
Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Xiaohui Chen 1 Jiaxing He 1 Xu Han 1 Li-Ping Liu 1

Abstract

Diffusion-based graph generative models are effective
in generating high-quality small graphs. However, it
is hard to scale them to large graphs that contain thou-
sands of nodes. In this work, we propose EDGE, a
new diffusion-based graph generative model that ad-
dresses generative tasks for large graphs. The model
is developed by reversing a discrete diffusion process
that randomly removes edges until obtaining an empty
graph. It leverages graph sparsity in the diffusion pro-
cess to improve computational efficiency. In particular,
EDGE only focuses on a small portion of graph nodes
and only adds edges between these nodes. Without
compromising modeling ability, it makes much fewer
edge predictions than previous diffusion-based genera-
tive models. Furthermore, EDGE can explicitly model
the node degrees of training graphs and then gain per-
formance improvement in capturing graph statistics.
The empirical study shows that EDGE is much more ef-
ficient than competing methods and can generate large
graphs with thousands of nodes. It also outperforms
baseline models in generation quality: graphs gener-
ated by the proposed model have graph statistics more
similar to those of training graphs.

1. Introduction

There is a long history of using random graph models (New-

man et al., 2002) to model large graphs. Traditional mod-

els such as Erdős-Rényi (ER) model (Erdos et al., 1960),

Stochastic-Block Model (SBM) (Holland et al., 1983), and

Exponential-family Random Graph Models (Lusher et al.,

2013) are often used to model existing graph data and focus

on prescribed graph structures. Besides modeling existing

data, one interesting problem is to generate new graphs

to simulate existing ones (Ying & Wu, 2009), which has

applications such as network data sharing. In generative

tasks (Chakrabarti & Faloutsos, 2006), traditional models

often fall short in describing complex structures. A promis-

ing direction is to use deep neural models to generate large

graphs.

1Department of Computer Science, Tufts University, Med-
ford, MA, USA. Correspondence to: Xiaohui Chen <xiao-
hui.chen@tufts.edu>, Li-Ping Liu <liping.liu@tufts.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

There are only a few deep generative models designed for

generating large graphs: NetGAN (Bojchevski et al., 2018)

and CELL (Rendsburg et al., 2020) are two examples. How-

ever, recent research (Chanpuriya et al., 2021) shows that

these two models are edge-independent models and have

a theoretical limitation: they cannot reproduce several im-

portant statistics (e.g. triangle counts and clustering coeffi-

cient) in their generated graphs unless they memorize the

training graph. A list of other models (Chanpuriya et al.,

2021) including Variational Graph Autoencoders (VGAE)

(Kipf & Welling, 2016b) and GraphVAE (Simonovsky &

Komodakis, 2018) are also edge-independent models and

share the same limitation.

Diffusion-based generative models (Liu et al., 2019; Niu

et al., 2020; Jo et al., 2022; Chen et al., 2022b) have gained

success in modeling small graphs. These models generate

a graph in multiple steps and are NOT edge-independent

because edges generated in later steps depend on previously

generated edges. They are more flexible than one-shot mod-

els (Kipf & Welling, 2016b; Madhawa et al., 2019; Lippe

& Gavves, 2020), which directly predict an adjacency ma-

trix in one step. They also have an advantage over auto-

regressive graph models (You et al., 2018; Liao et al., 2019),

as diffusion-based models are invariant to node permuta-

tions and do not have long-term memory issues. However,

diffusion-based models are only designed for tasks with

small graphs (usually with less than one hundred nodes).

This work aims to scale diffusion-based generative models

to large graphs. The major issue of a diffusion-based model

is that it must compute a latent vector or a probability for

each node pair in a graph at each diffusion step (Niu et al.,

2020; Jo et al., 2022) – the computation cost is O(TN2) if

the model generates a graph with N nodes using T steps.

The learning task becomes challenging when N is large. At

the same time, large graphs increase the difficulties for a

model to capture global graph statistics such as clustering

coefficients. As a result, the model performance degrades

when the training graphs’ sizes scale up.

We propose Efficient and Degree-guided graph GEnerative

model (EDGE) based on a discrete diffusion process. The

development of EDGE has three innovations. First, we en-

courage the sparsity of graphs in the diffusion process by

setting the empty graph as the convergent “distribution”.

1

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Then the diffusion process only removes edges and can be

viewed as an edge-removal process. The increased sparsity

in graphs in the process dramatically reduces the computa-

tion – this is because the message-passing neural network

(MPNN) (Kipf & Welling, 2016a) used in the generative

model needs to run on these graphs, and their runtime is

linear in the number of edges. Second, the generative model,

which is the reverse of the edge-removal process, only pre-

dicts edges for a small portion of “active nodes” that have

edge changes in the original edge-removal process. This

strategy decreases the number of predictions of MPNN and

also its computation time. More importantly, this new design

is naturally derived from the aforementioned edge-removal

process without modifying its forward transition probabili-

ties. Third, we model the node degrees of training graphs

explicitly. By characterizing the node degrees, the statistics

of the generated graphs are much closer to training graphs.

While other diffusion-based graph models struggle to even

train or sample on large graphs, our approach can efficiently

generate large graphs with desired statistical properties. We

summarize our contributions as follows:

• we use empty graphs as the convergent distribution in

a discrete diffusion process to reduce computation;

• we propose a new generative process that only predicts

edges between a fraction of nodes in graphs;

• we explicitly model node degrees in the probabilistic

framework to improve graph statistics of generated

graphs; and

• we conduct an extensive empirical study and show that

our method can efficiently generate large graphs with

desired statistics.

2. Background

This work considers graph generative models that sample

adjacency matrices to generate graphs. Let AN denote the

space of adjacency matrices of size N . We consider simple

graphs without self-loops or multi-edges, so an adjacency

matrix A ∈ AN is a binary symmetric matrix with a zero

diagonal. A generative model defines a distribution over

AN .

In this work, we construct a generative model based on

a discrete diffusion process (Austin et al., 2021; Hooge-

boom et al., 2021; Vignac et al., 2022). Let A0 denote

a graph from the data, then the diffusion process defined

by q(At|At−1) corrupts A0 in T steps and forms a trajec-

tory (A0,A1, . . . ,AT). We treat (A1, . . . ,AT) as latent

variables, then q(A1, . . . ,AT |A0) =
QT

t=1 q(A
t|At−1).

