Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Xiaohui Chen' Jiaxing He! Xu Han' Li-Ping Liu'

Abstract

Diffusion-based graph generative models are effective
in generating high-quality small graphs. However, it
is hard to scale them to large graphs that contain thou-
sands of nodes. In this work, we propose EDGE, a
new diffusion-based graph generative model that ad-
dresses generative tasks for large graphs. The model
is developed by reversing a discrete diffusion process
that randomly removes edges until obtaining an empty
graph. It leverages graph sparsity in the diffusion pro-
cess to improve computational efficiency. In particular,
EDGE only focuses on a small portion of graph nodes
and only adds edges between these nodes. Without
compromising modeling ability, it makes much fewer
edge predictions than previous diffusion-based genera-
tive models. Furthermore, EDGE can explicitly model
the node degrees of training graphs and then gain per-
formance improvement in capturing graph statistics.
The empirical study shows that EDGE is much more ef-
ficient than competing methods and can generate large
graphs with thousands of nodes. It also outperforms
baseline models in generation quality: graphs gener-
ated by the proposed model have graph statistics more
similar to those of training graphs.

1. Introduction

There is a long history of using random graph models (New-
man et al., 2002) to model large graphs. Traditional mod-
els such as Erd6s-Rényi (ER) model (Erdos et al., 1960),
Stochastic-Block Model (SBM) (Holland et al., 1983), and
Exponential-family Random Graph Models (Lusher et al.,
2013) are often used to model existing graph data and focus
on prescribed graph structures. Besides modeling existing
data, one interesting problem is to generate new graphs
to simulate existing ones (Ying & Wu, 2009), which has
applications such as network data sharing. In generative
tasks (Chakrabarti & Faloutsos, 2006), traditional models
often fall short in describing complex structures. A promis-
ing direction is to use deep neural models to generate large
graphs.

"Department of Computer Science, Tufts University, Med-
ford, MA, USA. Correspondence to: Xiaohui Chen <xiao-
hui.chen@tufts.edu>, Li-Ping Liu <liping.liu@tufts.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

There are only a few deep generative models designed for
generating large graphs: NetGAN (Bojchevski et al., 2018)
and CELL (Rendsburg et al., 2020) are two examples. How-
ever, recent research (Chanpuriya et al., 2021) shows that
these two models are edge-independent models and have
a theoretical limitation: they cannot reproduce several im-
portant statistics (e.g. triangle counts and clustering coeffi-
cient) in their generated graphs unless they memorize the
training graph. A list of other models (Chanpuriya et al.,
2021) including Variational Graph Autoencoders (VGAE)
(Kipf & Welling, 2016b) and GraphVAE (Simonovsky &
Komodakis, 2018) are also edge-independent models and
share the same limitation.

Diffusion-based generative models (Liu et al., 2019; Niu
et al., 2020; Jo et al., 2022; Chen et al., 2022b) have gained
success in modeling small graphs. These models generate
a graph in multiple steps and are NOT edge-independent
because edges generated in later steps depend on previously
generated edges. They are more flexible than one-shot mod-
els (Kipf & Welling, 2016b; Madhawa et al., 2019; Lippe
& Gavves, 2020), which directly predict an adjacency ma-
trix in one step. They also have an advantage over auto-
regressive graph models (You et al., 2018; Liao et al., 2019),
as diffusion-based models are invariant to node permuta-
tions and do not have long-term memory issues. However,
diffusion-based models are only designed for tasks with
small graphs (usually with less than one hundred nodes).

This work aims to scale diffusion-based generative models
to large graphs. The major issue of a diffusion-based model
is that it must compute a latent vector or a probability for
each node pair in a graph at each diffusion step (Niu et al.,
2020; Jo et al., 2022) — the computation cost is O(T'N?) if
the model generates a graph with N nodes using T steps.
The learning task becomes challenging when N is large. At
the same time, large graphs increase the difficulties for a
model to capture global graph statistics such as clustering
coefficients. As a result, the model performance degrades
when the training graphs’ sizes scale up.

We propose Efficient and Degree-guided graph GEnerative
model (EDGE) based on a discrete diffusion process. The
development of EDGE has three innovations. First, we en-
courage the sparsity of graphs in the diffusion process by
setting the empty graph as the convergent “distribution”.

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Then the diffusion process only removes edges and can be
viewed as an edge-removal process. The increased sparsity
in graphs in the process dramatically reduces the computa-
tion — this is because the message-passing neural network
(MPNN) (Kipf & Welling, 2016a) used in the generative
model needs to run on these graphs, and their runtime is
linear in the number of edges. Second, the generative model,
which is the reverse of the edge-removal process, only pre-
dicts edges for a small portion of “active nodes” that have
edge changes in the original edge-removal process. This
strategy decreases the number of predictions of MPNN and
also its computation time. More importantly, this new design
is naturally derived from the aforementioned edge-removal
process without modifying its forward transition probabili-
ties. Third, we model the node degrees of training graphs
explicitly. By characterizing the node degrees, the statistics
of the generated graphs are much closer to training graphs.
While other diffusion-based graph models struggle to even
train or sample on large graphs, our approach can efficiently
generate large graphs with desired statistical properties. We
summarize our contributions as follows:

* we use empty graphs as the convergent distribution in
a discrete diffusion process to reduce computation;

* we propose a new generative process that only predicts
edges between a fraction of nodes in graphs;

* we explicitly model node degrees in the probabilistic
framework to improve graph statistics of generated
graphs; and

» we conduct an extensive empirical study and show that
our method can efficiently generate large graphs with
desired statistics.

