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Abstract

We consider the problem of fitting autoregressive graph generative models via maximum
likelihood estimation (MLE). MLE is intractable for graph autoregressive models because
the nodes in a graph can be arbitrarily reordered; thus the exact likelihood involves a sum
over all possible node orders leading to the same graph. In this work, we fit the graph models
by maximizing a variational bound, which is built by first deriving the joint probability over
the graph and the node order of the autoregressive process. This approach avoids the need to
specify ad-hoc node orders, since an inference network learns the most likely node sequences
that have generated a given graph. We improve the approach by developing a graph
generative model based on attention mechanisms and an inference network based on routing
search. We demonstrate empirically that fitting autoregressive graph models via variational
inference improves their qualitative and quantitative performance, and the improved model
and inference network further boost the performance. The implementation of the proposed
model is publicly available at https://github.com/tufts-ml/Graph-Generation-MLE.

Keywords: Graph generation, autoregressive graph models, variational inference

1. Introduction

Probabilistic models of graphs have been widely studied in statistics and graph theory.
One of the earliest models of graphs—the Erdés-Rényi model—dates back to 1960 (Erdés
and Rényi, 1960). Since then various formulations have been proposed to characterize
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distributions overs graphs (Watts and Strogatz, 1998; Nowicki and Snijders, 2001; Cai et al.,
2016) with both data modeling and theoretical goals.

To allow for flexible and learnable distributions over graphs, recent works have extended
the classic graph models by using neural networks to define such distributions. In these
models, a neural network stochastically determines the connections between graph nodes.
Since the network is flexible enough to capture complex correlations, the resulting model
is able to learn complex graph patterns. The learned patterns are then used for inferring
information about a collection of graphs or for generating new graphs with similar properties.

These models make use of popular deep learning architectures and generative models (Guo
and Zhao, 2020), such as recurrent neural networks (RNNs) (You et al., 2018), generative
adversarial networks (GANs) (Goodfellow et al., 2014; Wang et al., 2018) or variational
autoencoders (VAEs) (Kingma and Welling, 2013; Kipf and Welling, 2016b).

A popular class of deep generative graph models are autoregressive models (You et al.,
2018; Li et al., 2018; Liao et al., 2019; Dai et al., 2020; Goyal et al., 2020; Yuan et al., 2020;
Shi et al., 2020), which are the focus of this paper. As opposed to many classical graph
models, which typically characterize prescribed statistics of graphs, autoregressive models
are designed to learn flexible graph distributions and provide easy sampling procedures.
An autoregressive model generates a graph by sequentially adding nodes and edges. More
concretely, the generative procedure samples an adjacency matrix by sequentially sampling
its entries one row at a time. This generative process implies a certain probability distribution
over graphs. In this paper, we derive this distribution in a principled manner and clarify the
differences with classical graph distributions (e.g., Erdés and Rényi, 1960) and with deep
graph generative models based on node representations (e.g., Kipf and Welling, 2016b).

In principle, one way to fit an autoregressive model to a given dataset is via maximum
likelihood estimation (MLE). MLE maximizes the graphs’ probability with respect to the
model parameters. Unfortunately, the probability distribution of autoregressive models is
typically intractable because there are multiple autoregressive sequences leading to the same
graph (You et al., 2018; Liao et al., 2019). Evaluating the probability of a given graph
would require to consider the probabilities of all such sequences, which is computationally
intractable due to the large number of possible sequences.

In practice, when fitting an autoregressive graph model, some heuristics are adopted.
For example, some approaches consider only a particular subset of all possible sequences.
Other approaches consider a single “canonical” sequence, determined by, e.g., depth-first
search (DFS) or breadth-first search (BFS) order. In this case, the training objective only
considers the probability of a graph using one node order, which is a loose lower bound of
the exact log-likelihood. Thus, despite the fact that these heuristics are simple and can be
effective in some settings, the training objective does not correspond to rigorous MLE.

Similarly, probability-based evaluation metrics (namely, log-likelihood) are also in-
tractable for the same reason. Instead, other evaluation metrics such as degree distribution
are used, but these metrics exhibit some issues for complex graphs (Liu et al., 2019; O’Bray
et al., 2021).

In this paper, we provide a method to estimate the log-likelihood for autoregressive graph
models, addressing the fundamental issue of MLE described above. Besides MLE, estimating
the log-likelihood of graphs brings other benefits. For example, it enables log-likelihood
evaluation, standard statistical model checking and comparison, and it also opens the door
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for other tasks that require the log-likelihood of graph distributions, such as density-based
anomaly detection.

Specifically, we sidestep the computational intractability of MLE by performing ap-
proximate posterior inference over the autoregressive sequences (more precisely, over the
order of the nodes in the graph, which is equivalent). To approximate the posterior, we use
variational inference (VI) (Blei et al., 2017) and maximize a lower bound of the log-likelihood.
We design a neural network that infers a probability distribution over the order of the nodes.
Thus, the generative model is trained with sequences that are likely to generate the observed
graphs, avoiding the need to define ad-hoc orders. By doing so, this approach is able to
learn graph models with significantly better performance in terms of both data fitting and
graph generation than existing approaches. To measure graph generation quality, we sample
graphs from the fitted model and compare their similarity to graphs from the training set;
the models fitted with VI exhibit higher similarity. For evaluation metrics, we compute both
log-likelihood (estimated via importance sampling) as well as maximum mean discrepancy
(MMD) over some statistics (Gretton et al., 2012). The MMD based on such statistics can
check whether a model learns graph properties such as small-world effects and transitivity.
Models fitted with VI present significantly better evaluation metrics.

Finally, in this paper we design an improved graph generative model and inference

procedure by incorporating attention mechanisms (Vaswani et al., 2017a) into the model
design and routing search mechanisms (Kool et al., 2018) into the approximate posterior
distribution. We demonstrate experimentally that both the new generative model and the
routing-based inference network improve the quantitative and qualitative performance, as
measured by the metrics described above.
Contributions. This work is an extension of our previous paper (Chen et al., 2021). We
extend it in different ways: (i) we discuss the related work in more depth; (ii) we provide a
thorough background section where we discuss the relation between autoregressive models
and models based on exchangeable distributions of adjacency matrices; (iii) we develop a
new graph generative model and a new inference network based on attention mechanisms
and routing search; and (iv) we conduct additional experiments where we show the benefits
of the generative model and the approximate posterior over the approach of Chen et al.
(2021). Putting all together, our main contributions are:

e we provide a rigorous definition of the probability of node orders in autoregressive

graph generative models;

e we analyze the relation between the calculation of graph probabilities and graph

automorphism;

e we introduce VI to infer node orders and train graph models by maximizing a variational

bound on the log-likelihood;

e we develop a new generative model and inference network that are based on attention

mechanisms and routing search; and

e we show that fitting autoregressive graph models via VI improves their qualitative

and qualitative performance, and both the attention-based generative model and the
routing-based inference network improve it further.
Organization of the paper. The rest of this paper is organized as follows. In Section 2,
we discuss the related work. In Section 3, we discuss two broad class of graph models
(autoregressive models and exchangeable distributions) and introduce the notation of the
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paper. In Section 4, we consider the generation order as a random variable and analyze
the relation between the graph probability and graph automorphisms. In Section 5, we
introduce VI to infer the node order probability and form a suitable objective function based
on a lower bound of the log-likelihood; the main ideas in Sections 4 and 5 were also included
in our previous work (Chen et al., 2021). In Section 6, we incorporate attention mechanisms
into the generative model and routing search into the design of the approximate posterior
distribution. In Section 7, we analyze the empirical performance of graph generative models
trained with VI. We conclude the paper in Section 8.

