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Abstract

We consider the problem of learning the exact skeleton of general discrete Bayesian
networks from potentially corrupted data. Building on distributionally robust op-
timization and a regression approach, we propose to optimize the most adverse
risk over a family of distributions within bounded Wasserstein distance or KL
divergence to the empirical distribution. The worst-case risk accounts for the effect
of outliers. The proposed approach applies for general categorical random variables
without assuming faithfulness, an ordinal relationship or a specific form of condi-
tional distribution. We present efficient algorithms and show the proposed methods
are closely related to the standard regularized regression approach. Under mild
assumptions, we derive non-asymptotic guarantees for successful structure learning
with logarithmic sample complexities for bounded-degree graphs. Numerical study
on synthetic and real datasets validates the effectiveness of our method.

1 Introduction

A Bayesian network is a prominent class of probabilistic graphical models that encodes the conditional
dependencies among variables with a directed acyclic graph (DAG). It provides a mathematical
framework for formally understanding the interaction among variables of interest, together with
computationally attractive factorization for modeling multivariate distributions. If we impose causal
relationships on the edges between variables, the model becomes a causal Bayesian network that
encodes the more informative causation. Without such interpretation, a Bayesian network serves as
a dependency graph for factorization of a multivariate distribution. We focus on discrete Bayesian
networks with purely categorical random variables that are not ordinal, but will discuss related work
on both discrete and continuous Bayesian networks for completeness.

The DAG structure of a Bayesian network is typically unknown in practice [Natori et al., 2017,
Kitson et al., 2023]]. Structure learning is therefore an important task that infers the structure from
data. The score-based approach defines a scoring function that measures the goodness-of-fit of
each structure and aims to find an optimal DAG that maximizes the score. Unfortunately, the
resulting combinatorial optimization problem is known to be NP-hard [Chickering et al., 2004]
without distributional assumptions. Representative approaches include those based on heuristic
search [Chickering}, 2002]], dynamic programming [Silander and Myllymikil 2006], integer linear
programming [Jaakkola et al., 2010]] or continuous optimization [Zheng et al., | 2018]], which either
yields an approximate solution or an exact solution in worst-case exponential time. The constraint-
based approach [Spirtes and Glymour, 1991} |Spirtes et al., {1999, |Colombo et al.,|2014] performs
conditional independence tests to determine the existence and directionality of edges. The time
complexity is, however, exponential with the maximum in-degree. Furthermore, the independence
test results may be unreliable or inconsistent with the true distribution because of finite samples or
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even corrupted samples. In general, without interventional data or assumptions on the underlying
distribution, we can only identify a Markov equivalence class (MEC) the true DAG belongs to from
observational data where DAGs in the MEC are Markov equivalent, that is, encoding the same set of
conditional independencies.

A super-structure is an undirected graph that contains the skeleton as a subgraph which removes
directionality from the true DAG. It has been shown that a given super-structure possibly reduces
the search space or the number of independence tests to be performed. For example, exact structure
learning of Bayesian networks may be (fixed-parameter) tractable [Downey and Fellows,, |1993] if
the super-structure satisfies certain graph-theoretic properties such as bounded tree-width [Korhonen
and Parviainen, |2013| [Loh and Biithlmann, [2014], bounded maximum degree [|Ordyniak and Szeider,
2013|] and the feedback edge number [Ganian and Korchemnal [2021]. An incomplete super-structure
with missing edges also helps improve the learned DAG with a post-processing hill-climbing method
[Tsamardinos et al., 2006, |Perrier et al.l 2008|]. Furthermore, a combination of a skeleton and a
variable ordering determines a unique DAG structure. Learning the exact skeleton rather than a rough
super-structure is desirable in Bayesian network structure learning.

Spirtes and Glymour| [[1991], Tsamardinos et al.| [2006] make use of independence tests to estimate
the skeleton. [Loh and Biithlmann|[2014] learn a super-structure called moralized graph via graphical
lasso [Friedman et al., |2008]]. |Shojaie and Michailidis| [2010] learn the skeleton assuming an
ordering of variables. Bank and Honorio| [2020] leverage linear regression for skeleton recovery in
polynomial time. These methods either rely on independence test results, which are unstable, or a
regularized empirical risk minimization problem, where regularization is usually heuristically chosen
to combat overfitting. In practice, the observational data is commonly contaminated by sensor failure,
transmission error or adversarial perturbation [Lorch et al., 2022, [Sankararaman et al., 2022 [Kitson
et al.;2023]. Sometimes only a small amount of data is available for learning. As a result, the existing
algorithms are vulnerable to such distributional uncertainty and may produce false or missing edges
in the estimated skeleton.

In this paper, we propose a distributionally robust optimization (DRO) method [Rahimian and
Mehrotral 2019] that solves a node-wise multivariate regression problem [Bank and Honorio, [2020]]
for skeleton learning of general discrete Bayesian networks to overcome the above limitations. We
do not assume any specific form of conditional distributions. We take into account the settings with
a small sample size and potential perturbations, which makes the true data generating distribution
highly uncertain. Our method explicitly models the uncertainty by constructing an ambiguity set
of distributions characterized by certain a priori properties of the true distribution. The optimal
parameter is learned by minimizing the worst-case expected loss over all the distributions within the
ambiguity set so that it performs uniformly well on all the considered distributions. The ambiguity
set is usually defined in such a way that it includes all the distributions close to the empirical
distribution in terms of some divergence. With an appropriately chosen divergence measure, the set
contains the true distribution with high probability. Hence the worst-case risk can be interpreted as an
upper confidence bound of the true risk. The fact that a discrete Bayesian network encompasses an
exponential number of states may pose a challenge to solve the DRO problem. We develop efficient
algorithms for problems with ambiguity sets defined by Wasserstein distances and Kullback—Leibler
(KL) divergences. We show that a group regularized regression method is a special case of our
approach. We study statistical guarantees of the proposed estimators such as sample complexities.
Experimental results on synthetic and real-world datasets contaminated by various perturbations
validate the superior performance of the proposed methods.

1.1 Related Work

Bayesian networks have been widely adopted in a number of applications such as gene regulatory
networks [[Werhli et al.l [2006]], medical decision making [[Kyrimi et al.| 2020] and spam filtering
[Manjusha and Kumar, [2010].

In addition to the score-based structure learning methods and constraint-based methods discussed
in the introduction section, there are a third class of hybrid algorithms leveraging constraint-based
methods to restrict the search space of a score-based method [Tsamardinos et al.l 2006, (Gasse et al.|
2014, Nandy et al., [2018]]. There is also a flurry of work on score-based methods based on neural
networks and continuous optimization [Zheng et al.; 2018} Wei et al.| 2020, Ng et al., 2020, [Yu et al.|
2021, Ng et al.} 2022, |Gao et al, |2022]], motivated by differentiable characterization of acyclicity



without rigorous theoretical guarantees. We refer the interested readers to survey papers [Drton and
Maathuis|, 2017, |[Heinze-Deml et al., 2018, |Constantinou et al.,[2021]] for a more thorough introduction
of DAG structure learning and causal discovery methods.

Recently, there is an emerging line of work proposing polynomial-time algorithms for DAG learning
[Park and Raskutti, 2017, |Ghoshal and Honorio, 2017, 2018,|Chen et al., 2019, Bank and Honoriol,
2020, |Gao et al.,[2020, Rajendran et al., 2021]], among which [Bank and Honorio| [2020] particularly
focuses on general discrete Bayesian networks without resorting to independence tests.

Learning a super-structure can be done by independence tests, graphical lasso or regression, as
discussed in introduction. Given a super-structure, how to determine the orientation has been studied
by [Perrier et al.| [2008]], (Ordyniak and Szeider [2013|], Korhonen and Parviainen| [[2013]], Loh and
Biithlmann|[2014], Ng et al.|[2021]],|Ganian and Korchemna) [2021]].

DRO is a powerful framework emerging from operations research [Delage and Ye| 2010\ |Blanchet and
Murthy}, 2019, [Shafieezadeh-Abadeh et al., 2019, [Duchi and Namkoong| [2019]] and has seen effective
applications in many graph learning problems such as inverse covariance estimation [Nguyen et al.,
2022], graphical lasso learning [[Cisneros-Velarde et al.,[2020], graph Laplacian learning [Wang et al.}
2021[], Markov random field (MRF) parameter learning [Fathony et al., 2018]], MRF structure learning
[Li et al., 2022]] and causal inference [Bertsimas et al.,[2022].

2 Preliminaries
We introduce necessary background and a baseline method for skeleton learning of Bayesian networks.

2.1 Notations

We refer to [n] as the index set {1,2,...,n}. For a vector x € R", we use x; for its i-th element and
xs for the subset of elements indexed by S < [n] with ¢ = [n]\{¢}. For a matrix A € R"*™, we use
A;;, A;. and A.; to denote its (7, j)-th entry, i-th row and j-th column respectively. A g7 represents
the submatrix of A with rows restricted to S and columns restricted to 7 < [m]. We define a row-
partitioned block matrix as A = [A1Ag -+ Ag]T € R i %™ where A; € R™*™_ The £p-norm of a
vector @ is defined as |||, := (3; |#4|P)'/P with |-| being the absolute value function. The £, , norm
of a matrix A is defined as [|A[|p,q = (3;]|A.; Hg)l/q. When p = ¢ = 2, it becomes the Frobenius
norm ||-|| z. The operator norm is written as || A[|,, 4 := supj, -1 [|Avll4. The block matrix norm

lp=
is defined as ||A|| g p.q == (Zle |A;[|2)"/9. The inner product of two matrices is designated by
(A, B) = Tr[ATB] where AT is the transpose of A. Denote by ® the tensor product operation.
With a slight abuse of notation, |S| stands for the cardinality of a set S. We denote by 1 (0) a vector
or matrix of all ones (zeros). Given a distribution P on =, we denote by Ep the expectation under P.
The least c-Lipschitz constant of a function f : = — R with a metric ¢ : Z x Z — R is written as

lip.(f) :=inf A.(f) where Ao(f) = {A>0:V&,& €2 |f(&) — f(&)] < Ae(&r,&2)}-

2.2 Bayesian Network Skeleton Learning

Let P be a discrete joint probability distribution on n categorical random variables V =
{X1,Xo,..., Xp}. Let G = (V,Ewe) be a DAG with edge set Eyye. We use X; to represent
the -th random variable or node interchangeably. We call (G, P) a Bayesian network if it satisfies the
Markov condition, i.e., each variable X, is independent of any subset of its non-descendants condi-
tioned on its parents Pa,.. We denote the children of X,. by Ch,, its neighbors by Ne,. := Pa,. u Ch,.
and the complement by Co, := [n] — Ne, — {r}. The joint probability distribution can thus be
factorized in terms of local conditional distributions:
P(X) =P(X1,Xa,...,X,) = [ [ P(Xi[Pay).
i=1

Let Gyel := (V, Ekel) be the undirected graph that removes directionality from G. Given m samples
{a:(i) }m , drawn i.i.d. from P, the goal of skeleton learning is to estimate Gy from the samples.

