2023 IEEE/ACM Symposium on Edge Computing (SEC)

Energy Time Fairness: Balancing Fair Allocation of Energy and
Time for GPU Workloads

Qianlin Liang
University of Massachusetts Amherst
Ambherst, MA, USA
qliang@cs.umass.edu

David Irwin

University of Massachusetts Amherst

Ambherst, MA, USA
irwin@ecs.umass.edu

ABSTRACT

Traditionally, multi-tenant cloud and edge platforms use fair-share
schedulers to fairly multiplex resources across applications. These
schedulers ensure applications receive processing time proportional
to a configurable share of the total time. Unfortunately, enforcing
time-fairness across applications often violates energy-fairness,
such that some applications consume more than their fair share of
energy. This occurs because applications either do not fully utilize
their resources or operate at a reduced frequency/voltage during
their time-slice. The problem is particularly acute for machine
learning (ML) applications using GPUs, where model size largely
dictates utilization and energy usage. Enforcing energy-fairness is
also important since energy is a costly and limited resource. For
example, in cloud platforms, energy dominates operating costs
and is limited by the power delivery infrastructure, while in edge
platforms, energy is often scarce and limited by energy harvesting
and battery constraints.

To address the problem, we define the notion of Energy-Time
Fairness (ETF), which enables a configurable tradeoff between en-
ergy and time fairness, and then design a scheduler that enforces it.
We show that ETF satisfies many well-accepted fairness properties.
ETF and the new tradeoff it offers are important, as some applica-
tions, especially ML models, are time/latency-sensitive and others
are energy-sensitive. Thus, while enforcing pure energy-fairness
starves time/latency-sensitive applications (of time) and enforcing
pure time-fairness starves energy-sensitive applications (of energy),
ETF is able to mind the gap between the two. We implement an
ETF scheduler, and show that it improves fairness by up to 2, in-
centivizes energy efficiency, and exposes a configurable knob to
operate between energy- and time-fairness.

CCS CONCEPTS

+» General and reference — Cross-computing tools and tech-
niques.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEC 23, December 6-9, 2023, Wilmington, DE, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0123-8/23/12...$15.00
https://doi.org/10.1145/3583740.3628435

Walid A. Hanafy
University of Massachusetts Amherst
Ambherst, MA, USA
whanafy@cs.umass.edu

Noman Bashir
University of Massachusetts Amherst
Ambherst, MA, USA
nbashir@umass.edu

Prashant Shenoy
University of Massachusetts Amherst
Ambherst, MA, USA
shenoy@cs.umass.edu

KEYWORDS

FairShare, Energy-aware, Energy-efficiency, Scheduling, Resource
Management

ACM Reference Format:

Qianlin Liang, Walid A. Hanafy, Noman Bashir, David Irwin, and Prashant
Shenoy. 2023. Energy Time Fairness: Balancing Fair Allocation of Energy
and Time for GPU Workloads. In The Eighth ACM/IEEE Symposium on Edge
Computing (SEC °23), December 6-9, 2023, Wilmington, DE, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3583740.3628435

1 INTRODUCTION

The growth of cloud and edge platforms over the past decade has
dramatically lowered the cost of large-scale computing and storage,
which has enabled a wide range of cloud- and edge-based appli-
cations, including web applications, batch processing, machine
learning, and mobile augmented reality. A key to lowering cost
has been amortizing it across many diverse users and applications
by highly multiplexing resources, which increases both resource
utilization and efficiency. Such resource sharing is especially impor-
tant for lowering the cost of scarce, and thus high-cost, resources,
such as GPUs which remain in high demand due to rapidly-growing
AT workloads. Consider an edge platform use case as an example,
small autonomous vehicles (e.g., food or package delivery robots)
may be equipped with an array of sensors, such as cameras, LIDAR,
and infrared and perform various tasks including obstacle detec-
tion, traffic monitoring, and face detection for pedestrians. Such
tasks share the onboard computing and energy systems. However,
multiplexing resources introduces a new set of challenges. Opera-
tors are required to balance shared resources across diverse tenant
applications. Such challenges are inherently present in numerous
edge scenarios, especially when constrained by limited resources,
inclusive of computational capacity and energy.

