Solid Freeform Fabrication 2023: Proceedings of the 34th Annual International
Solid Freeform Fabrication Symposium — An Additive Manufacturing Conference
Reviewed Paper

Dreaming of Data: Examining Data Augmentation for Machine
Learning in Additive Manufacturing
Glen Williams, ! Martha Baldwin,?> Timothy W. Simpson,!
Nicholas A. Meisel,! Christopher McComb?

!School of Engineering Design and Innovation,
The Pennsylvania State University, University Park, PA 16802
2Department of Mechanical Engineering,
Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

The data generated during additive manufacturing (AM) practice can be used to train machine
learning (ML) tools to reduce defects, optimize mechanical properties, or increase efficiency. In
addition to the size of the repository, emerging research shows that other characteristics of the data
also impact suitability of the data for AM-ML application. What should be done in cases for which
the data in too small, too homogeneous, or otherwise insufficient? Data augmentation techniques
present a solution, offering automated methods for increasing the quality of data. However, many
of these techniques were developed for machine vision tasks, and hence their suitability for AM
data has not been verified. In this study, several data augmentation techniques are applied to
synthetic design repositories to characterize if and to what degree they enhance their performance
as ML training sets. We discuss the comparative advantage of these data augmentation techniques
across several canonical AM-ML tasks.

1. Introduction

Studying design repositories through metamodels can provide useful insight into whether or not
an engineering design dataset will be successful in training a deep learning construct. However,
what should be done if a dataset is estimated to be insufficient? Instead of simply giving up,
researchers presented with incomplete, small, or otherwise low-quality datasets often turn to data
augmentation to enhance their dataset prior to training a machine learning model. In this study,
several data augmentation techniques are applied to artificial design repositories to characterize if
and to what degree they enhance their performance as machine learning training sets. The
intersection of additive manufacturing (AM) and machine learning (ML) presents numerous,
complementary opportunities for design engineers. Manufacturing products using AM allows
designers to take advantage of opportunistic AM attributes, such as part consolidation to reduce
the number of parts in an assembly by increasing the complexity of individual parts [1] and
hierarchical complexity to make parts that are lighter while remaining strong [2]. These beneficial
attributes of AM can help designers focus more on problem solving than on limitations of
traditional, tooling-driven manufacturing.

In the same way that AM enables designers to manufacture increasingly complex and general
shapes that might better solve a problem, ML could allow them to better predict how well those
diverse solutions will perform in a multitude of ways. Some examples of researchers using ML to
analyze AM parts include predicting AM build metrics [3], predicting thermal properties of AM
designs during a build [4], classify parts as manufacturable or not [5], and prediction of product

1642

geometric values to result in desired stress-strain performance [6]. However, both AM and ML are
not perfect solutions, and many open questions regarding how to best utilize these technologies
remain. ML approaches are generally most successful when developers have access to large
training and validation datasets. Unfortunately, engineering data can be costly to create, obtain,
and manage, resulting in datasets that are much smaller or more poorly labeled than those in some
other fields. This problem is only compounded by the fact that AM technologies are relatively new
and heuristics that might be useful for labeling datasets are the topic of contemporary research
[7,8] and therefore in flux.

Data augmentation can be a powerful tool to enhance the performance of ML constructs while
reducing their tendency to overfit [9,10]. It should be considered as an additional standard practice
as part of the ML development process. Many ML studies focus on making incremental
improvements to ML architectures while making fundamental assumptions that often hold a
training and test dataset constant. In this type of study, an architecture-focused ML development
process is often followed (see Figure 1). In this architecture-focused ML approach, the researcher
has selected a) a dataset to use and hold constant and b) an architecture to test and present as an
incremental improvement if successful. In the ML feature optimization loop shown in Figure 1,
automated training algorithms, such as backpropagation, are used to iteratively alter ML construct
weights and biases to improve the performance of the construct.

/Architecture-focused ML Development Process = Le-mmmmmmmm—mm--------- \

ML Feature Optimization
Deployment/
Publication

l
. Training and H
Problem Re?:zi'li%gry Validation : Performance
Identification Assembly Dataset DeSIgn ! Tralnlng Evaluation
Creation !
A A

New
Epoch

1
|
1
|
|
1
|
1
1
A

Figure 1: An architecture-focused ML development process iterates only on the ML construct
architecture.

While this architecture-focused approach is time-tested for fields with highly standardized, agreed-
upon benchmark datasets, it may not as applicable for other fields. For instance, the space at the
intersection of Design for AM (DfAM) and ML, which we refer to together as DFAM-ML, suffers
from a lack clearly and readily available datasets. For instance, surrogate modeling studies may
require the generation of a new dataset for specific problems. The collective lack of understanding
surrounding the impact of design repository attributes and data augmentation techniques on ML
outcomes is a gap that could be further explored. To investigate this gap, this study presents a
broader ML development process, the augmented dataset nested iterative ML development process
(see Figure 2).

