
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 5813–5820

Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

5813

Comparing Approaches to Language Understanding for Human-Robot

Dialogue: An Error Taxonomy and Analysis

Ada D. Tur†, David R. Traum††

†Los Altos High School, Los Altos, CA, 94022, USA,
††University of Southern California Institute for Creative Technologies, Playa Vista, CA 90094, USA

adadtur@gmail.com, traum@ict.usc.edu

Abstract

In this paper, we compare two different approaches to language understanding for a human-robot interaction domain in which a

human commander gives navigation instructions to a robot. We contrast a relevance-based classifier with a GPT-2 model, using

about 2000 input-output examples as training data. With this level of training data, the relevance-based model outperforms the

GPT-2 based model 79% to 68%, and an Oracle combination set an upper-bound of 85%. We also present a taxonomy of types

of errors made by each model, indicating that they have somewhat different strengths and weaknesses, so we also examine the

potential for a combined model.

Keywords: Dialogue, Human-Robot Interaction, Evaluation, Error Taxonomy

1. Introduction

There are many approaches toward language under-

standing for human-robot interaction. Some involve

domain-specific or general grammars of understand-

able utterances, combined with appropriate actions to

perform. Another approach is to learn an appropriate

output from supervised training data which pairs ap-

propriate outputs with given inputs. A third approach

is to ªfine-tuneº a general purpose predictive language

model with domain-specific data. We compare two in-

stances of the latter two approaches in a domain where

the task is to ªtranslateº natural language instructions to

a more restricted language that can be directly executed

by a robot navigator. Actionable commands can be di-

rectly translated, while other utterances require com-

munication directly with the user.

In previous work, (Gervits et al., 2021) was able to

achieve over 75% accuracy using a classification ap-

proach. We have retested with additional training data

on the same test data, both with the same classifier soft-

ware used by (Gervits et al., 2021), as well as a new ap-

proach involving fine-tuning a large scale pre-trained

transformer-based language model (GPT-2) (Radford

et al., 2018). The original model shows a small im-

provement over the previous results with a smaller

training set, while the GPT model is not quite as ac-

curate. An error analysis shows that the models make

some different errors, so we also investigate the poten-

tial for combining the two approaches.

We first constructed a revised taxonomy of errors and

classify each of the 183 examples in the test set for both

models as to whether they are correct or which category

they fall in. We then create a confusion matrix showing

which types of errors are more common to each model.

We conclude with some preliminary steps toward com-

bining the models to reduce the total number of errors.

2. Related Work

Many different forms of statistical analysis have been

utilized for the task of human-machine interaction (Ser-

ban et al., 2016; Bonial et al., 2017). For instance, the

ªcorpus-based approachº, where the system is trained

on data from a target domain, has been used for human-

robot dialogue (Marge et al., 2017b; Marge and Rud-

nicky, 2011).

In the past few years, there have been several corpora

related to human-robot interaction for navigation and

object manipulation in 3D environments. In the Room-

to-Room (R2R) (Anderson et al., 2018) dataset, each

example includes a natural language instruction that

the agent needs to follow to navigate in a real-world

environment from the Matterport3D dataset (Chang et

al., 2017). Cooperative Vision-and-Dialog Navigation

(CVDN) (Thomason et al., 2020) is a also a natural

language dataset situated in the Matterport Room-2-

Room (R2R) simulation environment, however, in this

dataset, the human and agent engage in a multi-turn

conversation to complete the navigation task.

One barrier for many human-robot interaction tasks is

the problem of misinterpreting, or not having adequate

context to complete a task. There can be circumstances

where a robot is told to move towards a specific land-

mark, without having an understanding of the specific

setting and the landmarks around it. However, this is-

sue has been addressed with changes to how data is an-

notated for a model, such that it is uniquely marked for

turns with language that is grounded to the conversa-

tional or situational context. There is also a separation

between data that is used for training dialogue systems

in general contexts from data intended for a particular

situated environment (Bonial et al., 2021).

ScoutBot is a dialogue interface for physical and sim-

ulated robots that supports collaborative exploration of



5814

Figure 1: Human/Robot data collection setup (from (Marge et al., 2017a)).

environments (Lukin et al., 2018). Users can issue un-

constrained spoken language commands to ScoutBot.