As T → ∞, q(AT) approaches a convergent distribution,

which is often a simple one with easy samples. We often

choose a large enough T so that q(AT) is a good approxi-

mation of the convergent distribution.

We model these trajectories with a denoising model

pθ(A
t−1|At) parameterized by θ, then the model has a joint

pθ(A
0:T) = p(AT)

QT

t=1 pθ(A
t−1|At) and a marginal

pθ(A
0) that describes the data distribution. Here p(AT)

is the convergent distribution in q.

Usually q(At|At−1) needs easy probability calculations.

One choice is to treat each edge independently, and

q(At|At−1) =
Y

i,j:i<j

B(At
i,j ; (1− βt)A

t−1
i,j + βtp) (1)

:= B(At; (1− βt)A
t−1 + βtp).

Here B(x;µ) represents the Bernoulli distribution over x

with probability µ. We also use B(A;µ) to represent the

probability of independent Bernoulli variables arranged in

a matrix. The diffusion rate βt determines the probability

of resampling the entry A
t
i,j from a Bernoulli distribution

with probability p, instead of keeping the entry A
t−1
i,j .

This diffusion process requires two special properties for

model fitting. First, we can sample A
t at any time step t

directly from A
0. Let αt = 1− βt and ᾱt =

Qt

τ=1 ατ ,

q(At|A0) = B(At; ᾱtA
0 + (1− ᾱt)p). (2)

The diffusion rates βt-s are defined in a way such that ᾱT

is almost 0, then A
T is almost independent from A

0, i.e.,

q(AT |A0) ≈ p(AT) ≡ B(AT ; p). The configuration of

βt-s is called noise scheduling. In the context of graph gener-

ation, p(AT) is the Erdős-Rényi graph model G(N, p) (Er-

dos et al., 1960), with p being the probability of forming an

edge between two nodes.

Second, we can compute the posterior of the forward transi-

tion when conditioning on A
0:

q(At−1|At,A0) =
q(At|At−1)q(At−1|A0)

q(At|A0)
. (3)

Since all the terms on the right-hand side are known, the

posterior can be computed analytically.

The generative model pθ(A
0:T) is trained by maximizing

a variational lower bound of log pθ(A
0) (Ho et al., 2020;

Hoogeboom et al., 2021; Austin et al., 2021). In an intu-

itive understanding, pθ(A
t−1|At) is learned to match the

posterior of the forward transitionq(At−1|At,A0).

During generation, we sample A
T ∼ p(AT) and then “de-

noise” it iteratively with pθ(A
t−1|At) to get an A

0 sample.

3. Method

3.1. Diffuse graphs to empty graphs – a motivation

With the main purpose of computation efficiency, we ad-

vocate setting p = 0 and using G(N, 0) as the convergent

distribution. This configuration improves the sparsity of the

adjacency matrices in diffusion trajectories, thus reducing

2

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

t = 0 t = 32 t = 64 t = 256 (T)t = 96

…

(a) An edge-removal process defined by p = 0 (b) Active nodes in the edge-removal process

active node count is less

than 1/10 of all nodes

Figure 1. Dynamics of a discrete diffusion process with p = 0 and “active” nodes in the process on the Cora dataset: (a) the diffusion

process with p = 0 is an edge-removal process. The reverse of it is a generative procedure that constructs a graph by gradually adding

edges to an empty graph. (b) under linear noise scheduling, the number of “active” nodes (that have their edges removed at a time step) is

less than one-tenth of the total number of nodes.

computation. We consider the amount of computation in

the denoising model pθ(A
t−1|At) from two aspects: the

computation on the input At and the number of entries to

be predicted in the output At−1.

We first consider the computation on the input side. We as-

sume that the denoising model pθ(A
t−1|At) is constructed

with an MPNN. Suppose the input graph A
t has M t edges,

then a typical MPNN needs to perform O(M t) message-

passing operations to compute node vectors – here we treat

hidden sizes and the number of network layers as constants.

The total number of message-passing operations over the

trajectory is O(
PT

t=1 M
t). After some calculations, we

show that

TX

t=1

M t = M0
TX

t=1

ᾱt +
N(N − 1)p

2

TX

t=1

1− ᾱt. (4)

By setting p = 0, we eliminate the second term and reduce

the number of edges in graphs in the diffusion trajectory by

a significant factor, then the MPNN will have much fewer

message-passing operations.

We then analyze the number of entries we need to predict

in the output At−1. When p = 0, the forward process is

an edge-removal process, and the degree of a node is non-

increasing for any forward transition. A node with a degree

change from t− 1 to t is considered “active”. When a node

is inactive at t−1, all edges incident to this node is kept at t.

Figure 1 shows the average number of active nodes for each

forward transition. We observe that active nodes only take a

small fraction of the total when the convergent distribution

is G(N, 0).

While a previous diffusion-based model makes predictions

for all node pairs, the observation above indicates that we

can save computation by making predictions only for pairs

of active nodes. In particular, the denoising model can first

infer which nodes are active in each step and then only

predict edges between active nodes. Below we will develop

such a model and only consider the diffusion process with

p = 0.

3.2. A diffusion-based model that explicitly models

active nodes

We treat the “active nodes” as latent variables s1:T and in-

corporate them into both the forward and reverse processes.

Let dt = deg(At) be the node degree vector of At, then

s
t := �[dt−1 ̸= d

t] is a binary vector indicating whether

nodes are active (having degree change from t− 1 to t) or

not from t−1 to t. In the following, we redefine the forward

and reverse processes.

Forward process. With latent variables s
1:T , we show

that the forward process can be rewritten into the following

decomposition:

q(A1:T , s1:T |A0)=

TY

t=1

q(At|At−1)q(st|At−1,At). (5)

The forward process does not change by including s
1:T

since the value of st is determined by A
t−1 and A

t. This

allows us to use still the forward transition q(At|At−1) to

draw the entire sequence.

Reverse process. We decompose the denoising model as

follows:

pθ(A
0:T, s1:T)=p(AT)

TY

t=1

pθ(A
t−1|At, st)pθ(s

t|At). (6)

Here both pθ(A
t−1|At, st) and pθ(s

t|At) are learnable dis-

tributions. Intuitively, the denoising model first predicts

which nodes are active (st) and then generates edges be-

tween them to obtain A
t−1. Since we only predict edges

between active nodes indicated by s
t, all edges that incident

inactive nodes are carried from A
t to A

t−1 directly.