1643

,/Augmented Dataset Nested Iterative ML Development Process [Deployment/Publication] \‘\
\

{' D R e DL 7 SIS
1
:’ r'Dataset Iterative Optimization ‘\ !
: v P bttt . Y
! ! /"ML Architecture Optimization Y i
! | , —————————————————————— ~ "
1 [}
! i ! / ML Feature Optimization “ H "
1 [! 1"

I | 1 [
! . i [Trainingand) | ' i "
1 [N}
: Problem ReD(e)Zliigr I Validation | I Performance : : i
: Identification Asiembl Y M Dataset \ De5|gn ! Tralnlng Evaluation " 1"
! Y X Creatlon ! ! i "
: ! : [! ¥ f
! ! ! ' New " "
[}
i | - ! ' Epoch No o i
! [! . n
I | © g : \ : 1"
! | S8 4 LN ! n
| 88 | | !
! 32 s i New Architecture No | "

= |

' L Z2< \ it
\ \ . i
\ \ i
\ \ o L

Figure 2: In the augmented dataset nested iterative ML development process, the model features,
ML architecture, and training and evaluation datasets may all be varied to achieve greatest
performance.

In the augmented dataset nested iterative ML development process, the same ML feature
optimization is conducted, but additional loops to augment the dataset are conducted as well.
Although these additional iterative loops may increase the research and development labor cost in
the short term, they ideally will result in a greater likelihood of success of the entire ML
development process. This study investigates specific practical techniques that could be applied to
the new dataset augmentation loop in Figure 2.

In this work we investigate the details of how data augmentation can be useful in improving sub-
optimal datasets in the context of DfAM-ML development. By studying a variety of data
augmentation techniques across many, hierarchically complex design repositories with differing
levels of constituent and aggregate complexity, and in the context of a variety of ML classification
and regression problem types we aim to advance the heuristics around the DFAM-ML development
process to increase the speed and efficiency with which useful ML constructs may be designed,
trained, and tested. Specifically, we study the following research questions:

1. Which data augmentation techniques are most effective in improving the performance of
ML training activities?

2. Do the data augmentation techniques affect trained ML construct performance similarly
across different problem types?

The remainder of the work is organized as follows: First, we document the methodology of our
candidate data augmentation techniques (section 2). We then present our results (section 3),
discussion of the results (section 4), and conclusions regarding potential future work related to this
study (section 5).

1644

2. Methodology

This section documents the data augmentation techniques investigated (section 2.1), process for
creating the artificial design repositories (ADRs) (section 2.2), overview of the CNN architecture

(section 2.3), and training procedures (section 2.4).

2.1. Data Augmentation Technique Treatments

In this study, five data augmentation approaches were individually applied as treatments to
Artificial Design Repositories (ADRs). An ADR is a synthetic dataset which contains constituent
designs that were not necessarily designed for the primary purpose of manufacturing [3]. These
treatments aim to increase the performance of a design repository as a machine learning training
dataset. The treatments include a) no data augmentation (control), b) duplication, ¢) experience, d)

single randomized orientation,) multiple orientations, and f) gaussian noise (see Figure 3).

No data augmentation is
conducted to provide baseline
CNN performance

None
(baseline)

Data
Augmentation
Techniques

Designs are simply duplicated,
providing an additional baseline

Gaussian noise is added
to the CNN voxel-based
input

Duplication
(naive)

Gaussian
Noise

Additional designs, outside of the
original design repository, are included
in the training set, simulating organic
experience

Experience

Muiltiple randomized
orientations are included in
the training dataset

Single
Randomized
Orientation

Multiple
Orientations

Instead of a using a consistent design
orientation, random orientations are
used

Figure 3: Overview of the data augmentation techniques investigated in this study.

Each treatment from the figure is explained in further detail as follows:

o In the no data augmentation (control) treatment, the ADRs were included as-is with no
modifications to the training dataset. See section 2.2 to better understand the generation of
the ADRs. Including a control treatment is important to establish a baseline for comparison
of the magnitude of positive or negative effects each data augmentation treatment had. In
these control repositories the designs were modeled in the same orientation, resulting in a

consistent placement and orientation in the voxel-based input to the CNNss.

o In the duplication data augmentation treatment, the existing constituent designs in the
training dataset were simply duplicated once. This is the simplest way to double the size
of the dataset. Heuristically, this method may be susceptible to overfitting, but is evaluated

to test that hypothesis empirically.

e In the experience data augmentation treatment, the dataset is doubled in size by including
random designs from other artificial design repositories. This treatment simulates the
action of augmenting a dataset the hard way: by waiting for more data to come in, gaining

1645

more experience. In this analogy, random constituent designs added to the ADR are akin
the new experience of designing more parts and storing their data in the repository.

