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Abstract

Achieving high accuracy on data from domains un-
seen during training is a fundamental challenge in do-
main generalization (DG). While state-of-the-art (SOTA)
DG classifiers have demonstrated impressive performance
across various tasks, they have shown a bias towards
domain-dependent information, such as image styles, rather
than domain-invariant information, such as image content.
This bias renders them unreliable for deployment in risk-
sensitive scenarios such as autonomous driving where a
misclassification could lead to catastrophic consequences.
To enable risk-averse predictions from a DG classifier, we
propose a novel inference procedure, Test-Time Neural Style
Smoothing (TT-NSS), that uses a “style-smoothed” version
of the DG classifier for prediction at test time. Specifically,
the style-smoothed classifier classifies a test image as the
most probable class predicted by the DG classifier on ran-
dom re-stylizations of the test image. TT-NSS uses a neural
style transfer module to stylize a test image on the fly, re-
quires only black-box access to the DG classifier, and cru-
cially, abstains when predictions of the DG classifier on
the stylized test images lack consensus. Additionally, we
propose a neural style smoothing (NSS) based training pro-
cedure that can be seamlessly integrated with existing DG
methods. This procedure enhances prediction consistency,
improving the performance of TT-NSS on non-abstained
samples. Our empirical results demonstrate the effective-
ness of TT-NSS and NSS at producing and improving risk-
averse predictions on unseen domains from DG classifiers
trained with SOTA training methods on various benchmark
datasets and their variations.

1. Introduction
The objective of Domain Generalization (DG) [75] is

to develop models that demonstrate remarkable resilience
to domain shifts during testing, even without prior knowl-
edge of the test domain during training This represents a
challenging problem, as it is impractical to train a model
to be robust to all potential variations that may arise at

test time. For example, previous works [2, 7, 11, 27, 30]
have demonstrated that variations in styles/textures, weather
changes, etc., unseen during training can drastically reduce
the classifier’s performance. Recent works [5, 27, 35, 56]
brought to light the fact that predictions from state-of-
the-art (SOTA) neural networks are biased towards the in-
formation unrelated to the content of the images but are
dependent on the image styles, a characteristic that can
vary across domains. Due to the vast practical implica-
tions of this problem many works have studied this prob-
lem both analytically [8–10, 41, 51, 53, 62, 84] and empiri-
cally [1,24,28,54,59,78,85]. However, in scenarios such as
in autonomous driving, medical diagnoses, or rescue oper-
ations involving drones, where misclassifications can have
severe consequences, it becomes essential to augment clas-
sifiers with abstaining mechanisms or involve humans in the
decision-making process [19,61]. In this work, we focus on
the problem of image classification under distribution shifts
which comprise of differences in image styles.

To safeguard the classifier against risky misclassification
(and enable risk-averse predictions) we augment the classi-
fier with a capability to defer making a prediction on sam-
ples, when it lacks confidence. However, since the softmax
score of the classifier is known to be uncalibrated [29,32,34]
on data from unseen domains, we propose a novel test-
time method that uses neural style information to estimate
classifier’s confidence in its prediction under style changes.
Our inference procedure, Test-Time Neural Style Smooth-
ing (TT-NSS), depicted in Fig. 1, first transforms a clas-
sifier (base classifier) into a style-smoothed classifier and
then uses it to either predict the label of an incoming test
sample or abstain on it. Specifically, the prediction of the
style smoothed classifier, ψ, constructed from a base classi-
fier f , on a test input x is defined as the class that the base
classifier f predicts most frequently on stylized versions of
the input. TT-NSS uses a style transfer network based on
AdaIN [36] to produce stylized versions of the test input in
real-time. While AdaIN can transform the style of x to any
arbitrary style, we specifically transform it into the style of
the data from the domains used for training. This choice is
based on the assumption that f can be made agnostic to the
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Figure 1. Overview of our Test-Time Neural Style Smoothing (TT-NSS) inference procedure for obtaining risk-averse predictions. TT-NSS
works by stylizing a test sample into source domain styles and classifies the sample as the most probable class assigned by the base DG
classifier to the stylized samples if that class is much more likely than the other classes. Otherwise, it abstains from making a prediction
and refers the sample to an expert thereby avoiding a risky misclassification.

styles of the data from domains used for training. Moreover,
changing the styles of x to arbitrary styles, unknown to f ,
can worsen the classifier’s performance due to a widened
distribution shift.

TT-NSS can be used to evaluate any DG classifier with
only black-box access to it, i.e., it does not require the
knowledge of weights, architecture, or training procedure
used to train the classifier and only needs its predictions on
stylized test samples. However, computing the prediction of
a style-smoothed classifier requires computing the probabil-
ity with which the base classifier classifies the stylized im-
ages of x. Following works in Randomized Smoothing [18],
we propose a Monte Carlo algorithm to estimate this proba-
bility. When this estimated probability exceeds a set thresh-
old it implies that the predictions of the classifier f on styl-
ized images of x achieve a desired level of consensus and
the prediction is reliable. In other cases, TT-NSS abstains
due to a lack of consensus among the predictions of the base
DG classifier. Recently, test-time adaptation [39, 83] (TTA)
approaches have been shown to be effective in the DG setup
which adapts some or all parameters of the classifier using
multiple incoming data samples from the unseen domains.
However, our work differs significantly from these since we
consider a black-box setting where parameters of the clas-
sifier are not accessible at test time making our approach
much more practically useful compared to TTA approaches.

Furthermore, we propose a novel training procedure
based on neural style smoothing (NSS) to improve the con-
sistency of the predictions of the DG classifier on stylized
images. The improved consistency leads to improved per-
formance of the DG classifier on non-abstained samples
at lower abstaining rates making them more reliable. Our
training method creates a style-smoothed version of the soft
base DG classifier and uses stylized versions of the source

domain data (generated by stylizing the source domain im-
ages into random styles of other source domain images)
to train the base DG classifier. Similar to previous works
[40, 65, 66], we incorporate consistency regularization dur-
ing training to further boost the performance of the classi-
fier on non-abstained samples at various abstaining rates.
Similar to TT-NSS which can be used with any classifier,
our NSS-based training losses can be combined with any
training method and can help improve the reliability of the
classifier’s predictions without significantly degrading their
accuracy or requiring access to auxiliary data from unseen
domains [16, 33]. We present results of using our inference
and training procedures on PACS [47], VLCS [22], Office-
Home [72] and their variations generated by applying style
changes and common corruptions, in both single and multi-
ple source domain settings. Our results show the effective-
ness of our proposed methods at enabling and improving
risk-averse predictions from classifiers trained with SOTA
DG methods on data from unseen domains. Our main con-
tributions are summarized below:

• We focus on the problem of obtaining risk-averse pre-
dictions in a DG setup with black-box access to the
classifier. We propose an efficient inference proce-
dure relying on AdaIN-based style transfer and a style-
smoothed classifier for classification and abstaining.