ScoutBot prompts for clarification if the user’s instruc-

tion is unclear or needs additional input. It is trained

on human-robot dialogue collected from Wizard-of-Oz

experiments, where robot responses were initiated by a

human wizard in previous interactions. The demonstra-

tion shows a simulated ground robot (Clearpath Jackal)

in a simulated environment supported by ROS (Robot

Operating System) (Quigley et al., 2009). ScoutBot

uses a classification approach described in (Gervits et

al., 2021). It relies on the similarity score using a statis-

tical language model as described in detail in (Leuski

and Traum, 2010).

The recent ALFRED data set (Shridhar et al., 2020) fo-

cuses on human-robot interaction including multi-step

everyday tasks. Transformer-based approaches have

proven to be effective for this task (Jansen, 2020). For

instance, OpenAI’s GPT-2 model (Radford et al., 2018)

has had success with the task, achieving an accuracy of

5% higher, on average, than approaches using Recur-

rent Neural Networks. As a result, we believe explor-

ing the capabilities of transformer-based models for a

similar task, such as ScoutBot, could be promising.

3. Task Description

The ScoutBot domain concerns collaborative naviga-

tion for urban search and rescue scenarios. In this task,

a remotely located robot is performing certain naviga-

tion tasks as instructed by a Commander (Gervits et al.,

2021). A participant, acting as the ªCommander,º is-

sues verbal instructions to the robot partner. There are

two main modules controlling robot behavior, which

were operated by Wizards in Early data collection ex-

periments. The ªDialogue Managerº(DM) interprets

the commander’s instructions and translates them to

simplified versions and sends to the ªRobot Naviga-

torº (RN). The RN then controls the robot to execute

the instruction. The Commander and DM-wizard can

see the robot actions on a dynamically updated 2D LI-

DAR1 map. The RN then indicates completion or any

problems, and DM conveys this information in Natu-

ral Language back to the Commander. Figure 1 depicts

the Wizard-of-Oz-based data collection setup, and Fig-

ure 2 provides an example of how information is passed

back and forth, using the dialogue structure annotations

from (Traum et al., 2018).

Following (Gervits et al., 2021), the task for the dia-

logue manager is to interpret the commander’s utter-

ance and either translate it to an equivalent robot com-

mand using simplified language, or to give feedback to

the commander if it is not executable without more in-

formation. Below are examples of natural language ut-

terances with robot commands. If multiple commands

are required they are separated by the keyword ªthenº.

taskDesc: please move forward um five feet

annotation: move forward five feet

taskDesc: move west fifteen feet

annotation: turn to face west then move forward fif-

teen feet

4. Approach

We compare several different NLU methods. First, we

report the best results from(Gervits et al., 2021), using

the NPCEDitor and a training set containing 966 user

utterances, 483 distinct system responses, and 995 links

between user utterances and system responses. The

current ScoutBot system uses an updated training set,



5815

Figure 2: Example annotation from human-robot interaction corpus (from (Gervits et al., 2021)).

Figure 3: The NPCEditor system design (left) and character editor screen (right)

including 2058 user utterances, 493 system responses,

and 2153 links. We also report on the performance of

the NPCEditor on this extended dataset. The same ex-

tended training set is also used to fine-tune a generative

model. We also report on combinations of the latter

two models.

4.1. NPCEditor

NPCEditor is a system for building a natural language-

processing component for virtual humans capable of

engaging a user in spoken dialogue on a limited do-

main (Leuski and Traum, 2011). It uses statistical

language-classification technology for mapping from a

user’s text input to system responses. NPCEditor pro-

vides a user-friendly editor for creating effective vir-

tual humans quickly. It has been deployed as a part

of various virtual human systems in several applica-

tions (Traum et al., 2012; Traum et al., 2015). NPCEd-

itor functions primarily with the usage of a ‘Dialogue

Manager’, which utilizes a classifier-based approach.

The classifier consists of a statistical language model

for each class, which is used to compute the cross-

language relevance for each commander instruction.

See (Leuski and Traum, 2010) for more information.