2. Related Work

The graph generation problem has been investigated for decades. Traditional methods
like Erdés-Rényi random graphs (Erdés and Rényi, 1960), stochastic blockmodels (Holland
et al., 1983), or the Barabéasi-Albert model (Albert and Barabasi, 2002) usually make model
assumptions like considering a particular graph family. Exponential-family random graph
models (ERGMs) (Newman, 2003; Lusher et al., 2013) provide a flexible form to parameterize
random graphs that have various desired properties (Snijders et al., 2006) that are typically
of interest in studies of social networks, e.g., small-world effects, transitivity, or scale-free. In
our work, we focus on small graphs and aim at learning their distribution without explicitly
specifying their properties.

More recently, deep learning has advanced the field of generative modeling in many
domains, including graph generation (Kipf and Welling, 2016b; Simonovsky and Komodakis,
2018; You et al., 2018). One branch of deep graph generative models combines a VAE and a
graph neural network (GNN) to obtain a generative model based on latent representations
of the nodes in the graph. One of such models is VGAE (Kipf and Welling, 2016b), which
assumes that the latent node representations are a priori Gaussian distributed. Instead of
Gaussian distributions, Mehta et al. (2019); Chen et al. (2022a) use a spike and slab prior
(Griffiths and Ghahramani, 2011; Teh et al., 2007) to capture the community membership of
the node representations. Such works model the node distribution and generate a graph
based on the learned node characteristics.

Another branch of deep graph generative models is deep autoregressive models. These
models are frequently used due to both the quality of the generated graphs and their
generation efficiency and have been applied to real-world problems such as molecule modeling
(Jin et al., 2018; Shi et al., 2020; Luo et al., 2021). One example of an autoregressive model
is GraphRNN (You et al., 2018), which uses an RNN to model a sequential process that
adds nodes and edges. In this model, the order of the nodes in the sequence is relevant,
and GraphRNN assumes BFS node orders. In contrast, GRAN (Liao et al., 2019) further
discusses the influence of choosing different order schemes (BFS, DFS, k-core, descending
degree, etc.). These ad-hoc node orders can be used to form a variational lower bound on the
graph log-likelihood (Liao et al., 2019). However, when the node orders are either randomly
sampled from a uniform distribution or limited to a small range of canonical orders, the
resulting variational bound may be loose.

One model that considers a single canonical order is GraphGEN (Goyal et al., 2020).
For a given graph, GraphGEN obtains its likelihood by considering that the graph was
generated according to the canonical order; however, when generating a graph from the
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model, GraphGEN does not guarantee the canonical order. This design raises a theoretical
issue: the frequency of a generation sequence may not converge to the probability that the
model assigns to that sequence.

Other research directions improve autoregressive models in different ways. For example,
BiGG (Dai et al., 2020) aims at improving the model scalability by generating large sparse
graphs, reducing the generation time complexity from O(n?) to O((n + m)logn), where n
is the number of nodes in the graph and m is the number of edges.

Another challenge of graph generative models is the qualitative evaluation of the generated
graphs. One way to evaluate the quality of graph samples is to compute the distance between
the graph statistics of the generated graphs and the observed graphs. The distance between
two graph families can be computed via MMD (Gretton et al., 2012; You et al., 2018).
The statistics of interest are typically the distribution of node statistics, e.g., node degree,
graphlet counts, clustering coefficient, etc. In specific applications, other statistics may be
used as well; e.g., to evaluate the synthetic molecules for drug discovery. Some useful metrics
are the octanol-water partition coefficient, synthetic accessibility score, or quantitative
estimation of drug-likeness. However, most of these evaluation metrics are handcrafted and
may not necessarily reflect the structural properties of the graph family. Another way to
evaluate the quality of generated graphs is by computing the graph likelihood, which is
challenging for most generative models. In this work, we show how to estimate the likelihood
of a graph using importance sampling; for that, we first formalize the definition of the graph
likelihood and show that it is related to the graph automorphism problem (see also Chen
et al., 2021).

3. Notation and Background

Let G = (V, E) denote a graph, with V' being the node set and E being the edge set. Suppose
V ={v1,...,v,} has n nodes, and each edge in F is a two-element subset of V. If we assign
the identifiers {1,...,n} to the graph nodes, then we get a labeled graph.! Each labeled
graph is uniquely characterized by an adjacency matrix A,

)1, if (4,4) € E,
Aig = { 0, otherwise. (1)

In practice, the nodes in a graph G are not labeled. Thus, in what follows, we consider
that G is an unlabeled graph. Unlike labeled graphs, there is not one-to-one correspondence
between adjacency matrices and unlabeled graphs. Instead, there is a set A(G) of distinct
adjacency matrices derived from G, such that each A € A(G) corresponds to the adjacency
matrix of a labeled graph obtained by assigning identifiers (integer labels) to the nodes of G.
The number of distinct adjacency matrices in A(G) is

n!
e

where I'(G) denotes the set of automorphisms of the graph G (Harary et al., 1973).

|A(G))]

(2)

1. The phrase “labeled graph,” which is often used in mathematics, means that graph nodes are labeled
with distinct integers. It must not be confused with the “labels” in the context of supervised learning.
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In this work, we consider a distribution p(G) over G, where G denotes all finite graphs.
Typically, we define p(G) by considering a distribution p(A) over adjacency matrices in A,
where A = Ugeg A(G) denotes the set of all adjacency matrices derived from finite graphs.
From the definition of unlabeled graphs, we have that p(G) can be obtained from p(A) as

p(G)= > p(A). 3)

ACA(G)

To define the distribution p(A), one approach is to use a neural network that probabilistically
generates each row of A in a sequential manner. We discuss these autoregressive methods in
Section 4 and design a new generative model in Section 6.

Unfortunately, the computation of Eq. 3 requires to enumerate all adjacency matrices
in A(G). This enumeration is computationally expensive, because it is equivalent to
enumerating all labeled graphs derived from G, which is a non-trivial problem (Harary et al.,
1973). We address this issue in Sections 5 and 6.

Two types of generative models. Before discussing autoregressive models, we relate
the probability distribution above with classic graph distributions. Most classic graph
distributions consider labeled graphs (Frieze and Karonski, 2015, Chapter 1). Given the
one-to-one relationship between labeled graphs and adjacency matrices, such distributions are
essentially distributions over adjacency matrices. For example, the Erdés-Rényi model (Erdés
and Rényi, 1960) defines a distribution p(A) through independent Bernoulli distributions
over the entries of A.

When we use a classical distribution p(A) to model a graph (often a network), we do not
wish the probability calculations to be affected by the specific choice of node labels. To satisfy
this requirement, we need p(A) to be an exchangeable distribution over A (Orbanz and Roy,
2014)—if p(A) is exchangeable, then it satisfies p(A) = p(A), where A, denotes a row and
column permutation of A specified by a permutation 7. In order to make a distribution p(A)
exchangeable, the model often needs to know the number of nodes beforehand, therefore,
p(A) is often obtained by conditioning on n as p(A) = Y oo ; p(A | n)p(n).

Some more modern graph models, such as the VGAE (Kipf and Welling, 2016b) and
alike, define a set of node representations and then generate an adjacency matrix A. These
models also consider exchangeable distributions p(A). Because of the property mentioned
above, these methods are referred to as “parallel generation” (Lippe and Gavves, 2020; Chen
et al., 2022b) or “generation with fixed-set of nodes” (You et al., 2018). These descriptions
of p(A) are rooted in the exchangeability property of p(A).