Our EDGE model is specified by (6). The generative frame-

work is demonstrated in Figure 2.

3

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Remove edges by q(At |A
t−1)

: data

Decides active nodes in q(st |A
t−1, A

t)

Add edges between active nodes by p
θ
(At−1 |A

t, s
t)

A
t−1 A

t

Reverse process

Forward process
1

5

2

3 4

1

5

2

3 4
1 0 1 1 0

1

5

2

3 4

1

5

2

3 4
A

t
A

t−1

1

5

2

3 4 A
T

∼ G(N,0)

1

5

2

3 4
A

0

Sample active nodes from p
θ
(st |A

t)

1 0 1 1 0

Figure 2. Forward and reverse processes. For the forward process, At is sampled from q(At|At−1), then s
t is deterministically generated

given A
t−1 and A

t. For the reverse process, st is first sampled from a node selection distribution pθ(s
t|At), then A

t−1 is sampled from

the parameterized distribution pθ(A
t−1|At, st).

3.3. Learning the reverse process

We optimize the model parameters θ by maximizing the vari-

ational lower bound (VLB) of log p(A0). Following Sohl-

Dickstein et al. (2015); Ho et al. (2020), the VLB is:

L(A0; θ) = Eq

h

log
pθ(A

0:T , s1:T)

q(A1:T , s1:T |A0)

i

(7)

= Eq

"

log
p(AT)

q(AT |A0)
+ log pθ(A

0|A1, s1)
| {z }

reconstruction term Lrec

+

TX

t=2

log
pθ(A

t−1|At, st)

q(At−1|At, st,A0)
| {z }

edge prediction term Ledge(t)

+

TX

t=1

log
pθ(s

t|At)

q(st|At,A0)
| {z }

node selection term Lnode(t)

#

.

Appendix B.1 shows detailed derivation. The first term

contains no learnable parameters. The second term mea-

sures the reconstruction likelihood. For the edge prediction

term Ledge(t), unlike Sohl-Dickstein et al. (2015); Ho et al.

(2020), the posterior q(At−1|At, st,A0) is hard to com-

pute, and there is not a closed-form for this term. Since

the entropy H[q(At−1|At, st,A0)] is a constant, we only

optimize the cross entropy term in Ledge(t) via Monte Carlo

estimates. We leave the work of variance reduction to the

future.

For the node selection term Lnode(t), we show that

q(st|At,A0) has closed-form expression. In particular, we

first derive the posterior of the node degree distribution

q(dt|At,A0) as follows:

q(dt−1|At,A0) = q(dt−1|dt,d0) =

NY

i=1

q(dt−1
i |dt

i,d
0
i),

where q(dt−1
i |dt

i,d
0
i) = Bin(k = ∆t

i, n = ∆0
i , p = γt),

with ∆t
i = d

t−1
i −d

t
i, ∆

0
i = d

0
i −d

t
i, γt =

βtᾱt−1

1− ᾱt

. (8)

Here Bin(k;n, p) is a binomial distribution parameterized

by n and p. Intuitively, a node degree d
t−1
i is only relevant

to the node’s degrees d0
i and d

t
i at steps 0 and t. The actual

edges do not affect the degree probability since each edge

is added or removed independently. We provide formal

proof and discuss the forward node degree distribution in

Appendix A.2.

Since s
t
i = �[dt−1

i ̸= d
t
i], we can compute the probabil-

ity q(sti = 1|dt
i,d

0
i), which is 1 − q(dt−1

i = d
t
i|d

t
i,d

0
i).

Finally, we obtain the closed-form posterior:

q(st|dt,d0) =

NY

i=1

q(sti|d
t
i,d

0
i), where (9)

q(sti|d
t
i,d

0
i) = B

�

s
t
i; 1− (1− γt)

∆
0

i

�

.

The KL divergence Lnode(t) turns out to be comparisons

between Bernoulli distributions.

3.4. Degree-guided graph generation

A graph’s node degrees are often strongly correlated to its

other statistics, so it is important for a generative model

to capture the node degrees of training graphs. Here we

directly incorporate degree information in the proposed gen-

erative model.

We explicitly model node degrees d
0 of a graph A

0 as a

random variable, then the forward process becomes

q(A1:T |A0) = q(A1:T |A0)q(d0|A0). (10)

Here q(d0|A0) = 1 because d
0 is determined by A

0. We

also include d
0 into the generative model p(A0,d0). If

the model guarantees that d0 is the node degrees of A0,

then pθ(A
0) = pθ(A

0,d0) still models graph data A
0.

Even if pθ(A
0,d0) allows d0 to differ a little from the true

node degrees, it is still valid to maximize the likelihood

pθ(A
0,d0 = A

0
1) because model training will encourage

the model to generate A
0 and d

0 to match each other. We

decompose the model by:

pθ(A
0,d0) = pθ(d

0)pθ(A
0|d0). (11)

4

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

With this decomposition, we first sample arbitrary node

degrees d0 from pθ(d
0), then generate a graph with the de-

gree constraint (See Alg. 1). Correspondingly, the denoising

model becomes

pθ(A
0:T , s1:T ,d0) = pθ(d

0)pθ(A
0:T , s1:T |d0). (12)

We separate the optimizations for the node degree model

pθ(d
0) and the graph denoising model pθ(A

0:T , s1:T |d0).
The entire training objective is

L(A0,d0;θ)=Eq

�

log pθ(d
0)

| {z }

L(d0;θ)

+ log
pθ(A

0:T, s1:T |d0)

q(A1:T, s1:T |A0)
| {z }

L(A0|d0;θ)

�

.

(See Appendix B.2 for detailed derivation.) For L(d0; θ),
we treat the learning of node degree distribution as a se-

quence modeling task. The decomposition of L(A0|d0; θ)
remains the same as Eqn. (7), except that all terms re-

lated to the graph denoising model are now condition-

ing on d
0. In particular, for the node selection distribu-

tion, we consider a special parameterization by setting

pθ(s
t|At,d0) := q(st|dt,d0) in Eqn. (9). Note that now

the node selection distribution contains no learnable param-

eters. Moreover, since the KL divergence Lnode(t) is now

zero, we can further simplify the L(A0|d0; θ) into

L(A0|d0;θ)=Eq

�

log
p(AT)

q(AT |A0)
+log pθ(A

0|A1, s1,d0)

+

TX

t=2

log
pθ(A

t−1|At, st,d0)

q(At−1|At, st,A0)

�

. (13)

In our framework, the node degree constraint d0 is mainly

imposed on pθ(s
t|At,d0) – only nodes with a degree below

the specified degree d
0 may be selected to participate in

the edge prediction. On the other hand, though the exact

probability pθ(A
t−1|At, st,d0) includes information about

the maximum number of edges (d0 − d
t) that can be added

to nodes, this can be not easy to track during the edge

formation. Here we consider simply augmenting the inputs

to the neural network with d
0. In practice, we found that the

specified node degrees d0 can accurately control the actual

node degrees of the generated graphs.