The system design of the NPCEditor program is shown

in the left part of Figure 3. Each character has a respec-

tive fine-tuned classifier such that the inputs and out-

puts associated with each character and its classifica-

tion are distinct from others in the server. The character

editor screen is the interface used by users to define the

inputs and outputs specific to a character. Each output

is paired to at least one input, and each pair is defined

in the interface as a training, evaluation, or testing ex-

ample for the classifier. In this way, users can define

the sizes of each data set, and the number of examples

in each by providing the examples for the classifier to

use.

4.2. Generative Model Training

The conversational deep learning model used is the

OpenAI GPT-2 model (Radford et al., 2018), an

auto-regressive model, utilized for the generation

of responses to model tasks that a robot can inter-

pret directly, rather than classification. We decided

to utilize GPT-2 for this generative task based on

prior work with other generative NLP tasks, like

question-answering, textual entailment, and textual

summarization (Radford et al., 2019). In GPT, the



5816

Approach Name Accuracy

NPCEditor 79.23%

(Gervits et al., 2021) 75.41%

OpenAI GPT-2, 25 epoch 68.31%

Oracle Combination 84.69%

Decision Level Combination 79.78%

Table 1: Experimental results using the NPCEditor and

GPT-2 based approaches.

attention layer only attends to earlier positions in the

output sequence using the causal language model

objective (in contrast to masked language model

objective). The model is fine-tuned on the ScoutBot

data, a list of natural language commands a user may

make to the robot, along with a gold standard format

of the simplified command that the OpenAI GPT-2

should aim to predict. For each training instance, we

separate each line by:

<Directive> [SEP]

<CommandTuple1> [CSEP]

<CommandTuple2> [CSEP]

... [CSEP]

<CommandTupleN> [EOS]

For example:

move west fifteen feet [SEP] turn to face west

[CSEP] move forward fifteen feet [EOS]

The GPT-2 Medium transformer model used con-

sists of 24 layers, 16 attention heads, and 325 million

parameters, and contains decoder cells, meaning it

uses masked self attention, where attention heads

consider only what has appeared previously in a se-

quence, making it an auto-regressive generative model.

During the generation process, top-k and nucleus

sampling (Holtzman et al., 2019) were employed with

beam search using the Huggingface Transformers

library1. The OpenAI GPT was trained on 25 epochs.

5. Experiments and Results

As described above, the training set used in this study

consists of 2058 manually annotated examples, with

robot commands. The test set used for this task is the

same as that used in (Gervits et al., 2021) and was

derived from previously unseen, annotated dialogues,

which remained unprocessed, with the exception of

instruction-response extraction for each dialogue. This

test set consists of 183 instruction-response pairs, and

each instruction was input to both the NPCEditor and

the OpenAI GPT. Overall, we attempted separate trials

for both models, and also different combinations be-

tween them, in order to accommodate for the strengths

and weaknesses between both models. The results

1https://huggingface.co/docs/transformers/model doc/gpt2

are presented in Table 1. The NPCEditor trained on

the extended dataset achieved an accuracy of 79.23%,

improving slightly on the previously reported results

from (Gervits et al., 2021) (75.41%). The GPT-2

model performed worse, with an accuracy of 68.3%.

However, the GPT-2 model did accurately recognize

some instances that were missed by the NPCEditor,

so we also computed the performance of an ªoracleº

that could correctly choose the best response when the

two differed. This oracle combination had an accuracy

of 84.7%. We also tested a decision level combina-

tion, which divided tasks between the GPT-2 and the

NPCEditor, giving all tasks with numerical values to

the GPT-2, and all others to the NPCEditor, and this

combination resulted in an accuracy of 79.78%.

6. Error Analysis and Error Taxonomy

In order to get a more detailed sense of the types of er-

rors that each model made, we manually classified each

error according to a new error taxonomy, extending the

analysis from (Gervits et al., 2021), which included

the following error categories: ‘Felicitous’, ‘Approx-

imate’, ‘Context-Dependent’, ‘Wrong’, and ‘No Re-

sponse’. Instead of looking at whether an answer

was wrong or close, we focused on several identifiable

sources of error. Our presented taxonomy is shown in

Table 2. We define each of these below, with examples

from the test set, then present a full confusion matrix

showing the distribution of errors of each model.