We do not assume faithfulness [Spirtes et al.,2000] or any specific parametric form for the conditional
distributions. The distribution is faithful to a graph if all (conditional) independencies that hold true



in the distribution are entailed by the graph, which is commonly violated in practice [Uhler et al.|
2013, |[Mabrouk et al.,[2014]]. The unavailability of a true model entails a substitute model. |Bank and
Honorio|[2020] propose such a model based on encoding schemes and surrogate parameters.

Assume that each variable X, takes values from a finite set C, with cardinality |C,.| > 1. For an
indexing set S < [n], define ps = >},.5 |Ci| — 1 and p§ = > . < |C;|. The maximum cardinality
minus one is defined as pmax = MaXie[, [Ci| — 1. Let Sr == Ujene, {P1i-1) + 1.+ -+, ppi)} be
indices for Ne,. in py,,) and its complement by Sy := [prn)] — S — {pjr—1] + 1,. .., ppp1}. Let
&€ : C, — B’ be an encoding mapping with a bounded and countable set B < R. We adopt
encoding schemes with B = {—1,0, 1} such as dummy encoding and unweighted effects encodin
which satisfy a linear independence condition. With a little abuse of notation, we reuse £ for
encoding any X, and denote by £(Xs) € BPs the concatenation of the encoded vectors {£(X;)}ies-
Consider a linear structural equation model for each X,.: £(X,.) = W*TE(X;) + e, where W* =
(Wi WE WX - WET e Re7XPr with W* € RP %P is a surrogate parameter matrix and
e € R’ is a vector of errors not necessarily independent of other quantities. A natural choice of a
fixed W* is the solution to the following problem given knowledge of the true Bayesian network:

1
W*e arg inf EEPHE(Xr) ~WTE(X)|3 st. W;=0 Vie Co,. (1

Therefore W* = (W£ ;0) with W% = Ep[€(X7)s,E(X7)E |7 Ep[E(Xr)s, E(X,)T] is the
optimal solution by the first-order optimality condition assuming that Ep[€(X7)s, £(X7)§ | is
invertible. The expression of W  captures the intuitions that neighbor nodes should be highly
related to the current node r while the interaction among neighbor nodes should be weak for them to
be distinguishable. We further assume that the errors are bounded:

Assumption 1 (Bounded error). For the error vector, | €|, < o and ||Ep[|e|]|o < p.

Note that the true distribution does not have to follow a linear structural equation model. Equation (1)
only serves as a surrogate model to find technical conditions for successful skeleton learning, which
will be discussed in a moment.

The surrogate model under the true distribution indicates that || W*||2 > 0 = X, € Ne,.. This
suggests a regularized empirical risk minimization (ERM) problem to estimate W *:

- . 1 ~
W e arg lélvf L(W) = §EH~,,M 1€(X,) — WTE(XH |2+ MW B2, )

where \ > 0 is a regularization coefficient, the block ¢ ; norm is adopted to induce sparsity and
P,, = # D" 05 stands for the empirical distribution with d,:) being the Dirac point measure at
x(®_ This approach is expected to succeed as long as only neighbor nodes have a non-trivial impact
on the current node, namely, |[W*|22 >0 < X € Ne,..

Define the risk of some W under a distribution PP as

RE(W) i= Byl (X) = Ep [€(X,) - WTECX,) 3,

where /() is the squared loss function. The Hessian of the empirical risk R~ (W) is a block
diagonal matrix V2RF» (W) = H ® I, e RPrPrxprpr where H = Es [E(XF)E(XF)T] €
Rer*Prand I, € RP*#r is the identity matrix of dimension p,.. Similarly under the true distribution,
H := Ep[E(X7)E(XF)T]. As aresult, H is independent of the surrogate parameters W* thus
conditions on the Hessian translate to conditions on a matrix of cross-moments of encodings, which
only depend on the encoding function £ and P.

In order for this baseline method to work, we make the following assumptions.

Assumption 2 (Minimum weight). For each node r, the minimum norm of the true weight matrix
W* for neighbor nodes is lower bounded: min;ene, ||W;||r = 8 > 0.

Assumption 3 (Positive definiteness of the Hessian). For each node r, Hs s > 0, or equivalently,
Amin(Hs,s,) = A > 0 where Apin(-) denotes the minimum eigenvalue.

*If there are four variables, dummy encoding may adopt {(1,0,0), (0,1, 0), (0,0,1),(0,0,0)} whereas
unweighted effects encoding may adopt {(1, 0, 0), (0, 1,0), (0,0,1), (—1,—1, —1)} as encoding vectors.



Assumption 4 (Mutual incoherence). For each node r, || Hses, H ‘;.157_
0<a<l.

B,1,0 < 1 — « for some

Assumption 2] guarantees that the influence of neighbor nodes is significant in terms of a non-zero
value bounded away from zero, otherwise they will be indistinguishable from those with zero weight.
Assumption 3] ensures that Equation (2) yields a unique solution. Assumption[]is a widely adopted
assumption that controls the impact of non-neighbor nodes on r [Wainwright, 2009, Ravikumar et al.|
2010, Daneshmand et al., |2014]]. One interpretation is that the rows of Hscs, should be nearly
orthogonal to the rows of Hs_s, . Bank and Honorio| [2020] show that these assumptions hold for
common encoding schemes and finite-sample settings with high probability under mild conditions.
They also show that incoherence is more commonly satisfied for the neighbors than the Markov
blanket, which justifies the significance of skeleton learning.

Finally, we take the union of all the learned neighbor nodes for each r € [n] by solving Equation (2)
to get the estimated skeleton G = (V, Egel)-

3 Method

As noted in |Bank and Honorio, [2020]], due to model misspecification, even in the infinite sample
setting, there is possible discrepancy between the ERM minimizer W and the true solution W*,
resulting in false or missing edges. In the high-dimensional setting (m < n) or the adversarial setting,
this issue becomes more serious due to limited knowledge about the data-generating mechanism P.

In this section, we attempt to leverage a DRO framework to incorporate distributional uncertainty
into the estimation process. We present efficient algorithms and study the theoretical guarantees of
our methods. All technical proofs are deferred to the supplementary materials.

3.1 Basic Formulation

Let X' be a measurable space of all states of the Bayesian network (G, P), i.e., X € X. Let P(X) be
the space of all Borel probability measures on X'. Denote by X¢ := {£(X) : VX € X} the space of
all the allowed encodings.

Instead of minimizing the empirical risk and relying on regularization, we seek a distributionally
robust estimator that optimizes the worst-case risk over an ambiguity set of distributions:

A 1
W e arginf sup —Eg|E(X,) — W TS(XF)Hg, 3)
W geA 2

where A € P(X) is an ambiguity set typically defined by a nominal probability measure P equipped
with a discrepancy measure div(-, -) for two distributions A% (P) := {Q € P(X) : div(Q,P) < ¢},
where ¢ is known as the ambiguity radius or size. This way of uncertainty quantification can be
interpreted as an adversary that captures out-of-sample effect by making perturbations on samples
within some budget €. Some common statistical distances satisfy div(Q,P) =0 < Q =P. In
this case, if € is set to zero, Equation (3] reduces to Equation (2)) without regularization. We will show
that the DRO estimator W can be found efficiently and encompasses attractive statistical properties
with a judicious choice of A.

3.2 Wasserstein DRO

Wasserstein distances or Kantorovich—Rubinstein metric in optimal transport theory can be inter-
preted as the cost of the optimal transport plan to move the mass from P to Q with unit transport
cost c : X x X — R,;. Denote by P,(X) the space of all P € P(X) with finite p-th mo-
ments for p > 1. Let M(X?) be the set of probability measures on the product space X x X.
The p-Wasserstein distance between two distributions P, Q € P, (X) is defined as W, (P, Q) =

1

nfrre (e {[sz o (z, w/)H(da:,da:/)]; TI(de, X) = P(de), [I(X, da') = Q(dw’)}

We adopt the Wasserstein distance of order p = 1 as the discrepancy measure, the empirical
distribution as the nominal distribution, and cost function c(x, ') = ||E(x) — E(x’)|| for some norm



|I|l- The primal DRO formulation becomes

. 1
W earginf  sup §EQH5(XT) —WTE(X;)|3. )
W geal” #,)

According toBlanchet and Murthy| [2019], the dual problem of Equation (@) can be written as

m

1 1 )
i - - —WT 12 = _ (@)
Wit 9 3 sup 1E(e,) - WIERI - 11E(@) - £@ ). )

i—1 TEX

Strong duality holds according to Theorem 1 in|Gao and Kleywegt [2022]. The inner supremum
problems can be solved independently for each (). Henceforth, we focus on solving it for some
1€ [m]:

1 .
sup o[|€ () = WTE(r) 5 — (1) — £@@)]). ©)

xeX

Equation @ is a supremum of |X'| convex functions of W, thus convex. Since X¢ is a discrete set
consisting of a factorial number of points (II;c[,,10:), unlike the regression problem with continuous
random variables in/Chen and Paschalidis| [2018]), we may not simplify Equation (6)) into a regular-
ization form by leveraging convex conjugate functions because X' is non-convex and not equal to
RPi=1. Moreover, since changing the value of x; for some j € 7 is equivalent to changing WTE(x7)
by a vector, unlike Li et al.|[2022] where only a set of discrete labels rather than encodings are dealt
with, there may not be a greedy algorithm based on sufficient statistics to find the optimal solution to
Equation (6). In fact, let the norm be the ¢; norm, we can rewrite Equation (€ by fixing the values of
1€ () — E(@@)]|x:

1

5 1€ @) = WTE(@y)ll3 — k. ™)

sup
weX 0<k<pf, .| E(@)—E (@)1 =k

If we fix k, Equation (7)) is a generalization of the 0-1 quadratic programming problem, which can be
transformed into a maximizing quadratic programming (MAXQP) problem. As a result, Equation (6)
is an NP-hard problem with proof presented in Proposition[TT]in appendix. [Charikar and Wirth| [2004]
develop an algorithm to find an ©2(1/logn) solution based on semi-definite programming (SDP)
and sampling for the MAXQP problem. Instead of adopting a similar SDP algorithm with quadratic
constraints, we propose a random and greedy algorithm to approximate the optimal solution, which
is illustrated in Algorithm [1]in appendix, whose per-iteration time complexity is ©(n2mpax). It
follows a simple idea that for a random node order 7r, we select a partial optimal solution sequentially
from 7 to m,. We enumerate the possible states of the first node to reduce uncertainty. In practice,
we find that this algorithm always finds the exact solution that is NP-hard to find for random data
with n < 12 and ppax < 5 in most cases.

Since X¢ is non-convex and not equal to R”["1, using convex conjugate functions will not yield exact
equivalence between Equation (3 and a regularized ERM problem. However, we can draw such a
connection by imposing constraints on the dual variables as shown by the following proposition:

Proposition 5 (Regularization Equivalence). Let W := [W; —I, |7 € RP=%Pr with W, = —1I, .
Ify = py W]

2, the Wasserstein DRO problem in Equation (5)) is equivalent to
) 1 .
inf B S [1€(X,) = WTEXR)|S + e [W 7,
which subsumes a linear regression approach regularized by the Frobenius norm as a special case.

This suggests that minimizing a regularized empirical risk may not be enough to achieve distributional
robustness. Note that exact equivalence between DRO and regularized ERM in|Chen and Paschalidis
[2018] requires X¢ = R

Now we perform non-asymptotic analysis on the proposed DRO estimator W. First, we would like
to show that the solution to the Wasserstein DRO estimator in Equation (@) is unique so that we refer
to an estimator unambiguously. Note that Equation (d) is a convex optimization problem but not
necessarily strictly convex, and actually never convex in the high-dimensional setting. However, given



a sufficient number of samples, the problem becomes strictly convex and yields a unique solution
with high probability. Second, we show that the correct skeleton £y, can be recovered with high
probability. This is achieved by showing that, for each node X,, the estimator has zero weights
for non-neighbor nodes Co,- and has non-zero weights for its neighbors Ne, with high confidence.
Before presenting the main results, we note that they are based on several important lemmas.

Lemma 6. Suppose E is separable Banach space and fix Py € P(Z') for some Z' < =. Suppose
c: 2 — Ry is closed convex, k-positively homogeneous. Suppose f : = — Y is a mapping in the
Lebesgue space of functions with finite first-order moment under Py and upper semi-continuous with
finite Lipschitz constant lip .(f). Then for all € = 0, the following inequality holds with probability 1:

SUD g 49 g, em (2 ) 1 (€ JQUAE) < elip(f) + § F(€)Po(d).

Lemma 6| follows directly from|Cranko et al|[2021]] and allows us to obtain an upper bound between
the worst-case risk and empirical risk. It is crucial for the following finite-sample guarantees.

Lemma 7. If Assumptionholds, forany Q € .AZVP (}f”m) with high probability, Hg s, is positive
definite.

Lemma 8. If Assumption@and Assumptionhold, forany Q e AN (P,,) and a € (0,1], with high
probability,
_ @
|HS.s, (HS 5) 510 <15

The above two lemmas illustrate that Assumption [3| and Assumption 4] hold in the finite-sample
setting. Let the estimated skeleton, neighbor nodes and the complement be G := (V, Eer), Ne, and
Co,. respectively. We derive the following guarantees for the proposed Wasserstein DRO estimator.
Theorem 9. Given a Bayesian network (G,P) of n categorical random variables and its skeleton
Gker = (V, Eer). Assume that the condition ||W*|| g 21 < B holds for some B > 0 associated

with an optimal Lagrange multiplier X% > 0 for W* defined in Equation . Suppose that Wisa
DRO risk minimizer of Equation (4)) with a Wasserstein distance of order 1 and an ambiguity radius
€ = €9/ m where m is the number of samples drawn i.i.d. from P. Under Assumptions if the
number of samples satisfies

3

0(0(60 + log (n/a) + log p[n])o—Qp;lnaxp[n] )

min(p?, 1)

m = B

where C' only depends on «, A, and if the Lagrange multiplier satisfies

32/4Pmax

. B \/K
« <Ap < (a/(4 = 200) + 2) Pimarr/P[n] 4’

then for any ¢ € (0, 1], r € [n], with probability at least 1 — §, the following properties hold:

(a) The optimal estimator W is unique.
(b) All the non-neighbor nodes are excluded: Co, < éor.
(c) All the neighbor nodes are identified: Ne, < NeT.

(d) The true skeleton is successfully reconstructed: G = C;Skd.

Proof sketch. The main idea in the proof follows that in the lasso estimator [Wainwright, |2009].
Based on a primal-dual witness construction method and Lemma 8] it can be shown that if we control
A%, a solution constrained to have zero weight for all the non-neighbor nodes is indeed optimal.
Furthermore, Lemma [/| implies that there is a unique solution given information about the true
neighbors. The uniqueness of the aforementioned optimal solution without knowing the true skeleton
is then verified via convexity and a conjugate formulation of the block /3 ; norm. Hereby we have
shown that the optimal solution to Equation () is unique and excluding all the non-neighbor nodes.
Next, we derive conditions on A% for the estimation bias |[W — W*||5 2.0 < /2 to hold, which
allows us to recover all the neighbor nodes. In such manner, applying the union bound over all the
nodes r € [n] leads to successful exact skeleton discovery with high probability. O



The results in Theorem [J] encompass some intuitive interpretations. Compared to Theorem 1 in
Bank and Honorio| [2020], we make more explicit the relationship among m, A% and 4. On one
hand, the lower bound of A% ensures that a sparse solution excluding non-neighbor nodes is obtained.
A large error magnitude expectation p therefore elicits stronger regularization. On the other hand,
the upper bound A% is imposed to guarantee that all the neighbor nodes are identified with less
restriction on W. There is naturally a trade-off when choosing B in order to learn the exact skeleton.
The sample complexity depends on cardinalities pp,], confidence level , the number of nodes
n, the ambiguity level €9 and assumptions on errors. The dependence on ¢ indicates that higher
uncertainty caused by larger error norms demands more samples whereas the dependence on y 2
results from the lower bound condition on X%, with respect to x. The ambiguity level is set to g /m
based on the observation that obtaining more samples reduces ambiguity of the true distribution.
In practice, we find that £ is usually small thus negligible. Note that the sample complexity is
polynomial in n. Furthermore, if we assume that the true graph has a bounded degree of d, we find

that m = O( C(eo+log (7L/5);£%;+11§>g Pma) 0 @
the results in|Wainwright| [2009].

) is logarithmic with respect to n, consistent with

We introduce constants B and A% in order to find a condition for the statements in Theorem E]
to hold. If there exists a W incurring a finite loss, we can always find a solution W and let
B = maxWHVAVHB,g’l be the maximum norm of all solutions. Imposing |W|p21 < B is
equivalent to the original problem. By Lagrange duality and similar argument for the lasso estimator,

there exists a A% that finds all the solutions with |[W||p 2, = B. Therefore we have a mapping
between ¢ and A\%,.

3.3 Kullback-Leibler DRO

In addition to optimal transport, ¢-divergence is also widely used to construct an ambiguity set
for DRO problems. We consider the following definition of a special ¢-divergence called the KL

divergence: D(Q || P) := {, In %((if)) Q(dx), where Q € P(X) is absolutely continuous with respect

toP e P(X) and %((gi)) denotes the Radon-Nikodym derivative. A noteworthy property of ambiguity

sets based on the KL divergence is absolute continuity of all the candidate distributions with respect to
the empirical distribution. It implies that if the true distribution is an absolutely continuous probability
distribution, the ambiguity set will never include it. In fact, any other point outside the support of
the nominal distribution remains to have zero probability. Unlike the Wasserstein metric, the KL
divergence does not measure some closeness between two points, nor does it have some measure
concentration results. However, we argue that adopting the KL divergence may bring advantages over
the Wasserstein distance since the Bayesian network distribution we study is a discrete distribution
over purely categorical random variables. Moreover, as illustrated below, adopting the KL divergence
leads to better computational efficiency.

Let A = AP(P,,) be the ambiguity set, the dual formulation of Equation (3] follows directly from
Theorem 4 in [Hu and Hong|[2013]]:
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which directly minimizes a convex objective. In contrast to the approximate Wasserstein estimator,
this KL DRO estimator finds the exact solution to the primal problem by strong duality.

The worst-case risk over a KL. divergence ball can be bounded by variance [Lam,[2019], similar to
Lipschitz regularization in Lemma[6] Based on this observation, we derive the following results:

Theorem 10. Suppose that W is a DRO risk minimizer of Equation (4) with the KL divergence and
an ambiguity radius € = €o/m. Given the same definitions of (G,P), Guer, B, A%, m in Theorem
Under Assumptions[I| 2| Bl H} if the number of samples satisfies

0(50 + IOg (n/a) + IOg p[n])02p3wxp:[3n]
min(p?, 1)

m = O( ).

where C' depends on o, A while independent of n, and if the Lagrange multiplier satisfies the same
condition as in Theorem[9} then for any § € (0,1], v € [n], with probability at least 1 — 6, the
properties (a)-(d) in Theorem@]/wld.