• To improve the quality of risk-averse predictions, we
propose losses that enforce prediction consistency on
the random stylization of the source data and can be
seamlessly combined with losses of any DG method.

• We demonstrate the effectiveness of our inference and
training methods on benchmark datasets and their vari-
ations generated by stylizing and using corruptions.
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2. Related work
Domain generalization: The goal of domain general-

ization (DG) is to produce classifiers whose accuracy re-
mains high when faced with data from domains unseen dur-
ing training. Many works have proposed to address this
problem by capturing invariances in the data by learning
a representation space that reduces the divergence between
multiple source domains thereby promoting the use of only
domain invariant features for prediction [1,24,28,59,78,85].
Another line of work learns to disentangle the style and
content information from the source domains and trains the
classifier to be agnostic to the styles of the source domains
[3,20,55,81]. Yet another line of research focuses on diver-
sifying the source domain data to encompass possible varia-
tions that may be encountered at test time [12,34,44,66,74].
Unlike previous works which focus on improving classifier
accuracy on unseen domains, we focus on making DG risk-
averse on data from unseen domains.

Certified robustness via randomized smoothing:
Many works have demonstrated the failure of SOTA ma-
chine learning classifiers on adversarial examples [14, 15,
38, 68, 77]. In response, many works proposed to provide
empirical [4] and provable [18,45,46,52,60,80] robustness
to these examples. Among them, Randomized Smoothing
(RS) [18, 45, 46] is a popular method which considers a
smoothed version of the original classifier and certifies that
no adversarial perturbation exists within a certified radius
(in ℓ2 norm) around a test sample that can change the pre-
diction of the classifier. RS uses Gaussian noise to produce
a smoothed version of the base classifier and classifies a
test sample to be the class most likely to be predicted by the
base classifier on Gaussian perturbations of the test sam-
ple. While RS was proposed to certify the robustness to
additive noise, the idea has been extended to certify robust-
ness to parameterized transformations of the data such as
geometric transformation [23, 48] where the noise is added
to the parameters of the transformations. Our neural style
smoothing procedure is similar to RS with crucial differ-
ences. Firstly, we use neural styles for smoothing (which
cannot be parameterized) instead of adding Gaussian noise
to the input or parameters of specific transformations. Sec-
ondly, our goal is not to provide certified robustness guaran-
tees against style changes but to provide a practical method
to produce reliable predictions on test samples and an ab-
staining mechanism to curb incorrect predictions.

Neural style transfer: Following [25], which demon-
strated the effectiveness of using the convolutional layers
of a convolutional neural network for style transfer, sev-
eral ways have been proposed to improve style transfer
[21, 26, 42, 70, 71, 76]. AdaIN [36] is a popular approach
that allows style transfer by changing only the mean and
variance of the convolutional feature maps. Other ways of
generating stylized images include mixing [89] or exchang-

ing [69, 86] styles, or using adversarial learning [63, 88].
Test-time adaptation (TTA): Recent works have

demonstrated the effectiveness of using TTA for improv-
ing generalization to unseen domains, where the classifier
is updated partially or fully using incoming batches of test
samples [67, 73, 83]. This approach has also been shown to
be effective in the DG setup [39]. Our approach is different
from these methods since we do not assume access to the
parameters of the DG classifier or assume that data from
unseen domains arrive in batches.

Classification with abstaining: A learning framework
allowing a classifier to abstain on samples has been studied
extensively [6,13,17,19,57]. Two main approaches in these
works include a confidence-based rejection where the clas-
sifier’s confidence is used to abstain based on a predefined
threshold and a classifier-rejector approach where the clas-
sifier and rejector are trained together. Our work is closer to
the former since we do not train a rejector and abstain when
the top class is not much more likely than other classes.

3. Neural style smoothing
3.1. Background

Domain Generalization (DG) setup: Given data sam-
ples Di

source = {(xij , yij)}N
i

j=1, with N i samples, from NS

source domains each following a distribution P i
S(X,Y ),

the goal of DG is to learn a classifier f(X) whose per-
formance does not degrade on a sample from an unseen
test domain with distribution PT (X,Y ) ̸= P i

S(X,Y ), for
all i ∈ {1, · · · , NS}. Depending on the number of source
domains available during training the setup can be termed
as single or multi-domain. The lack of information about
the target domain makes the problem setup challenging
and many previous works have proposed training methods
focusing on capturing domain invariant information from
source domain data to improve performance on unseen do-
mains at test time. In the multi-domain setup, learning a
classifier by minimizing its empirical risk on all available
source domains achieves competitive performance on vari-
ous benchmark datasets [28].

Neural style transfer with AdaIN [36]: Given a con-
tent image, xc and a style image xs, AdaIN generates an
image having the content of xc and style of xs. AdaIN
works by first extracting the intermediate features (output of
block4 conv1) of the style and content image by pass-
ing them through a VGG-19 [64] encoder, g, pretrained on
Imagenet. Using these features AdaIN aligns the mean (µ)
and variance (σ) of the two feature maps using

t = AdaIN(g(xc), g(xs))

= σ(g(xs))

(
g(xc)− µ(g(xc))

σ(g(xc))

)
+ µ(g(xs)).

(1)

A decoder, h, is then used to map the AdaIN-generated
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feature back to the input space to produce a stylized im-
age xstylized = h(t). We follow the design of the de-
coder as proposed in [36] and train the decoder to minimize
the content loss between the features of the stylized image,
g(xstylized) and the AdaIN transformed features of the con-
tent image, i.e.

Lcontent = ∥g(xstylized)− t∥22, (2)

along with a style loss that measures the distance between
the feature statistics of the style and the stylized image using
L layers of the pretrained VGG-19 network, ϕ. In particu-
lar, the style loss is computed as

Lstyle =
L∑

i=1

∥µ(ϕi(xs))− µ(ϕi(xstylized)∥22

+

L∑
i=1

∥σ(ϕi(xs))− σ(ϕi(xstylized)∥22.

(3)

We measure the style loss, using block1 conv1,
block2 conv1, block3 conv1, and
block5 conv1 layers of the VGG-19 network. We
pre-train the decoder with MS-COCO [49] images as
content and Wikiart [58] images as style.