Degree-guided generation turns out to be very useful in

modeling large graphs. We reason that the d
0 significantly

reduces the possible trajectories a graph can evolve along,

thus reducing the modeling complexity.

3.5. Implementation

We briefly describe the implementation of pθ(s
t|At),

pθ(A
t−1|At, st), and pθ(d

0). Note we use the

same network architecture for pθ(A
t−1|At, st) and

pθ(A
t−1|At, st,d0), except the inputs to the latter includes

Algorithm 1 Degree-guided graph generation

Input: Empty graph A
T , graph model pθ(A

t−1|At, st),
degree sequence model pθ(d

0), and diffusion steps T .

Output: Generated graph A
0

Draw d
0 ∼ pθ(d

0)
for t = T, . . . , 1 do

Draw s
t ∼ q(st|deg(At),d0).

Draw A
t−1 ∼ pθ(A

t−1|At, st).
end for

d
0. We treat pθ(s

t|At) as a node classification problem

and pθ(A
t−1|At, st) as an link prediction problem. Both

components share the same MPNN that takes A
t as the

input and computes node representations Zt ∈ R
N×dh for

all nodes. The hidden dimension dh is a hyper-parameter

here. Then a network head uses Z
t to predict st, and an-

other one uses Zt[st] to predict links between active nodes

indicated by s
t. For the node degree model pθ(d

0), if there

are multiple graphs in the dataset, we use a recurrent neu-

ral network (RNN) to fit the histogram of node degrees.

If there is only one graph with node degrees d
0, then we

set pθ(d
0) = 1 directly. Implementation details are in Ap-

pendix C.

3.6. Model analysis

Complexity analysis. Let integer M represent the num-

ber of edges in a graph, and K be the maximum number of

active nodes during the reverse process. In each generation

step t, the MPNN needs O(M) operations to compute node

representations, O(N) operations to predict st, and O(K2)
operations to predict links between K active nodes. The

factor K is relevant to noise scheduling: we find that K is

smaller than N by at least one order of magnitude when

the noise scheduling is linear. In a total of T generation

steps, the overall running time O
�

T max(K2,M)
�

. As a

comparison, previous diffusion-based models need running

time O(TN2) because they need to make O(N2) link pre-

dictions at each time step.

Expressivity analysis. EDGE modifies a graph for mul-

tiple iterations to generate a sample. In each iteration, it

adds new edges to the graph based on the graph structure

in the prior iteration. Therefore, EDGE is NOT an edge-

independent model and does not have the limitation ana-

lyzed by Chanpuriya et al. (2021), thus it has a theoretical

advantage over previous one-shot generative models.

The ability of EDGE might be affected by the underly-

ing MPNN, which may not be able to distinguish different

graph structures due to expressivity issues (Xu et al., 2018).

However, this issue can be overcome by choosing more ex-

pressive GNNs (Sato, 2020). We defer such discussion to

future work.

5

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

4. Related Work

Edge-independent models, which assume edges are formed

independently with some probabilities, are prevalent in prob-

abilistic models for large networks. These models include

classical models such as ER graph models (Erdos et al.,

1960), SBMs (Holland et al., 1983), and recent neural mod-

els such as variational graph auto-encoders (Kipf & Welling,

2016b; Mehta et al., 2019; Li et al., 2020; Chen et al., 2022a),

NetGAN and its variant (Bojchevski et al., 2018; Rendsburg

et al., 2020). Recent works show that these models can not

reproduce desiring statistics of the target network, such as

triangle counts, clustering coefficient, and square counts (Se-

shadhri et al., 2020; Chanpuriya et al., 2021).

Deep auto-regressive (AR) graph models (Li et al., 2018;

You et al., 2018; Liao et al., 2019; Zang & Wang, 2020; Han

et al., 2023) generate graph edges by sequentially filling up

an adjacency matrix to generate a graph. These algorithms

are slow because they need to make N2 predictions. Dai

et al. (2020) proposes a method to leverage graph sparsity

and predict only non-zero entries in the adjacency matrix.

Long-term memory is a typical issue of these sequential

models, so it is hard for them to model global graph proper-

ties. Moreover, these models are not invariant with respect

to node orders of training graphs, and special techniques

(Chen et al., 2021; Han et al., 2023) are often needed to train

these models.

Diffusion-based generative models are shown to be powerful

in generating high-quality graphs (Niu et al., 2020; Liu et al.,

2019; Jo et al., 2022; Haefeli et al., 2022; Chen et al., 2022b;

Vignac et al., 2022; Kong et al.). By “tailoring” a graph with

multiple steps, these models can model edge correlations.

They overcome the limitations of auto-regressive modes as

well. However, all previous diffusion-based models focus

on generation tasks with small graphs. This work aims to

scale diffusion-based models to large graphs.

5. Experiments

We empirically evaluate our proposed approach from two

perspectives: whether it can capture statistics of training

graphs and whether it can generate graphs efficiently.

5.1. Experimental setup

Datasets. We conduct experiments on both generic graph

datasets and large networks. The generic graph datasets

consist of multiple graphs of varying sizes. Here we con-

sider Community and Ego datasets (You et al., 2018), all of

which contain graphs with hundreds of nodes. We also con-

sider four real-world networks, Polblogs (Adamic & Glance,

2005), Cora (Sen et al., 2008), Road-Minnesota (Rossi &

Ahmed, 2015), and PPI (Stark et al., 2010). Each of these

networks contains thousands of nodes. We also use the

#nodes #edges #graphs feature

Community [60, 160] [231, 1,965] 510
Ego [50, 399] [57, 1,071] 757
QM9 [1,9] [0, 28] 133,885 ✓

Polblogs 1,222 16,714 1
Cora 2,485 5,069 1
Road-MN 2,640 6,604 1
PPI 3,852 37,841 1

Table 1. Dataset statistics

QM9 dataset (Ramakrishnan et al., 2014) to demonstrate

that EDGE can be easily extended to generate graphs with

attributes. The statistics of the datasets are shown in Table 1.