In the single randomized orientation data augmentation treatment, the dataset size was not
doubled, but instead the models were rotated to a random orientation. This treatment aims
to provide the CNN a greater variety of voxel-based features during the training process
than the consistent orientation designs of the control treatment.

In the multiple orientations treatment, the dataset size was doubled with the addition of
another random orientation of the same model, instead of its replacement (as is the case in
the single randomized orientation treatment). This resulted in a larger dataset that also
included a greater variety of voxel-based features.

In the gaussian noise treatment, normally distributed pseudo-random noise was applied to
the constituent design voxel-based inputs. This gaussian noise has the effect of altering the
volumetric occupancy binary voxels, which are usually only values of 1.0 or 0.0, to be
decimal values between 1.0 and 0.0. The magnitude of the noise was centered around 0.05
with a standard deviation of 0.025. Each calculated random noise sample for a given voxel
was added to that voxel’s value if it previously had a value 0.0 and subtracted from its
value if it previously had a value of 1.0.

2.2. Artificial Design Repositories

The ADRs used in this study were created using procedural modeling of geometries based on
parametric design templates. Parametric design templates are advantageous for ADRs because
they allow for rapid automated creation of constituent designs while achieving a desired level of
geometric and topological variability in those designs. This variability is what makes the ADR
suitably similar to real-world design repositories for the purposes of the current theoretically-
oriented study. A multistep process was used to model the constituent designs and assemble them
into ADRs suitable for the current work (see Figure 4). Specifically, the ADRs used in this study
included 310 constituent parametrically designed parts. The parts were analyzed for classification
and scalar regression labels relevant to DfAM-ML problems. A detailed example of the
hierarchical modeling modelling process is shown in Figure 5.

144 object-oriented,
inheritance-driven
C++ Classes

Parametric
Design
Templates

Factorial
Parameter

CAD

Modeling
Algorithm

15,000+ constituent
hierarchically-complex values

Repository

An algorithm was used
to ensure variability
and full coverage of the
distribution of possible
aggregate metadata

Controlled
Constituent WISELELE] Artificial
Design Design Design
Characterization Jll Repository [l IS
Generator

Values

+ Open Cascade CAD Constituent designs) 189 ADRs generated,
modeling analyzed for geometric each with 310 designs.
Full factorial values for « High-quality mesh and topological Agaregate metadata
macrostructure, build metric metadata values as characteristics
feature, and analysis well as AM class and calculated

mesostructure
parameters

+ GPU-accelerated

voxelization

regression labels

Figure 4: Flowchart of the overall Artificial Design Repository generation methodology

1646

Step 1: Macrostructure Selection

l‘@@ll /l\ll. ‘0

@ep 2: Macrostructure Parameter Definition \
v 2 v
6Pti0" 1: \ Option 2: Feature Application Option 3: Mesostructure Application
No modifzing action Step 3: Feature Type \ (Step 4: Feature Step 3: Mesostructure) (Step 4: Mesostructur
e RN N Selection - Parameter Definition Type Selection Parameter Definition

’ A /;{ . S ’ e N
¥ MUY W
v ~- \
b ’/I A Ib SN
N~
Figure 5: Detailed illustration of the hierarchically complex modeling process demonstrating

high degrees of variability of geometric and topological complexity were achieved in the
artificial design repository modeling process.

Creating a constituent design involves first selecting a macrostructure design template from 18
options and specifying arguments for its dimensional parameter values (see step 1 in Figure 5).
These 18 unique macrostructure design templates are constructed to have between 1 (the sphere)
and 7 (the I-beam) numeric dimensional parameters. They were selected to relate to common
material stock forms, such as prisms, cylinders, and beams. After a design macrostructure was
selected and defined, a design could optionally have a single additive or subtractive feature applied
to it through constructive solid geometry Boolean CAD operations [11] (see option 2: step 3 in
Figure 5). The 5 optional features included uniform shell hollowing, circular hole, circular post,
rectangular hole, and rectangular post (see option 2: step 3 in Figure 5). Parameters of features
included values such as “wall thickness” and “hole depth” (see option 2: step 4 in Figure 5).
Features add to the number of parameters already available when procedurally generating models,
ranging from 1 added parameter (the shell) to 6 added parameters (the rectangular post). Since a
“design template” in the context of this study is a form produced from a set of quantitative
parameter values, a combination of a macrostructure design template and a feature is an entirely
new design template when compared to the macrostructure alone. For instance, applying
constructive solid geometry Boolean cutouts or joins to a conical surface results in ellipsoidal and
hyperbolic edges, which are not modeled in the original cone base design template, increasing the
variety of graph topologies in the boundary representation models. See option 2: step 3 in Figure
5 for a diagram of the possible features.