3.2. Neural style smoothing-based inference

Consider a classification problem from Rd to the label
space Y . Neural style smoothing produces an output, for a
test image x, that a base DG classifier, f : Rd → Y is most
likely to return when x is stylized into the style of the source
domain data, i.e., the data used for training f . Formally,
given a base DG classifier f , we construct a style-smoothed
classifier ψ : Rd → Y , whose prediction on a test image
x is the most probable output of f on x converted into the
style of the source domain data, i.e.,

ψ(x) := argmax
y∈Y

P(f(h(t)) = y), (4)

where t = AdaIN(g(x), g(xs)), xs ∼ PS , and PS is the
distribution of the source domain. When data from multiple
source domains are available we combine the data from all
the domains and use the combined data as source domain
data. If the base DG classifier, f , correctly classifies the
test image x when stylized into the styles of the source do-
main, then the style-smoothed classifier also correctly clas-
sifies that sample. However, computing the actual predic-
tion of the style-smoothed classifier requires computing the
exact probabilities with which the base DG classifier classi-
fies the stylized test samples into each class. Thus, follow-
ing [18], we propose a Monte Carlo algorithm to estimate
these probabilities and the prediction of the style-smoothed
classifier. The first step in estimating the prediction of the
style-smoothed classifier on a test image x is to generate

Algorithm 1 Test-Time Neural Style Smoothing (TT-NSS)
Input: Test image x, base DG classifier f , VGG-19 en-
coder g, AdaIN decoder h, number of source style images
n, Dstyles = {xis}ni=1, threshold α.
Output: Prediction for x or ABSTAIN.

Initialize class-wise counts class counts to zeros

# Generate n stylized images from x using Dstyles

for i = 1, · · · , n do
t = AdaIN(g(x), g(xis))
xstylized = h(t)
prediction = f(xstylized)
class counts[prediction]+ = 1

end for

# Get the top predicted class on stylized images
cmax = index of class counts with highest count
nmax = class counts[cmax]

# Predict or ABSTAIN
if nmax

n < α then
return ABSTAIN

else
return cmax

end if

stylized versions of the image using the styles from the
source domain. To achieve the style conversion in real-time,
we use the AdaIN framework described previously with the
content image as the test image x and n randomly chosen
images from the dataset used for training the DG classifier
as style images. The style transfer network then transforms
x into n stylized images, each having the style of the source
domain data, as illustrated in Fig. 1. The stylized images
are then passed through the f and the class that is predicted
the most often (majority class) is returned as the prediction
of the test image. This procedure of Test-Time Neural Style
Smoothing (TT-NSS) is detailed in Alg. 1.

To ascertain that the prediction returned by TT-NSS is
reliable, we estimate the confidence of the style-smoothed
classifier in its prediction. In particular, we compute the
proportion of the re-stylized test images that are classified
as a particular class by the base DG classifier and obtain the
counts of how often each class is predicted. Based on these
counts, we compute the class which has the highest occur-
rence and if the proportion of the highest class exceeds a
threshold α, TT-NSS classifies the test image as this class.
However, if the proportion remains less than the threshold,
then TT-NSS abstains due to a lack of consensus among the
predictions. The abstained samples can then be sent for fur-
ther processing to experts and save the system from return-
ing a potentially incorrect prediction. A high value of α in
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TT-NSS improves the accuracy on non-abstained samples
but it also increases the number of abstained samples. On
the other hand, a low value of α leads to decreased abstain-
ing with an increased chance that the DG classifier may not
be confident in its prediction, leading to a risky misclassifi-
cation. In our empirical analysis in Sec. 4, we use various
values of α ranging from 0 to 1 and show how the accuracy
on non-abstained samples and the proportion of abstained
samples change as the value of α is varied.

3.3. Neural style smoothing-based training

The performance of our inference procedure, TT-NSS,
relies on the assumption that the base classifier, f , can clas-
sify the test image stylized into the source domain styles
correctly and consistently. This requires that the base classi-
fier be accurate on the images generated by the decoder used
in the AdaIN-based neural style transfer network. How-
ever, our empirical evaluation of using TT-NSS on clas-
sifiers trained with existing DG methods on benchmark
datasets shows a relatively low accuracy on non-abstained
samples at smaller abstaining rates. This suggests that the
base classifier cannot accurately classify the stylized images
generated through the AdaIN decoder. Thus, we propose
a new training procedure based on neural style smoothing
(NSS) that enables consistent and accurate predictions from
the classifiers when evaluated using TT-NSS. The proposed
loss functions can be combined with any DG training al-
gorithm and can be used to improve the reliability of the
predictions from classifiers when evaluated with TT-NSS.
To achieve this, we propose to augment the losses of an ex-
isting DG method with two additional loss functions. The
first loss penalizes misclassification of the stylized images
w.r.t. the label of the content image i.e., given a sample
(x, y) ∼ Dsource, the stylized misclassification loss is

Lstylized aug = Exs∼PS
[ℓ(f(h(t)), y)], (5)

where t = AdaIN(g(x), g(xs)) and ℓ is the cross entropy
loss. Specifically, we first stylize a sample x from the source
domain using multiple randomly sampled style images from
the source domain and then penalize the misclassification
loss of the classifier f on these stylized images. For a sin-
gle source domain problem, even though all images from
a domain may be considered as being in the same broad
set of styles such as Art or Photos, individually the images
have different non-semantic information such as textures,
colors, patterns, etc., and thus stylizing an image into the
styles of other source domain images is still effective and
meaningful. The second loss which helps improve the trust-
worthiness of the predictions enforces consistency among
the predictions of the stylized versions of the content im-
age, generated using AdaIN. Previous works [40,65,66,87],
have also demonstrated the effectiveness of enforcing con-
sistency among the predictions of the classifier to be helpful

in various setups such as semi-supervised learning and ran-
domized smoothing. To define the style consistency loss,
let (x, y) ∼ Dsource, F : Rd → ∆K−1 be the softmax
output of the classifier such that the prediction of the base
classifier f(x) = argmaxk∈Y F (x), ∆K−1 be the prob-
ability simplex in RK , F (x) = Exs∼PS

[F (h(t))] with
t = AdaIN(g(x), g(xs)) be the average softmax output
of the classifier on stylized images, KL(·∥·) be the Kull-
back–Leibler divergence (KLD) [43] and H(·) be the en-
tropy. Then the style consistency loss is given by

Lconsistency = Exs∼PS
[KL(F (x)∥F (h(t)))]

+ H(F (x), y).
(6)

In practice, we minimize the empirical version of the two
losses using multiple-style images sampled randomly from
the available source domain data. The trained classifier can
then be evaluated using TT-NSS as in Alg. 1 to gauge the
reliability of their predictions on unseen domains.