The sample complexities in Theorem [9]and Theorem [I0]differ in the constant C' due to the difference
between the two probability metrics. Note that C' is independent of n in both methods. The
dependency on 1/(A\%)? is absorbed in the denominator because we require that A% — 16/10max/c > 0.
The sample complexities provide a perspective of our confidence on upper bounding the true risk
in terms of the ambiguity radius. ¢ serves as our initial guess on distributional uncertainty and
increases the sample complexity only slightly because it is usually dominated by other terms in
practice: € « log(n/d). Even though the samples are drawn from an adversarial distribution with a
proportion of noises, the proposed methods may still succeed as long as the true distribution can be
made close to an upper confidence bound.

4 Experiments

We conduct experimentsﬂ on benchmark datasets [Scutaril, 2010] and real-world datasets [Malone
et al.| 2015] perturbed by the following contamination models:

* Noisefree model. This is the baseline model without any noises.

* Huber’s contamination model. In this model, each sample has a fixed probability of { to
be replaced by a sample drawn from an arbitrary distribution.

* Independent failure model. Each entry of a sample is independently corrupted with
probability (.

We conduct all experiments on a laptop with an Intel Core i7 2.7 GHz processor. We adopt the
proposed approaches based on Wasserstein DRO and KL DRO, the group norm regularization method
[Bank and Honorio, [2020], the MMPC algorithm [Tsamardinos et al., 2006] and the GRaSP algorithm
[Lam et al., [2022] for skeleton learning. Based on the learned skeletons, we infer a DAG with the
hill-climbing (HC) algorithm [Tsamardinos et al., |2006]]. For the Wasserstein-based method, we
leverage Adam [Kingma and Ba}|2014] to optimize the overall objective with 51 = 0.9, 82 = 0.990,
a learning rate of 1.0, a batch size of 500, a maximum of 200 iterations for optimization and 10
iterations for approximating the worst-case distribution. For the KL-based and standard regularization
methods, we use the L-BFGS-B [Byrd et al.l[1995]] optimization method with default parameters. We
set the cardinality of the maximum conditional set to 3 in MMPC. The Bayesian information criterion
(BIC) [Neath and Cavanaughl 2012]] score is adopted in the HC algorithm. A random mixture of 20
random Bayesian networks serves as the adversarial distribution for both contamination models. All
hyper-parameters are chosen based on the best performance on random Bayesian networks with the
same size as the input one. Each experimental result is taken as an average over 10 independent runs.
When dealing with real-world datasets, we randomly split the data into two halves for training and
testing.

We use the F1-score, or the Dice coefficient (regarding the label of each edge indicating its presence as
a binary random variable and considering all possible edges), to evaluate performance on benchmark
datasets and BIC for real-world datasets. The results are reported in Table [[]and more results can
be found in Table [2)in appendix. We observe that in most cases the proposed DRO methods are
comparable to MMPC and MMHC, which are generally the best-performing methods inBank and
Honorio| [2020]. We illustrate in Figure |1| the results on earthquake by varying the number of
samples, corruption level and ambiguity radius or regularization coefficient. Figure[I] (a) suggests
that all the methods perfectly recover the true skeleton given more than 2, 000 samples. The results
in Figure[T] (b-c) indicate that, in highly uncertain settings, Wasserstein DRO as well as KL DRO is
superior to other approaches. Meanwhile, Table [I] and Figure[I] (a) suggest that the DRO methods
and the regularized ERM approach are comparable to MMPC and GRaSP when clean data is given.
The sensitivity analysis (Figure[I](d)) suggests a trade-off between robustness and target performance
(F1-score in our case). All the approaches have similar execution time except that Wasserstein DRO is
several times slower due to the combinatorial sub-problem of computing the worst-case distribution.

5 Discussion and Conclusion

In this paper, we put forward a distributionally robust optimization method to recover the skeleton
of a general discrete Bayesian network. We discussed two specific probability metrics, developed

30ur code is publicly available at https://github.com/Danielleee/drslbn.
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Table 1: Comparisons of F1 scores for benchmark datasets and BIC for real-world datasets (backache,
voting). BIC is not applicable to skeletons. The best and runner-up results are marked in bold.
Significant differences are marked by | (paired t-test, p < 0.05).

Dataset n m Noise ¢ Wass KL Reg MMPC  GRASP Wass+HC KL+HC Reg+HC MMPC+HC GRASP+HC HC
asia 8 1000 Noisefree 0 0.7800f  0.7285f  0.7897f  0.9067 0.8167 0.5123 0.6367 0.5743 0.6667 0.6583 0.6550
asia 8§ 1000 Huber 0.2 0.73331 0.7124f  0.7297f 0.5468  0.6570 0.3943 0.3724 0.3487 0.2907 0.3664 0.2183
asia 8 1000 Independent 0.2 0.6933 0.6797 0.6868  0.6359  0.3632f 0.2676 0.2632 0.2581 0.2469 0.1794 0.2443

cancer 5 1000  Noisefree 0 1.0000f 1.0000f 1.0000f 0.6133  0.6133 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800

cancer 5 1000 Huber 0.5 0.9156f 0.8933f 0.9092f 0.6133  0.5357 0.4333 0.3833 0.4143 0.2589 0.2714 0.2589

cancer 5 1000 Independent 0.2 0.9048% 0.9029f 0.8992f  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

earthquake 5 1000  Noisefree 0 0.8447f  0.93331  0.9778 1.0000 0.9778 0.2000 0.2500 0.2500 0.2500 0.2500 0.2278F
earthquake 5 1000 Huber 0.2 0.7509f 0.7509% 0.7509f 0.5978  0.6583} 0.4618 0.4618 0.4618 0.3860 0.4547 0.3860
earthquake 5 1000 Independent 0.2 0.67861 0.6350f 0.6350f 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

sachs 11 1000 Noisefree 0 0.8357t  0.8402f 0.8374f  0.9697 0.7678% 0.4310% 0.4535t 0.4641% 0.5935 0.4112f 0.5873
sachs 11 1000 Huber 0.2 0.7765  0.8064 0.7893  0.7498  0.5663} 0.5194 0.4815 0.4520 0.4736 0.2380 0.5028
sachs 11 1000 Independent 0.5 0.5268f 0.5208f 0.5172f  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

survey 6 1000 Noisefree 0 0.6596  0.6545 0.6506 0.6533  0.1714% 0.1789 0.1789 0.1789 0.1789 0.0571 0.1789

survey 6 1000 Huber 0.2 0.7303f 0.6778t 0.7095f 0.5396  0.3810 0.1444 0.1444 0.1444 0.1444 0.1516 0.1444

survey 6 1000 Independent 0.2 0.6311f 0.6705f 0.6220f  0.2032  0.00001 0.1071 0.1071 0.1143 0.1071 0.0000 0.1071
alarm 37 1000  Noisefree 0 0.47501  0.7863f  0.8042f 0.8530 0.68241 0.3483F 0.4949% 0.4470% 0.5635 0.4976 0.4494F
alarm 37 1000 Huber 0.2 0.1432f 0.1619f 0.6571f 0.5486 0.1945} 0.2192 0.1680F 0.3148 0.2774 0.2092f 0.2582
alarm 37 1000 Independent 0.2 0.1419%  0.1448f 0.5458f 0.4309 0.2830} 0.0000 0.0000 0.0000 0.0000 0.0000

voting 17 216 Noisefree 0 N/A N/A N/A N/A N/A —2451.8631 —2453.2737 —2482.3835 —2456.1489

voting 17 216 Huber 0.2 N/A N/A N/A N/A N/A —4418.9731 —4418.9731 - —4445.0175  —4418.9731

voting 17 216  Independent 0.2 N/A N/A N/A N/A N/A —4453.8298 —4453.8298 4 552 . —4473.8612  —4453.8298
backache 3290 Noisefree 0 N/A N/A N/A N/A N/A —1729.8364 —1726.8465 —1710.7248 —1719.5002 —1713.7583 —1729.7991
backache 32 90 Huber 0.2 N/A N/A N/A N/A N/A —3186.5001 —3186.5001 —3186.5001 —3186.5001 —3186.5001 —3186.5001
32 90 0.2 N/A N/A N/A N/A N/A —2800.9386 —2800.9386 —2800.9386 —2800.9386 —2800.9386 —2800.9386
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Figure 1: Skeleton estimation results in F1-score on the earthquake dataset for Wasserstein DRO,
KL DRO, regularized linear regression, MMPC and GRaSP. From left to right: (a) noisefree, varying
number of samples; (b) Huber with ¢ = 0.5 noisy data, varying number of samples; (c) independent
failure, varying ¢, the probability of noise; (d) independent failure with ( = 0.2, varying ¢ the
ambiguity radius, or \ the regularization coefficient.

tractable algorithms to compute the estimators. We established the connection between the proposed
method and regularization. We derived non-asymptotic bounds polynomial in the number of nodes
for successful identification of the true skeleton. The sample complexities become logarithmic for
bounded-degree graphs. Empirical results showcased the effectiveness of our methods.

The strength of making no distributional assumptions in our methods inherits from the regularized
regression baseline, which is shown to be a special case of DRO. Besides the original benefits in
Bank and Honorio, [2020], our methods are explicitly robust and able to adjust € to incorporate our
uncertainty about the data generating mechanism.