Instead of a feature, a design could optionally have a mesostructure applied to it (see option 3 in
Figure 5). Although mesostructures in DfAM applications are often 3D, 2D mesostructures were
used in this study because of the limits imposed by the computational demand of the sheer number
of designs modeled. These mesostructures included 2D patterns of circular cutouts and 2D pattern

1647

rectangular prism cutouts. Applying mesostructures has a similar effect of increasing the geometric
and topological complexities of designs as features, except to a higher degree. The mesostructure
also add parameters to the design template, in this case related to size and 2D spacing distances of

the mesostructure unit cells.

2.3 Convolutional Neural Networks

This study employed a similar convolutional
neural network (CNN) to the prior metamodel
study done by Williams et al., but with fewer
channels in the convolutional layers and more
neurons in the fully-connected layers (see
Figure 6) [12]. The input was a 64 x 64 x 64
volumetric grid, a “voxel-based model”. The
voxels were binary numbers represented as
32-bit floating point values, with a 1.0
representing material presence and 0.0
representing material absence. These CNNs
were trained with binary cross entropy loss
function [13]. The hidden layers of the CNN
were organized into an initial convolutional
section and secondary fully-connected
section. The layers included three alternating
3D convolutional-max-pool layer pairs, a
flattening layer, and 3 fully-connected layers.
The rectified linear activation function was
used for all hidden layers. Each CNN model
had between 33,614 trainable parameters.

The networks differed in output
dimensionality and loss function depending on
the problem type studied. Binary classification
networks (Go-no-go LPBF AM
manufacturability classification) used a single
binary output neuron (32-bit, 1.0 or 0.0
floating point) with a sigmoid activation.
These CNNs were trained with binary cross
entropy loss function [13]. Ternary
classification CNNs (Hierarchical complexity
classification) used 3 binary output neurons
(32-bit, 1.0 or 0.0 floating point), which labels

LO
INPUT

L1
CONV-3D

L2
MAXPOOL

L3
CONV-3D

L4
MAXPOOL

L5
CONV-3D

Lé
MAXPOOL

L8
MAXPOOL

L9
OuTPUT

Dense Volumetric
Occupancy Grid
Voxel-based model

4
Input Shape=64 x 64 x 64 Channels=1
Kernel =8 x8 x8 Padding = Same
Stride =1 x1 x1 Activation = ReLU
v
[PooISize =2 x2 x2]
¥
~
InputShape=32x32%x32 Channels=1
Kernel =8 x8 x8 Padding = Same
Stride =1 x1 x1 Activation = ReLU)
v
[PoolSize =2 x2 x2
¥
N
InputShape=16 x16 x 16 Channels=1
Kernel =8 x8 x8 Padding = Same
Stride =1 x1 x1 Activation = ReLU)
¥
[PoolSize =2 x2 x 2
v

Input Shape=1 x 512
QutShape =1 x64

Activation =ReLU

J

Binary AM go-no-go
classification

Hierarchical complexity
classification

Macrostructure design
template classification

Part mass, build time,
and minimum build time

|

OutShape =1 x1

| Activation =Sigmoid

[

OR

]

OutShape =1 x3

Activation =SoftMax

OR

QutShape =1 x 18

[

J

Activation =SoftMax

[

OR

OutShape =1 x1

]

L 4

Activation =Linear

[

Figure 6: Diagram of the convolutional neural

network architecture studied.

that were one-hot encoded [14]. Multi-class classification CNNs (design template classification)
used 18 binary output neurons (32-bit, 1.0 or 0.0 floating point), which labels that were also one-
hot encoded. Both ternary and multi-class classification CNNs were trained with categorical cross
entropy loss function [15] and using a SoftMax activation function [15]. All scalar prediction
CNNs (part mass, build time, minimum build time) had a single 32-bit floating point output neuron

1648

with a linear activation function and were trained with a mean squared error loss function. In line
with the learnings of Williams et al. relating to the standardization of orientation in a design
repository, all designs were rotated to a random orientation before their input voxel-based model
was prepared to maximize CNN performance [16].

2.4 Training

The training procedure was as follows: First, an ADR was loaded. Next, the ADR was split into
randomized 75% training and 25% testing dataset. The CNN model was then trained using the
training data. The history of each trained CNNs’ loss, validation loss (either cross entropy or mean
squared error), accuracy (either classification or mean squared error), and validation accuracy for
each epoch were recorded. The trained CNN was then used to make predictions on the evaluation
dataset, which was a constant dataset that included five times the number of constituent designs as
an ADR, equal to 1,550 designs. This evaluation dataset consistent of a uniform random sampling
of all the models and was intended to simulate analysis of future designs that would not be
guaranteed to be similar to the training dataset. The CNNs were developed and trained using
TensorFlow version 2 [17], Python version 3.10.4, and the “Adam” Optimizer [18]. All training
was completed on an NVIDIA P6000 Graphics Processing Unit.