4. Experiments
In this section, we present the evaluation results of using

our inference and training procedures for obtaining and
improving the risk-averse predictions from DG classifiers.
We present evaluations and comparisons with three popular
DG methods, namely Empirical Risk Minimization (ERM),
Style Agnostic Networks (SagNet), [56] and networks
trained with Representation Self-Challenging (RSC) [37].
Our evaluation includes three popular benchmark datasets,
namely PACS [47], VLCS [22] and OfficeHome [72],
all of which contain four domains (see Appendix B). We
also create and present evaluations on variations of these
datasets generated by stylizing the images into the styles
of Wikiart [58] and changing styles based on changes
in weather, lighting, blurring, and addition of noise by
using common corruptions [31] including {frost,
fog, brightness, contrast, gaussian
blur, defocus blur, zoom blur, gaussian
noise, shot noise, impulse noise}. These
variations allow us to evaluate the performance of DG clas-
sifiers on realistic changes that do not affect the semantic
content of the images. To generate images from benchmark
datasets stylized into the style of Wikiart, we use an AdaIN
decoder pre-trained using images from MS-COCO [49]
as content images and images from Wikiart [58] as style
images. To create corrupted versions, we follow [31] and
use corruption with severity levels 3 and 5. For reporting
results over corrupted versions we use a subsample of the
test set described in App. B.2 where as for original/wikiart
styles we report results on the entire test set.

Following previous works [28], we used ResNet50 pre-
trained on the ImageNet dataset as our backbone network
augmented with a fully connected layer with softmax acti-
vation. We use this network for training ERM and for neural
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(c) Severity 3 corruptions
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(d) Severity 5 corruptions

Figure 2. Comparison of TT-NSS (solid lines) and confidence-based abstaining method (dashed lines) at producing risk-averse predictions
in a single source domain setup on classifiers trained with SOTA DG methods. The graphs show accuracy vs abstained points on different
variants of the PACS dataset ((a) original, (b) wikiart, (c,d) corrupted). In most domains, the accuracy of TT-NSS is higher than the
corresponding accuracy of the confidence-based method for most of the range of the percentage of abstained samples demonstrating the
superiority of TT-NSS at producing risk-averse predictions. (Note: The source domain from PACS used for training is denoted in the title.)

style smoothing (combined with ERM as the DG method).
For other baselines, we train the classifiers using the source
codes from the official repositories of RSC [37] and Sag-
Net [56]. For all experiments in the single source domain
setup, we train the classifiers with a single source domain
and evaluate the performance of the remaining three do-
mains. For multi-domain setup, we train the classifiers with
three domains and test on the fourth unseen domain.

We compare the performance of TT-NSS (Alg. 1) with
an abstaining mechanism that uses the classifier’s max con-
fidence on the original test sample for abstaining. In this
method, we abstain if the highest softmax score for a sam-
ple is below a set threshold. We note that, compared to
TT-NSS, which only requires prediction of the classifier on
a sample the confidence-based mechanism additionally re-
quires the classifier’s confidence in the prediction and hence
has access to more information than that available to TT-
NSS, making TT-NSS more practically viable. For TT-
NSS we use 10 randomly sampled style images (n = 10)
for the single source domain setup and 15 for the multi-
ple source domain setup (see Sec. 4.4). We present the
accuracy of the DG classifier on non-abstained samples
as a function of the proportion of abstained samples and
the area under this curve (AUC) to demonstrate the effec-
tiveness of TT-NSS (Alg. 1) and the confidence-based ab-
staining mechanism for producing risk-averse predictions.
A higher AUC is desired since it indicates that the accu-
racy of the DG classifier at different abstaining rates re-
mains high suggesting that whenever the inference proce-
dure does not abstain, it is likely that the prediction is
correct. This improves the reliability of the predictions
from a DG classifier. We present additional experimen-
tal results in App. A followed by dataset and implemen-
tation details in App. B. Our codes are present at https:

//github.com/akshaymehra24/RiskAverseDG

4.1. TT-NSS improves the reliability of the predic-
tions from existing DG classifiers

In this section, we demonstrate the effectiveness of
TT-NSS at producing reliable predictions from classifiers
trained with ERM, RSC, and SagNet when evaluated on
domains unseen during training. The results in Fig. 2 and
Figs. 7, 6 (in the Appendix) show the advantage of using the
style-smoothed classifier over the confidence of the origi-
nal classifier for producing risk-averse predictions on a test
sample on PACS and VLCS datasets in both single and mul-
tiple source domain setting. This superiority of TT-NSS is
also evident from the results in Tables 3, 5, 4, 6 (in the Ap-
pendix) which show the area under the curve for accuracy
versus percentage of abstained samples for different set-
tings. The high accuracy of the classifiers with TT-NSS at
the same abstaining rates compared to the confidence-based
strategy shows the advantage of TT-NSS at producing bet-
ter risk-averse predictions. This advantage of TT-NSS be-
comes more apparent on stylized and corrupted variants of
the PACS dataset where the standard accuracy of the classi-
fier drops significantly and necessitates abstaining for safe-
guarding against risky misclassifications. The classifier’s
high confidence incorrect predictions on unseen domains is
the primary reason that prevents the confidence-based strat-
egy from producing risk-averse predictions. This is in line
with the findings from previous works which have shown
that a classifier can produce high-confidence misclassifica-
tion on samples from unseen domains [29,32,50,79,82]. On
the other hand, using the confidence of the style-smoothed
classifier, by stylizing the test sample into source domain
styles, can mitigate the classifier’s bias to non-semantic in-
formation in the test samples and produce better quality pre-
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Table 1. Effectiveness of NSS at producing a better AUC score compared to classifiers trained with ERM in a single source domain setting
on PACS, VLCS, and OfficeHome datasets and their variations when evaluated with TT-NSS. The source domain used for training is
denoted in the columns. (In all tables, the best result is marked in bold if the difference in the AUC is at least 0.01.)

PACS VLCS OfficeHome
Alg. A C P S C L S V A C P R

Original Style
ERM 0.875 0.878 0.662 0.702 0.567 0.724 0.851 0.751 0.689 0.553 0.549 0.685
NSS 0.884 0.911 0.694 0.745 0.619 0.685 0.853 0.796 0.727 0.683 0.675 0.767

Wikiart Style
ERM 0.854 0.816 0.643 0.626 0.477 0.682 0.785 0.704 0.552 0.344 0.321 0.5
NSS 0.855 0.888 0.71 0.706 0.528 0.673 0.845 0.788 0.696 0.643 0.625 0.725

Corrupted with severity 3
ERM 0.886 0.812 0.622 0.545 0.468 0.551 0.689 0.471 0.573 0.358 0.312 0.54
NSS 0.901 0.853 0.717 0.683 0.573 0.686 0.775 0.608 0.625 0.576 0.56 0.67

Corrupted with severity 5
ERM 0.834 0.708 0.519 0.468 0.411 0.439 0.567 0.415 0.445 0.235 0.196 0.383
NSS 0.871 0.792 0.682 0.606 0.512 0.61 0.722 0.537 0.545 0.478 0.466 0.565

dictions even without abstaining. This is evident from Fig. 2
and Figs. 7, 6 (in the Appendix) where TT-NSS (solid lines)
achieve higher accuracy even at an abstaining rate of 0%.