2. Background

This work considers graph generative models that sample
adjacency matrices to generate graphs. Let A" denote the
space of adjacency matrices of size N. We consider simple
graphs without self-loops or multi-edges, so an adjacency
matrix A € AY is a binary symmetric matrix with a zero
diagonal. A generative model defines a distribution over

AN,

In this work, we construct a generative model based on
a discrete diffusion process (Austin et al., 2021; Hooge-
boom et al., 2021; Vignac et al., 2022). Let A9 denote
a graph from the data, then the diffusion process defined
by q(A!|A'~1) corrupts A in T steps and forms a trajec-
tory (A%, Al ... AT). We treat (Al,..., AT) as latent
variables, then g(A',..., AT|A%) = []/_, ¢(At|A*~1).
As T — oo, q(AT) approaches a convergent distribution,
which is often a simple one with easy samples. We often
choose a large enough 7 so that (A7) is a good approxi-
mation of the convergent distribution.

We model these trajectories with a denoising model

po (ALY At) parameterized by 6, then the model has a joint
po(A%T) = p(AT) I/, po(A*"'|A?) and a marginal
po(AL) that describes the data distribution. Here p(AT)
is the convergent distribution in q.

Usually ¢(A?|A*~!) needs easy probability calculations.
One choice is to treat each edge independently, and

g(ATATY) = T B(AL;(1—B)AL +Bip) (1)

1,7:9<]

= B(A"; (1 - ﬂt)At_l + Bip).

Here B(z; 1) represents the Bernoulli distribution over z
with probability p. We also use B(A;) to represent the
probability of independent Bernoulli variables arranged in
a matrix. The diffusion rate 3; determines the probability
of resampling the entry AZ ; from a Bernoulli distribution

. - . . t—1
with probability p, instead of keeping the entry A;~".

This diffusion process requires two special properties for
model fitting. First, we can sample A* at any time step ¢
directly from A°. Letay =1 — 3, and &y = Hizl ar,

q(A'AY) = B(AY &A% 4 (1 — ay)p). 2)

The diffusion rates [;-s are defined in a way such that a
is almost 0, then A7 is almost independent from A°, i.e.,
q(AT|A%) ~ p(AT) = B(AT;p). The configuration of
B-s is called noise scheduling. In the context of graph gener-
ation, p(AT') is the Erd6s-Rényi graph model G(N, p) (Er-
dos et al., 1960), with p being the probability of forming an
edge between two nodes.

Second, we can compute the posterior of the forward transi-

tion when conditioning on A°:

g(A' AT)q(ATHAY)
q(ATA0)

g(A"THA A?) = 3)
Since all the terms on the right-hand side are known, the
posterior can be computed analytically.

The generative model pg(A%7) is trained by maximizing
a variational lower bound of log pg(A") (Ho et al., 2020;
Hoogeboom et al., 2021; Austin et al., 2021). In an intu-
itive understanding, pp(A*~1|A?) is learned to match the
posterior of the forward transitiong(A*~1| At A?).

During generation, we sample A” ~ p(AT) and then “de-

noise” it iteratively with pg(A*~1|A?) to get an A° sample.

3. Method
3.1. Diffuse graphs to empty graphs — a motivation

With the main purpose of computation efficiency, we ad-
vocate setting p = 0 and using G(N, 0) as the convergent
distribution. This configuration improves the sparsity of the
adjacency matrices in diffusion trajectories, thus reducing

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

t=0 t=32

t=64 t=96

(a) An edge-removal process defined by p = 0

104

1]
t=256 (T) § 103 * active node count is less
) s . than 1/10 of all nodes
o o 10
2
g 10t
0 e
] =} 100
. 5
'E 10-1{ —— Number of active nodes
£ 10-2/ — Number of all nodes

St 0 64 128 192 256
Diffusion time step

(b) Active nodes in the edge-removal process

Figure 1. Dynamics of a discrete diffusion process with p = 0 and “active” nodes in the process on the Cora dataset: (a) the diffusion
process with p = 0 is an edge-removal process. The reverse of it is a generative procedure that constructs a graph by gradually adding
edges to an empty graph. (b) under linear noise scheduling, the number of “active” nodes (that have their edges removed at a time step) is

less than one-tenth of the total number of nodes.

computation. We consider the amount of computation in
the denoising model pg(A'~1|A?) from two aspects: the
computation on the input A? and the number of entries to
be predicted in the output A*~*.

We first consider the computation on the input side. We as-
sume that the denoising model pg(A'~1|A?) is constructed
with an MPNN. Suppose the input graph A® has M edges,
then a typical MPNN needs to perform O(M?*) message-
passing operations to compute node vectors — here we treat
hidden sizes and the number of network layers as constants.
The total number of message-passing operations over the
trajectory is O(ZtT:1 M?*). After some calculations, we
show that

T
SoMt = MOZat—i- p21—at 4)
t=1

By setting p = 0, we eliminate the second term and reduce
the number of edges in graphs in the diffusion trajectory by
a significant factor, then the MPNN will have much fewer
message-passing operations.

We then analyze the number of entries we need to predict
in the output A*~1. When p = 0, the forward process is
an edge-removal process, and the degree of a node is non-
increasing for any forward transition. A node with a degree
change from ¢t — 1 to ¢ is considered “active”. When a node
is inactive at t — 1, all edges incident to this node is kept at £.
Figure 1 shows the average number of active nodes for each
forward transition. We observe that active nodes only take a
small fraction of the total when the convergent distribution
is G(N,0).

While a previous diffusion-based model makes predictions
for all node pairs, the observation above indicates that we
can save computation by making predictions only for pairs
of active nodes. In particular, the denoising model can first
infer which nodes are active in each step and then only
predict edges between active nodes. Below we will develop

such a model and only consider the diffusion process with
p=0.

3.2. A diffusion-based model that explicitly models
active nodes

We treat the “active nodes” as latent variables s'**" and in-
corporate them into both the forward and reverse processes.
Let d* = deg(A?) be the node degree vector of A!, then
st := 1[d*~! # d!] is a binary vector indicating whether
nodes are active (having degree change from ¢ — 1 to ¢) or
not from ¢ — 1 to ¢. In the following, we redefine the forward
and reverse processes.