Since we do not make any specific assumptions on the conditional probability distributions or on the
corruption models, our methods may not be superior to the approaches proposed to tackle certain
family of noises or parametric distributions. In addition, making assumptions such as an ordinal
relationship, continuous values or a Poisson structural equation model (SEM) may lead to more
efficient algorithms and tighter bounds. In some cases, adopting an identity encoding mapping is
sufficient to learn a continuous Bayesian network [Aragam et al., 2015[]. Furthermore, it would
be interesting to incorporate prior distributional information into design of the ambiguity set for
better performance. Another important topic is whether the underlying structure is identifiable in
a robust manner [Sankararaman et al., [2022]]. Formulating the complete DAG learning problem as
one optimization problem may lead to a non-convex problem. Nonetheless, leveraging an adversarial
training approach in continuous optimization for Gaussian Bayesian networks and causal discovery is
a promising future direction to pursue.
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A Algorithms

The pseudo-code of the greedy algorithm for solving Equation (6) in Wasserstein DRO is illustrated
in Algorithm

Algorithm 1 Greedy Algorithm for the Wasserstein Worst-case Risk

Input: W, ~, (%)
Output: a solution & to Equation ()
Initialize & = ()
for all (j,2%) € [n] x C; do
Get a random permutation 7 over [n] with 7, = j
for £k :=2tondo @
ot o argsup,, L (e, ) €@, — E@,)]
end for
if ! yields a greater objective than & then
T —axt
end if
end for

B Optimization Details

Define

1
tw(X) = S [IE(X,) = WTEX)5.
The Lagrangian dual problem of the Wasserstein DRO problem is

inf f(W,7):=ne+ ). sup ( (2) —1€() — £(@) .

W,v=0 i—1 %€
One of its sub-gradients can be computed as
0

LS a0 e 6OV — £(a e (a0 O
m;awf (@ )TW — E(a)E(@))T e~

1 & , , 0
_ - 5 (1)) _ (i) o
T LIEED) €@ e 77

For the DRO problem based on the KL divergence:

- . 1 tw @)/
ngiof(Wﬂ) = vln[mie%:n]e wiEN] + e,

a sub-gradient of which can be computed as

Siepmy €7 @ (E@E@D )W — £(@D)e@)T) 4

ZiE[m] ezw(w(i))/y € an
tw (29) /v 0 (1)
1 i ie[m] € T 4%
In(— Z ol (@ >)/7) 7 Die[m] . (m(:)V/( ) fee if'
™ iem] Y Diem] €W K 20

C Technical Proofs

Proposition 11 (NP-hardness of Wasserstein DRO Supremum). The problem in Equation (6) is
NP-hard.
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Proof. Recall the MAXQP problem:

Z Qi T;Tj, s.t.x; € {—1,1} Vi.
ij=1
In Equation @, lety =0, E(x,) = 0, 7 correspond to n binary variables taking values in {-1, 1}
and £(x;) = @ Let W € R Forall i, j € [n],let k = (i — 1)n + j. The k-the column of W

satisfies W, = 1, Wi, = a,;/2 and O for the other elements. We have obtained a polynomial-time
reduction from an NP-hard problem to Equation (6. O

Proposition 5 (Regularization Equivalence). Let W := [W; —I, |7 € RP=*Pr with W, = —I, .
Ify = py|W]
equivalent to

2., the Wasserstein distributionally robust regression problem in Equation is

) 1
inf B S [1E(X,) = WTEXR)|S + eppn W%,
which subsumes a linear regression approach regularized by the Frobenius norm as a special case.

Proof. Recapitulating on Equation (6):

sup *Ilf(xr) WTE(ar)|3 — vl (@) — E(@D)]r.

aceX

Observe that
€ (zy) = WTE() |13 2| WTE ()3
<wT |Hoo,2
<||W||%2
ép[n]HWH%

<7.
Therefore, for any  # x(¥,

1H6(xr> ~WTE@) [}~ AlE@) ~ £~ GIEE) - WTEED)E - AE@) — @D)]1)

N

L) — WTE @[3 — [E@D) - WTE@)|2) —~]E (@) — £,

(27) = 7llE(@) — €@
-7

)

N
l\')\»—ll\')\

N
S 2

which implies that the supremum can always be achieved at & = z(¥). Minimizing over - leads to
) 1
infEs o [IE€(X,) = WTEXR)[3 + epp [ WIIE-
O

Lemma 6. Suppose Z is separable Banach space and fix Py € P(Z’') for some =' < Z. Suppose
c: 2 — Ry is closed convex, k-positively homogeneous. Suppose f : = — Y is a mapping in the
Lebesgue space of functions with finite first-order moment under Py and upper semi-continuous with
finite Lipschitz constant lip (). Then for all € = 0, the following inequality holds with probability 1:

swp [ €0 < elip. () + [ RS,

Qe AL (Po),QeP(E)
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Proof. The result follows directly from Theorem 1 in|Cranko et al.|[2021]:
swp [ £(©Q() < clip(7) + [ F(EPde).
QeAl? (By),QeP(E)
Since &' < =, observe
ap [0 sw [f(©Qwe),
QeAl? (Py),QeP(2) QeAY? (Po),QeP(2)

]

Lemma 7. If Assumption |3| holds, for any Q € AN (I@’m) with probability at least 1 —

2|8, |2 exp (—%) we have

Apin(HE 5 ) = Mpin(Hs, s,) — 4¢|S,] —t.

Proof. The minimum eigenvalue of the true covariance matrix Hs, s, satisfies:

Amin(Hs,s,) = min 'UTHS SV
lv]l2=

= Hir)r”unlvTH s U+ vT(HS S, Hj%sr)v +vT(Hg,s, — IZISTST)U
2

Amin(HS ) +uT(Hs,s, — HS s Ju+uT(Hs,s, — Hs,s,)u
where ||u||2 = 1 is an eigenvector of ng s, With minimum eigenvalue.
Therefore, Amin( g s,) can be lower bounded as follows:
Amin(HS s ) >Amin(Hs,s,) —uT(Hs,s, — Hg g Ju—uT(Hs,s, — Hs, s, )u
>Amin(Hs,s,) — [uT(Hs,s, — Hg 5 Ju| — |(Hs,s, — Hs,s,)l|r,
due to the fact that

uTHu < Ao (H) < Z(Az(H))Q <

We can obtain an upper bound on |uT(Hs, s, — ng s, )u| based on Lemma@

~ 1
[T (Hs,s, — Hg s, )ul < 4/S|7¢,

because for function g(&(x)) := uTHg, s, u, it can be shown that for any ||£(x) — £(2)|1 = &
and some |S| = k,

9(E@)) — g(E@)) < Y D [Hik = Hjglusun + | Hyi — Higlugu; < 4K[S,[2.
keS €S,
Recall that we assume that the encoding schemes take values in B = {—1, 0, 1}. Therefore lip_.(g) =
48,2,

We derive an upper bound of ||(Hs,s, — Hs.s, )| r as follows. Consider a random variable and its
expectation

Zi; = (Hs,s,)i ZE Dyig(@!); e [~1/m,1/m]

EpZij = (Hs,s,)ij-

By Hoeffding’s inequality, we observe
2

~ m
Prob(|(Hs,s, )ij — (Hs,s,)ijl 2 1) < Zexp (—=—-),

17



fort > 0. Setting t = |st ‘

~ mt2
Prob(||(Hs,s,) — (Hs,s,)|r > 1) < Q\ST\QGXP(—W) ®
To conclude, with probability at least 1 — 2|S,.|? exp (— 518 | 5 ), we have
Amin(Hgs,,.) = Amin(Hs,s,) — 4¢[S; ‘2 -t
O

Lemma 8. If Assumptionand Assumptionhold, forany Q € AN (P,,) and o € (0,1], with

probability at least 1 — O(exp (fpafjiglrp + log |S¢| + log |S,|)) and € < WCP/Z
- o
HHQgsT(HgTST) 1||B,1,oo <1- Fx

where C' only depends on o, Ayin(Hs, s, ).

Proof. We would like to obtain an upper bound for || H gc s, (H g s.) " 1B,1,00. We may write

Hg.s (HS s )" =Hses [(Hg s )" — (Hs,s,) ']

+ [Hg.s, — Hses,|(Hs,s,)™"
+ [Hj%sr — Hses [(HS s )" — (Hs,s,) ']
+ Hses, (Hs,s,) ™"

E

|HE. s (HS s ) 510 <|Hss, [(H% s5,) " = (Hs,s,) 10
+ [[[H, s s, — Hses 1(Hs,s,) ' B,1.0
+[|[HS.s, — Hses, J(HS 5,) " = (Hs,s,) 1.0
+||Hses, (Hs,s,) 51,00
By Hoeffding’s inequality,

~ mt?
Prob(|(Hses, )ij — (Hses, )ij| = t) < 2exp (—T),

for ¢ > 0. Taking ¢t = | — and applying the union bound over i € Co,., we observe that
) mt?
Prob(||Hs;s, — Hses, |1 > 1) < ) 2011 exp (—5rr5)
} 2075
i€Co,. ’
. mt?
<2|57]|Sr| exp (— ﬁ)
207 |Sr |
Similarly, taking ¢ = &,
Prob(|| Hs,s, — Hs,s, |l =) < Y, D) 2exp(— 2[S, |2)
€S, jES,
mt?
=2[S,|? —5ra3)
|Sr|* exp ( 2|5T|2)

In order to bound ||chsr — Hses, || B,1,00, for Q # P, consider
|Hg.s, — Hses, | 51,0 <|Hges |l5.1.00 + | Hses, | 5.1,
<Egl|€(X7)s:€(X7)§ IB,1,00 + Ep ||5(XF)S;:5(XF)ET||B,1,OO
= sup  [Eg&l€(Xr)s:E(XR)§, 181w — B &IE(Xr)s:E(XR)E [1B,1.0l,
B, Qe (®),)
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where Q' and P/, are probability measures on X x 2 with Z = {—1, +1} and identical marginals as Q
and P,,, respectively. We assume that Q s P because otherwise || H Qp s, — Hses, Il B,1,00 = 0 holds
trivially. In this way, the equality is always achieved by some Q’, P/, , i.e., setting Q' (X, & = 1) = 1
and P/ (X,&=—-1) =1

Define the transport cost function in the ambiguity set ALY (P!.) to be ¢/ ((X1,&1), (X2,&)) =
[€£(X1) — £(X2)[l1 with zero cost for &. Let g(X,§) = &1]|€(X7)s:E€(X7)§ || B,1,00. Consider

the Lipschitz constants of g: '

. |9(X7£)_9(X/7€/)|
lip,(g) < sup
Pe(9) < S oK, 8, (X7, 6))
b 1€(X7)s:€(X7)E 181,00 + 1E(XT)s:E(XE B0

< su
X, X’ [E(X) — E(X)[lx
<2Pmax|Sr|- 9
Therefore, by the Kantorovich-Rubinstein theorem [Kantorovich and Rubinshtein, [1958]],
|Hg.s, — Hses, 1o < sup [Eqg(X, &) —Ep g9(X,6)|

P QIEAZVP (fﬁw )

m?