In this work, the graph distribution p(G) is defined by Eq. 3 and does not require the
underlying distribution p(A) to be exchangeable, because Eq. 3 obtains the sum over all
possible combinations of node labels. For the same reason, if a graph distribution p(G) is
defined through a non-exchangeable distribution p(A), then p(G) should be defined by Eq. 3;
otherwise it is not possible to determine which adjacency matrix A € A(G) to consider.
By removing the exchangeability requirement, the distribution p(G) from Eq. 3 allows for
flexible distributions to model graph structures, making it appropriate for graph-level tasks.
However, it also presents computational challenges, as it inevitably needs to consider all
adjacency matrices derived from the graph G. We address this difficulty in this work.
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Algorithm 1 Autoregressive generation of adjacency matrices

Require: The maximum size of the matrix, nyax > 0
11
while 7 < ny.x do
1=1+1
for j =1toido
sample A; ;
end for
sample stop variable S € {0,1}
if stop then
break
end if
end while

4. Autoregressive Graph Generation

In this section we describe the autoregressive generative model p(A) of (non-exchangeable)
adjacency matrices. An autoregressive model considers that the entries of the adjacency
matrix A are generated sequentially (You et al., 2018). This sequential sampling procedure
defines the distribution p(A).

More specifically, the autoregressive model considers the lower triangular matrix L such
that the adjacency matrix A = L + L' (the adjacency matrix is symmetric for undirected
graphs). The model generates the matrix L by sequentially sampling each of its rows. After
a row is generated, it decides whether to stop (S = 1) or not to stop (S = 0). Since each L
uniquely determines A and vice-versa; we have that p(A) = p(L), and

n

p(A) =p(S=1|L) [[p(S=0]Ly.q-1))p(Lt,: | Ly;-1)), (4)
=2

where Ly.;_1) denotes the submatrix formed from the first ¢ — 1 rows and columns of L,
and Ly . is the ¢-th row of L. Note that L; . is empty so the product starts from ¢t = 2. The
probability p(S = 0 | Ly.;_1)) corresponds to the case of continuing the generation after
t — 1 rows, while p(S = 1| L) corresponds to the case of stopping generation after n rows.
This generation procedure is described in Algorithm 1.

Many models in the literature use this autoregressive approach to generate A. For
example, the formulation by Liao et al. (2019), which generates graph nodes in batches, can
be expressed as an autoregressive model of the form above. GraphGEN (Goyal et al., 2020;
Dai et al., 2020), which generates the sparsity pattern of each row of L, is also in this form.
In Section 6.2, we develop a new autoregressive model for p(A).

The autoregressive generation procedure assumes that nodes are generated sequentially,
following some node order or node permutation w. There are n! possible permutations,
and each permutation 7 assigns an identifier or label to all nodes. Thus, every node order
7 determines a labeled graph, which means that the pair (G,7) uniquely determines a
particular adjacency matrix A from the set A(G); we denote this as (G, 7) — A. The
converse is not true: we cannot uniquely identify 7 from A. Indeed, a matrix A corresponds
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Figure 1: The relationship between the node order 7 and the lower triangular matrix L of
an adjacency matrix A. Given a graph G (left), several node orders 7 (middle) specify the
same matrix L, so we cannot uniquely identify 7 from a given L.

y@
F—O F—OD—0 ®>@
good generation orders a bad generation order

Figure 2: Generation patterns from different node orders. The two left-most graphs share
the same generating pattern: each node is connected to its two preceding nodes. The third
graph is the same as the second one, but the generating pattern is harder to describe because
of a different node order.

to multiple node orders if G has multiple automorphisms. We illustrate this through an
example in Figure 1. The first two node orders (7 = (1,3,5,2,4) and 7 = (1,2,4,3,5))
determine A, but we cannot uniquely identify one of them from A (in particular, we cannot
distinguish the node pairs (2,4) and (3,5)). Similarly, we cannot identify a unique node
order 7 from A’.

Remark. The generation order plays an important role when fitting autoregressive
generative models, because the probability p(A) may be significantly different for two
different adjacency matrices even if they correspond to the same graph. Ideally, the
conditional probability p(Li, | Ly.¢—1)) of the autoregressive model needs to capture the
patterns in the data. Therefore, a good node order should form generating steps that
share common generation patterns, so that it is easier for the autoregressive model to learn
such patterns. Figure 2 illustrates this idea through an example. Consider the following
generation pattern: “connecting each new node to its two preceding nodes.” The first two
graphs in the figure have been assigned a node order that follows this pattern. The third
graph is the same as the second one, but the generating pattern is more complex because it
uses a different node order. Therefore, it is important to identify a good generation order
for the generative model to model graphs in a dataset.
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Now we consider the calculation of the graph probability p(G) in Eq. 3 with the underlying
distribution p(A) defined by an autoregressive model. As discussed in Section 3, this requires
to consider all adjacency matrices in the set A(G). However, not only the summation itself
is hard, but enumerating all these adjacency matrices is also a complex problem.

To address the latter issue, we consider the summation over node orders 7 instead of
adjacency matrices A. To do so, we consider that 7 is a random variable and formally specify
a joint distribution p(G, ), such that we recover the distribution p(G) by marginalization,

p(G) =) _p(G, ). ()

Obtaining p(G) from Eq. 5 is easier than from Eq. 3 because the marginalization space is
easier to characterize. Although Eq. 5 remains intractable due to the large number of terms
in the sum, in Section 5 we derive a variational bound on p(G).

We next show how the joint p(G,7) from Eq. 5 relates to the probability p(A) from
Eq. 4. As discussed above, the pair (G, ) uniquely determines A, but the converse is not
true: given A, there may be multiple consistent node orders 7 (see Figure 1). Let IT(A) be
the set of all possible node orders that give the same adjacency A, i.e.,

H(A) = {7 : Az, r; = 1[(mi, 7j) € E],Vi,j € V}, (6)

where 1[-] is the indicator function, which takes value 1 or 0 depending on whether its
argument is true or false. If treated as a mapping of the node set, each 7 € II(A) is an
automorphism of the graph.? Thus, the set IT(A) contains all automorphisms of G' because
any automorphic mapping of the graph keeps the adjacency matrix unchanged (Harary et al.,
1973, Chapter 1). Therefore, [IT(A)| is the number of automorphisms of the graph defined
by A.

We define the conditional distribution p(w|A) as a uniform,

—L _ ifreI(A).
p(m|A) == { (A (7)

0, otherwise.

Then, the joint p(G, ) in Eq. 5 is

1
]

p(G, ) p(A). (8)

The number of automorphisms ‘U (A)] is a constant for any given graph, so we do not
need to compute this quantity for model training or model comparison. If we need to evaluate
Eq. 8, there are approximate methods for computing ‘U (A)]. Note that the computation of
|11 (A)‘ is a well-studied classic problem in graph theory. The time complexity of computing
[II(A)] is exp (O(y/nlogn)) (Beals et al., 1999). The Nauty package (McKay and Piperno,
2013) uses various heuristics and can efficiently find this number for most graphs. In practice,
it can compute |IT(A)| for a graph with thousands of nodes in less than 10~3 seconds.
Can we avoid the marginalization? Some previous works attempt to avoid the marginal-
ization in Eq. 5 by using a single generation order. One example is GraphGEN (Goyal et al.,

2. A function f:V — V is an automorphism of G = (V, E) if (u,v) € E < (f(u), f(v)) € E.
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2020), which uses a canonical order 7* to identify a single adjacency matrix A* and thus
avoid the summation in Eq. 5 (or Eq. 3). Although this strategy is appealing, we show here
that it brings other issues. The canonical order 7* and the corresponding adjacency matrix
A* imply that the distribution p(G) is defined as p(G) = p(A*). This requires p(A) = 0 for
any A € A(G) such that A # A*, according to Eq. 3.

This strategy presents two issues. First, finding a strict canonical order is a non-trivial
task—the difficulty is the same as the isomorphism test. In addition, the canonical order 7*
may not be the best generation order: algorithms for computing canonical orders are usually
not designed to discover common construction patterns (see the discussion of Figure 2).