Forward process. With latent variables s'*7', we show
that the forward process can be rewritten into the following
decomposition:

T
q(AlzT’SI:T|AO Hq At|At 1 (St|At_1,At). 5)
t=1

The forward process does not change by including s'*”

since the value of s’ is determined by A*~! and A’. This
allows us to use still the forward transition g(A|A'~1) to
draw the entire sequence.

Reverse process.
follows:

We decompose the denoising model as

T
pg(AO:T,SlT AT) Hp@(At_l|At7 St)pg(st‘At). (6)
t=1

Here both pg(A'~1|A?, s) and py(s’|A?) are learnable dis-
tributions. Intuitively, the denoising model first predicts
which nodes are active (s*) and then generates edges be-
tween them to obtain A*~!. Since we only predict edges
between active nodes indicated by s, all edges that incident
inactive nodes are carried from A’ to A*~! directly.

Our EDGE model is specified by (6). The generative frame-
work is demonstrated in Figure 2.

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Forward process
Remove edges by g(A’| A1)

At—

o‘ A

@@

Decides active nodes in g(s'| A”"!, A"

Sample active nodes from py(s'| A")
Reverse process

@ @ AT ~ G(N,0)
) ®

Figure 2. Forward and reverse processes. For the forward process, A" is sampled from g(A’|A*™"), then s’ is deterministically generated

given A*™! and A’. For the reverse process, s' is first sampled from a node selection distribution pg(s’|A*)

the parameterized distribution ps(A*~1| A’ s?).
3.3. Learning the reverse process

We optimize the model parameters 6 by maximizing the vari-
ational lower bound (VLB) of log p(A"). Following Sohl-
Dickstein et al. (2015); Ho et al. (2020), the VLB is:

O p@(O:T7 S1:T)
p(AT)
= Eq IOg m + Inge(AO|A1, Sl) +
reconstruction term Lyec
T
Z po(A~ 1|At _|_Zl po(s t|At)
— "° g(AT[ALS, AO q(s'|AT, A?)

edge prediction term Leqge (1) node selection term Lpoqe (t)

Appendix B.1 shows detailed derivation. The first term
contains no learnable parameters. The second term mea-
sures the reconstruction likelihood. For the edge prediction
term Leqge(t), unlike Sohl-Dickstein et al. (2015); Ho et al.
(2020), the posterior g(A*~!|A?,s!, A%) is hard to com-
pute, and there is not a closed-form for this term. Since
the entropy H[g(A'~!|A!, s?, A%)] is a constant, we only
optimize the cross entropy term in Legge (t) via Monte Carlo
estimates. We leave the work of variance reduction to the
future.

For the node selection term Lyo(t), we show that
q(s'|At, A) has closed-form expression. In particular, we
first derive the posterior of the node degree distribution
q(d|At, A%) as follows:

N
q(dt71|At,A0) _ q(dtfl‘dt’d[)) _ H (dt 1|dt dO)
=1

where q(df 1\dt dU) Bin(k = Al,n = Ag,p =),

—d}, A =d)—dj, v = By g

with Al
1— Qi

_ qt—1
= d

Here Bin(k; n, p) is a binomial distribution parameterized
by n and p. Intuitively, a node degree dffl is only relevant

, then A" ! is sampled from

to the node’s degrees dY and d! at steps 0 and ¢. The actual
edges do not affect the degree probability since each edge
is added or removed independently. We provide formal
proof and discuss the forward node degree distribution in
Appendix A.2.

Since st = 1[d!™! # d!], we can compute the probabil-
ity g(st = 1]d},dY), which is 1 — ¢(d!™! = di|d},dY).
Finally, we obtain the closed-form posterior:

q(sf|d?,d°%) = Hq st|di,d?), where ©)

q(st|dl, dO) B(si; 1—(1- %)A?).

The KL divergence Lo (t) turns out to be comparisons
between Bernoulli distributions.

3.4. Degree-guided graph generation

A graph’s node degrees are often strongly correlated to its
other statistics, so it is important for a generative model
to capture the node degrees of training graphs. Here we
directly incorporate degree information in the proposed gen-
erative model.

We explicitly model node degrees d® of a graph A as a
random variable, then the forward process becomes

q(AlzT‘AO) — q(A1T|A0)q(dO|AO) (10)

Here ¢(d°|A%) = 1 because d" is determined by A°. We
also include d° into the generative model p(A°,d%). If
the model guarantees that d° is the node degrees of A,
then pp(AY) = pp(AY,d°) still models graph data A°.
Even if po(A°, d%) allows d° to differ a little from the true
node degrees, it is still valid to maximize the likelihood
po(AL,d° = A1) because model training will encourage
the model to generate A” and d° to match each other. We
decompose the model by:

po(A°,d°) = py(d®)py(A°]d°). (1

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

With this decomposition, we first sample arbitrary node
degrees d” from py(d®), then generate a graph with the de-
gree constraint (See Alg. 1). Correspondingly, the denoising
model becomes

pe(AO:T7 Sl:T’ dO) _ pe(do)pe(AO:T, SI:T|dO). (12)

We separate the optimizations for the node degree model
pg(d®) and the graph denoising model pg(A %7, st 7|d°).
The entire training objective is

0 10, B 0 pe(AO:T7 Sl:T|dO)
L(A"d%0)=E, {IOgPO(d) +log q(ATT sLT|AD)
L£(dO;0)
L(A0]dO;0)

(See Appendix B.2 for detailed derivation.) For £(d°;0),
we treat the learning of node degree distribution as a se-
quence modeling task. The decomposition of £L(A°|d’; 6)
remains the same as Eqn. (7), except that all terms re-
lated to the graph denoising model are now condition-
ing on d°. In particular, for the node selection distribu-
tion, we consider a special parameterization by setting
po(st|At,dY) := ¢(s'|d?,d°) in Eqn. (9). Note that now
the node selection distribution contains no learnable param-
eters. Moreover, since the KL divergence Lpode(t) is now
zero, we can further simplify the £(A°|d; #) into

)

A
CAN)=, [l D) o (A%]AL 5. a)

q(AT|A?)