In this study, the CNN accuracy metric of interest was either classification accuracy or mean
squared error when predicting values on an evaluation dataset containing a large number of random
designs external to the training ADR. Each design repository in this study was used to train 36
CNNs (1 for each data augmentation treatment for each CNN problem type). This replicates the
activity of evaluating the data augmentation techniques 189. In total, 6,804 CNNs were trained in
this study. The performance of data augmentation treatments on an individual ADR was analyzed
by calculating the difference between the control CNN performance on the evaluation dataset and
the augmented CNN performance. These difference values were min-max normalized prior to
analysis. The classification CNNs used the classification accuracy as the performance metric and
the scalar prediction CNNs used the mean squared error as the performance metric. Mean squared
error was subtracted from 1.0 after normalization so that all deltas of the performance metrics
across different CNN problem types could be compared on a scale in which 1.0 is the best possible
value.

3. Results

Applying the data augmentation treatments to design repositories resulted in variable increases,
and sometimes decreases in trained CNN accuracy. The central tendency, spread, and distribution
of data augmentation performance deltas (the difference between the augmented dataset
performance and the control) were different for each data augmentation treatment in the context
of each CNN problem type. Table 1 includes a summary of the mean and standard deviation of the
normalized trained CNN accuracy delta for the different data augmentation treatments when
applied to classification CNNs. Table 2 includes a summary of the mean and standard deviation
of the normalized trained CNN accuracy delta for the scalar prediction (regression) CNN problem
types. Figure 7 provides a set of plots which communicate this information visually. For all the
plots, the vertical values have been min-max normalized based on the range of accuracy values
observed for all CNNs in that problem type.

1649

Table 1: The mean and standard deviation trained CNN performance delta for all data
augmentation treatments applied to each classification CNN problem type. In this context, CNN
accuracy refers to classification accuracy on the unseen evaluation dataset, min-max normalized
to the range of accuracy values observed for that problem type.

CNN Problem Type

Data =

Augmentation . w g & g =

Treatment L, =) = SE E > S = 2
1 1 NE
QZ o Z f Ha ‘:g ‘:g @
s = 0 = == oR B o m B ==
o R > o . 2 %NZ% -5z -0 @ = o @ >

Q9 = < QUQ] &= & &= @ o =

>, 1 e ® P — < =7 -5 s =5 = =]
o8 2 =% = S S S 2 [=IA =0 =
= = = = EESs £ g0 EmZ EmZ = Z
‘:Eu ‘:Eu I) I Sz Sz > 7
=] '>9 o '>9 v < '>9 QQE Q- QD —
R A< HOER HOZ =OQOO =00 =0

—
[\
S
R
S
—

Duplication |5.80E-02 1.12E-01 1.10E-02 1.59E-01 1.71E-01 7.60E-02

Experience |1.62E-01 2.03E-01 -1.10E-02 3.87E-01 2.40E-01 1.72E-01 1.30E-01
Single 4.20E-02 1.37E-01 -1.60E-02 1.48E-01 1.15E-01 1.53E-01 4.70E-02
Randomized

Orientation

Multiple 7.20E-02 1.16E-01 1.00E-03 1.35E-01 1.94E-01 1.81E-01 8.90E-02
Orientations
Gaussian 3.80E-02 1.37E-01 5.00E-03 1.89E-01 1.62E-01 1.81E-01 6.80E-02
Noise
Mean across|7.40E-02 1.52E-01 -2.00E-03 2.19E-01 1.74E-01 1.77E-01 8.20E-02
all treatments

Table 2: The mean and standard deviation trained CNN performance delta for all data
augmentation treatments applied to each scalar prediction (regression) CNN problem type. In this
context, CNN accuracy refers to 1.0 minus the mean squared error accuracy on the unseen
evaluation dataset, min-max normalized to the range of accuracy values for that problem type.

CNN Problem Type
Data =
Z = = =
Augmentation Sz Z. =i g B = «g
Eg o o & a8 & 23
Treatment = @z o = = = Z 2 =
2 2 2 £ £ 2 £gg gC° 5S
g 3 £y £6% £8 sg¢ szz 8%
S S = =0 3 =& sE= ES = -7
- Z H; E‘:; =z =2z ""d); §Z
i " .;—1N o - .=E .= o 15
s Z < 3 5283 5 Z =57 =g 8 4
Ao AR @ E S 1) = =0 t= =0