Second, it is hard to guarantee that the generative procedure follows the canonical order.
In fact, there is not a straightforward way to control the generation order because the
canonical order is computed retrospectively after the graph G is generated. Due to this
difficulty, GraphGEN does not guarantee that samples from the model follow the canonical
order. In other words, a sample from GraphGEN may be generated with a node order that is
different from the canonical order of the resulting graph. Thus, the sampling probability of G
is likely to be inconsistent with the probability p(G) that the model assigns to G. That is, the
sampling frequency of G will not converge to the model’s p(G), which is a severe problem for a
statistical model. To estimate how different the sampling and the model probabilities are, we
fitted the GraphGEN model to the Community-small dataset and then sampled graphs from
the fitted model. We found that only 9.1% of the generated graphs follow the canonical order.

5. A Variational Bound and an Approximation of the Log-likelihood

Here we present a method to train an autoregressive graph generative model without having
to pre-specify the node order. We achieve that by maximizing a variational lower bound of
the log marginal likelihood.

In particular, consider a generative model pp(A,) parameterized by 6. We obtain the
marginal likelihood py(G) by marginalizing out the node order 7 from the joint py(G, )
(Eq. 8). Since the marginalization is intractable, we introduce a wvariational distribution
¢s(m | G), parameterized by ¢, that approximates the posterior pg(7 | G), and we form the
variational lower bound L(6, ¢, G) < logpy(G) (Blei et al., 2017), given by

L(0,¢,G) = Eq, (x| ) [log pg(G, ) — log g (7 | G)] . 9)

Variational inference maximizes Eq. 9 with respect to both the model parameters 6 and the
variational parameters ¢. We discuss the optimization algorithm in Section 5.1 and the form
of the variational distribution g, (7 | G) in Section 6.1.

5.1 Maximizing the variational lower bound

To maximize the lower bound L(0, ¢,G) in Eq. 9, we need its gradients with respect to
both 6 and ¢, which are intractable. We approximate the gradient with respect to 6 via
Monte Carlo estimation. And a basic method of calculating the gradient with respect to ¢
is the score function estimator (Williams, 1992; Carbonetto et al., 2009; Paisley et al., 2012;
Ranganath et al., 2014). The estimators are obtained with S samples 7(*) ~ g4(7 | G) for

10
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Algorithm 2 VI algorithm for training a graph model based on the adjacency matrix A

Input: Dataset of graphs G = {G,..., Gy}, model py, variational distribution gy
Output: Learned parameters 6 and ¢
repeat
for G € G do
Sample 7(1), ..., 7(%) i qs(m | G)
Obtain A®) from (G, 7(®)
Set po(G, 7)) = Ay pe(A)
Compute Vg < VyL(0,¢,G) by Eq. 10
Compute V4 < V4L(0, ¢, G) by Eq. 12
Update ¢, 0 using the gradients V4, Vg
end for
until convergence of the parameters (6, ¢)

s=1,...,85, yielding

S
VQL ZV@logpg G 7T( )) (10)

S
VL0, Z [logpo(G, ) —log gs(x'*) | G)| Vyloggs(™ | G). (1)

Eq. 10 shows that the parameters 8 of the model are optimized under node orders 7 sampled
from the approximate posterior gg(7(*) | G). That is, fitting the model does not require to
define ad-hoc node orders 7; rather, the (approximately) most likely node orders are used.

To reduce the variance of the gradient estimator with respect to ¢, we use the leave-one-
out estimator (Salimans and Knowles, 2014; Kool et al., 2019; Richter et al., 2020) instead
of the vanilla score function estimator from Eq. 11. This estimator is given by:

S
1 (G 71'( )) pg((;' 71'( ))
— log —/———— — — log ——+——-| V1 .
51 og ¥ PRECEYE) E ologge(n | @)

VoL(0,0,G) =~ ( | )

(12)

A model trained with uniformly distributed random node orders can be seen as using a
uniform variational distribution g,(7(*) | G) (see Liao et al., 2019). However, this approach
yields a loose bound when the posterior distribution py(7 | G) is far from uniform.

We summarize the VI training procedure in Algorithm 2. The algorithm can be applied
to any autoregressive model that has a computable p(A), such as GraphRNN or GraphGEN.

5.2 Approximating the log-likelihood through importance sampling

The approximate posterior g4(m | G) also allows us to approximate the log marginal
likelihood of a fitted model. In particular, we approximate logpy(G) using importance
sampling (Murphy, 2012; Owen, 2013), with g4(7 | G) as the proposal distribution:

L pp(G, 7)) )

1
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where 7(8) ~ ¢s(m | G) for s =1,..., L. The importance sampling approximation uses L
samples, where L is typically higher than the number of samples S used for training in
Section 5.1. For any finite value of L, Eq. 13 is a biased estimator because its expectation is
still a lower bound of the true log marginal likelihood, but the lower bound monotonically
approaches log pp(G) as L grows. In our experiments, we found that L = 1,000 gives an
accurate estimation (see Figure 5).

6. A New Inference Network and Generative Model

In this section, we first develop a routing-based network architecture to construct an efficient
variational distribution g4(7 | G). Then we propose a new generative model pg(G, ) that
uses an attention mechanism to improve the model’s flexibility.

6.1 Routing-based inference network

The main goal of the inference network in this subsection is to speed up the inference
method of Chen et al. (2021). We first note that this is a dynamic ordering problem, since
a node in the sequence determines how later nodes are (probabilistically) compared. For
example, the first node in a BFS-ordered sequence affects the order of later nodes. Therefore,
algorithms that predict a static ordering are not applicable here; this includes ranking
algorithms (Liu et al., 2009), which often predict the ordering of items based on their scores
or pairwise comparisons. Note that the (stochastic) orders predicted by a ranking algorithm
are considered static in this context because the (probabilistic) pair-wise comparison of
two nodes is not affected by the order of other nodes. Secondly, we note that Algorithm 2
requires to explicitly evaluate gg4(m | G); this prevents us from using neural models that
compute probabilistic permutation matrices (e.g., Mena et al., 2018; Paulus et al., 2020),
since the distribution is not available in closed form.

Instead, we opt for neural models designed for the travelling salesperson problem (TSP)
(Kool et al., 2018; Joshi et al., 2019, 2020), which can dynamically order nodes. Unlike TSPs,
which typically consider fully connected weighted graphs, we consider sparse graphs, and we
leverage this sparsity to save computation. Thus, in this subsection, we adapt the attention
model of Kool et al. (2018) to our problem to balance flexibility and efficiency.

As discussed in Section 5, the variational distribution g4(7 | G) approximates the
intractable posterior py(7 | G). A convenient choice for g4(7 | G) is to express it as sequence,

go(m | G) = qo(m1 | G) [T a(m | G 1. -1)- (14)
t=2

Here, the term gy(m; | G, T1.(t—1)) determines the probability over the next node in the
sequence T¢, conditioned on both the graph structure and the partial order my.;_1) already
formed from previous steps. Our previous work (Chen et al., 2021) uses a multi-layer GNN
to define this conditional probability. Thus, to draw a single sample 7 from gy (7 | G), the
GNN needs to be applied n times—once for each term in Eq. 14. Therefore, the approach of
Chen et al. (2021) may suffer from high computational complexity.

To obtain a more efficient procedure for sampling from gy (7 | G), we first note that
the problem of sampling node orders is similar to the traveling salesman problem and the

12
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Figure 3: An overview of the node order inference model based on routing search (Rout-
VI). A graph neural network captures the graph topological information and produces a
representation vector for each node. At each step t, the selection probability for each node is
determined by performing attention between the node representation and the context vector.
The context vector at step t + 1 is updated based on the node selection in step ¢.

routing problem, for which Kool et al. (2018) develop a neural network model based on
attention mechanisms. Using their idea of routing search, we propose a new architecture to
build the variational distribution g4 (7 | G) that requires one single application of the GNN.
We call this approach Rout-VI.