T
pe(At71|At7st7dO)

1 . (13

+ ;_2: 08 g(A-1[AT, st, A0) (13)

In our framework, the node degree constraint d” is mainly
imposed on pg(st|A?, d") — only nodes with a degree below
the specified degree d° may be selected to participate in
the edge prediction. On the other hand, though the exact
probability pg(A!~1|A?, st d°) includes information about
the maximum number of edges (d° — d?) that can be added
to nodes, this can be not easy to track during the edge
formation. Here we consider simply augmenting the inputs
to the neural network with d°. In practice, we found that the
specified node degrees d° can accurately control the actual
node degrees of the generated graphs.

Degree-guided generation turns out to be very useful in
modeling large graphs. We reason that the d° significantly
reduces the possible trajectories a graph can evolve along,
thus reducing the modeling complexity.

3.5. Implementation

We briefly describe the implementation of pg(st|At),
po(A"1AY st), and pe(d®). Note we use the
same network architecture for pg(A’~'|Af s!) and
po(AT"1|AY st d°), except the inputs to the latter includes

Algorithm 1 Degree-guided graph generation

Input: Empty graph A, graph model py(A‘~1|A?, s?),
degree sequence model py(d®), and diffusion steps 7.
Output: Generated graph A°
Draw d° ~ py(d?)
fort=1T,...,1do

Draw s’ ~ g(st|deg(At),d?).

Draw A'=1 ~ pp(A!~1AL s).
end for

d’. We treat py(s‘|A?) as a node classification problem
and pg(A'~1|A?, s?) as an link prediction problem. Both
components share the same MPNN that takes A’ as the
input and computes node representations Z* € RV > for
all nodes. The hidden dimension dj, is a hyper-parameter
here. Then a network head uses Z! to predict s, and an-
other one uses Z![s'] to predict links between active nodes
indicated by s’. For the node degree model py(d®), if there
are multiple graphs in the dataset, we use a recurrent neu-
ral network (RNN) to fit the histogram of node degrees.
If there is only one graph with node degrees d°, then we
set pp(d®) = 1 directly. Implementation details are in Ap-
pendix C.

3.6. Model analysis

Complexity analysis. Let integer M represent the num-
ber of edges in a graph, and K be the maximum number of
active nodes during the reverse process. In each generation
step t, the MPNN needs O (M) operations to compute node
representations, O (V) operations to predict s?, and O(K?)
operations to predict links between K active nodes. The
factor K is relevant to noise scheduling: we find that K is
smaller than N by at least one order of magnitude when
the noise scheduling is linear. In a total of 7' generation
steps, the overall running time O (7 max(K?, M)). As a
comparison, previous diffusion-based models need running
time O(T'N?) because they need to make O(N?) link pre-
dictions at each time step.

Expressivity analysis. EDGE modifies a graph for mul-
tiple iterations to generate a sample. In each iteration, it
adds new edges to the graph based on the graph structure
in the prior iteration. Therefore, EDGE is NOT an edge-
independent model and does not have the limitation ana-
lyzed by Chanpuriya et al. (2021), thus it has a theoretical
advantage over previous one-shot generative models.

The ability of EDGE might be affected by the underly-
ing MPNN, which may not be able to distinguish different
graph structures due to expressivity issues (Xu et al., 2018).
However, this issue can be overcome by choosing more ex-
pressive GNNSs (Sato, 2020). We defer such discussion to
future work.

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

4. Related Work

Edge-independent models, which assume edges are formed
independently with some probabilities, are prevalent in prob-
abilistic models for large networks. These models include
classical models such as ER graph models (Erdos et al.,
1960), SBMs (Holland et al., 1983), and recent neural mod-
els such as variational graph auto-encoders (Kipf & Welling,
2016b; Mehta et al., 2019; Li et al., 2020; Chen et al., 2022a),
NetGAN and its variant (Bojchevski et al., 2018; Rendsburg
et al., 2020). Recent works show that these models can not
reproduce desiring statistics of the target network, such as
triangle counts, clustering coefficient, and square counts (Se-
shadhri et al., 2020; Chanpuriya et al., 2021).

Deep auto-regressive (AR) graph models (Li et al., 2018;
You et al., 2018; Liao et al., 2019; Zang & Wang, 2020; Han
et al., 2023) generate graph edges by sequentially filling up
an adjacency matrix to generate a graph. These algorithms
are slow because they need to make N? predictions. Dai
et al. (2020) proposes a method to leverage graph sparsity
and predict only non-zero entries in the adjacency matrix.
Long-term memory is a typical issue of these sequential
models, so it is hard for them to model global graph proper-
ties. Moreover, these models are not invariant with respect
to node orders of training graphs, and special techniques
(Chen et al., 2021; Han et al., 2023) are often needed to train
these models.

Diffusion-based generative models are shown to be powerful
in generating high-quality graphs (Niu et al., 2020; Liu et al.,
2019; Jo et al., 2022; Haefeli et al., 2022; Chen et al., 2022b;
Vignac et al., 2022; Kong et al.). By “tailoring” a graph with
multiple steps, these models can model edge correlations.
They overcome the limitations of auto-regressive modes as
well. However, all previous diffusion-based models focus
on generation tasks with small graphs. This work aims to
scale diffusion-based models to large graphs.

S. Experiments

We empirically evaluate our proposed approach from two
perspectives: whether it can capture statistics of training
graphs and whether it can generate graphs efficiently.