Another crucial insight obtained from our evaluation on
variations of benchmark datasets created by style changes is
the significant decrease in the performance of the DG clas-
sifiers compared to the evaluation on original styles of the
benchmark datasets both with confidence-based abstaining
and TT-NSS. This suggests that classifiers trained with ex-
isting DG methods are susceptible to non-semantic varia-
tions in the data and improving the performance on these
benchmark datasets while important may not be enough to
achieve the goal of DG. However, while data augmentation
and style diversification methods have been shown to be ef-
fective at improving the performance of DG methods on po-
tential variations, it is not practical to train classifiers to be
robust to all possible variations. Due to this limitation, im-
proving the test time methods which either adapt the classi-
fier to unseen domains or abstain from making predictions
such as TT-NSS by explicitly transforming the test sample
into known styles are essential for DG.

4.2. Effectiveness of NSS at improving risk-averse
predictions from DG classifiers

Here we demonstrate the advantage of using the NSS
training procedure for improving the reliability of the clas-
sifier’s predictions. Specifically, we use the NSS losses
with that of the ERM-based DG method and minimize the
misclassification loss on source domain samples along with
minimizing the style misclassification and style consistency
losses. For training NSS with ERM we used four randomly
sampled style images to compute the style smoothed losses
in our experiments since we did not observe any signifi-
cant performance difference with using more images. The
use of a small number of style-transformed images during

NSS training allows us to train DG classifiers without sig-
nificantly increasing the computational cost compared to
that of training with ERM. The stylized images were gen-
erated by using the AdaIN-based decoder pre-trained using
data from MS-COCO [49] as content and Wikiart as style.
Our results in Table 1 and Table 7 (in the Appendix) show
that classifiers trained with NSS achieve a significantly bet-
ter area under curve compared to classifiers trained with
ERM on PACS, VLCS and OfficeHome datasets in both
single and multiple source domain settings. The improve-
ments in AUC become more evident on variations of these
datasets generated by changing to Wikiart style or using
common corruptions. This boost in the AUC is attributed
to the style randomization and consistency losses used dur-
ing NSS training that acts as regularizers and prevents the
classifiers from overfitting to specific image styles.

Results in Fig. 3 and Figs. 8, 9, 10 (in the Appendix)
show that classifiers trained with NSS, when evaluated with
TT-NSS, achieve better accuracy on non-abstained samples
for different abstaining rates and in most cases achieve com-
petitive performance with classifiers trained with RSC and
SagNet. While in our work we used NSS with ERM, it can
be combined with any other DG method such as RSC or
SagNet to improve their accuracy on non-abstained samples
at different abstaining rates. Moreover, training the classi-
fiers with NSS improves the performance of the confidence-
based abstaining mechanism as shown in Tables 8 and 9 (in
the Appendix) but even then TT-NSS remains superior in
case of severe shifts (such as severity 5 corruptions).

4.3. Predictions on abstained samples

Here we evaluate the effectiveness of TT-NSS in cor-
rectly abstaining on samples that could lead to misclassi-
fications. We show this by showing the accuracy of the DG
classifier on the test samples that were abstained. Results
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(a) Original style
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(b) Wikiart style
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(c) Severity 3 corruptions
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(d) Severity 5 corruptions

Figure 3. Effectiveness of using NSS (with ERM) (solid lines) at producing better risk-averse predictions when evaluated with TT-NSS
in comparison to that of other DG methods (dashed lines) in a single domain setup. NSS-trained classifiers achieve significantly better
accuracy on non-abstained samples compared to classifiers trained with ERM and achieve competitive performance to classifiers trained
with RSC and SagNet at different abstaining rates on variants of the PACS dataset. (See Fig. 2 for the explanation of setting.)
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Figure 4. Accuracy on samples abstained from a prediction by TT-
NSS in single (SD) (a, b) and multiple (MD) (c,d) domain settings
on the PACS dataset. (Test domains are denoted in the legend.)

in Fig. 4 show that using a small value of the threshold α
where TT-NSS abstains on few samples, the accuracy on ab-
stained samples is significantly lower for classifiers trained
with ERM and NSS in both single and multiple source do-
main settings on the PACS dataset (original style). This
is in comparison to the standard accuracy of the classifier
(recovered at 100% abstaining rate). The low accuracy on
abstained samples suggests that TT-NSS correctly refrains
from making predictions on ambiguous samples. Moreover,
the accuracy on abstained samples decreases for most test
domains for classifiers trained with NSS compared to clas-
sifiers trained with ERM, suggesting that NSS improves the
ability of TT-NSS to identify risky samples.

4.4. Effect of number of styles

Here we evaluate the effect of using different numbers
of re-stylizations of a single test image, n, in TT-NSS using
a subsample (see App. B.2) of the PACS dataset (original
style). Results in Fig. 5 show that in both single and multi-
source domain settings, using a large value of n leads to
only a small improvement in the accuracy of non-abstained
samples at higher abstaining rates whereas performance at
lower abstaining rates remains similar for different values
of n. Since using a larger value of n can slow down the
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Figure 5. The performance of TT-NSS is not significantly affected
by the value of n beyond n = 10 for single (SD) (a, b) and n = 15
in multiple (MD) (c, d) source domain settings. For the SD setting,
the classifier is trained on the Cartoon domain and evaluated on the
remaining domains in PACS, and for the MD setting, the classifier
is evaluated on the Cartoon domain after training on the rest.

inference, we use n as 10 and 15 (5 per domain) in the
single and multiple source domain settings. Evaluating a
single test sample with TT-NSS using 15 styles increases
the inference cost by mere 0.26 seconds on our hardware,
showing the potential of TT-NSS at producing risk-averse
predictions without sacrificing inference efficiency.

5. Discussion and conclusion

Our work proposed and demonstrated the effectiveness
of incorporating an abstaining mechanism based on NSS to
improve the reliability of a DG classifier’s predictions on
data from unseen domains. Using advances in neural style
transfer, our inference procedure uses the prediction con-
sistency of the classifier on stylized images to predict or
abstain on a test sample and requires only black-box access
to the DG classifier. Moreover, we proposed a training pro-
cedure to improve the reliability of a classifier’s prediction
at different abstaining rates and demonstrated its effective-
ness on various datasets and their variations. We note that
while NSS is effective at gauging the reliability of a classi-
fier’s prediction on test samples, ascertaining the robustness

8



of this prediction to arbitrary style changes is an important
open problem and will be the focus of future works.
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Appendix
We present the results of additional experiments in Ap-
pendix A followed by details of datasets used in our work
along with implementation details of our algorithm and
baselines in Appendix B.