Rout-VTI is represented in Figure 3. The input to the GNN includes the graph structure
G and some initial node representations h® = [hY, ... h%], which are initialized as learnable
vectors (alternatively, they could be initialized using observed node features, if available).
That is, the GNN computes

(h,...,h,) = GNN4(G, (h},...,h?)). (15)

The GNN learns the node representations by recursively aggregating and updating each
node representation from its neighboring nodes, i.e.,

ht! = UPDATE (hg,AGG ({h; L (i,5) € E})) : (16)

where UPDATE(-) denotes an update function and AGG(-) denotes an aggregation function.
Wu et al. (2020) survey possible instantiations of the two functions, and we omit the details
here. We use the graph convolutional network (GCN) (Kipf and Welling, 2016a) in our work,
and we set the dimension of the node representations to d.

Rout-VI uses the node representations obtained from the GNN to sample the node order
. For that, it uses a context vector c; that represents the context at step t. We define the
context vector as

}_17 Vv ,V 9 if t — ]_’

o= g . (17)
[h’hﬂ't_ph?rl]; 1ft> ].

Here, [-, -, -] denotes the concatenation of the three input vectors. The vectors h,, , and hy,

are obtained from the GNN as described above; Rout-VI uses the representations of the
nodes sampled in the previous step (m;_1) and in the first step (7). The vector h is a global
representation that encodes information about the entire graph by using a pooling function
h = POOL(hy,...,h,); we use the average of all node representations. The parameters vy
and v; are learnable vectors that are used only when sampling 7 in the first time step.

13
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Rout-VI uses the context vectors c; to obtain the sampling probabilities of node orders.
In particular, it obtains the logits {¢}} of the distribution g,(m; | G, T1:(t—1)) by comparing
the context vector c; and the node representations,

¢ _ o WIWrhy

gk - \/& .k ¢ T1:(t—1)- (18)

This resembles the attention calculation, where W9 and WX are learnable matrices. Given
the logits, Rout-VI obtains the probabilities as

exp { €%,
qp(me | Gy 1)) = S {exg{%}, T & T-1)s (19)
T1:(t—1)

where the restriction 7, ¢ T1.(t—1) ensures that nodes that have been previously sampled
cannot be sampled again. With this architecture, the sampling of m; at step ¢ takes into
account the overall graph structure (through h) and the information from the previous node
(through h, ,). The information about the first node (hy,) is useful for graphs with cycles.

We emphasize that the variational distribution can be used with any generative model
that has an explicit p(A) (this includes, but is not limited to, the attention-based generative
model to be developed below). Note that different node orders 7 corresponding to the same
graph automorphism (in terms of both the structure A and possible node features) have the
same probability under the variational distribution. This is a desired property because these
node orders have the same probability p(G, w) according to Egs. 7 and 8 and thus the same
probability under the true posterior.

6.2 Attention-based generative model

We now design an autoregressive deep generative model that is based on attention mechanisms.
We call it double-attention graph generative model (DAGG). Compared with recent works,
the key innovation of the proposed design is to use attention mechanisms in computing
connections and updating node representations in the generation process. It aims at achieving
a good balance between generation efficiency and expressiveness of node representations.

To construct the new model, we devise a neural network to implement the two probabilities
p(S | Ly.g—1y) and p(Ly, | Ly.g—1)) in Eq. 4 (recall that L denotes the lower triangular part
of A, following the notation from Section 4).

Suppose that G;_; is the partially generated graph at time ¢, and each node in it has a
representation vector, and all their vectors are denoted by Hy; = (h{,... h! ). In the first
step, H; is empty.

DAGG first uses attention to compute a new representation vector h! a the t-th step:

r; = MHA((h*) ", Hy, Hy), (20)
h! = LINEAR(r}). (21)

Here, h* is a global learnable vector and the notation LINEAR(-) represents a linear layer.
The multi-head attention r = MHA(Q, K, V) (Vaswani et al., 2017a) is formally defined as
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Figure 4: An overview of the generation process of the DAGG model at step t = 5. The
node numbers represent a particular node order my.5. (Left) The representation of the
newly added node 5 is given by MHA and depends on the current partial graph. (Middle)
The probability for connections between node 5 and the other nodes are obtained from the
current node representations. Here, connections to node 3 and node 4 are sampled. (Right)
After having sampled the new connections, the node representations of nodes 3, 4, and 5 are
updated by applying SA to these nodes.

follows:
QW) - (KWE) '
Vd

r = CONCAT(sy,...,sm). (23)

(VW}), fora=1,...,H, (22)

S, = softmax

Here, d is the number of columns in Q, K, and V; and H is the number of attention heads,
each of which has parameters W4, W¥ and WY. Vectors from different attention heads are
concatenated to get the output r.

In summary, we use a global vector h* to query previous node representations and
compute a representation vector hf for the new node.

Then, DAGG decides whether to stop at this step based on the representation vector ht:

p(S =1|Ly_1)) = sigmoid(MLP(h!)), (24)

where the notation MLP(-) denotes a multi-layer perceptron, and sigmoid(x) = 1 +l*z' If
the model decides to proceed with a new node (S = 0), then it uses h! as the representation
of that node. It then decides connections to the new node and updates the relevant

representations. In particular, it samples Ly. = (Lt 1, ... Li¢—1), i.e., the edges between the
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new node and previously generated nodes with the following probabilities:
p(Lt,T = 1|L1:(t71)) = SlngId(MLP([hi7 hﬂ))v T=1,...,t—1, (25)

where an MLP is applied to the vector formed by concatenating the representations h! and
h!, of the two nodes involved.

DAGG then updates the node representations of the new node and the nodes connected
to it, as determined by L;.. For that, we use self-attention. Let H} be the matrix formed by
the representation hi, as well as the representations ht of the nodes 7 that are connected to
the new node, i.e., H; = (hl : L;; =1 or t = 7). We update their representations as

(Wit L, , =1 ort =7) = LINEAR(SA(H})), (26)

where SA(H,) = MHA(H},H},H}) denotes the self-attention function (Vaswani et al.,
2017b). The representations of nodes not connected to t remain unchanged, i.e.,

hi*' =h!, L,,=0andt#T. (27)

In this way, DAGG forms the representation Hy, 1 = (h{™ ... hi™!) for the next step ¢ + 1.

An overview of the DAGG architecture is presented in Figure 4. This model offers several
advantages. Compared to GraphRNN (You et al., 2018), DAGG uses attention instead of
recurrent steps for computing the edge probabilities. This avoids the optimization issues of
recurrent steps, such as vanishing gradients, making the model easier to optimize. Compared
to other works (Li et al., 2018; Kawai et al., 2019), DAGG does not run a GNN at every step
to compute the node representations of each partial graph. Instead, DAGG only updates
the representations of nodes that are connected to the new node, so updating the node
representations is more efficient.

6.3 Running time

Here we discuss the runtime complexity of the new methods introduced in this section. We
first analyze the complexity of the new inference method, Rout-VI. The computation of node
representations with a GNN takes time O(kmd), with k being the number of GNN layers,
m being the number of edges, and d being the dimension of all the hidden vectors. Then,
the sampling procedure takes time O(n?), because each step needs to compare the context
vector with all the nodes that have not been selected. Thus, to obtain S samples, the overall
time is O(kmd + Sn?), since the node representations are shared by all samples. Compared
to the previous method ROS-VI (Chen et al., 2021), which takes time O(Snkmd + Sn?),
Rout-VI saves time by running the GNN only once and sharing it between samples, therefore,
Rout-VI is significantly more efficient than ROS-VI.