5.1. Experimental setup

Datasets. We conduct experiments on both generic graph
datasets and large networks. The generic graph datasets
consist of multiple graphs of varying sizes. Here we con-
sider Community and Ego datasets (You et al., 2018), all of
which contain graphs with hundreds of nodes. We also con-
sider four real-world networks, Polblogs (Adamic & Glance,
2005), Cora (Sen et al., 2008), Road-Minnesota (Rossi &
Ahmed, 2015), and PPI (Stark et al., 2010). Each of these
networks contains thousands of nodes. We also use the

#nodes #edges #graphs feature

Community [60, 160] [231, 1,965] 510

Ego [50,399] [57,1,071] 757

QM9 [1,9] [0, 28] 133,885 v
Polblogs 1,222 16,714 1

Cora 2,485 5,069 1

Road-MN 2,640 6,604 1

PPI 3,852 37,841 1

Table 1. Dataset statistics

QMO dataset (Ramakrishnan et al., 2014) to demonstrate
that EDGE can be easily extended to generate graphs with
attributes. The statistics of the datasets are shown in Table 1.

Baselines. For generic graphs, We compare EDGE to six
recent deep generative graph models, which include two
auto-regressive graph models, GraphRNN (You et al., 2018)
and GRAN (Liao et al., 2019), three diffusion-based mod-
els, GDSS (Jo et al., 2022), DiscDDPM (Haefeli et al.,
2022) and DiGress (Vignac et al., 2022), and one flow-
based model, GraphCNF (Lippe & Gavves, 2020). For large
networks, we follow Chanpuriya et al. (2021) and use six
edge-independent models, which include VGAE (Kipf &
Welling, 2016b), CELL (Rendsburg et al., 2020), TSVD (Se-
shadhri et al., 2020), and three methods proposed by Chan-
puriya et al. (2021) (CCOP, HDOP, Linear). We also include
GraphRNN as a baseline because it is still affordable to train
it on large networks. For the QM9 dataset, We compare
EDGE against GDSS (Jo et al., 2022) and DiGress (Vignac
et al., 2022). The implementation of our model is available
at github.com/tufts-ml/graph-generation-EDGE.

Evaluation. We examine the generated generic graphs
with both structure-based and neural-based metrics. For
structured-based metrics, we evaluate the Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012) between test
graphs and generated graphs in terms of degrees, cluster-
ing coefficients, and orbit counts (You et al., 2018). For
neural-based metrics, we evaluate the FID and the MMD
RBF metrics proposed by Thompson et al. (2022). All im-
plementations of the evaluation are provided by Thompson
et al. (2022). For all these metrics, the smaller, the better.

For each large network, we follow Chanpuriya et al. (2021)
and evaluate how well the graph statistics of the generated
network can match ground truths, which are statistics com-
puted from training data. We consider the following statis-
tics: power-law exponent of the degree sequence (PLE);
normalized triangle counts (NTC); global clustering coef-
ficient (CC) (Chanpuriya et al., 2021); characteristic path
length (CPL); and assortativity coefficient (AC) (Newman,
2002). We also report the edge overlap ratio (EO) between
the generated network and the original one to check to which
degree a model memorizes the graph. A graph generated by
a good model should have statistics similar to true values

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Community Ego

Structure-based (MMD) Neural-based Structure-based (MMD) Neural-based

Deg. Clus. Orb. FID RBF MMD Deg. Clus. Orb. FID RBF MMD
GRNN 0.1440 0.0535 0.0198 8.3869 0.1591 0.0768 1.1456 0.1087 90.5655 0.6827
GRAN 0.1022 0.0894 0.0198 64.1145 0.0749 0.5778 0.3360 0.0406 489.9598 0.2633
GraphCNF 0.1129 1.2882 0.0197 29.1526 0.1341 0.1010 0.7654 0.0820 18.7929 0.0896
GDSS 0.0535 0.2072 0.0196 6.5531 0.0443 0.8189 0.6032 0.3315 60.6100 0.4331
DiscDDPM 0.1238 0.6549 0.0246 8.6321 0.0840 0.4613 0.1681 0.0633 42.7994 0.1561
DiGress 0.0409 0.0167 0.0298 3.4261 0.0460 0.0708 0.0092 0.1205 18.6794 0.0489
EDGE 0.0175 0.0689 0.0198 2.2378 0.0227 0.0579 0.1773 0.0519 15.7614 0.0658

Table 2. Generation performance on generic graphs. We used unpaired t-tests to compare the results; the numbers in bold indicate the
method is better at the 5% significance level, and the second-best method is underlined. We provide standard deviation in Appendix F.

computed from the training graph. At the same time, it
should have a small EO with the training network, which
means that the model should not simply memorize the input
data.

For the QM9 dataset, we evaluate the Validity, Uniqueness,
Fréchet ChemNet Distance (Preuer et al., 2018) and Scaf-
fold similarity (Bemis & Murcko, 1996) on the samples
generated from baselines and our proposed method. We use
molsets library (Polykovskiy et al., 2020) to implement the
evaluation.

5.2. Evaluation of sample quality

Generic graph generation. Table 2 summarizes the eval-
uation of generated graphs on the Community and Ego
datasets. Best performances are in bold, and second-best
performances are underscored. EDGE outperforms all base-
lines on 8 out of 10 metrics. For the other two metrics,
EDGE only performs slightly worse than the best. We hy-
pothesize that EDGE gains advantages by modeling node
degrees because they are informative to the graph structure.

Large network generation. Unlike edge-independent
models, the edge overlap ratios in the GraphRNN and our
approach are not tunable. To make a fair comparison, we
report the performance of the edge-independent models that
have a similar or higher EO than GraphRNN and EDGE.
Table 3 shows the statistics of the network itself (labeled
as “True”) and statistics computed from generated graphs.
The statistics nearest to true values are considered as best
performances, which are in bold. Second-best performances
are underscored.

The proposed approach shows superior performances on
all four networks. The improvements on Polblogs and PPI
networks are clear. On the Road-Minnesota dataset, EDGE
has a much smaller EO than edge-independent models, but
its performances in terms of capturing graph statistics are
similar to those models. On the Cora dataset, EDGE also
has an EO much smaller than edge-independent models, but

10
@2
T 107
g v —r— DiscDDPM
0 GRAN —+— DiGress
= —e— GraphCNF EDGE
—g" 10 —=— GDSS
s
& /
0
1007 7
2 3
10 10

Average #nodes of the sampled graphs

Figure 3. Sampling speed comparison over different models.

it slightly improves over these models. Road-Minnesota
and Cora networks are both sparse networks — the message-
passing neural model may not work at its full strength. We
notice that GraphRNN can not even compete with edge-
independent models. We also visualize the generated graphs
of Polblogs in Figure 4.