Error Types

Genuine

Hallucination

No Response

Contextual

Numerical

Directional

Felicitous

Table 2: Error types

6.1. Error Types

Errors made by the OpenAI GPT-2 and the NPCEditor

can be categorized into 7 different groupings: Genuine

Errors, Hallucinations, No Response Cases, Contextual

Errors, Numerical Errors, Directional Errors, and Fe-

licitous Errors.

The first error category is the Genuine Errors. Gen-

uine Errors are errors where a model (the OpenAI GPT-

2 or NPCEditor) produces output that has great vari-

ance semantically from the gold standard, such that if

executed the robot would do the wrong thing. This is

equivalent to the ‘Wrong’ error category in (Gervits et

al., 2021). Examples of Genuine Errors include:

• taskDesc: go one foot north

annotation: move forward one foot

predicted: turn to face north



5817

• taskDesc: center in front of calendar

annotation: move forward to front of calendar

predicted: move into room

Hallucinations are errors where the model inserts ob-

jects, locations, or entities that do not exist in the task

description or context, such that an extraneous addi-

tion to the description of the task completion is added

unnecessarily. While in theory, a classifier model like

NPCEditor could produce hallucinations, where the

closest match includes additional information, in prac-

tice we saw only the GPT-2 model make them. Exam-

ples of Hallucinations are:

• taskDesc: go three feet

annotation: move forward three feet

predicted: move three feet towards green arrow

No Response cases are circumstances where a model

returns no response to the task description, usually

when potential responses have too low of a confidence

level to be returned. No Response errors were made

only by the NPCEditor, as the GPT-2 model always

produces some output, regardless of its confidence,

whereas the NPCEditor has an option to return no re-

sponse (in which case the dialogue manager would ask

the commander to say it again or rephrase). Gener-

ally, a No Response is preferred to other error types,

assuming the response of the model is executed in a

real-world scenario, as the No Response implies that

the Commander must repeat the task with a different

wording that the model may understand, whereas other

error types may result in an incorrect execution of the

command. Examples of No Response include:

• taskDesc: go back <pause> to table

annotation: move back towards table

predicted: [no response]

Contextual Errors occur in situations where the gold

standard has more information than a model, in the

form of the layout of a building, the direction the robot

is facing at the time of the task, objects in the envi-

ronment, etc. Usually, the input includes some under-

specified referring expressions that require contextual

information to fully disambiguate into actionable com-

mands. The model does not resolve the intended ref-

erent and merely passes on an equivalently context-

dependent referring expression. Both the OpenAI GPT-

2 and the NPCEditor commonly make Contextual er-

rors. This category is equivalent to the ‘Context-

Dependent’ category in (Gervits et al., 2021). Con-

textual errors can be potentially solved using either a

map of the environment as a further parameter for the

training and testing of both models, or with the inclu-

sion of computer vision into the algorithm, such that

the robot has the capacity to analyze and interpret its

surroundings. Instances where the models make Con-

textual errors are:

• taskDesc: go towards poster on left

annotation: move to budapest poster

predicted: move to poster on left

• taskDesc: go forward to nearest door well

annotation: move to dark room hall doorway

predicted: move forward to nearest door well

Numerical Errors are where a model makes errors re-

garding a numerical feature of the task. For instance,

the model may return an incorrect value for degrees

turned, distance moved, and other numerically-based

descriptions. An approach toward solving and numeri-

cal errors would be to use a number tagger during pre-

processing. Examples of some Numerical errors are:

• taskDesc: five degrees to your left

annotation: turn left five degrees

predicted: turn left 45 degrees

Directional Errors occur when a model returns a re-

sult that includes an incorrect direction parameter, for

example direction to turn, or direction to move in.