Baselines. For generic graphs, We compare EDGE to six

recent deep generative graph models, which include two

auto-regressive graph models, GraphRNN (You et al., 2018)

and GRAN (Liao et al., 2019), three diffusion-based mod-

els, GDSS (Jo et al., 2022), DiscDDPM (Haefeli et al.,

2022) and DiGress (Vignac et al., 2022), and one flow-

based model, GraphCNF (Lippe & Gavves, 2020). For large

networks, we follow Chanpuriya et al. (2021) and use six

edge-independent models, which include VGAE (Kipf &

Welling, 2016b), CELL (Rendsburg et al., 2020), TSVD (Se-

shadhri et al., 2020), and three methods proposed by Chan-

puriya et al. (2021) (CCOP, HDOP, Linear). We also include

GraphRNN as a baseline because it is still affordable to train

it on large networks. For the QM9 dataset, We compare

EDGE against GDSS (Jo et al., 2022) and DiGress (Vignac

et al., 2022). The implementation of our model is available

at github.com/tufts-ml/graph-generation-EDGE.

Evaluation. We examine the generated generic graphs

with both structure-based and neural-based metrics. For

structured-based metrics, we evaluate the Maximum Mean

Discrepancy (MMD) (Gretton et al., 2012) between test

graphs and generated graphs in terms of degrees, cluster-

ing coefficients, and orbit counts (You et al., 2018). For

neural-based metrics, we evaluate the FID and the MMD

RBF metrics proposed by Thompson et al. (2022). All im-

plementations of the evaluation are provided by Thompson

et al. (2022). For all these metrics, the smaller, the better.

For each large network, we follow Chanpuriya et al. (2021)

and evaluate how well the graph statistics of the generated

network can match ground truths, which are statistics com-

puted from training data. We consider the following statis-

tics: power-law exponent of the degree sequence (PLE);

normalized triangle counts (NTC); global clustering coef-

ficient (CC) (Chanpuriya et al., 2021); characteristic path

length (CPL); and assortativity coefficient (AC) (Newman,

2002). We also report the edge overlap ratio (EO) between

the generated network and the original one to check to which

degree a model memorizes the graph. A graph generated by

a good model should have statistics similar to true values

6

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Community Ego
Structure-based (MMD) Neural-based Structure-based (MMD) Neural-based
Deg. Clus. Orb. FID RBF MMD Deg. Clus. Orb. FID RBF MMD

GRNN 0.1440 0.0535 0.0198 8.3869 0.1591 0.0768 1.1456 0.1087 90.5655 0.6827
GRAN 0.1022 0.0894 0.0198 64.1145 0.0749 0.5778 0.3360 0.0406 489.9598 0.2633

GraphCNF 0.1129 1.2882 0.0197 29.1526 0.1341 0.1010 0.7654 0.0820 18.7929 0.0896
GDSS 0.0535 0.2072 0.0196 6.5531 0.0443 0.8189 0.6032 0.3315 60.6100 0.4331
DiscDDPM 0.1238 0.6549 0.0246 8.6321 0.0840 0.4613 0.1681 0.0633 42.7994 0.1561
DiGress 0.0409 0.0167 0.0298 3.4261 0.0460 0.0708 0.0092 0.1205 18.6794 0.0489

EDGE 0.0175 0.0689 0.0198 2.2378 0.0227 0.0579 0.1773 0.0519 15.7614 0.0658

Table 2. Generation performance on generic graphs. We used unpaired t-tests to compare the results; the numbers in bold indicate the

method is better at the 5% significance level, and the second-best method is underlined. We provide standard deviation in Appendix F.

computed from the training graph. At the same time, it

should have a small EO with the training network, which

means that the model should not simply memorize the input

data.

For the QM9 dataset, we evaluate the Validity, Uniqueness,

Fréchet ChemNet Distance (Preuer et al., 2018) and Scaf-

fold similarity (Bemis & Murcko, 1996) on the samples

generated from baselines and our proposed method. We use

molsets library (Polykovskiy et al., 2020) to implement the

evaluation.

5.2. Evaluation of sample quality

Generic graph generation. Table 2 summarizes the eval-

uation of generated graphs on the Community and Ego

datasets. Best performances are in bold, and second-best

performances are underscored. EDGE outperforms all base-

lines on 8 out of 10 metrics. For the other two metrics,

EDGE only performs slightly worse than the best. We hy-

pothesize that EDGE gains advantages by modeling node

degrees because they are informative to the graph structure.

Large network generation. Unlike edge-independent

models, the edge overlap ratios in the GraphRNN and our

approach are not tunable. To make a fair comparison, we

report the performance of the edge-independent models that

have a similar or higher EO than GraphRNN and EDGE.

Table 3 shows the statistics of the network itself (labeled

as “True”) and statistics computed from generated graphs.

The statistics nearest to true values are considered as best

performances, which are in bold. Second-best performances

are underscored.

The proposed approach shows superior performances on

all four networks. The improvements on Polblogs and PPI

networks are clear. On the Road-Minnesota dataset, EDGE

has a much smaller EO than edge-independent models, but

its performances in terms of capturing graph statistics are

similar to those models. On the Cora dataset, EDGE also

has an EO much smaller than edge-independent models, but

��
�

��
�

�������������������������������������

��
�

��
�

��
�

��
�

�
��

�
��
�
�
��
��

��
��

����

����

��������

����

��������

�������

����

Figure 3. Sampling speed comparison over different models.

it slightly improves over these models. Road-Minnesota

and Cora networks are both sparse networks – the message-

passing neural model may not work at its full strength. We

notice that GraphRNN can not even compete with edge-

independent models. We also visualize the generated graphs

of Polblogs in Figure 4.

5.3. Efficiency

We compare the sampling efficiency of EDGE against other

deep generative graph models. We record the average time

for a model to sample one graph to make a consistent com-

parison over all datasets. The average sampling time for

each dataset is averaged over 128 runs. Figure 3 shows the

relationship between sampling time and graph sizes. Except

for GraphRNN, all baseline neural models can only generate

graphs for Community and Ego datasets, which contain 110

and 144 nodes on average. Our approach runs only slower

than GraphCNF on the Community dataset by 0.5s. On

large graphs, our model has a clear advantage in terms of

running time. Note that our model spends less time on an

Ego graph than a Community graph, though an Ego graph,

on average, contains more nodes than a Community graph.