We now discuss the complexity of the DAGG model. Generating a graph with n nodes
and maximum degree § takes time O(n2d + né?d), where d is the dimension of all hidden
vectors. This is because the computation of a new node’s representation and that of sampling
probabilities both take O(td) at each step t, then it takes time O(n?d) overall. The extra
né2d term comes from the self-attention, which takes time O(§2d) at each step.
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7. Experiments

In this section, we design a set of experiments to assess the performance of the new inference
network Rout-VI and generative model DAGG. We also study the tightness of the variational
lower bound. In particular, we apply Rout-VI over three existing generative models to
analyze whether their performance improves. We also study the computation time of Rout-
VI, which has lower time complexity than our previous inference network (Chen et al.,
2021). We assess the performance of DAGG by combining it with Rout-VI. We also conduct
extensive experiments to investigate the generation orders sampled from the variational
distribution.

7.1 Experimental setup

Datasets. We use 8 datasets that are commonly used for benchmarking graph generative
models: (1) Community-small: 1000 community graphs with 12 < |V| < 20. Each graph has
two communities generated from the model of Erdés and Rényi (1960). (2) Citeseer-small:
400 subgraphs with 5 < |V| < 20, extracted from the Citeseer network (Sen et al., 2008) using
random walk. (3) Enzymes: 600 protein graphs from the BRENDA database (Schomburg
et al., 2004) with 10 < |V] < 125. (4) Lung: 1000 chemical graphs with 6 < |[V| < 50,
sampled from Kim et al. (2018). (5) Yeast: 1000 chemical graphs with 5 < |V| < 50, sampled
from Kim et al. (2018). (6) Cora: 1000 subgraphs with 9 < |V| < 97, extracted from the Cora
network (Sen et al., 2008) using random walk. (7) SBM-assortative: 1000 graphs generated
by a stochastic block model (SBM) (Holland et al., 1983). We use three blocks, all with size
20. We generate the dataset by setting the probability of an edge between any two nodes to
0.3 if they are in the same block, or 0.05 otherwise. (8) MMSBM: 1000 graphs generated by
a Mixed Membership Stochastic Blockmodel (MMSBM) (Godoy-Lorite et al., 2016). We
set three communities with graph size 60. The block connectivity matrix, which defines the
probability of interaction between nodes, is [[0.4,0.2,0.3],[0.2,0.1,0.3],[0.3,0.3,0.4]]; and
the vector [0.2,0.1,0.1] is the Dirichlet prior of nodes’” membership probabilities.

Graphs in Lung and Yeast datasets reprent structures of chemical compounds. Graphs
in the Enzymes dataset represent protein tertiary structures. While there is only one single
graph in the Citeseer or Cora datasets, we sample subgraphs via random walk to form the
corresponding datasets. We split all datasets into three parts: the train set (80%), validation
set (10%), and test set (10%).

Methods. We compare DAGG against three recent graph generative models: GraphDF
(Luo et al., 2021), GraphRNN (You et al., 2018), and GraphGEN (Goyal et al., 2020). We
use their original training methods with default hyperparameters. GraphDF and GraphRNN
use BF'S orders for training.

To analyze the quality of Rout-VI, we also include two baselines to form the variational
distribution: a uniform distribution over node orders, and our previous approach, ROS-VI
(Chen et al., 2021). Both baselines are used to train GraphRNN and GraphGEN, and
Rout-VI is used to train all four generative models. We compute the variational lower bound
and estimate the log-likelihood for each setting. For ROS-VI and Rout-VI, we use the Nauty
package (McKay and Piperno, 2013) to compute |II(A)| (see Section 4).
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Table 1: Approximate test log-likelihood and ELBO of different graph generation models.
Rout-VI improves the model fitting metrics, and DAGG fits the data better than competing
methods when they are all trained with Rout-VI.

Community-small  Citeseer-small Enzymes Lung
log-like/ELBO log-like/ELBO  log-like/ELBO  log-like/ELBO
GraphDF uniform -120.3/-129.7 -181.4/-184.5 -410.2/-411.8 -122.7/-124.3
Rout-VI -103.1/-110.4 -93.5/-96.2 -250.7/-256.4 -120.4/-122.3
uniform -154.6/-157.6 -101.9/-105.7 -340.3/-349.1 -232.4/ -242.2
GraphRNN  ROS-VI -53.7/-59.9 -89.6/-93.2 -274.9/-282.8 -155.9/-175.8
Rout-VI -25.2/-26.0 -39.2 / -46.6 -92.6/ -102.9 -78.3/-84.9
DFS -263.74/NA 73.0/NA 574.2/NA -140.1/NA
GraphGEN  ROS-VI -26.6/-35.0 -64.3/-71.1 -189.7/-213.8 -117.3/-125.5
Rout-VI -22.5/-31.8 -36.6/-40.2 -89.5/-93.1 -80.3/ -82.7
DAGG Rout-VI -21.5/-22.8 -27.4/-31.6 -75.1/-82.6 -62.3/-63.6
Yeast Cora SBM-assortative MMSBM
log-like/ELBO log-like/ELBO  log-like/ELBO  log-like/ELBO
Graphpp | niform  -140.0/-141.7 2434/-246.9  -183.5/-191.8  -237.8/-245.6
Rout-VI -72.5/-73.1 -146.7/-148.6 -137.4/-145.7 -214.5/-219.1
uniform -189.3/-200.1 -380.6/-401.8 -162.4/-171.1 -192.3/-203.5
GraphRNN  ROS-VI -109.1/-133.7 -345.3/-358.3 -90.4/-95.7 -154.0/-158.8
Rout-VI -55.2/-58.9 -142.3/-154.8 -78.6/-82.4 -149.5.2/- 155.7
DFS -66.4/NA -199.5/NA -210.4/NA -188.4/NA
GraphGEN ROS-VI -64.9/-72.3 -143.6/-152.3 -87.2/-91.1 -147.1/-154.2
Rout-VI -55.4/-61.2 -111.4/-122.8 -84.0/-88.3 -125.5./-138.9
DAGG  Rout-VI  -50.4/-52.4  -108.5/-117.4  -72.2/-76.1  -110.7/-117.4

7.2 Evaluation of model fitting

We evaluate different models by their predictive log-likelihood. For each model, we use
L = 1,000 samples to estimate the test log-likelihood via importance sampling (Eq. 13),
using the variational distribution g4(m | G) as the proposal. We also report the variational
lower bound (ELBO) from Eq. 9 to assess the tightness of the bound. We estimate both
quantities 10 times and compare methods via t-test at the 5% significance level. The results
are in Table 1. The standard deviations are very small (less than 0.01) and not included
here. Note that the original GraphGEN is trained with an approximate canonical order 7*
derived from DFS (as discussed in Section 4, the likelihood of GraphGEN is problematic
because it differs from the probability of sampled graphs).

We see that generative models trained with the two inference networks exhibit better
predictive performance than those with a uniform variational distribution. The improvements
are often significant. Compared to ROS-VI, Rout-VI further improves model fitting on all
datasets. We can also see that the ELBO is relatively tight for most cases. These results
show evidence that VI is an effective method for training graph generative models, and
Rout-VI is a strong way to construct the inference network.

We also observe that DAGG outperforms the baseline generative models when they are
all trained with Rout-VI. Therefore, among all the methods being compared, the DAGG
model combined with the Rout-VI training is the one that performs the best.
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Figure 5: Comparison of the estimated log-likelihood and the exact log-likelihood for 5 small
graphs from the Yeast dataset (left) or from the Lung dataset (right). An estimation with
L = 400 importance samples is close to the exact log-likelihood.

