPR.
pp. 3927–3936 (2021) 4

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016) 6

14. Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A., Darrell,
T.: Cycada: Cycle-consistent adversarial domain adaptation. In: Int. Conf. Machine
Learning. pp. 1989–1998. PMLR (2018) 4

15. Hoffman, J., Wang, D., Yu, F., Darrell, T.: Fcns in the wild: Pixel-level adversarial
and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016) 2, 4

16. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0:
Evolution of optical flow estimation with deep networks. In: CVPR. pp. 2462–2470
(2017) 6

17. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super
slomo: High quality estimation of multiple intermediate frames for video interpo-
lation. In: CVPR. pp. 9000–9008 (2018) 6, 7

18. Kim, M., Byun, H.: Learning texture invariant representation for domain adapta-
tion of semantic segmentation. In: CVPR. pp. 12975–12984 (2020) 4, 8



16 X. Wu et al.

19. Li, Y., Shi, J., Lin, D.: Low-latency video semantic segmentation. In: CVPR. pp.
5997–6005 (2018) 4

20. Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of
semantic segmentation. In: CVPR. pp. 6936–6945 (2019) 4, 8

21. Lian, Q., Lv, F., Duan, L., Gong, B.: Constructing self-motivated pyramid cur-
riculums for cross-domain semantic segmentation: A non-adversarial approach. In:
ICCV. pp. 6758–6767 (2019) 4

22. Liu, S., Wang, C., Qian, R., Yu, H., Bao, R., Sun, Y.: Surveillance video parsing
with single frame supervision. In: CVPR. pp. 413–421 (2017) 2, 3

23. Liu, Y., Shen, C., Yu, C., Wang, J.: Efficient semantic video segmentation with
per-frame inference. In: ECCV. pp. 352–368. Springer (2020) 4, 7, 8, 10

24. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR. pp. 3431–3440 (2015) 1, 4

25. Luo, Y., Liu, P., Guan, T., Yu, J., Yang, Y.: Significance-aware information bottle-
neck for domain adaptive semantic segmentation. In: ICCV. pp. 6778–6787 (2019)
4

26. Maninis, K.K., Caelles, S., Chen, Y., Pont-Tuset, J., Leal-Taixé, L., Cremers, D.,
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