This is because the computation of our model scales with

the number of edges, and Ego graphs are often sparser than

Community graphs.

7

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Polblogs Cora
EO PLE NTC CC CPL AC EO PLE NTC CC CPL AC

True 100 1.414 1 0.226 2.738 -0.221 100 1.885 1 0.090 6.311 -0.071

OPB 24.5 1.395 0.667 0.150 2.524 -0.143 10.9 1.852 0.097 0.008 4.476 -0.037
HDOP 16.4 1.393 0.687 0.153 2.522 -0.131 0.9 1.849 0.113 0.009 4.770 -0.030
CELL 26.8 1.385 0.810 0.211 2.534 -0.230 10.3 1.774 0.009 0.002 5.799 -0.018
CO 20.1 1.975 0.045 0.028 2.502 0.068 9.7 1.776 0.009 0.002 5.653 0.010
TSVD 32.0 1.373 0.872 0.205 2.532 -0.216 6.7 1.858 0.349 0.028 4.908 -0.006
VGAE 3.6 1.723 0.05 0.001 2.531 -0.086 1.5 1.717 0.120 0.220 4.934 0.002

GRNN 9.6 1.333 0.354 0.095 2.566 0.096 0.4 1.822 0.043 0.011 6.146 0.043

EDGE 16.5 1.398 0.977 0.217 2.647 -0.214 1.1 1.755 0.446 0.034 4.995 -0.046

Road-Minnesota PPI
EO PLE NTC CC CPL AC EO PLE NTC CC CPL AC

True 100 2.147 1 0.028 35.349 -0.187 100 1.462 1 0.092 3.095 -0.099

OPB 29.7 2.188 0.083 0.002 8.036 0.009 16.3 1.443 0.640 0.058 2.914 -0.089
HDOP 13.2 2.192 0.208 0.004 8.274 -0.024 6.9 1.444 0.638 0.058 2.917 -0.086
CELL 30.7 2.267 0.053 0.001 10.219 -0.082 6.7 1.400 0.248 0.040 3.108 0.176
CO 19.8 2.044 2.845 0.040 11.478 -0.012 9.9 1.754 0.015 0.006 3.046 0.043
TSVD 19.4 2.172 0.060 0.001 8.431 0.006 13.2 1.426 0.848 0.077 2.867 -0.089
VGAE 1.3 1.678 0.096 0.009 11.120 -0.027 0.5 1.362 0.091 0.012 2.991 0.054

GRNN 0.6 1.570 0.099 0.007 11.695 0.006 OOM OOM OOM OOM OOM OOM

EDGE 0.8 1.910 0.962 0.011 9.125 -0.063 7.5 1.449 0.981 0.091 3.028 -0.107

Table 3. Graph statistics of generated large networks. EDGE generates graphs with statistics that are much closer to the ground truths.

Validity↑ Uniqueness↑ FCD↓ Scaf. Sim.↑

GDSS 95.7 98.5 2.9 -
DiGress 99.0 100 0.151 0.908
EDGE 99.1 100 0.458 0.763

Table 4. Generative performance on the QM9 dataset

5.4. Generative performance on QM9 dataset

We further investigate EDGE’s ability of generated graphs

with node and edge attributes. To include node attributes,

we first extend the basic EDGE model with a hierarchical

generation process that can also sample node attributes. We

put the details of this extension in Appendix E. We evaluate

the extended EDGE model on the QM9 dataset and compare

it with other neural baselines. The results in Table 4 show

that the extended EDGE model has a performance compa-

rable with that of DiGress. Note that DiGress is specially

designed for molecule generation, and our model runs much

faster than DiGress.

5.5. Ablation studies

Diffusion variants. The random variables s
1:T and d

0

play important roles in EDGE’s good performances, and

we verify that through an ablation study on the Polblogs

dataset. We use four diffusion configurations: 1) setting

G(N, 0.5) as the convergent distribution and directly using

s
1:T

d
0 PLE NTC CC CPL AC Speed

True 1.414 1 0.226 2.738 -0.221

G(N,0.5) OOM OOM OOM OOM OOM OOM
G(N,0) 1.341 3.234 0.237 2.747 -0.304 15.3s
G(N,0) ✓ 1.383 2.364 0.251 2.638 -0.331 2.1s
G(N,0) ✓ ✓ 1.398 0.977 0.217 2.647 -0.214 1.7s

Table 5. Performance of EDGE’s variants on the Polblogs dataset.

an MPNN as the denoising model pθ(A
t−1|At); 2) setting

G(N, 0) as the convergent distribution and directly using

an MPNN as the denoising model (without modeling active

nodes and degree guidance); 3) the EDGE model without

degree guidance, and 4) the EDGE model. Table 5 shows

the performances of the four models. If we set the conver-

gent distribution to G(N, 0.5), we can not even train such as

model since it requires an excessively large amount of GPU

memory. This justifies our use of G(N, 0) as the convergent

distribution. The introduction of s1:T (Section 3.2) signif-

icantly improves the sampling speed. Finally, the EDGE

approach, which explicitly models node degrees d
0 and

generates graphs with degree guidance, further improves the

generative performance.

Diffusion steps vs. model performance. In EDGE, the

number of diffusion steps T decides how many nodes would

actively participate in the edge prediction. Here we inves-

tigate how it affects the model performance under linear

8

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Training graph

OPB HDOP CELL CO

TSVD VGAE GRNN EDGE (ours)

Figure 4. Visualization of samples for the Polblogs dataset. We observe that only CELL, TSVD, and EDGE can learn the basic structure

of the ground-truth network, while other baselines fail. The network sampled from EDGE appears to be more similar to the training graph.

noise scheduling.