Duplication 2.65E-01 5.50E-01 4.74E-01 6.38E-01 4.84E-01 6.43E-01 4.08E-01
Experience (3.65E-01 3.53E-01 5.98E-01 4.37E-01 5.94E-01 4.28E-01 5.19E-01
Single -1.56E-01 4.41E-01 2.77E-01 6.11E-01 2.89E-01 6.03E-01 1.37E-01
Randomized
Orientation
Multiple 2.60E-01 5.54E-01 4.68E-01 6.39E-01 4.79E-01 6.03E-01 8.90E-02
Orientations
Gaussian 3.28E-01 3.80E-01 5.82E-01 4.33E-01 5.58E-01 4.52E-01 4.89E-01
Noise
Mean across2.12E-01 5.00E-01 4.80E-01 5.71E-01 4.81E-01 5.72E-01 3.28E-01
all treatments

1650

0.6 4

0.0

Delta from Control Delta from Control
Classification Accuracy Classification Accuracy

Delta from Control
1.0 - Norm. MSE

—0.751

—1.001

0.4

0.2

i

T

t
i

(o]

o
o

1
T

o

4
1
g

T T
Experience Single Random
Orientation

T
Duplication

T T
Multiple ~ Gaussian Noise

Orientations

Data Augmentation Treatment

0.6 1

0.4

0.2 4

oo

1
!

[T
L]

]
L

T T
Experience Single Random
Orientation

T
Duplication

T T
Multiple ~ Gaussian Noise

Orientations

Data Augmentation Treatment

—0.254

: —0.50 4

e

[=] el o

o

’_—L‘

T T
Experience Single Random
Orientation

T
Duplication

T T
Multiple ~ Gaussian Noise

Orientations

Data Augmentation Treatment

b)

d)

Delta from Control
Classification Accuracy

Delta from Control

1.0 - Norm. MSE

Delta from Control
1.0 - Norm. MSE

1.00 A

0.75 4

0.50

0.25

0.00

-0.25 4

—0.50 +

-0.75 4

e
o
o

e
o
=]

| | | I
I e o o
=1 N~ n M
S e =3 o

e =4 e [y
N i ~ o
w =] w o

e
=]
=]

-0.254

| |

I o
o n
« =3

—1.00 -

1
!

i%
7!
E

o

f

8

|
?

e

Dupllcalmn Expenence Single Randcm

Orientation

T T
Multiple ~ Gaussian Noise

Orientations

Data Augmentation Treatment

(=] o

o

]

T T
Experience Single Random
Orientation

T
Duplication

T T
Multiple ~ Gaussian Noise

Orientations

Data Augmentation Treatment

ﬁ%%

(=] (=] (=]

o

;

[e]

T T
Experience Single Random
Crientation

T
Duplication

T T
Multiple ~ Gaussian Noise

Orientations

Data Augmentation Treatment

Figure 7: Box plots of the normalized change in trained CNN prediction accuracy on the
evaluation dataset (unseen data) for all design repositories after application of the data
augmentation treatments in the context of the (a) Binary Go-no-go AM CNN classification
problem (b) complexity type CNN classification problem (c) macrostructure template type CNN
classification problem (d) the part mass CNN scalar prediction (regression) problem (e) build time
at a particular orientation CNN scalar prediction (regression) problem and (f) minimum build
time CNN scalar prediction (regression) problem. In plots (a), (b), and (c), accuracy (the vertical
axis) is the classification accuracy for the entire evaluation dataset. In plots (d), (e), and (f),
accuracy (the vertical axis) is 1.0 minus the mean squared error for the entire evaluation dataset.

1651

4. Discussion

Overall, the experience data augmentation treatment, which simulated the addition of new designs
from outside the design repository over time, was clearly a high performing data augmentation
technique. Experience exhibited the largest trained CNN accuracy deltas compared to the control
on average for classification problems and the second largest for scalar prediction problems (see
Table 1). This result confirms the intuition that new data is generally better than techniques to
modify and augment data. However, the result that experience was not the best for both problem
types is interesting. For classification, including more examples increased CNN performance the
most. This makes intuitive sense, because in a classification dataset the frequency and balance of
the output categories in the dataset is generally important [19]. However, in the scalar prediction
problems, categorical labels are not relevant to the optimization of the CNN, and variability in the
high-dimensional, voxel-based input through the addition of noise appears to have a particularly
beneficial effect.

Data augmentation techniques that increased the size of the dataset generally performed better than
those which did not. For instance, the single random orientation treatment, in which the constituent
designs were rotated to a random angle, but the original design orientation was not included in the
training dataset, was among the lowest performing for both classification and regression problems.
The single random orientation treatment decreased the performance of the CNNs on average for
some classification and regression problems. This result further supports the results from Williams
et al., in which random rotations were found to be beneficial to CNN performance [16]. Although
random rotations do frequently increase the performance of a neural network in this study, they do
not appear to do so consistently across all problem types and when averaged over many different,
hierarchically complex design repositories. Adding more design repositories, greater complexity
and variability to those design repositories, and more CNN problem types further contextualizes
the impact of random rotations on trained CNN performance, showing it is not as effective as some
of the other data augmentation techniques considered.