5.3. Efficiency

We compare the sampling efficiency of EDGE against other
deep generative graph models. We record the average time
for a model to sample one graph to make a consistent com-
parison over all datasets. The average sampling time for
each dataset is averaged over 128 runs. Figure 3 shows the
relationship between sampling time and graph sizes. Except
for GraphRNN, all baseline neural models can only generate
graphs for Community and Ego datasets, which contain 110
and 144 nodes on average. Our approach runs only slower
than GraphCNF on the Community dataset by 0.5s. On
large graphs, our model has a clear advantage in terms of
running time. Note that our model spends less time on an
Ego graph than a Community graph, though an Ego graph,
on average, contains more nodes than a Community graph.
This is because the computation of our model scales with
the number of edges, and Ego graphs are often sparser than
Community graphs.

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Polblogs Cora
EO PLE NTC CC CPL AC EO PLE NTC CC CPL AC
True 100 1414 1 0.226 2.738 -0.221 100 1.885 1 0.090 6.311 -0.071
OPB 245 1.395 0.667 0.150 2.524 -0.143 10.9 1.852 0.097 0.008 4476 -0.037
HDOP 164 1393 0.687 0.153 2522 -0.131 0.9 1.849 0.113 0.009 4.770 -0.030
CELL 26.8 1385 0810 0.211 2534 -0.230 10.3 1.774 0.009 0.002 5.799 -0.018
CO 20.1 1975 0.045 0.028 2.502 0.068 9.7 1.776 0.009 0.002 5.653 0.010
TSVD 320 1373 0.872 0.205 2532 -0.216 6.7 1.858 0.349 0.028 4.908 -0.006
VGAE 3.6 1723 0.05 0.001 2.531 -0.086 1.5 1.717 0.120 0.220 4.934 0.002
GRNN 9.6 1333 0354 0.095 2.566 0.096 0.4 1.822 0.043 0.011 6.146 0.043
EDGE 16,5 1.398 0.977 0.217 2.647 -0.214 1.1 1.755 0.446 0.034 4995 -0.046
Road-Minnesota PPI
EO PLE NTC CC CPL AC EO PLE NTC CC CPL AC
True 100 2.147 1 0.028 35.349 -0.187 100 1.462 1 0.092 3.095 -0.099
OPB 29.7 2.188 0.083 0.002 8.036 0.009 16.3 1443 0.640 0.058 2914 -0.089
HDOP 132 2.192 0.208 0.004 8.274 -0.024 6.9 1.444 0.638 0.058 2917 -0.086
CELL 30.7 2267 0.053 0.001 10.219 -0.082 6.7 1.400 0.248 0.040 3.108 0.176
CO 19.8 2.044 2.845 0.040 11478 -0.012 9.9 1.754 0.015 0.006 3.046 0.043
TSVD 194 2172 0.060 0.001 8.431 0.006 13.2 1426 0.848 0.077 2.867 -0.089
VGAE 1.3 1.678 0.096 0.009 11.120 -0.027 0.5 1.362 0.091 0.012 2991 0.054
GRNN 0.6 1570 0.099 0.007 11.695 0.006 OOM OOM OOM OOM OOM OOM
EDGE 0.8 1.910 0962 0.011 9.125 -0.063 7.5 1.449 0981 0.091 3.028 -0.107

Table 3. Graph statistics of generated large networks. EDGE generates graphs with statistics that are much closer to the ground truths.

Validity? Uniquenesst FCDJ Scaf. Sim.t

GDSS 95.7 98.5 2.9 -
DiGress 99.0 100 0.151 0.908
EDGE 99.1 100 0.458 0.763

Table 4. Generative performance on the QM9 dataset

5.4. Generative performance on QM9 dataset

We further investigate EDGE’s ability of generated graphs
with node and edge attributes. To include node attributes,
we first extend the basic EDGE model with a hierarchical
generation process that can also sample node attributes. We
put the details of this extension in Appendix E. We evaluate
the extended EDGE model on the QM9 dataset and compare
it with other neural baselines. The results in Table 4 show
that the extended EDGE model has a performance compa-
rable with that of DiGress. Note that DiGress is specially
designed for molecule generation, and our model runs much
faster than DiGress.

5.5. Ablation studies

Diffusion variants. The random variables s and d°
play important roles in EDGE’s good performances, and
we verify that through an ablation study on the Polblogs
dataset. We use four diffusion configurations: 1) setting
G(N, 0.5) as the convergent distribution and directly using

s'T d® PLE NTC CC CPL AC Speed
True 1414 1 0226 2738 -0.221
G(N,0.5) OOM OOM OOM OOM OOM OOM
G(N,0) 1341 3.234 0.237 2.747 -0.304 15.3s
GIN,O) Vv 1.383 2364 0.251 2.638 -0.331 2.1s
GIN,0) v v 1398 0977 0.217 2.647 -0.214 1.7s

Table 5. Performance of EDGE’s variants on the Polblogs dataset.

an MPNN as the denoising model pg(Af~1|At); 2) setting
G(N,0) as the convergent distribution and directly using
an MPNN as the denoising model (without modeling active
nodes and degree guidance); 3) the EDGE model without
degree guidance, and 4) the EDGE model. Table 5 shows
the performances of the four models. If we set the conver-
gent distribution to G(V, 0.5), we can not even train such as
model since it requires an excessively large amount of GPU
memory. This justifies our use of G(IV, 0) as the convergent
distribution. The introduction of 7" (Section 3.2) signif-
icantly improves the sampling speed. Finally, the EDGE
approach, which explicitly models node degrees d° and
generates graphs with degree guidance, further improves the
generative performance.