To understand the performance improvement of Rout-VI over ROS-VI, we examine the
node orders inferred from both methods. On the Yeast dataset, the GraphGEN trained with
a DFS order has very good performance, close to the models trained with VI. We check the
node orders sampled from ROS-VI and Rout-VI and discover that they are very similar to
DFS orders; this indicates that VI can automatically discover that DFS is a good order for
this dataset. In contrast, on the Community-small dataset, VI improves significantly over
the DFS order of GraphGEN. On this dataset, DFS orders are not good choices, and the
learned variational distribution is able to avoid such node orders.

Finally, we study the accuracy of the importance sampling evaluation of the model’s log-
likelihood through a separate experiment. In particular, we compute the exact log-likelihood
of a few small graphs by enumerating all possible permutations (the computation is feasible
for small graphs). We randomly choose 5 graphs with 6 nodes from Yeast and 5 graphs
with 8 nodes from Lung. To avoid any possible bias brought by different generative models,
we only consider one model, GraphRNN, trained with the two VI methods (ROS-VI and
Rout-VI). Figure 5 shows the results on the two datasets. When the number of samples L
approaches 1,000, the gap between the exact log-likelihood and the estimated log-likelihood
becomes very small. We conclude that the estimation through importance sampling can be
reliably used for model selection and comparison.
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Table 2: The MMD evaluation of graphs generated by different methods. Among different
methods, the DAGG model combined with Rout-VI in general generate graphs that are
most similar to the original graphs.

GraphDF GraphRNN GraphGEN DAGG

uniform  Rout-VI BFS  uniform ROS-VI Rout-VI DFS  ROS-VI Rout-VI Rout-VI

Deg. 0.063 0.055 0.034 0.096 0.018 0.021 0.070 0.143 0.094 0.019

Community ~ Clust.  0.012 0.093 0.114 0.091 0.014 0.014 0.931 0.248 0.152 0.013
-small Orbit 0.037 0.024 0.009 0.021 0.008 0.007 0.178 0.068 0.047 0.008
Short. 0.059 0.052 0.014 0.018 0.007 0.005 0.142 0.065 0.069 0.011

Deg. 0.082 0.065 0.016 0.009 0.080 0.026 0.047 0.032 0.020 0.012

Citeseer Clust. 0.147 0.113 0.050 0.090 0.050 0.033 0.032 0.078 0.041 0.028
-small Orbit 0.018 0.011 0.004 0.003 0.002 0.003 0.017 0.008 0.008 0.002
Short. 0.026 0.022 0.050 0.005 0.008 0.004 0.029 0.012 0.007 0.004

Deg. 0.056 0.040 0.034 0.042 0.015 0.012 0.716 0.346 0.199 0.011

Enzyme Clust. 0.187 0.155 0.085 0.104 0.067 0.054 0.456 0.440 0.268 0.052
Orbit 0.049 0.023 0.043 0.074 0.023 0.017 0.078 0.020 0.018 0.018

Short. 0.032 0.026 0.611 0.048 0.047 0.025 0.055 0.048 0.023 0.021

Deg. 0.043 0.038 0.103 1.213 0.074 0.059 0.049 0.022 0.015 0.015

Lung Clust. 0.064 0.055 0.301 0.002 0.060 0.041 0.017 0.008 0.007 0.008
Orbit 0.033 0.029 0.043 0.081 0.004 0.004 0.000 0.000 0.000 0.001

Short. 0.028 0.041 0.054 0.088 0.004 0.002 0.002 0.003 0.002 0.002

Deg. 0.440 0.128 0.512 0.746 0.097 0.024 0.014 0.012 0.010 0.009

Yeast Clust. 0.285 0.084 0.153 0.351 0.092 0.031 0.003 0.003 0.003 0.003
Orbit 0.045 0.039 0.026 0.070 0.005 0.003 0.000 0.000 0.001 0.001

Short. 0.077 0.035 0.016 0.052 0.007 0.004 0.004 0.008 0.005 0.003

Deg. 0.556 0.100 1.125 0.188 0.066 0.049 0.099 0.056 0.049 0.039

Cora Clust. 0.381 0.256 1.002 0.206 0.171 0.100 0.167 0.103 0.100 0.087
Orbit 0.113 0.072 0.427 0.200 0.052 0.062 0.122 0.069 0.062 0.041

Short. 0.090 0.087 0.518 0.231 0.045 0.032 0.147 0.086 0.043 0.025

Deg. 0.076 0.053 0.064 0.128 0.042 0.037 0.085 0.079 0.037 0.035
SBM-assort. Clust. 0.024 0.022 0.056 0.142 0.033 0.031 0.080 0.116 0.038 0.028
Orbit 0.051 0.046 0.023 0.042 0.017 0.017 0.062 0.033 0.029 0.014

Short. 0.034 0.030 0.012 0.025 0.006 0.009 0.085 0.042 0.020 0.009

Deg. 0.113 0.097 0.058 0.151 0.056 0.046 0.950 0.061 0.054 0.052

MMSBM Clust. 0.126 0.122 0.039 0.174 0.041 0.045 0.113 0.047 0.045 0.040
Orbit 0.246 0.196 0.045 0.089 0.037 0.034 0.061 0.049 0.042 0.031

Short. 0.055 0.055 0.031 0.073 0.025 0.025 0.038 0.041 0.029 0.026

7.3 Evaluation of graph generation

Here we assess the quality of generated graphs. Following previous works (You et al., 2018;
Liao et al., 2019; Goyal et al., 2020), we measure the quality in terms of their similarity to a
test set in terms of the following network properties: the degree distribution (Deg.), clustering
coefficients (Clust.), occurrences of 4-node orbits (Orbit), and pairwise shortest distances
(Short.). For each graph property, we extract a histogram (e.g., of node degrees) from a test
graph or a generated graph. Then we compare two groups of histograms respectively from
test graphs and generated graphs using MMD (Gretton et al., 2012) (lower MMD is better).
We choose to use MMD metrics because we can have a direct comparison with previous
neural methods. Our evaluation covers several important network properties (Newman,
2003): the MMD metrics computed from node degrees, clustering coefficients, and shortest
distances can respectively evaluate the scale-free effect, the transitivity, and the small-world
effect of generated graphs.

Table 2 shows the MMD evaluation on the eight datasets. We indicate the best perfor-
mance(s) across all methods with bold numbers. For each generative model, we indicate the
best inference method by underlining the performance number. We first check the perfor-
mance improvement from the new inference method. If three MMD metrics are improved
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Figure 6: Graph samples from different models trained on Community-small and Enzymes.
The DAGG model fitted with Rout-VI generates graphs that have structural patterns similar
to the real data.

on a dataset, we consider the new method has improvement on that dataset. We see that
Rout-VI improves the performance of GraphRNN on all datasets except Citeseer-small. For
GraphDF, the learned order distribution is better than uniform distribution on all datasets.
For GraphGEN, Rout-VI improves the performance on all datasets except Community-small
and Yeast. On the Yeast dataset, the results for GraphGEN are similar regardless of the
choice of node orders; this is consistent with the previous results on the log-likelihood.
Regarding the generative model, DAGG combined with Rout-VI performs the best on four
datasets (Citeseer-small, Enzyme, Yeast, and Cora) across all combinations. Its performance
on the other two datasets is only slightly worse than the best performance across all other
approaches. Overall, the results indicate that autoregressive generative models trained
with VI produce graphs of higher quality than those trained with ad-hoc node orders. The
proposed DAGG combined with Rout-VI is a strong generative model.