< sup  lipy(9)[Eqg(X, €)/lipy(9) — Eg g(X,€)/lipy(g)|
B el #)

< sup lipy(9)W(Q, B,
B eAl? (@)

glipc’ (g)g

<2<€pmax|5r|~

m

Similarly,
I HS, 5, — Hs, s, lloc,0 < 2|5, .
Based on the above two inequalities, we find that
1HS.s, — Hses,lp1o <|Hg.s, — Hses, | 1,00 + | Hses, — Hses, |31,
<2 P S| + 1, (10)
with probability at least 1 — 2|S¢||S,| exp (72[)12“’::7?;‘2), and
I1HS s, — Hs,s, llc.co < 2¢1S:] + 1, (11)

2
mt)

with probability at least 1 — 2|S,.|? exp (— 5872 )-

Based on Equation (E[), we also have
I[Hs,s. — Hg s |l 7 < 26IS,| + 1, (12)
with probability at least 1 — 2|S,.|? exp (7%)

Next we look at the upper bound on the difference between the inverses of Hg s, and Hs, s, .
Observe that

I(HE s )7 = (Hs,s,) oo =II(Hs,s,) " [Hs,s, — He s J(HE s ) oo 0
<V|S:|I(Hs,s,) ' [Hs,s, — H s 1(Hg 5 ) *|l2,2
<VISI(Hs,s.) 22 lI[Hs,s, — HE s |22l (HE s ) 2.2

|Sr|
Amin (HSTST )

2,2

< 2,2|

I[Hs,s, — H s 122 (HS 5) l2.2-

19



According to Lemma with probability at least 1 — 2|S,.|? exp (—%), we have
1
Amin(HS ) = Amin(Hs, s,) — 4¢|S,[? —t.

Let t = %Amin(H57,57,) and ¢ < % We get that, with probability at least 1 —
|2

bl

M (Amin (H. Sy 2
215, exp (—tgiggeenll)

1
Amin(ngsr) = ZAmin(HSTST)
— [I(H ) e (13)
e Amin(HSTST)

_ tAxnin(HS7~S7~) tAmm(HS S/y : : 13
Sett = WA 2and €< SIS /15,1 in Equation |l we get that, with probability at least
mt= (Amin (H. Sy
1= 2/8, 2 exp (- pn ),
tAmin(HS S )
ITHs, 5. = Hg s, 1l < [[Hs,s, — H s, lllr < =25
rOr rOr rOr rOr 2\/@
Therefore, ~ with  probability at least 1 — 2[S,|? exp(—%) -
218, 2 _m(Amin(HSerT))z de < mi tAmin(Hs,s,) Amin(Hs,s,)
5,12 exp (~ 20500 an - < i () Sl
I(HS s.) 7" = (Hs,5,) oo < t. (14)

Now we are ready to obtain upper bounds for the four terms recapitulated here:
1H.s, (HE 5.) 31,0 <[ Hsgs, [(HS%SW — (Hs,s,) 1|51,
+ [H.s, — Hszs,1(Hs,s,) |10
+ H[Hsgsr — Hses [(HS s )™ — (Hs,s,) .10

+ || Hses, (Hs,s,) " | B.1.0-
We derive the bounds separately.

For the first term, based on Assumption ] consider
|Hses, [(HS 5,)7" — (Hs,s,) '1ll5.1.0
=||Hs;s, (Hs,s,) ' [Hs,s, = H s, 1(H 5,) " |31,
<||Hs:s, (Hs,s,) " |BawollHs,s, — Hg s, Il (Hgs)_l lloo,00
<(1—0)[|Hs,s, = Hg s, [lo.0V/IS | (H, 5,) "
Taking t = 5 4(1 =) A'“i“(gj’"s’r) and £ < s /Amm(gsfsr in Equation GI) and adopting

uation (13), we conclude that, with probability at least 1 — |2 exp (—samspin i Sl ) —
Equati lude th ith probability at 1 1 — 2|82 Tf;z/(\im"(ofﬁsf\)

Anmin (H. )2 . Anin(Hs,s,) Amin(Hs,.

2‘5}‘2 exp (_m( 8‘(87«]5{57 ) ) and & < min (48(170;)“&' / (lsjrs, )7 1(; 37i57*) )’
|Sr|2

|Hses, [(Hg 5,)" = (Hs,s,) ' llB.1.» <

SHES

For the second term, rewrite it as
I[HS.s, — Hses,)(Hs,s,) ™ .10

<\|[H§csr — Hs:s, ]| (Hs,s,) o000
<|[HS.s, — Hses, 151,00Vl (Hs,s,)™

Sl
Amin (HSTST )

<I[Hs.s, — Hs;s 1|51
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Using Equation (10) by setting ¢ = <% W and & < 52y A (II;S"TST), we have, with

Amin(Hs,.s,.)

ma® Awin(Hs,.s,.) o
24Pmax |S7‘ ‘SFI

2880215, 7

probability at least 1 — 2|S¢||S,| exp (— )and e <

«

I[HS.s, — Hsgs,[(Hs,.s,.) 100 < -

For the third term, we obtain the upper bound
I[HS.s, — Hs:s,[(Hs 5) " = (Hs,s.) 151,
<I[Hg.s, - Hses M pawlll(Hss,) ™" = (Hs,s,) " Mlloo.co-

Taking ¢ in Equation lb Taking t = %\/% and 2¢pma|Sr| < V%
in Equatlon We establish the upper bound that, with probability at least 1 —
¢ ma(Awin(Hs,.s,.))> m(Amin(Hs,.s,
2/8¢][Sr | exp (— 5425 ) — 28, \%m(—%) — 2, |7 exp (— MhmalHope ) )

min H.S.,-.ST « Amin(HSTST)
and £ < min (7 |\/g’ 8IS, | OISe 1" 165,12 )
«

I[Hs.s, — Hses JI(HS 5,) 7" = (Hs,s,) 510 < ¢

For the fourth term, in accordance with Assumption E[,

|Hses, (Hs,s,) 1w <1—a.

2A .
In conclusion, we have shown that, with probability at least 1 — 2|S,.|? exp (—%Em) -

AminHTT 2 2AminHrr
2\5r\2€xp(*m(s\(5—‘|s2s)))*2‘sc||8 |eXp(—%TW)—Q‘S;:HSAGXP(—%)f

2‘3r‘2exp(,w) — 2|8, [Zexp (— %W) and

192[S, 3 8|Sy |
e < min( « Amin(HSTST) Amin(HSTST) « Amin(HSrSr)
h 48(1 — )|y | |S| 7 16|S |% " 24 pimax|Sr | |Sr|

mm HS S @ Amin(HSTST))
4pmdx|5 |/\/ 8|S, | 6/S.”  16|S.z

the mutual incoherence condition holds for any worst-case distributions:

- e}
|HSes, (HS 5) 100 <1 5.
Slmphfymg the above expressions, with  probability at  least 1 -
Olexp (=72 15 IS m +log|S7| +log|Sy|)) and e < m,
_ @
|HSes,(HS 5,) 510 <15,
where C' only depends on a, Apin(Hs, s, ). O

Lemma 12. IfAssumptionholds, then for any Q € AXr (Ip’m) and « € (0, 1], with probability at
least 1 — |Sy|pr exp (— mi” )€ < Eand N > w, we have

202
Ao
Eo&(Xr < ——‘B-
IEoe(X0)s, o
With probability at least 1 — |Co,.|p, exp (— 2;‘; ), € < Eand N > B2/ Prsior Lrelr e have
Ao
||EQ5(XF)S::€THB,2,00< g
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Proof. We start with ||[EgE (X7)s, €T ||2,00. After some algeraic manipulation, we find that
IEQE(Xr)s, €T l2,00 < max|[Eqé (Xr)iel
< r ]E XF 164
max /p, max [Eq€(X7)ie;|

<max +/p, max Eg|&(Xr);e]
€S, JEPr

<max /p, max Egle;|.
€S, JEPr

Since |e;| is a bounded random variable according to Assumption |1} we apply Hoeffding’s inequality
to get

Prob(Ep lej| = p+1t) < exp (—m—t2)
- 252
Base on a similar argument as Equation (9), we can derive
Eqlej| — Eg, lej| < 2e0,
which leads to
mt?

Prob(Eqle;| = 260 + pn+t) < exp(———)-

202

Taking the union bound over all ¢ € S, and j € p,., we find that

2

mt
Prob(||EqE (Xs)s, €7 ||z > v/pr(220 + p+ 1)) < IS, |pr exp (— 55

).

32u/pr (1-/2)

Setting t = p and ¢ < £ while requiring \j; > . With probability at least 1 —

|S;|pr exp (—?T‘f), we have

Moo
E€(X7)s, €T [l2,00 < 3 B (15)

(1-a/2)
Then we consider |[EqE(X7)s:€T||B,2,00:
Eq€ (Xr)seeT|| 52,0 < max|[Eqf(Xi)eT||2,2

Smaxy/pipy  max |Egf(Xi);exl

ieCo,. JEpikEPr

< max +/p;pr inaXIE@|ek|.
€pr

i€Co,.