There are also instances where either model makes both

a Directional and Contextual Error, such that the di-

rection may be correct, but it does not match the gold

standard. A direction tagger could be used in pre-

processing, similar to Numerical errors, in order to han-

dle them. Cases where Directional errors are made are:

• taskDesc: go one foot north

annotation: move forward one foot

predicted: turn to face north

• taskDesc: center in front of calendar

annotation: move forward to front of calendar

predicted: move into room

• taskDesc: turn right <pause> forty five degrees

annotation: turn right forty five degrees

predicted: turn left 45 degrees

Felicitous Errors are cases where a model’s response

returned does not match the gold standard, but the re-

sult is identical in meaning to the gold standard. For ex-

ample, the gold standard may have a different ordering

of words, or different terms used that the model was un-

able to match accurately. However, if the model were

to execute the returned task with a robot, it would be

able to complete the task correctly, even when it does

not match the gold standard. Generally, Felicitous er-

rors do not need further analysis to solve, as they do not

effect robot performance. An example is:

• taskDesc: and move to the east five feet

annotation: turn to face east then move forward

five feet

predicted: move to the east five feet



5818

Errors NPCEditor% GPT-2 %

Genuine 10% 37%

Hallucination 0% 6%

No Response 8% 0%

Contextual 16% 16%

Numerical 24% 7%

Directional 26% 27%

Felicitous 16% 7%

Table 3: Distributions of error types between the GPT-

2 and NPCEditor

6.2. Error Comparison

Table 3 shows the proportion of error types for each

recognizer. While they make a similar proportion of di-

rection and contextual errors, the GPT-2 model makes

more frequent genuine and hallucination errors, while

NPCEditor makes more no response errors and numer-

ical and felicitous errors.

Table 4 shows a confusion matrix between the NPCEd-

itor and GPT-2 results. Of the 183 test instances, 104

were correctly recognized by both models, while 52

were recognized correctly by only one of the models

(41 for NPCEditor, 11 for GPT-2), and 27 were not

recognized by either. Results from the confusion ma-

trix depict an analysis of our results of both models.

In many cases, the NPCEditor and GPT-2 made the

same types of errors, with exceptions where one model

was correct or made a different type of error. For in-

stance, Hallucination errors are made only by the GPT-

2 (likely because of low confidence in a response, or

part of a response), and No Response errors are only

made by the NPCEditor, because it returns no response

when its confidence is below a threshold. The cases

where both models made the same error are the Con-

textual and Directional categories. Contextual errors

were more likely to cause an error in both models be-

cause neither model has pre-defined contextual infor-

mation for a response, while the gold standard does.

Directional errors were commonly made by both mod-

els due to common confusions between typical training

examples and the specific test examples.

6.3. System Combination and Continuations

In this work we have further explored various ways of

combining these two approaches, allowing for the op-

timization of the strengths of both models, as well as

experiments into continuations of the improvements of

the model performance.

We first analyzed how access to more training data

affects the performance of the GPT-2 model. It was

shown that with the presence of more training data,

the GPT-2 could have reached a closer accuracy to

the NPCEditor, and this was tested by limiting the ex-

isting training data and finding how the model per-

formed. Given available training data, we limited the

training data in three categories, ‘Full Training Data’,

‘Half Training Data’, and ‘Quarter Training Data’. Its

Figure 4: Learning Curve of GPT-2 with limited train-

ing data

learning curve below depicts an improvement in per-

formance given more data, which can potentially indi-

cate that once more training data is available, the GPT-2

may have better results.

For combinations, there are many different practices

that could results in improved performance. For in-

stance, the NPCEditor may make mistakes with utter-

ances consisting of numerical values, such as ªrotate

twenty five degrees to your right º, whereas the GPT-

2 model cannot handle unseen utterance types, such as

ªtake a picture looking westº. This motivated us to ex-

periment with further combination efforts.

We have explored two approaches to combine the

NPCEditor and GPT-2 predictions:

• Oracle combination: We tested the Oracle com-

bination to establish an upper-bound for the per-

formance of our models and their combinations.

The Oracle combination utilizes the responses

from either the NPCEditor or GPT-2, dependent

on which is correct for each task.

• Decision level combination: As an alternative,

we have combined the predictions based on model

characteristics, such as their confidence, or utter-

ance characteristics, such as whether it contains

numbers. We found that giving tasks that in-

clude numerical values to the GPT-2, and giving

a majority of other commands to the NPCEditor

resulted in considerably higher accuracy, as the

GPT-2 was more easily able to analyze and return

correct numerical values.

The Oracle combination improved our accuracy to

84.69%, and we received results that were 0.5% higher

than our NPCEditor using the decision level combina-

tion, which had a 79.78% accuracy.