The duplication data augmentation treatment outperformed the multiple orientation data
augmentation treatment in both classification and regression problems, despite both treatments
doubling the size of the input training dataset. This result is interesting because it suggests that the
size of the input dataset, although important, is not the entire story in terms of the impact of data
augmentation. This observation further supports the conclusions of the metamodel study by
Williams et al., in which size was found to be the most important metadata attribute of a design
repository by far [12]. The results of the current work show that the precise details of how the size
of a design repository is increased can have complex effects on the overall performance of the
trained CNN. In other words, a greater quantity of augmented designs appears to be often, but not
always, better for CNN training outcome. Specifically, duplication might be more effective than
including multiple orientations in this case because it simulates the effect of increasing the number
of training epochs, essentially giving the CNN more time to train on the dataset. Including
hyperparameter variation in the experimental methodology could provide evidence to causally link
the differences observed between duplication and multiple orientations.

In terms of CNN problem type, classification CNNs that were trained to predict the macrostructure
design template had their performances increased the most on average by the data augmentation

1652

techniques. CNNs trained to predict minimum build time were the most improved by data
augmentation among the scalar prediction CNN problem types. Conversely, classification CNNs
that were trained to predict the ternary hierarchical complexity level of a design were the least
improved overall when data augmentation techniques were applied to their training datasets. In the
ternary hierarchical classification problem, the greatest frequency of average decreases in CNN
performance due to a data augmentation treatment was observed. The experience and single
randomized orientation treatments both decreased performance on average and the average
classification delta was below zero. Part mass predicting CNNs were the scalar prediction CNNs
that were least improved by the data augmentation techniques, experience an average decrease in
performance from the single random orientation. These lower performing augmentation results
shows that although the data augmentation techniques used in this study most often improved CNN
performance, that is a possibility that they could have a negative effect. Keeping this result in mind
when preparing a large dataset for a DFAM-ML development project could be crucial to best
utilizing limited computational resources, as more data augmentation may actually cause a
decrease in performances in some situations. The risk of hindering DfAM-ML performance with
detrimental data augmentation, as evidenced by this result, motivates further study into the general
topic of data augmentation across a variety of DFAM-ML problem types.

3. Conclusion

In this study, a characterization and analysis of five data augmentation techniques to improve
DfAM-ML training performance of artificial design repositories (ADRs) was conducted. The
magnitude of the change of performance of all design repositories after data augmentation in the
context of the 6 different CNN problem types studied were analyzed. In terms of our first research
question, which data augmentation techniques are most effective in improving the performance of
ML training activities the experience data augmentation treatment, in which entirely new designs
were obtained over time, was the best performing treatment for classification problems, while
addition of gaussian noise to the voxel-based input was the best performing for scalar prediction
problems. Experience was consistently an effective data augmentation treatment for both
classification and regression problems. In terms of our second research question, do the data
augmentation techniques affect trained ML construct performance similarly across different
problem types, we found that the central tendency of performance improvement was similar in
scale for different problem types, but that the distribution was highly dependent on the problem

type.

Overall, we conclude that, based on our analysis, the best way to augment data is to prioritize
obtaining entirely new data if possible. However, given that data augmentation is typically used in
situations when obtaining more data is difficult or impossible, including many orientations of the
same design in the training dataset outperforms other techniques tested. Given the large degree of
variability in the performance deltas observed across different data augmentation techniques,
future work should further investigate these questions. In particular, this study shows that some
data augmentation techniques can cause an average decrease in trained ML performance, and thus
additional study is needed to uncover additional heuristics that enable DFAM-ML developers to
apply data augmentation strategically to avoid decreasing performance.

1653

The results of this study have implications in the field of DFAM-ML development. All the data
augmentation techniques demonstrated were effective at increasing machine learning training
performance overall. This result means that industrial organizations can extract greater value from
their design repository by processing it prior to using it as training data. However, the study also
showed that data augmentation did not always increase ML performance, and sometimes reduced
the training dataset quality. This result means that AM-ML developers should not blindly attempt
data augmentation but should rather incorporate it as a part of a broader strategy. Using such a
strategy means training multiple ML constructs using multiple data augmentation approaches and
statistically comparing the accuracies. The degree to which data augmentation techniques are
iterated should be budgeted for and balanced with the computational resources available, since
both data augmentation and further ML training iteration both incur greater computational cost.

Future work should expand both the breadth and depth of DfAM-ML details. The breadth could
be expanded by probing whether changing the ML architecture and input dimensionality affects
the data augmentation performance enhancement. The depth could be expanded by investigating
finer details of the ML training process, such as when overfitting occurs during long training
activities with many epochs for different data augmentation techniques. Additionally, the
interactions between multiple data augmentation techniques could be further studied to understand
how they may be best used in combination.