Diffusion steps vs. model performance. In EDGE, the
number of diffusion steps 7" decides how many nodes would
actively participate in the edge prediction. Here we inves-
tigate how it affects the model performance under linear

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Training graph

TSVD

HDOP

VGAE

CELL CcO

GRNN

EDGE (ours)

Figure 4. Visualization of samples for the Polblogs dataset. We observe that only CELL, TSVD, and EDGE can learn the basic structure
of the ground-truth network, while other baselines fail. The network sampled from EDGE appears to be more similar to the training graph.

noise scheduling.

EO PLE NTC CC CPL AC
True 100 1.414 1 0.226 2.738 -0.221
g, 64 1.8 1.380 1.148 0.235 2.800 -0.202
_% 128 149 1386 1.030 0.238 2.747 -0.238
© 256" 165 1398 0.977 0217 2647 -0.214
A 512 150 1.398 0923 0218 2.635 -0.268
1024 16,5 1.400 0.991 0.219 2.665 -0.246
True 100 1.885 1 0.090 6.311 -0.071
64" 09 1.755 0446 0.034 4995 -0.046
g 128 1.1 1.747 0555 0.042 5.017 -0.050
O 256 0.8 1.753 0360 0.027 4.818 -0.041
512 0.8 1.753 0360 0.027 4.818 -0.042
1024 09 1.762 0.348 0.027 4.778 -0.034
True 100 2.147 1 0.028 35.349 -0.187
Z 647 0.8 1910 0962 0.011 9.125 -0.063
_Ee 128 1.2 1.803 1232 0.041 6.501 -0.030
g 256 0.8 1953 1.057 0.014 7471 -0.005
& 512 1.3 1965 1472 0.020 7.710 -0.006
1024 1.2 1983 2491 0.035 7.906 -0.034
True 100 1.462 1 0.092 3.095 -0.099
64 74 1421 2455 -0.116 3.498 -0.116
= 128 62 1419 1503 0.126 3.384 -0.147
A 256" 75 1449 0981 0.091 3.028 -0.107
512" 7.0 1438 1.101 0.099 3244 -0.107
1024* 7.1 1.441 0925 0.074 3.150 -0.101

Table 6. Large diffusion steps I' does not necessarily improve
model performance. Good diffusion steps are labeled with “*”.

Specifically, we train our model on three large networks
with T' € {64, 128,256,512, 1024} and report the model
performance in Table 6. Unlike traditional diffusion models
in which more diffusion steps usually yield better perfor-

mance, a large T" for our model does not always improve
the performance. For instance, T = 64 gives the best per-
formance in the Cora and Road-Minnesota datasets. Our
explanation for this observation is the high level of sparsity
in training graphs. If we have a large T, the total number
of generation steps, the model can only identify a few ac-
tive nodes and predict edges between them in each time
step. The model faces a highly imbalanced classification
problem, which may lead to poor model convergence. Such
an issue is not observed for relatively denser graphs, e.g.
Polblogs and PPI datasets, which require a relatively large
T to guarantee good model performances. When 7T’ is large
enough (17" = 128 for Polbogs and T = 256 for PPI), further
increasing 7' does not improve the model performance.

6. Conclusion

In this work, we propose EDGE, a generative graph model
based on a discrete diffusion process. By leveraging the
sparsity in the diffusion process, EDGE significantly im-
proves the computation efficiency and scales to graphs with
thousands of nodes. By explicitly modeling node degrees,
EDGE improves its ability in capturing important statistics
of training graphs. Our extensive empirical study shows
that EDGE has superior performance in benchmark graph
generation in terms of both computational efficiency and
generation quality.

Acknowledgment

We thank anonymous reviewers for their valuable feedback.
Xiaohui Chen and Li-Ping Liu are partially supported by the
National Science Foundation under Grant No. 2239869.

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

References

Adamic, L. A. and Glance, N. The political blogosphere and
the 2004 us election: divided they blog. In Proceedings
of the 3rd international workshop on Link discovery, pp.
36-43, 2005.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den
Berg, R. Structured denoising diffusion models in discrete
state-spaces. Advances in Neural Information Processing
Systems, 34:17981-17993, 2021.

Bemis, G. W. and Murcko, M. A. The properties of known
drugs. 1. molecular frameworks. Journal of medicinal
chemistry, 39(15):2887-2893, 1996.

Bojchevski, A., Shchur, O., Ziigner, D., and Gilinnemann,
S. Netgan: Generating graphs via random walks. In

International conference on machine learning, pp. 610—
619. PMLR, 2018.

Chakrabarti, D. and Faloutsos, C. Graph mining: Laws,
generators, and algorithms. ACM computing surveys
(CSUR), 38(1):2—es, 2006.

Chanpuriya, S., Musco, C., Sotiropoulos, K., and
Tsourakakis, C. On the power of edge independent graph
models. Advances in Neural Information Processing Sys-
tems, 34:24418-24429, 2021.

Chen, X., Han, X., Hu, J., Ruiz, F. J., and Liu, L. Order mat-
ters: Probabilistic modeling of node sequence for graph
generation. arXiv preprint arXiv:2106.06189, 2021.

Chen, X., Chen, X., and Liu, L. Interpretable node
representation with attribute decoding. arXiv preprint
arXiv:2212.01682, 2022a.

Chen, X, Li, Y., Zhang, A., and Liu, L.-p. Nvdiff: Graph
generation through the diffusion of node vectors. arXiv
preprint arXiv:2211.10794, 2022b.

Cho, K., Van Merriénboer, B., Bahdanau, D., and Bengio, Y.
On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259,
2014.

Dai, H., Nazi, A., Li, Y., Dai, B., and Schuurmans, D.
Scalable deep generative modeling for sparse graphs. In
International conference on machine learning, pp. 2302—
2312. PMLR, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in Neural Information
Processing Systems, 34:8780-8794, 2021.