A. Additional experiments
Here we present the results omitted in the main paper

due to space limitations. In App. A.1, we provide additional
empirical results for the comparison between TT-NSS and
the confidence-based abstaining mechanism on the VLCS
dataset and the multi-source domain setting. In App. A.2,
we provide additional empirical results demonstrating the
effectiveness of models trained with NSS when evaluated
with TT-NSS and the confidence-based abstaining mecha-
nism on different datasets in both single and multi-domain
settings.

A.1. Additional results on the comparison of TT-
NSS and confidence-based abstaining

Here we present results on the comparison of TT-NSS
and confidence-based abstaining using the AUC metric, and
present results on the VLCS dataset both in single and
multi-domain settings. Our results in Tables 3, 4 and 5, 6
show that similar to the results presented in Fig. 2 in the
main paper, the AUC for the accuracy versus the percentage
of abstained samples curve is significantly better for TT-
NSS compared to confidence-based abstaining in the single
domain setting and is competitive on the multi-domain set-
ting. The advantage of TT-NSS becomes clear when evalu-
ated on data from Wikiart and corrupted domains. This ad-
vantage of TT-NSS holds regardless of the training method
used for training the DG classifier or the dataset used.

In Figs. 6 and 7, we show the full accuracy versus per-
centage of abstained sample curves for classifiers trained
on PACS and VLCS dataset in both the single and multi-
domain setting. The results show that the performance of
the DG classifier when evaluated with TT-NSS remains bet-
ter or competitive with the performance of the confidence-
based abstaining method for most domains and most of the
range of abstaining rates.

A.2. Additional results on the effectiveness of NSS
at improving risk-averse predictions

In this section, we present additional empirical results
on the effectiveness of training DG models with NSS (com-
bined with ERM) on different datasets and settings. Simi-
lar to the results in Sec. 4.2 in the main paper, we observe
that models trained with NSS achieve consistently better
AUC than models trained with ERM on different variants
of PACS, VLCS and OfficeHome datasets as shown in Ta-
ble 7. The highest improvement is observed when classifiers

are evaluated on test sets corrupted with severity 5 corrup-
tions. Similar to Fig. 3, we observe in Fig. 8, 9, 10 that NSS
trained models achieve better accuracy on non-abstained
samples on most domains compared to the models trained
with ERM. Incorporating NSS with ERM makes the perfor-
mance similar to that of other SOTA DG methods such as
RSC and SagNet. Due to the versatility of NSS to be com-
bined with any DG method, training classifiers with RSC
and SagNet in conjunction with NSS could lead to further
improvement in the accuracy of the classifier trained with
these SOTA DG methods on non-abstained samples when
evaluated with TT-NSS. Lastly, classifiers trained with NSS
also perform better in terms of risk-averse predictions when
using the confidence-based abstaining mechanism as shown
in Tables 8 and 9. As mentioned in Sec. 4.2, TT-NSS re-
mains superior in the presence of severe shifts such as those
induced by adding severity 5 corruptions for all the datasets
in both single and multi-domain settings.

B. Dataset and experimental details

All codes are written in Python using Tensor-
flow/Pytorch and were run on an AMD EPYC 7J13 CPU
with 200 GB of RAM and an Nvidia A100 GPU. Imple-
mentation and hyperparameters are described below.

B.1. Dataset description

In this work, we use three popular benchmark datasets
along with their stylized and corrupted version to evaluate
the performance of various methods. For single source do-
main setting, we use 90% of the data for training and 10%
for hyperparameter tuning, and for multi-domain setting,
we use 80% of the data for training and 20% for hyperpa-
rameter tuning.

PACS [47]: This dataset contains images from four do-
mains Art, Cartoons, Photos, and Sketches. It contains 9991
images belonging to 7 different classes.

VLCS [22]: This dataset contains images from four do-
mains Caltech101, LabelMe, SUN09, PASCAL VOC 2007.
It contains 10729 images belonging to 5 different classes.

Office-Home [72]: This dataset contains images from
four domains Art, Clipart, Product, and Real. It contains
15588 images belonging to 65 different classes.

B.2. Details of the subsample used for reporting the
evaluation results in Sec. 4.4

As mentioned in Sec. 4, we use a subsample of the PACS,
VLCS and OfficeHome datasets to present the results of us-
ing TT-NSS and confidence based abstaining on corrupted
variants of the datasets and for the experiment in Sec. 4.4
with different values of n in TT-NSS. For reporting the re-
sults on the corrupted version of the dataset we used 10 im-
ages per class from VLCS/PACS and 2 images per class
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Table 2. Results on single and multi-domain generalization set-
tings using ResNet50 as the backbone on the PACS dataset us-
ing RSC [37] and SagNet [56]. The original work, RSC [37],
only reports multi-domain results (presented without *) while Sag-
Net [56], only reported results based on the ResNet-18 backbone
in the original paper. We used their official implementation us-
ing ResNet-50 as the backbone to obtain results for both single
and multi-domain settings (reported with *) (see details in Ap-
pendix B.3.1).

DG Setting Methods A C P S Avg.

Single RSC* 72.55 77.30 47.88 57.54 63.82
SagNet* 77.45 78.36 52.39 53.96 65.54

Multi
RSC 87.89 82.16 97.92 83.35 87.83
RSC* 85.79 79.60 95.03 81.52 85.49

SagNet* 86.00 81.29 97.47 80.72 86.37

from the OfficeHome dataset. We report average result over
all 10 corruption types for this experiment.

For the experiment in Sec. 4.4 we used the following sub-
sample. For the single source domain setting, we report the
results on a balanced subsample of the dataset containing 50
images from each class and each target domain for PACS.
For the multi-domain setting, we use 100 images for each
class of the target domain for PACS. For classes with fewer
samples, we use all the samples from that class

B.3. Experimental details

B.3.1 Reproducing the baselines

For the RSC [37] method, we independently run the code
using the official implementation published by the authors,
using different configurations (https://github.com/
DeLightCMU/RSC). We trained both multi-domain and
single-domain RSC [37] classifiers with the same hyper-
parameters except for smaller batch size 2 and a learn-
ing rate of 0.0001 on one random seed. For the SagNet
[56], we reproduce their open-source implementation code
with the default configuration on three different random
seeds (https://github.com/hyeonseobnam/
sagnet). We use the official train and test split of PACS
for all three methods. Table 2 shows our reproduced results
and the results the authors reported in their papers.