EO PLE NTC CC CPL AC

P
lo

b
lo

g
s

True 100 1.414 1 0.226 2.738 -0.221
64 1.8 1.380 1.148 0.235 2.800 -0.202
128∗ 14.9 1.386 1.030 0.238 2.747 -0.238
256∗ 16.5 1.398 0.977 0.217 2.647 -0.214
512∗ 15.0 1.398 0.923 0.218 2.635 -0.268
1024∗ 16.5 1.400 0.991 0.219 2.665 -0.246

C
o

ra

True 100 1.885 1 0.090 6.311 -0.071
64∗ 0.9 1.755 0.446 0.034 4.995 -0.046
128 1.1 1.747 0.555 0.042 5.017 -0.050
256 0.8 1.753 0.360 0.027 4.818 -0.041
512 0.8 1.753 0.360 0.027 4.818 -0.042
1024 0.9 1.762 0.348 0.027 4.778 -0.034

R
o

ad
-M

N

True 100 2.147 1 0.028 35.349 -0.187
64∗ 0.8 1.910 0.962 0.011 9.125 -0.063
128 1.2 1.803 1.232 0.041 6.501 -0.030
256 0.8 1.953 1.057 0.014 7.471 -0.005
512 1.3 1.965 1.472 0.020 7.710 -0.006
1024 1.2 1.983 2.491 0.035 7.906 -0.034

P
P

I

True 100 1.462 1 0.092 3.095 -0.099
64 7.4 1.421 2.455 -0.116 3.498 -0.116
128 6.2 1.419 1.503 0.126 3.384 -0.147
256∗ 7.5 1.449 0.981 0.091 3.028 -0.107
512∗ 7.0 1.438 1.101 0.099 3.244 -0.107
1024∗ 7.1 1.441 0.925 0.074 3.150 -0.101

Table 6. Large diffusion steps T does not necessarily improve

model performance. Good diffusion steps are labeled with “*”.

Specifically, we train our model on three large networks

with T ∈ {64, 128, 256, 512, 1024} and report the model

performance in Table 6. Unlike traditional diffusion models

in which more diffusion steps usually yield better perfor-

mance, a large T for our model does not always improve

the performance. For instance, T = 64 gives the best per-

formance in the Cora and Road-Minnesota datasets. Our

explanation for this observation is the high level of sparsity

in training graphs. If we have a large T , the total number

of generation steps, the model can only identify a few ac-

tive nodes and predict edges between them in each time

step. The model faces a highly imbalanced classification

problem, which may lead to poor model convergence. Such

an issue is not observed for relatively denser graphs, e.g.

Polblogs and PPI datasets, which require a relatively large

T to guarantee good model performances. When T is large

enough (T = 128 for Polbogs and T = 256 for PPI), further

increasing T does not improve the model performance.

6. Conclusion

In this work, we propose EDGE, a generative graph model

based on a discrete diffusion process. By leveraging the

sparsity in the diffusion process, EDGE significantly im-

proves the computation efficiency and scales to graphs with

thousands of nodes. By explicitly modeling node degrees,

EDGE improves its ability in capturing important statistics

of training graphs. Our extensive empirical study shows

that EDGE has superior performance in benchmark graph

generation in terms of both computational efficiency and

generation quality.

Acknowledgment

We thank anonymous reviewers for their valuable feedback.

Xiaohui Chen and Li-Ping Liu are partially supported by the

National Science Foundation under Grant No. 2239869.

9

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

References

Adamic, L. A. and Glance, N. The political blogosphere and

the 2004 us election: divided they blog. In Proceedings

of the 3rd international workshop on Link discovery, pp.

36–43, 2005.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den

Berg, R. Structured denoising diffusion models in discrete

state-spaces. Advances in Neural Information Processing

Systems, 34:17981–17993, 2021.

Bemis, G. W. and Murcko, M. A. The properties of known

drugs. 1. molecular frameworks. Journal of medicinal

chemistry, 39(15):2887–2893, 1996.

Bojchevski, A., Shchur, O., Zügner, D., and Günnemann,

S. Netgan: Generating graphs via random walks. In

International conference on machine learning, pp. 610–

619. PMLR, 2018.

Chakrabarti, D. and Faloutsos, C. Graph mining: Laws,

generators, and algorithms. ACM computing surveys

(CSUR), 38(1):2–es, 2006.

Chanpuriya, S., Musco, C., Sotiropoulos, K., and

Tsourakakis, C. On the power of edge independent graph

models. Advances in Neural Information Processing Sys-

tems, 34:24418–24429, 2021.

Chen, X., Han, X., Hu, J., Ruiz, F. J., and Liu, L. Order mat-

ters: Probabilistic modeling of node sequence for graph

generation. arXiv preprint arXiv:2106.06189, 2021.

Chen, X., Chen, X., and Liu, L. Interpretable node

representation with attribute decoding. arXiv preprint

arXiv:2212.01682, 2022a.

Chen, X., Li, Y., Zhang, A., and Liu, L.-p. Nvdiff: Graph

generation through the diffusion of node vectors. arXiv

preprint arXiv:2211.10794, 2022b.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y.

On the properties of neural machine translation: Encoder-

decoder approaches. arXiv preprint arXiv:1409.1259,

2014.

Dai, H., Nazi, A., Li, Y., Dai, B., and Schuurmans, D.

Scalable deep generative modeling for sparse graphs. In

International conference on machine learning, pp. 2302–

2312. PMLR, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:

Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv preprint arXiv:1810.04805,

2018.

Dhariwal, P. and Nichol, A. Diffusion models beat gans

on image synthesis. Advances in Neural Information

Processing Systems, 34:8780–8794, 2021.

Du, Y., Wang, S., Guo, X., Cao, H., Hu, S., Jiang, J., Var-

ala, A., Angirekula, A., and Zhao, L. Graphgt: Machine

learning datasets for graph generation and transformation.

In Thirty-fifth Conference on Neural Information Process-

ing Systems Datasets and Benchmarks Track (Round 2),

2021.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted

linear units for neural network function approximation

in reinforcement learning. Neural Networks, 107:3–11,

2018.

Erdos, P., Rényi, A., et al. On the evolution of random

graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60,

1960.

Fey, M. and Lenssen, J. E. Fast graph representation learning

with pytorch geometric. arXiv preprint arXiv:1903.02428,

2019.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,

and Smola, A. A kernel two-sample test. The Journal of

Machine Learning Research, 13(1):723–773, 2012.

Haefeli, K. K., Martinkus, K., Perraudin, N., and Wat-

tenhofer, R. Diffusion models for graphs benefit from

discrete state spaces. arXiv preprint arXiv:2210.01549,

2022.