We also compare the generated graphs of different methods. For this, we focus on
GraphRNN and DAGG. Figure 6 (left) shows four graphs from the Community-small dataset
and four graphs from the Enzymes dataset. Figure 6 then shows graphs generated by variants
of GraphRNN that are trained with BFS orders and ROS-VI. Figure 6 (right) also shows
the graphs generated by DAGG with Rout-VI. For Community-small, the two VI methods
capture the graph patterns—only one edge exists between the two communities, with the
samples from DAGG being closer to the ground truth. In contrast, GraphRNN+BFS
generates some graphs with multiple or no edges between the two communities. For the
Enzymes dataset, the samples from the two VI methods are also more similar to the ground
truth data than the BFS orders—they have the shape of long strips, and some of them
contain large cycles. Both VI methods generate graphs of similar quality (this is consistent
with the MMD metrics for cluster and orbit on the Enzymes dataset for both methods being
close).
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Figure 7: Comparison of the inference time of the two VI methods. (Left) Inference time
on cycle graphs. (Right) Inference time on 100 graphs from the 6 datasets. Rout-VT is
significantly faster than ROS-VI.

7.4 Inference time

For a graph G = (V| E), we have discussed the computational complexity of ROS-VI and
Rout-VI in Section 6.3. Here we empirically assess their inference time. Note that the
time of sampling node orders is roughly the same as that of computing probabilities, so we
consider sampling time here.

We test the running time on controlled graphs (cycle graphs) and real datasets. We use
graphs of different sizes: for cycle graphs, we vary the number of nodes; for real datasets, we
randomly take 100 graphs from each dataset and report their average size. We apply both
inference networks to sample 5 or 100 node orders for each graph. We repeat the process 10
times and report the average running time. Both methods run on an RTX 3080 GPU.

Figure 7 shows the running time of the two inference methods under different settings.
We see that Rout-VI significantly accelerates the inference procedure on cycle graphs and
graphs from real datasets. We find that the time it takes for ROS-VI to obtain 5 samples
is about the same as it takes for Rout-VI to obtain 100 samples; that is, Rout-VI exhibits
approximately 20-times speed-up over Rout-VI. As discussed in Section 6.3, this is because
Rout-VI requires fewer GNN runs.

7.5 Generation quality and graph sizes

It becomes increasingly challenging for generative autoregressive models to capture graph
structures when the graph size becomes large. Here we investigate the relationship between
the performance of our model and graph sizes.

We construct sets of graphs of different sizes to evaluate generative models. We consider
two datasets here. We first sample subgraphs with different graph sizes from the Cora
network (Sen et al., 2008). We then sample two-community graphs of different sizes from
the Community-small dataset. For each graph size, we train and test our autoregressive
model and use GraphRNN as a baseline model.
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Figure 8: MMD performance as a function of the graph size.

We plot our model’s performances against graph sizes in Figure 8. Both our model and
GraphRNN are able to maintain the degree distributions of real graphs, as evidenced by
the MMD-degree metrics being relatively constant across graph sizes. However, generated
graphs have difficulties to capture the graph orbits and clustering coefficients of the graphs
from the test set: the MMD-orbit and MMD-cluster metrics become worse as the graph size
increases.

We hypothesize that a node’s degree is a local property that is only related to incident
edges and thus is easier to learn. However, MMD-orbit and MMD-cluster require the model
to learn higher order properties such as triangles and squares, and these properties are
harder to learn as the graph size increases. These results show some evidence that our
autoregressive generative model has difficulties in capturing non-local graph properties when
graphs are large.

We also find that autoregressive models become slow when modeling large graphs, which
is already indicated in the complexity analysis: the model need at least O(n?) time to
generate a graph because it needs to generate all entries in the adjacency matrix.

7.6 Analysis of the inferred node orders

In this section, we study the order sampled from the variational distribution g4(7 | G) to
gain insights on how the VI approach improves training.

We first visualize the adjacency matrices corresponding to different node orders in
Figure 9. We choose one graph from the Community-small dataset and one graph from
the Enzymes dataset. For each graph, we sample node orders from three distributions
(BFS ordering, ROS-VI, and Rout-VI) and plot the average of the adjacency matrices
corresponding to these node orders. (We choose GraphRNN as the generative model, which
was fitted using each of the three approaches for obtaining node orders.) The average of
these matrices indicates the marginal distribution of each entry of the adjacency matrix.
On Community-small (top), the BFS order seems to be good for model training: adjacency
matrices from these orders have near-zero anti-diagonal blocks, which are easy for the
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Figure 9: Average of sampled adjacency matrices corresponding to different node orders.

generative model to fit. The variational distributions learned by ROS-VI and Rout-VI
discover this pattern. On the Enzymes dataset (bottom), the two VI methods learn to form
band matrices. In contrast, BFS scatters non-zeros to a wider range, which likely results in
patterns that are harder to learn for the generative model.

Comparing ROS-VI and Rout-VI, Rout-VI tends to have more non-zero off-diagonal
entries. In fact, we have observed that Rout-VI tends to first generate the main part of a
graph and then do some decorations. We do not have a thorough understanding why the
generative models benefit from such property, and we leave it as an open question.

Finally, we visualize the orders learned by Rout-VI in Figure 10 on some graphs from
the dataset. To make this plot, we fist obtain g4(7 | G) and then greedily choose each node
with the largest probability in the sequence. We plot the node orders for three graphs from
the Community-small and three graphs from the Enzymes dataset. We observe that the
generation of a graph from Community-small always strictly finishes one community before
moving on to the next (like BFS). The generation of a graph from the Enzymes dataset
tends to form the backbone first (like DFS) and then decorate the backbone with more
nodes. This is consistent with the results in Figure 9 discussed above.

8. Conclusions and Discussion

In this paper, we have analyzed the likelihood of autoregressive graph generative models. A
naive evaluation of the likelihood would require to sum over all possible adjacency matrices
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Enzymes

Figure 10: Orders greedily obtained from the approximate posterior of Rout-VI on graphs
from Community-small and Enzymes dataset.

of the graph. Instead, we provide an approach that sums over node orders—a summation
variable much easier to enumerate. In doing so, we have also revealed the relation between
probability calculations and graph automorphisms.

To avoid the intractable summation in the likelihood, we have used VI. In particular, we
have formed a lower bound on the log-likelihood by building a variational distribution over
the node orders. The lower bound can be estimated with a small number of samples, allowing
for efficient model training. Moreover, the VI method works for any graph generative model
that specifies a distribution of adjacency matrices. We can understand the VI approach
from another angle: the variational distribution is optimized to provide good adjacency
matrices to the generative model; therefore, the model can be trained better than if it only
had access to a single or small number of pre-determined adjacency matrices.

We have designed a new inference network, Rout-VI, which makes use of routing search
to greatly speed up the inference over previous approaches. We have also introduced a graph
generative model, DAGG, that uses attention mechanisms. Our experimental results show
that Rout-VI and DAGG improve the performance in both data fitting and graph generation.
When using a fixed inference method, DAGG outperforms other generative models.
Limitations. Despite the empirical advantages demonstrated in Section 7, DAGG also
exhibits some limitations when modeling large graphs. First, it is only efficient for small and
moderately-sized graphs; this limitation is shared with other autoregressive models. Second,
as the graph size increases, DAGG struggles to capture the high-level properties of the graph
(see Section 7.5); this limitation is also shared with existing models such as GraphRNN.
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Future work. There are some potential avenues for future work. First, we can extend our
inference component so that it can work with generative models that add a batch of nodes
(Liao et al., 2019) or a substructure (Jin et al., 2020) to the graph at each step. We expect
that inferring the node orders for these models will improve data fitting in the same way as
this work has shown. Second, we can extend our generative model to add multiple nodes or
subgraph structures at each generative step. Based on the attention mechanism, we can still
update representations of nodes or substructures to model sequential decisions of expanding
a graph. This extension may address the two main limitations discussed above.
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