5819

x Genuine Hallucination No Response Contextual Numerical Directional Felicitous Correct Total

Genuine 4 0 1 0 0 0 2 18 25

Hallucination 0 0 0 0 0 0 1 3 4

No Response 0 0 0 0 0 0 0 0 0

Contextual 0 0 1 6 0 0 0 4 11

Numerical 0 0 0 0 2 0 1 2 5

Directional 0 0 0 0 0 6 0 12 18

Felicitous 0 0 1 0 0 0 2 2 5

Correct 0 0 0 0 7 4 0 104 115

Total 4 0 3 6 9 10 6 145 183 each

Table 4: Confusion matrix on error categories between the NPCEditor and GPT-2, where rows correspond to GPT-

2 errors and columns correspond to NPCEditor errors

7. Conclusions and Future Work

We have presented our research on the intersections

of previously existing technologies for human-robot

interaction, compared and combined with more con-

temporary forms of deep learning-based approaches,

particularly transformer-based models. Although the

NPCEditor performs more effectively than the OpenAI

GPT-2 on the available training data, deep learning-

based models continue to show potential for growth

and improvement in the future, especially when larger

amounts of data is provided. One possible alternative to

using GPT-2 for a generative task is to utilize the Bidi-

rectional Encoder Representations from Transformers

model (BERT)-style encoders for classification. To get

the best of both worlds, we plan to explore the usage

of an encoder-decoder architecture, such as the bidi-

rectional and auto-regressive transformers (BART), as

well as other examples. Additionally, we will continue

to explore further model combinations as part of our

future work.

ScoutBot can be used to test newly emerging deep

learning approaches. In coming studies, it would be

beneficial to research how modules consisting of dif-

ferent combinations between the NPCEditor and auto-

regressive models can surpass current performance.

For instance, tasks containing distinct traits can be di-

vided between different models in order to leverage the

strengths of each model. With the error analysis con-

ducted, further context could be provided for this sepa-

ration, showing where each model achieves higher per-

formance and how models can collaborate to complete

each task. Contextual tasks, particularly for specific

landmarks in an environment, can be improved through

context used for input for an NLU classifier, with trans-

formations conducted on the input prior to classifica-

tion. The action interpreter can also handle situated

context dependent instructions.

Acknowledgements

The second author was supported in this work by the

US Army. We thank Felix Gervits for sharing the test

set used in (Gervits et al., 2021), and other members

of the Scoutbot project at the Army Research Lab and

the Institute for Creative Technologies for the updated

training set.

8. Bibliographical References

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson,

M., SÈunderhauf, N., Reid, I., Gould, S., and Van

Den Hengel, A. (2018). Vision-and-language nav-

igation: Interpreting visually-grounded navigation

instructions in real environments. In Proceedings of

the IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 3674±3683.

Bonial, C., Marge, M., artstein, R., Foots, A., Gervits,

F., Hayes, C., Henry, C., Hill, S., Leuski, A., Lukin,

S., Moolchandani, P., Pollard, K., Traum, D., and

Voss, C. (2017). Laying down the yellow brick road:

Development of a wizard-of-oz interface for collect-

ing human-robot dialogue. 10.

Bonial, C., Abrams, M., Baker, A. L., Hudson, T.,

Lukin, S. M., Traum, D., and Voss, C. R. (2021).

Context is key: Annotating situated dialogue rela-

tions in multi-floor dialogue. In Proceedings of the

25th Workshop on the Semantics and Pragmatics of

Dialogue.

Chang, A., Dai, A., Funkhouser, T., Halber, M., Niess-

ner, M., Savva, M., Song, S., Zeng, A., and Zhang,

Y. (2017). Matterport3d: Learning from rgb-d data

in indoor environments.

Gervits, F., Leuski, A., Bonial, C., Gordon, C., and

Traum, D. (2021). A classification-based approach

to automating human-robot dialogue. In Increasing

Naturalness and Flexibility in Spoken Dialogue In-

teraction: 10th International Workshop on Spoken

Dialogue Systems, pages 115±127. Springer Singa-

pore.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi,

Y. (2019). The curious case of neural text degenera-

tion. arXiv preprint arXiv:1904.09751.