Similarly, applying Hoeffding’s inequality and the Kantorovich-Rubinstein theorem gives us

2

mi
Prob(||[Eq€ (X7)sc€T||B,2,0 = v/Pmaxpr (260 + p + 1)) < |Coy|pr exp (*@)-

Lett = p, ¢ < £ and \j > % hold, we have, with probability at least 1 —
|Co,|pr exp (—224),
2o
||EQS(X’F)S,,C,6THB,2,OO < %

O

Theorem 9. Given a Bayesian network (G,PP) of n categorical random variables and its skeleton
Gker = (V, Eer). Assume that the condition ||W*||p21 < B holds for some B > 0 associated

with an optimal Lagrange multiplier X% > 0 for W* defined in Equation . Suppose that Wisa
DRO risk minimizer of Equation @) with a Wasserstein distance of order 1 and an ambiguity radius
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€ = ego/m where m is the number of samples drawn i.i.d. from P. Under Assumptions if the

number of samples satisfies

2 4 3
m— 0(0(60 + IOg (n/d) + IOg p[n])a pmuxp[n] )
min(u2, 1) ’

where C only depends on «, A, and if the Lagrange multiplier satisfies

B A

320Pmax
< \E < ,
« B (O(/(4 - 20&) + 2)pmax Pln] 4

then for any § € (0,1], r € [n], with probability at least 1 — §, the following properties hold:

(a) The optimal estimator W is unique.
(b) All the non-neighbor nodes are excluded: Co, < éor.
(c) All the neighbor nodes are identified: Ne, < Ner.

(d) The true skeleton is successfully reconstructed: Gyo = ,C';skgl.

Proof. We prove the statements in this theorem in several steps. In order to prove (a) and (b), we
will show that the DRO problem is strictly convex if true non-neighbors are known so that there
is an optimal solution. Next we would like to demonstrate that this solution with a non-neighbor
constraint is indeed unique for all the solutions without constraints. The proof for uniqueness comes
with a conclusion that we do not accidentally include any edge between the current node and its
non-neighbors. Next, to prove (c), we present a generalization bound for the DRO estimator in terms
of its true risk, which leads to a /., bound of the difference between the estimator W and the true
weight matrix W*. Combined with the assumption on the minimum weight, it implies that we
include all the neighbor nodes successfully. Finally, by taking a union bound for all the nodes, we
could conclude that the correct skeleton is recovered with high probability, which proves (d).

(i) Given the true non-neighbors, there is a unique solution.
We start with the Wasserstein DRO problem, which we recapitulate here for convenience:
. 1
Wearginf sup -Egll€(X,) — WTE(X,)|3.
W geal” #,.)
The objective is convex because it is a supremum of convex functions.

For now, we assume that the non-neighbor nodes Co,. are given. We can then explicitly restrict
W, = 0 for all ¢ € Co,. The Hessian of W, . is a block diagonal matrix reads

ngsr 0 o 0
Q .
V2RY(Ws, ) = ? Hs.rsr 0 € RP-PNer XD Ner
: : -
0 0 R HSTST

where
HQ = Eg[&£(X)E(X,)T] € RPr7Pr

is the covariance matrix of encodings of X under some distribution Q Al (I@’m).

Since Wise. is fixed to be zero and V2RQ(Ws,.) is a block diagonal matrix, we focus on showing
that HY 5 > 0.

We apply Lemmal[7]to get the bound

Amin(Hi(g%Sr) = Amin(HSTST) - 45|Sr‘% —t,
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with probability at least 1 — 2|S,.|? exp (—%) Amin(Hs, s,) — 4¢|S,.|2 —t > 0 will guarantee
that the DRO problem in Equation has a unique solution when the W; = O is satisfied for
non-neighbor nodes.

(ii) Given the true non-neighbors, the solution is optimal.

We would like to show that the solution to Equation (4) with true non-neighbor constraints is optimal.
In this way, we do not recover any non-neighbor nodes in the skeleton. We adopt the primal-dual
witness (PDW) [Wainwright, 2009] method to show optimality for the constrained unique solution.

Recall that we assume |W || 2.1 < B. To begin with, we write the dual problem as

~ 1 _
W e arginf sup EallE(X:) — WTE(XH)|5+ A \s({Z,W) — B)
W QeAl? () )| Zl|5 2.0<1 2520
(16)

st. VieCo, W, =0,
where \p is the Lagrange multiplier for the norm constraint on W.

W is optimal if and only if there exists (Q*, Z*, %) that satisfies the KKT condition:

Eg+&(Xr)E(Xy)TW — Egu&(X)E(X,)T + N\5Z% =0
Q* € A (Prn), [ Z¥|| B2 < LG =0, [|[W |21 < B
(Z* W) = |[W |21, Ns(IW]p21 — B) = 0.

Note that we assume that the constraint | W || g 2,1 < B is active such that A% > 0. This assumption
is only for convenience of theoretical analysis and not restrictive. If it is not active, we have

W21 = B < B for some B and A%, = 0, which leads to an unconstrained problem similar to
the ordinary least square problem, which is known to suffer from overfitting. Instead, we are usually
interested in solutions that have finite norms so we can always find B = B — € < B for some small
positive constant € > 0 to make the constraint active and thus A% > 0.

Substituting £(X,) = W*TE(X) + e into the first-order optimality condition yields
Eg+E(XH)E(X)T(W — W*) — EgsE(Xr)eT + \5Z% =0

* s
HYs Hg|[Ws. — Wz | [Bgeé(Xr)s el z: 0
rSr rSy . S| — Q* 7)S, * S| ' 17
— [ngsr ch*sc [ 0 ] []E@*E(Xr)sgeT] + A5 [ng:] [0] (17)

Solving for Z%. , we find that
Ny ZE. = NgHEs (HS s )" 28— HE (HEs ) Box€(X5)s, €7 + Egu£(X;) sz,
which can be bounded such that

5125 |1 B.2,00

k % * k
=(NsHSos, (HS 5,) 7' 25 . — Hgos (HS 5) "Equé(Xr)s, €T + Equé(Xr)s:€T|| 2.0

* * * o
N5 HS.s, (HS 5,) 7' 28 \lpow + | Hos (HS s, ) Egs€(Xr)s, €752 + |EquE(Xr)sceT| 52,00

* * * *
N IHE s (HEs) 500l ZE oo + 1 HE s, (HES ) lp100 B € (Xr)s, €T [|2.ce
+ |Eq# E(X7)sceT || B,2,00-

Note that

125, Ml2.00 < 1271 B,2,00 < 1.

24



Recall that 0 < a < 1 in Assumptiond] Based on Lemma 8 and Lemma|[I2] we may write
Bl Z3: 1 B.2,%
% .
DB Hses, (Hs 5,) " 1.1, 25,.
+ [|[Eg+ &(X7)s:€T || B,2,0

* *
20 + | Hees, (H s,) " 15,1, [+ E(X7)s. €|

2,00

Ao Moo
<\ o o B B
SVIEEY
<\,

with high probability and certain conditions on A% and €.

Henceforth,

Z%. ||B2,x < 1 satisfies strict dual feasibility and we must have ||W5$. |21 =0

according to complementary slackness: (Z*, W) = ||W || 5.2.1. In other words, we have

Vie Co, W, =0,

with high probability. This guarantees that we do not recover any node that is not a neighbor of r
with high probability.

(iii) Without information about the true skeleton, we have a unique and optimal solution.

We follow the proof of Lemma 11.2 in Hastie et al.|[2015].

We have shown that W satisfying W; =0 Vie Co, is an optimal solution with optimal dual
variables || Z%. ||p,2,0 < 1.

To avoid clutter of notations, we define

1
LPRO(W) := sup gEQHE(Xr)—WW(Xf)II?
QeAc P (Pr)

Let (W, \) be any other optimal solution to infy supy LPRO(W) + \(|W||p.2.1 — B). By defini-
tion,
LPYO(W) + A(|W |21 — B) = LO(W) + X5((Z*, W) — B)
= LPPOW) + A(|[W || p21 — B) — N5(Z*, W) = LPRO(W) + \5((Z*, W — W) — B).

The first-order optimality condition for wW says
VLPRO(W) + \5Z* = 0,
which implies
MW a1 — B) + \5(B —(Z*,W)) = LDRO(W) +(VLPRO(W), W — W) — LPRO(W).

By definition, |W| 521 — B = 0and A% > 0. Since LPRO() is convex, the RHS of the above
equation should be non-positive, or equivalently,

W21 <{(Z*W).
On the other hand,
(Z*\ W) <||Z*||p2xlW 21 < W21
Therefore, the equality holds for the above inequalities, which leads to
[Wpa21 =(Z* W).

B.2.w < 1. Inorder for |W| 521 = (Z*, W) to hold, we must have

Recall that | Z%..



In that wise, all the optimal solutions W have
W, =0 Vie Co,.

This implies that we have a unique solution that excludes all the non-neighbor nodes without
information about the true skeleton. Until now, we have proven properties (a) and (b).

(iv) The set of correct neighbors is recovered.

Consider again the first-order optimality condition in Equation (17),
Ws,. = W3 =(Hgs) ™ (Eqs€(Xr)s €T — N5 23, )
— [Ws, = WE B2 =|(HEs )" (Egr&(Xr)s,eT = N ZE,.) | 5.2.0
I(HEs ) Izl Bow (Xr)s, €T = X 23, |2,

N

*

<I(HSs,) 15,1, (| EqeE(X7)s, €T ll2,00 + N5 ZE, |2,00)

*
<pmaxl|(HS.5,) " loo,00 (B (X7) s, €7 [l2,00 + AE)
N

<PV IS | (HS s.) 2,2 ([Eqx €(Xr)s, €7 12,00 + AB)-
According to Equation l| with probability at least 1 — 2|S,.|? exp (—W) and € <
Anin(Hs,s,.)