Han, X., Chen, X., Ruiz, F. J., and Liu, L.-P. Fitting au-

toregressive graph generative models through maximum

likelihood estimation. Journal of Machine Learning Re-

search, 24(97):1–30, 2023.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-

bilistic models. Advances in Neural Information Process-

ing Systems, 33:6840–6851, 2020.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic

blockmodels: First steps. Social networks, 5(2):109–137,

1983.

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling,

M. Argmax flows and multinomial diffusion: Learning

categorical distributions. Advances in Neural Information

Processing Systems, 34:12454–12465, 2021.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative mod-

eling of graphs via the system of stochastic differential

equations. arXiv preprint arXiv:2202.02514, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-

tion with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016a.

10

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Kipf, T. N. and Welling, M. Variational graph auto-encoders.

arXiv preprint arXiv:1611.07308, 2016b.

Kong, L., Cui, J., Sun, H., Zhuang, Y., Prakash, B. A.,

and Zhang, C. Autoregressive diffusion model for graph

generation.

Li, J., Yu, J., Li, J., Zhang, H., Zhao, K., Rong, Y., Cheng,

H., and Huang, J. Dirichlet graph variational autoencoder.

Advances in Neural Information Processing Systems, 33:

5274–5283, 2020.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,

P. Learning deep generative models of graphs. arXiv

preprint arXiv:1803.03324, 2018.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duve-

naud, D. K., Urtasun, R., and Zemel, R. Efficient graph

generation with graph recurrent attention networks. In

Advances in Neural Information Processing Systems, pp.

4255–4265, 2019.

Lippe, P. and Gavves, E. Categorical normalizing

flows via continuous transformations. arXiv preprint

arXiv:2006.09790, 2020.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph

normalizing flows. Advances in Neural Information Pro-

cessing Systems, 32, 2019.

Lusher, D., Koskinen, J., and Robins, G. Exponential ran-

dom graph models for social networks: Theory, methods,

and applications. Cambridge University Press, 2013.

Madhawa, K., Ishiguro, K., Nakago, K., and Abe, M. Graph-

nvp: An invertible flow model for generating molecular

graphs. arXiv preprint arXiv:1905.11600, 2019.

Mehta, N., Duke, L. C., and Rai, P. Stochastic blockmodels

meet graph neural networks. In International Conference

on Machine Learning, pp. 4466–4474. PMLR, 2019.

Newman, M. E. Assortative mixing in networks. Physical

review letters, 89(20):208701, 2002.

Newman, M. E., Watts, D. J., and Strogatz, S. H. Random

graph models of social networks. Proceedings of the

national academy of sciences, 99(suppl 1):2566–2572,

2002.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,

S. Permutation invariant graph generation via score-based

generative modeling. In International Conference on Ar-

tificial Intelligence and Statistics, pp. 4474–4484. PMLR,

2020.

O’Bray, L., Horn, M., Rieck, B., and Borgwardt, K.

Evaluation metrics for graph generative models: Prob-

lems, pitfalls, and practical solutions. arXiv preprint

arXiv:2106.01098, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., et al. Pytorch: An imperative style, high-performance

deep learning library. Advances in neural information

processing systems, 32, 2019.

Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golo-

vanov, S., Tatanov, O., Belyaev, S., Kurbanov, R., Arta-

monov, A., Aladinskiy, V., Veselov, M., et al. Molecular

sets (moses): a benchmarking platform for molecular gen-

eration models. Frontiers in pharmacology, 11:565644,

2020.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and

Klambauer, G. Fréchet chemnet distance: a metric for

generative models for molecules in drug discovery. Jour-

nal of chemical information and modeling, 58(9):1736–

1741, 2018.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld,

O. A. Quantum chemistry structures and properties of

134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Rendsburg, L., Heidrich, H., and Von Luxburg, U. Netgan

without gan: From random walks to low-rank approxima-

tions. In International Conference on Machine Learning,

pp. 8073–8082. PMLR, 2020.

Rossi, R. and Ahmed, N. The network data repository with

interactive graph analytics and visualization. In Proceed-

ings of the AAAI conference on artificial intelligence,

volume 29, 2015.

Sato, R. A survey on the expressive power of graph neural

networks. arXiv preprint arXiv:2003.04078, 2020.

Schuster, M. and Paliwal, K. K. Bidirectional recurrent

neural networks. IEEE transactions on Signal Processing,

45(11):2673–2681, 1997.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,

and Eliassi-Rad, T. Collective classification in network

data. AI magazine, 29(3):93–93, 2008.

Seshadhri, C., Sharma, A., Stolman, A., and Goel, A. The

impossibility of low-rank representations for triangle-rich

complex networks. Proceedings of the National Academy

of Sciences, 117(11):5631–5637, 2020.

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and Sun,

Y. Masked label prediction: Unified message passing

model for semi-supervised classification. arXiv preprint

arXiv:2009.03509, 2020.

Simonovsky, M. and Komodakis, N. Graphvae: Towards

generation of small graphs using variational autoencoders.

In International Conference on Artificial Neural Net-

works, pp. 412–422. Springer, 2018.

11

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and

Ganguli, S. Deep unsupervised learning using nonequi-

librium thermodynamics. In International Conference on

Machine Learning, pp. 2256–2265. PMLR, 2015.

Stark, C., Breitkreutz, B.-J., Chatr-Aryamontri, A., Boucher,

L., Oughtred, R., Livstone, M. S., Nixon, J., Van Auken,

K., Wang, X., Shi, X., et al. The biogrid interaction

database: 2011 update. Nucleic acids research, 39

(suppl 1):D698–D704, 2010.

Thompson, R., Knyazev, B., Ghalebi, E., Kim, J., and Taylor,

G. W. On evaluation metrics for graph generative models.

arXiv preprint arXiv:2201.09871, 2022.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,

V., and Frossard, P. Digress: Discrete denoising diffusion

for graph generation. arXiv preprint arXiv:2209.14734,

2022.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful

are graph neural networks? In International Conference

on Learning Representations, 2018.

Ying, X. and Wu, X. Graph generation with prescribed

feature constraints. In Proceedings of the 2009 SIAM

International Conference on Data Mining, pp. 966–977.

SIAM, 2009.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec,

J. GraphRNN: Generating realistic graphs with deep

auto-regressive models. arXiv preprint arXiv:1802.08773,

2018.

Zang, C. and Wang, F. Moflow: an invertible flow model for

generating molecular graphs. In Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 617–626, 2020.

12