Jansen, P. A. (2020). Visually-grounded planning

without vision: Language models infer detailed

plans from high-level instructions. arXiv preprint

arXiv:2009.14259.

Leuski, A. and Traum, D. (2010). Practical language

processing for virtual humans. In Twenty-Second

IAAI Conference.

Leuski, A. and Traum, D. (2011). Npceditor: Creating

virtual human dialogue using information retrieval

techniques. Ai Magazine, 32(2):42±56.

Lukin, S. M., Gervits, F., Hayes, C. J., Moolchandani,

P., Leuski, A., Rogers III, J. G., Sanchez Amaro,



5820

C., Marge, M., Voss, C. R., and Traum, D. (2018).

ScoutBot: A dialogue system for collaborative navi-

gation. In Proceedings of ACL 2018, System Demon-

strations, pages 93±98, Melbourne, Australia, July.

Association for Computational Linguistics.

Marge, M. R. and Rudnicky, A. (2011). The teamtalk

corpus: Route instructions in open spaces.

Marge, M., Bonial, C., Byrne, B., Cassidy, T., Evans,

A. W., Hill, S. G., and Voss, C. (2017a). Applying

the wizard-of-oz technique to multimodal human-

robot dialogue. arXiv preprint arXiv:1703.03714.

Marge, M., Bonial, C., Foots, A., Hayes, C., Henry,

C., Pollard, K., Artstein, R., Voss, C., and Traum,

D. (2017b). Exploring variation of natural human

commands to a robot in a collaborative navigation

task. In Proceedings of the first workshop on lan-

guage grounding for robotics, pages 58±66.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote,

T., Leibs, J., Wheeler, R., Ng, A. Y., et al. (2009).

Ros: an open-source robot operating system. In

ICRA workshop on open source software, volume 3,

page 5. Kobe, Japan.

Radford, A., Narasimhan, K., Salimans, T., and

Sutskever, I. (2018). Improving language under-

standing by generative pre-training (2018).

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,

Sutskever, I., et al. (2019). Language models are un-

supervised multitask learners. OpenAI blog, 1(8):9.

Serban, I., Sordoni, A., Bengio, Y., Courville, A., and

Pineau, J. (2016). Building end-to-end dialogue

systems using generative hierarchical neural network

models. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 30.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y.,

Han, W., Mottaghi, R., Zettlemoyer, L., and Fox,

D. (2020). Alfred: A benchmark for interpreting

grounded instructions for everyday tasks. In Pro-

ceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 10740±10749.

Thomason, J., Murray, M., Cakmak, M., and Zettle-

moyer, L. (2020). Vision-and-dialog navigation.

In Conference on Robot Learning, pages 394±406.

PMLR.

Traum, D., Aggarwal, P., Artstein, R., Foutz, S.,

Gerten, J., Katsamanis, A., Leuski, A., Noren, D.,

and Swartout, W. (2012). Ada and grace: Direct in-

teraction with museum visitors. In Intelligent Virtual

Agents: 12th International Conference, IVA 2012,

Santa Cruz, CA, USA, September, 12-14, 2012. Pro-

ceedings, volume 7502, page 245. Springer.

Traum, D., Jones, A., Hays, K., Maio, H., Alexander,

O., Artstein, R., Debevec, P., Gainer, A., Georgila,

K., Haase, K., et al. (2015). New dimensions in tes-

timony: Digitally preserving a holocaust survivor’s

interactive storytelling. In International Conference

on Interactive Digital Storytelling, pages 269±281.

Springer.

Traum, D., Henry, C., Lukin, S., Artstein, R., Gervits,

F., Pollard, K., Bonial, C., Lei, S., Voss, C., Marge,

M., et al. (2018). Dialogue structure annotation

for multi-floor interaction. In Proceedings of the

Eleventh International Conference on Language Re-

sources and Evaluation (LREC 2018).


	Introduction
	Related Work
	Task Description
	Approach
	NPCEditor
	Generative Model Training

	Experiments and Results
	Error Analysis and Error Taxonomy
	Error Types
	Error Comparison
	System Combination and Continuations

	Conclusions and Future Work
	Bibliographical References