B.3.2 Training classifiers with NSS

To train the classifiers with NSS, we incorporate style
augmentation and style consistency losses computed on
stylized versions of the source domain images generated
through the AdaIN decoder. We additionally incorporate
the ERM training loss which minimizes the misclassifica-
tion on original source domain samples. As mentioned in
Sec. 3 other losses used in specific DG algorithms can also
be incorporated to improve the quality of risk-averse predic-

tions from classifiers trained with those methods. To com-
pute the style consistency loss we use four different styles
for every sample in the batch and use a batch size of 16.
These losses are then used to fine-tune the ResNet50 back-
bone augmented with a fully connected layer used for clas-
sification. For the multi-domain setting, the classifier that
achieves the highest accuracy on the validation set is used
for final evaluation whereas for the single source domain
setting, the classifier at the last step is used for final evalua-
tion.
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Table 3. Comparison of the area under the accuracy ver-
sus percentage of abstained samples curve for TT-NSS and the
confidence-based abstaining mechanism in a single domain setting
on different variations of the PACS dataset. The training domain
is denoted in the columns.

A C P S
Alg. Evaluation Original Style

ERM Confidence 0.882 0.875 0.634 0.707
TT-NSS 0.875 0.878 0.662 0.702

RSC Confidence 0.892 0.899 0.705 0.779
TT-NSS 0.858 0.912 0.682 0.794

SagNet Confidence 0.913 0.91 0.741 0.758
TT-NSS 0.889 0.88 0.726 0.771

Wikiart Style

ERM Confidence 0.84 0.757 0.609 0.558
TT-NSS 0.854 0.816 0.643 0.626

RSC Confidence 0.823 0.766 0.63 0.662
TT-NSS 0.835 0.887 0.654 0.733

SagNet Confidence 0.871 0.8 0.683 0.61
TT-NSS 0.875 0.813 0.692 0.718

Corrupted with severity 3

ERM Confidence 0.832 0.709 0.613 0.612
TT-NSS 0.886 0.812 0.622 0.545

RSC Confidence 0.871 0.667 0.673 0.62
TT-NSS 0.901 0.86 0.682 0.699

SagNet Confidence 0.903 0.78 0.725 0.629
TT-NSS 0.901 0.794 0.731 0.667

Corrupted with severity 5

ERM Confidence 0.696 0.579 0.418 0.479
TT-NSS 0.834 0.708 0.519 0.468

RSC Confidence 0.728 0.449 0.564 0.465
TT-NSS 0.863 0.776 0.626 0.613

SagNet Confidence 0.786 0.576 0.565 0.485
TT-NSS 0.855 0.686 0.666 0.59

Table 4. Comparison of the area under the accuracy ver-
sus percentage of abstained samples curve for TT-NSS and the
confidence-based abstaining mechanism in a single domain setting
on different variations of the VLCS dataset. The training domain
is denoted in the columns.

A C P S
Alg. Evaluation Original Style

ERM Confidence 0.653 0.68 0.806 0.715
TT-NSS 0.567 0.724 0.851 0.751

Wikiart Style

ERM Confidence 0.426 0.584 0.763 0.679
TT-NSS 0.477 0.682 0.785 0.704

Corrupted with severity 3

ERM Confidence 0.504 0.381 0.734 0.468
TT-NSS 0.468 0.551 0.689 0.471

Corrupted with severity 5

ERM Confidence 0.433 0.329 0.563 0.346
TT-NSS 0.411 0.439 0.567 0.415

Table 5. Comparison of the area under the accuracy ver-
sus percentage of abstained samples curve for TT-NSS and the
confidence-based abstaining mechanism in a multi-domain setting
on different variations of the PACS dataset. The domain used for
evaluation is denoted in the columns.

A C P S
Alg. Evaluation Original Style

ERM Confidence 0.95 0.902 0.986 0.915
TT-NSS 0.893 0.9 0.978 0.911

RSC Confidence 0.925 0.908 0.978 0.936
TT-NSS 0.948 0.926 0.983 0.917

SagNet Confidence 0.951 0.932 0.988 0.905
TT-NSS 0.927 0.939 0.984 0.925

Wikiart Style

ERM Confidence 0.898 0.85 0.975 0.892
TT-NSS 0.816 0.876 0.97 0.886

RSC Confidence 0.81 0.842 0.915 0.828
TT-NSS 0.911 0.916 0.976 0.891

SagNet Confidence 0.858 0.898 0.977 0.886
TT-NSS 0.869 0.933 0.977 0.897

Corrupted with severity 3

ERM Confidence 0.79 0.918 0.947 0.909
TT-NSS 0.771 0.898 0.878 0.923

RSC Confidence 0.673 0.868 0.802 0.851
TT-NSS 0.856 0.934 0.941 0.933

SagNet Confidence 0.842 0.913 0.948 0.873
TT-NSS 0.845 0.948 0.953 0.924

Corrupted with severity 5

ERM Confidence 0.539 0.85 0.852 0.845
TT-NSS 0.621 0.856 0.837 0.888

RSC Confidence 0.405 0.734 0.505 0.673
TT-NSS 0.719 0.904 0.875 0.903

SagNet Confidence 0.649 0.855 0.845 0.764
TT-NSS 0.696 0.914 0.878 0.877

Table 6. Comparison of the area under the accuracy ver-
sus percentage of abstained samples curve for TT-NSS and the
confidence-based abstaining mechanism in a multi-domain setting
on different variations of the VLCS dataset. The domain used for
evaluation is denoted in the columns.