16]5,.|2
4
HY _
m( SrSr ) Amin(HSTST)

According to Equation (15)), with probability at least 1 — |S,|p, exp (— m“ ), e < Eand A% >

g

732“‘/‘)7(51_@2) , we have
Aba
Eq€(Xr)s, €T |l2,00 € git—r-
H‘ Q ( )Sre |H2-,CO 8(1 — 01/2)
On that account, with probability at least 1 — 2|S,.|? exp (—%jf})z) — |Srlprexp (=3 C‘r‘;)

AminHT r
(henlllsnsc) 2

320 /Fr(1—a/2)
16|5,|2 o ’

while requiring A% >

< PmaxV/ |8 A mm 5o T 1 — a/Q) 1).

By Assumption 2| if the condition A% < "““(HS’ sr) s satisfied, the follow-
y p ' 2 sy +1)pmm/\s
ds:

and € < min

IWs,. —

ing inequality ho
[Ws,. = WE |lB2w < B/2.

In this way, we are able to recover all the neighbor nodes with a threshold 3/2. This proves (c).

(v) The true skeleton is recovered with high probability.

The above arguments tell us that with high probability and certain conditions for ¢ and A% satisfied,
for each node r, we do not recover any non-neighbor and we do recover all the neighbor nodes. The
correct Ne,. and Co,. are thus identified. Now we are ready to prove (d).

Putting everything together and taking the the union bound for all nodes r € [n], with prob-

C m p, Cu 32 u Prmax *
e —|— 21o < and < Ny <

ability at least 1 — O(nexp (—=

%, where C' only depends on «, A, we have

B
2( saary T 1) pmax~/P[n]

gskel = gskel .
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Setting ¢ = =2 and making the dependence on the sample size more explicit. We draw the conclusion
that, if the number of samples satisfies

_0 0(50 + log (n/&) + log p['rL])JQpéaxpz[))n]
m = N D) )7
min(2, 1)

where C only depends on «, A, and if A% satisfies

324 P <)\h < A wé,
« (a/(4 - 20&) + 2)pmax«/p[n] 4

then with probability at least 1 — § for ¢ € (0,1]:

gskel = gskel .

Moreover, if we assume that the target graph has a bounded degree of d, the sample complexity
becomes logarithmic in n:

0(50 + IOg (n/(S) + 1og n + log pmax)02pr711axd3

m =0 win(2, 1)

).

Theorem 10. Suppose that W is a DRO risk minimizer of Equation (@) with the KL divergence and
an ambiguity radius € = o/m. Given the same definitions of (G, P), Gy, B, A%, m in Theorem
Under Assumptions|]| 2} if the number of samples satisfies

3

o C(‘SO + IOg (77,/(5) + IOg p[n])02p3wxp[n] )

min(p?, 1)

where C' depends on «, A while independent of n, and if the Lagrange multiplier satisfies the same
condition as in Theorem[9) then for any & € (0,1], r € [n], with probability at least 1 — 0, the
properties (a)-(d) in Theorem 9| hold.

Proof. Define

tw (X) := SIE(X,) ~ WTECK) .

According to Theorem 7 in|Lam)| [2019], the worst-case risk with a KL divergence ambiguity set can
be bounded as follows:

Bobw (X) <Bs lw(X) +vE, |~ 3 (bw(a®) — 3 2 1 g il [w (&) — tw [?
sup  Eolw (X) <Ep Iw — w —tw =
QeAD (B,,) v m ie[m] Zie[m] (bw (53( )) —lw)?

<E; (w(X)+ vEmax [ty (@) — b | + Ce max 10w (D) — by |,

i€[m]

where (y = L Die[m] lw (2D) and C' > 0 is constant independent of 7.
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Consider

max 10w (D)) — by | <  max lw (x) — bw ()]
i€[m] W' e,z

< max [fw ()]

T

1
<5 ax( [E(X)ll2 + [WTE(XF)|2)?
1
<3 max (Vomax + [WT|[o,2)?
1
<5 max(m + |[W]12)?
1
< nax X(v/Pmax + /P IW || 7)?
1
<5 x(v/Pmax + /A1) [W .2, 1)?
<5<m+ VP B)?
=B,.

Define epax := max(4/g, €). Therefore, we find that

sup Ewa(X) < EﬂimgW(X) + C’<‘3mapr‘
QeAP (Pr)

Similar to the Wasserstein robust risk, we observe that the following results hold for any Q €
AP (P,,).
With probability at least 1 — 2|5, [? exp (— 5% |2) we have
Anin(HS 5,) = Anin(Hs, s,) — Cmas|S,|F -
With probability at least 1 — 2|S¢[[S,| exp (— 52" ),
||Hg;3r — Hses, ||B,1,0 < CemaxPmax|Sr| + t.
With probability at least 1 — 2|S,.|? exp (—%),
H|Hgsr — Hs, s, 00,00 < Cemax|Sr| + ¢

With probability at least 1 — 2|S,.|? exp (——m it ;‘2“‘(;"?37 ) ) —2|S,|? exp (— —m(A‘“‘gfgfgs”V) and

tAmin(Hs,s,) Amin(Hs,s,.)

< .
Emax & len( 8[S, | /7|87‘| ) 16|$r\% )’

‘H(Hgs )7t = (Hs,s,) oo <t
With probability at least 1 — O(exp (— m + log |S¢] + log |S,|)) and egmax <

_C
Pmax|Sr[3/27

— (6%
HHQgsT(HgsT) 1||B,1,oo <1- 5
where C' only depends on a, Apin(Hs, s, ).

"

Thanks to the boundedness of the error term e, we have similar conclusions to Lemma [12if €. < ’;
holds.
In such wise, the properties in Theorem@hold with the same condition on A% and the condition on

Emax that Emax < ﬁ Since we set ¢ = 22 and define emax := max(4/¢, €), the condition on
max [ ]

€max implies that
500202pr2naxp%n] EOCJPmaxP?,/L]Q
G ’ 1t

).

m = max(
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Table 2: Comparisons of F1 scores for benchmark datasets and BIC for real-world datasets (backache,
voting). BIC is not applicable to skeletons. The best and runner-up results are marked in bold.
Significant differences are marked by | (paired t-test, p < 0.05).

Dataset n m Noise ¢ ‘Wass KL Reg MMPC  GRASP Wass+HC KL+HC Reg+HC MMPC+HC GRASP+HC HC
asia 8 1000  Noisefree 0 0.7800f 0.7897f  0.9067  0.8167 0.5123 0.6367 3 0.6667 0.6583
asia 8 1000 Huber 0.2 0.7333f 0.7124f  0.72971 0.3943 0.3724 0.2907 3664
asia 8 1000 Independent 0.2 0.6933  0.6797  0.6868 0.2676 0.2632 0.2469 0.1794 .
cancer 5 1000 Noisefree 0 1.0000f 1.0000f 1.0000f 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800
cancer 51000 Huber 0.5 0.9156f 0.8933f 0.9092f 0.6133 0.4333 0.3833 0.4143 0.2589 0.2714 0.2589
cancer 5 1000 Independent 0.2 0.9048f 0.9029f 0.8992f  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
earthquake 5 1000 Noisefree 0 0.8447f  0.9333f 0.9778 1.0000 0.9778 0.2000 0.2500 0.2500 0.2500 0.2500 0.2278F
earthquake 5 1000 Huber 0.2 0.7509f 0.7509f 0.7509f 05978  0.6583F 0.4618 0.4618 0.4618 0.3860 0.4547 0.3860
earthquake 5 1000 Independent 0.2 0.6786f 0.6350f 0.6350f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sachs 1000 Noisefree 183571 0.8402f  0.8374f  0.9697 0.4310f 0.45351 0.5935 0.4112f 0.5873
sachs 1000 Huber 0.8064  0.7893  0.7498 0.5194 0.4815 0.4736 0.2380 0.5028
sachs 1000 Independent 0.5208f  0.5172f  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
survey 1000 Noisefree 0.6545  0.6506 0.1789 0.1789 0.1789 0.0571 0.1789
survey 1000 Huber 0.6778F  0.70951 0.1444 0.1444 0.1444 0.1516 0.1444
survey 1000 Independent 0.67051  0.6220f 0.0000f 0.1071 0.1071 0.0000 0.1071
alarm 1000 Noisefree 0.7863F  0.8042f 0.68241 0.4949t 0.5635 0.4976 0.44941
alarm 1000 Huber 0.1619F  0.6571f 0.1680f 0.2774 0.2092f 0.2582
alarm 1000 Independent 0.1448F  0.54581 0.0000 0.0000 0.0000
barley 1000 Noisefree i 0.4913f 0.5636 0.1970f 0.2526
barley 1000 Huber 0.1592f  0.40271 0.4000f 0.1151 0.1658 0.1685
barley 1000 Independent 015011 0.2767f 0.4923f 0.0769 0.0838 0.0838
voting 216 Noisefree N/A N/A N/A —2451.8631 —2453.2737 —2453.4091 456.1489
voting 216 Huber N/A N/A N/A —4418.9731 —4418.9731 —4487.4544 —4418.9731
voting 216 Independent N/A N/A N/A —4453.8298 —4453.8298 —4522.5521 —4453.8298
backache 90 Noisefree N/A N/A N/A —1729.8364 —1726.8465 —1710.7248 —1719.5002 —1713.7583 —1729.7991
backache 90 Huber N/A N/A N/A —3186.5001 —3186.5001 —3186.5001 —3186.5001 —3186.5001 —3186.5001
backache 90 Independent N/A N/A N/A —2800.9386 —2800.9386 —2800.9386 —2800.9386 —2800.9386 —2800.9386
connect-4_6000 43 6000  Noisefree N/A N/A N/A —38956.4300  —38956.4300  —38954.9501  —3 - 6041t —38956.4300
connect-4_6000 43 6000 Huber N/A N/A N/A —99616.2848  —99616.2848  —102878.2766 —99673.532 —100212.9773  —99616.2848
connect-4_6000 43 6000 Independent N/A N/A N/A  —107403.2543 —107403.2543 —107403.2543 —107403.2543 —107403.2543 —107403.2543

The final sample complexity becomes

. Cleo +1og (n/d) +10g ppa)) 0% pax) )
e min(u2, 1) '

D More Empirical Results

Table 2]lists the complete experimental results.
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