10

Du, Y., Wang, S., Guo, X., Cao, H., Hu, S., Jiang, J., Var-
ala, A., Angirekula, A., and Zhao, L. Graphgt: Machine
learning datasets for graph generation and transformation.
In Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2),
2021.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural Networks, 107:3-11,
2018.

Erdos, P., Rényi, A., et al. On the evolution of random
graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17-60,
1960.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B.,
and Smola, A. A kernel two-sample test. The Journal of
Machine Learning Research, 13(1):723-773, 2012.

Haefeli, K. K., Martinkus, K., Perraudin, N., and Wat-
tenhofer, R. Diffusion models for graphs benefit from
discrete state spaces. arXiv preprint arXiv:2210.01549,
2022.

Han, X., Chen, X., Ruiz, F. J., and Liu, L.-P. Fitting au-
toregressive graph generative models through maximum
likelihood estimation. Journal of Machine Learning Re-
search, 24(97):1-30, 2023.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840-6851, 2020.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social networks, 5(2):109-137,
1983.

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling,
M. Argmax flows and multinomial diffusion: Learning
categorical distributions. Advances in Neural Information
Processing Systems, 34:12454—12465, 2021.

Jo,J., Lee, S., and Hwang, S. J. Score-based generative mod-
eling of graphs via the system of stochastic differential
equations. arXiv preprint arXiv:2202.02514, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016a.

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016b.

Kong, L., Cui, J., Sun, H., Zhuang, Y., Prakash, B. A.,
and Zhang, C. Autoregressive diffusion model for graph
generation.

Li, J., Yu,J., Li, J., Zhang, H., Zhao, K., Rong, Y., Cheng,
H., and Huang, J. Dirichlet graph variational autoencoder.
Advances in Neural Information Processing Systems, 33:
5274-5283, 2020.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324, 2018.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duve-
naud, D. K., Urtasun, R., and Zemel, R. Efficient graph
generation with graph recurrent attention networks. In

Advances in Neural Information Processing Systems, pp.
42554265, 2019.

Lippe, P. and Gavves, E. Categorical normalizing
flows via continuous transformations. arXiv preprint
arXiv:2006.09790, 2020.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Lusher, D., Koskinen, J., and Robins, G. Exponential ran-
dom graph models for social networks: Theory, methods,
and applications. Cambridge University Press, 2013.

Madhawa, K., Ishiguro, K., Nakago, K., and Abe, M. Graph-
nvp: An invertible flow model for generating molecular
graphs. arXiv preprint arXiv:1905.11600, 2019.

Mehta, N., Duke, L. C., and Rai, P. Stochastic blockmodels
meet graph neural networks. In International Conference
on Machine Learning, pp. 4466-4474. PMLR, 2019.

Newman, M. E. Assortative mixing in networks. Physical
review letters, 89(20):208701, 2002.

Newman, M. E., Watts, D. J., and Strogatz, S. H. Random
graph models of social networks. Proceedings of the
national academy of sciences, 99(suppl-1):2566-2572,
2002.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4474-4484. PMLR,
2020.

O’Bray, L., Horn, M., Rieck, B., and Borgwardt, K.
Evaluation metrics for graph generative models: Prob-
lems, pitfalls, and practical solutions. arXiv preprint
arXiv:2106.01098, 2021.

11

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golo-
vanov, S., Tatanov, O., Belyaeyv, S., Kurbanov, R., Arta-
monov, A., Aladinskiy, V., Veselov, M., et al. Molecular
sets (moses): a benchmarking platform for molecular gen-

eration models. Frontiers in pharmacology, 11:565644,
2020.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and
Klambauer, G. Fréchet chemnet distance: a metric for
generative models for molecules in drug discovery. Jour-
nal of chemical information and modeling, 58(9):1736—
1741, 2018.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld,
0. A. Quantum chemistry structures and properties of
134 kilo molecules. Scientific data, 1(1):1-7, 2014.

Rendsburg, L., Heidrich, H., and Von Luxburg, U. Netgan
without gan: From random walks to low-rank approxima-
tions. In International Conference on Machine Learning,
pp- 8073-8082. PMLR, 2020.

Rossi, R. and Ahmed, N. The network data repository with
interactive graph analytics and visualization. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 29, 2015.

Sato, R. A survey on the expressive power of graph neural
networks. arXiv preprint arXiv:2003.04078, 2020.

Schuster, M. and Paliwal, K. K. Bidirectional recurrent
neural networks. IEEE transactions on Signal Processing,

45(11):2673-2681, 1997.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. Al magazine, 29(3):93-93, 2008.

Seshadhri, C., Sharma, A., Stolman, A., and Goel, A. The
impossibility of low-rank representations for triangle-rich
complex networks. Proceedings of the National Academy
of Sciences, 117(11):5631-5637, 2020.

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and Sun,
Y. Masked label prediction: Unified message passing
model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In International Conference on Artificial Neural Net-
works, pp. 412-422. Springer, 2018.

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256-2265. PMLR, 2015.

Stark, C., Breitkreutz, B.-J., Chatr-Aryamontri, A., Boucher,
L., Oughtred, R., Livstone, M. S., Nixon, J., Van Auken,
K., Wang, X., Shi, X., et al. The biogrid interaction
database: 2011 update. Nucleic acids research, 39
(suppl-1):D698-D704, 2010.

Thompson, R., Knyazev, B., Ghalebi, E., Kim, J., and Taylor,
G. W. On evaluation metrics for graph generative models.
arXiv preprint arXiv:2201.09871, 2022.

Vignac, C., Krawczuk, 1., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Xu, K., Hu, W,, Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2018.

Ying, X. and Wu, X. Graph generation with prescribed
feature constraints. In Proceedings of the 2009 SIAM
International Conference on Data Mining, pp. 966-977.
SIAM, 2009.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec,
J. GraphRNN: Generating realistic graphs with deep
auto-regressive models. arXiv preprint arXiv:1802.08773,
2018.

Zang, C. and Wang, F. Moflow: an invertible flow model for
generating molecular graphs. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 617-626, 2020.

12