Acknowledgements

This material is based upon work supported by the National Science Foundation (Grant No.
CMMI-1825535). Any opinions, findings, conclusions, or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of the sponsors.

References

[I] Oh, Y., Zhou, C., and Behdad, S., 2018, “Part Decomposition and Assembly-Based
(Re) Design for Additive Manufacturing: A Review,” Addit Manuf, 22(April), pp.
230-242.

[2] Hanks, B., Berthel, J., Frecker, M., and Simpson, T. W., 2020, “Mechanical Properties
of Additively Manufactured Metal Lattice Structures: Data Review and Design
Interface,” Addit Manuf, 35, p. 101301.

[3] Williams, G., Meisel, N. A., Simpson, T. W., and McComb, C., 2019, “Design
Repository Effectiveness for 3D Convolutional Neural Networks: Application to
Additive Manufacturing,” Journal of Mechanical Design, Transactions of the ASME,
141(11), pp. 1-12.

[4] Pierce, J., Williams, G., Simpson, T. W., Meisel, N. A., and McComb, C., 2021,
“Stochastically-Trained Physics-Informed Neural Networks: Application to Thermal
Analysis in Metal Laser Powder Bed Fusion,” International Design Engineering
Technical Conferences.

[5] Balu, A., Ghadai, S., Sarkar, S., and Krishnamurthy, A., 2020, “Orthogonal Distance
Fields Representation for Machine-Learning Based Manufacturability Analysis,”
Volume 9: 40th Computers and Information in Engineering Conference (CIE),
American Society of Mechanical Engineers.

1654

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Jiang, J., Xiong, Y., Zhang, Z., and Rosen, D. W., 2022, “Machine Learning Integrated
Design for Additive Manufacturing,” J Intell Manuf, 33(4), pp. 1073—-1086.

Booth, J. W., Alperovich, J., Reid, T. N., and Ramani, K., 2016, “The Design for
Additive Manufacturing Worksheet,” Volume 7: 28th International Conference on
Design Theory and Methodology, American Society of Mechanical Engineers, p.
VO007T06A041.

Bracken, J., Bentley, Z., Meye, J., Miller, E., Jablokow, K., Timothy, S., and Nicholas,
M., 2021, “Investigating the Gap between Research and Practice in Additive
Manufacturing.”

Wong, S. C., Gatt, A., Stamatescu, V., and McDonnell, M. D., 2016, “Understanding
Data Augmentation for Classification: When to Warp?,” International Conference on
Digital Image Computing: Techniques and Applications.

Shijie, J., Ping, W, Peiyi, J., and Siping, H., 2017, “Research on Data Augmentation
for Image Classification Based on Convolution Neural Networks,” Chinese
Automation Congress, pp. 4165—4170.

Bespalov, D., Ip, C. Y., Regli, W. C., and Shaffer, J., 2005, “Benchmarking CAD
Search Techniques,” ACM Symposium on Solid Modeling and Applications, SM, pp.
275-286.

Williams, G., Meisel, N. A., Simpson, T. W., and McComb, C., 2020, “Deriving
Metamodels to Relate Machine Learning Quality to Design Repository Characteristics
in the Context of Additive Manufacturing,” Proceedings of the ASME Design
Engineering Technical Conference, 11A-2020.

Dr.A, .Usha Ruby, 2020, “Binary Cross Entropy with Deep Learning Technique for
Image Classification,” International Journal of Advanced Trends in Computer Science
and Engineering, 9(4), pp. 5393-5397.

Armano, P. G., and Tamponi, D. E., 2012, “Assessing Encoding Techniques through
Correlation-Based Metrics,” Proceedings - 2012 11th International Conference on
Machine Learning and Applications, ICMLA 2012, 1, pp. 634—639.

Ho, Y., and Wookey, S., 2020, “The Real-World-Weight Cross-Entropy Loss
Function: Modeling the Costs of Mislabeling,” IEEE Access, 8, pp. 4806—4813.
Williams, G., Meisel, N. A., Simpson, T. W., and McComb, C., 2019, “Design
Repository Effectiveness for 3D Convolutional Neural Networks: Application to
Additive Manufacturing,” Journal of Mechanical Design, Transactions of the ASME,
141(11).

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.
G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng,
X.,2016, “TensorFlow: A System for Large-Scale Machine Learning,” Proceedings of
the 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, pp. 265-283.

Kingma, D. P., and Lei Ba, J., 2015, “Adam: A Method for Stochastic Optimization,”
ICLR.

Kotsiantis, S. B., 2007, “Supervised Machine Learning : A Review of Classification
Techniques,” Informatica, 31, pp. 249-268.

1655