A C P S
Alg. Evaluation Original Style

ERM Confidence 0.986 0.752 0.88 0.831
TT-NSS 0.968 0.772 0.86 0.776

Wikiart Style

ERM Confidence 0.954 0.747 0.815 0.691
TT-NSS 0.941 0.744 0.822 0.678

Corrupted with severity 3

ERM Confidence 0.908 0.601 0.678 0.599
TT-NSS 0.785 0.553 0.692 0.476

Corrupted with severity 5

ERM Confidence 0.775 0.526 0.483 0.427
TT-NSS 0.626 0.477 0.54 0.388
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(c) Severity 3 corruptions
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(g) Severity 3 corruptions
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Figure 6. Comparison of TT-NSS (solid lines) and confidence-based method (dashed lines) in a single (top row) and multi-source (bottom
row) domain setup on classifiers trained with ERM. The graphs show accuracy vs abstained points on different variants of the PACS dataset
((a) original, (b) wikiart, (c,d) corrupted), and different source/target domains. In most domains, the accuracy of the TT-NSS (solid line) is
similar to or better than the corresponding accuracy of the confidence-based method (dashed line) for most of the range of the percentage of
abstained samples. (Note: The source domain from PACS used for training is denoted in the title and the target domain used for evaluation
is denoted in the title in the bottom row.)
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Figure 7. Comparison of TT-NSS (solid lines) and confidence-based method (dashed lines) in a single (top row) and multiple (bottom row)
source domain setup on classifiers trained with ERM. The graphs show accuracy vs abstained points on different variants of the VLCS
dataset ((a) original, (b) wikiart, (c,d) corrupted), and different source/target domains. In most domains, the accuracy of the TT-NSS (solid
line) is similar to or better than the corresponding accuracy of the confidence-based method (dashed line) for most of the range of the
percentage of abstained samples. (Note: The source domain from VLCS used for training is denoted in the title in the top row and the
target domain used for evaluation is denoted in the title in the bottom row.)
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Table 7. Effectiveness of NSS at producing a better AUC score compared to classifiers trained with ERM in a multiple source domain
setting on PACS, VLCS, and OfficeHome datasets and their variations when evaluated with TT-NSS. (The target domain used for evaluation
is denoted in the columns).

PACS VLCS OfficeHome
Alg. A C P S C S L V A C P R

Original Style
ERM 0.893 0.9 0.978 0.911 0.968 0.772 0.86 0.776 0.683 0.679 0.815 0.83
NSS 0.95 0.884 0.98 0.914 0.985 0.769 0.865 0.818 0.72 0.749 0.836 0.849

Wikiart Style
ERM 0.816 0.876 0.97 0.886 0.941 0.744 0.822 0.678 0.578 0.534 0.692 0.726
NSS 0.926 0.869 0.971 0.909 0.98 0.766 0.85 0.775 0.667 0.713 0.798 0.825

Corrupted with severity 3
ERM 0.771 0.898 0.878 0.923 0.785 0.553 0.692 0.476 0.5 0.64 0.677 0.715
NSS 0.889 0.933 0.943 0.933 0.959 0.605 0.706 0.632 0.587 0.697 0.738 0.812

Corrupted with severity 5
ERM 0.621 0.856 0.837 0.888 0.626 0.477 0.54 0.388 0.387 0.53 0.554 0.59
NSS 0.792 0.854 0.88 0.902 0.898 0.53 0.611 0.517 0.473 0.648 0.628 0.721
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Figure 8. Effectiveness of using NSS (with ERM) (solid lines) at improving the ability of DG classifiers at producing risk averse predictions
when evaluated with TT-NSS in comparison to that of other DG methods (dashed lines) in a multi-domain setup. NSS-trained classifiers
achieve significantly better accuracy on non-abstained samples compared to classifiers trained with ERM and achieve competitive perfor-
mance to models trained with RSC and SagNet at different abstaining rates on variants of the PACS dataset in a multi-source domain setup.
(See Fig. 6 for the explanation of settings.)
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Figure 9. Effectiveness of using NSS (with ERM as the base DG method) (solid lines) at improving the ability of DG to produce risk-averse
predictions when evaluated with TT-NSS making it superior or competitive to classifiers trained with ERM (dashed lines) on variants of
the VLCS (top row) and OfficeHome (bottom row) dataset in a single source domain setup. (See Fig. 2 for the explanation of settings.)
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Figure 10. Effectiveness of using NSS (with ERM as the base DG method) (solid lines) at improving the ability of DG to produce risk-
averse predictions when evaluated with TT-NSS making it superior or competitive to classifiers trained with ERM (dashed lines) on variants
of the VLCS (top row) and OfficeHome (bottom row) dataset in a multi-source domain setup. (See Fig. 6 for the explanation of settings.)
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Table 8. Effectiveness of NSS at producing a better AUC score compared to classifiers trained with ERM in a single source domain setting
on PACS, VLCS, and OfficeHome datasets and their variations when evaluated with the confidence-based abstaining mechanism. (The
source domain used for training is denoted in the columns).

PACS VLCS OfficeHome
Alg. A C P S C L S V A C P R

Original Style
ERM 0.882 0.875 0.634 0.707 0.653 0.68 0.806 0.715 0.743 0.717 0.699 0.789
NSS 0.907 0.923 0.733 0.665 0.671 0.687 0.838 0.74 0.739 0.72 0.708 0.778

Wikiart Style
ERM 0.84 0.757 0.609 0.558 0.426 0.584 0.763 0.679 0.545 0.364 0.334 0.484
NSS 0.871 0.885 0.672 0.526 0.535 0.655 0.816 0.722 0.705 0.658 0.64 0.749

Corrupted with severity 3
ERM 0.832 0.709 0.613 0.612 0.504 0.381 0.734 0.468 0.596 0.412 0.411 0.586
NSS 0.871 0.865 0.754 0.549 0.592 0.631 0.771 0.522 0.666 0.586 0.566 0.595

Corrupted with severity 5
ERM 0.696 0.579 0.418 0.479 0.433 0.329 0.563 0.346 0.416 0.243 0.223 0.388
NSS 0.769 0.746 0.667 0.434 0.454 0.576 0.635 0.4 0.546 0.49 0.415 0.42

Table 9. Effectiveness of NSS at producing a better AUC score compared to classifiers trained with ERM in a multiple source domain
setting on PACS, VLCS, and OfficeHome datasets and their variations when evaluated with the confidence-based abstaining mechanism.
(The target domain used for evaluation is denoted in the columns).

PACS VLCS OfficeHome
Alg. A C P S C L S V A C P R

Original Style
ERM 0.95 0.902 0.986 0.915 0.986 0.752 0.88 0.831 0.802 0.721 0.889 0.905
NSS 0.955 0.896 0.985 0.922 0.987 0.706 0.86 0.829 0.783 0.767 0.876 0.884

Wikiart Style
ERM 0.898 0.85 0.975 0.892 0.954 0.747 0.815 0.691 0.601 0.588 0.726 0.796
NSS 0.927 0.898 0.982 0.92 0.982 0.705 0.833 0.781 0.707 0.747 0.829 0.838

Corrupted with severity 3
ERM 0.79 0.918 0.947 0.909 0.908 0.601 0.678 0.599 0.529 0.584 0.74 0.717
NSS 0.887 0.909 0.955 0.922 0.966 0.594 0.735 0.627 0.647 0.735 0.775 0.808

Corrupted with severity 5
ERM 0.539 0.85 0.852 0.845 0.775 0.526 0.483 0.427 0.362 0.475 0.581 0.551
NSS 0.735 0.881 0.887 0.833 0.91 0.508 0.621 0.44 0.528 0.66 0.672 0.688
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