Traditionally, multi-tenant cloud and edge platforms have used
fair-share schedulers to fairly multiplex server resources across mul-
tiple applications. Fair-share schedulers ensure all co-resident appli-
cations receive processing time that is proportional to a configurable
share of the total processing time, which prevents applications
from either starving or dominating the processing time. Fair-share
scheduling has been studied for more than three decades with nu-
merous proposed scheduling policies that vary in their underlying
assumptions, e.g., definitions of fairness and resource domain, in-
cluding Weighted Fair Queuing (WFQ) [12], max-min fairness [26],

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

Start-Time Fair Queueing (SFQ) [16], lottery scheduling [49], and
Dominant Resource Fairness (DRF) [15]. Fair-share schedulers are
also widely implemented in modern operating systems (OSes) (e.g.,
Linux [36]), hypervisors (e.g., Xen and VSphere [52]), batch sched-
ulers (e.g., Slurm [2]), container orchestration platforms (e.g., Kuber-
netes [6], and data-processing platforms (e.g., Spark and Hadoop [1]).

Importantly, the traditional fair-share schedulers above enforce
time-fairness across multi-tenant applications such that each ap-
plication receives processing time in proportion to their allocated
share. Unfortunately, enforcing time-fairness across applications
often violates energy-fairness, such that the share of energy each
application consumes is substantially different from their allocated
share of time. This divergence between time- and energy-fairness
occurs because applications may either not fully utilize their re-
sources or operate at a reduced frequency/voltage during their
allocated time-slice. Enforcing energy-fairness is crucial for both
cloud and edge, as energy is a costly and limited resource. In cloud
platforms, while energy substantially dominates operating costs, its
supply is inherently limited by the power delivery infrastructure.
This creates a need for fairness to ensure no single tenant dispro-
portionately consumes this costly resource, potentially leading to
inequities in service delivery. On the other hand, edge platforms
often grapple with energy scarcity. Here, energy is not just about
cost but about availability, often restricted by energy harvesting
techniques and battery capacities. Unfair allocation can lead to
premature battery depletion in some devices, rendering them non-
functional and breaking the continuity of services they provide. In
addition, energy-efficiency and sustainability are increasingly im-
portant in reducing computing’s environmental impact [3, 42, 44].
The problem is particularly acute for machine learning (ML) applica-
tions using GPUs, where model size largely dictates GPU utilization
and energy usage. Similarly, on edge platforms with energy con-
straints, applications often reduce frequency/voltage during their
time-slice to conserve energy.

Enforcing energy-fairness not only directly contributes to a re-
duced energy consumption and carbon footprint but also serves
as a strategic lever, motivating users to refine and enhance the
energy-efficiency of their applications (i.e., smaller models and
lower frequencies), which is important in both cloud and edge
settings. Unfortunately, there is a fundamental conflict between
time-fairness and energy-fairness, such that simultaneously enforc-
ing both is not always possible. To see why, consider a system with
dynamic voltage and frequency scaling (DVES), which is widely
used by CPUs and GPUs to minimize energy usage by reducing
frequency and voltage when demand is low. While OSes tradi-
tionally set a single frequency/voltage state for all applications,
modern GPUs enable each application to set their own custom fre-
quency/voltage for its time-slice. However, in this case, selecting
a lower frequency/voltage state to conserve energy results in an
application executing fewer computations during its allocated time-
slice, which effectively penalizes it for being more energy-efficient.
Since applications operating at lower frequency/voltages consume
much less energy than others, their share of energy consumption
will be much less than their share of processing time. This problem
also manifests itself on GPUs due to differences in model size and
complexity. Since most GPUs are only time-shared and not space-
shared, they load and run only a single model at any time. GPU

54

energy usage is largely dictated by a model’s size and complexity,
as this determines the internal GPU resources a model utilizes. In
general, smaller models will consume less energy than larger ones
during their time-slice.

Prior work has identified the problems above and developed
schedulers that enforce energy-fairness across multi-tenant applica-
tions instead of time-fairness [13]. Unfortunately, pure energy-fair
schedulers have the opposite problem to the one above: by enforcing
energy-fairness, they sacrifice time-fairness. That is, an energy-fair
scheduler allows applications running at a low frequency/voltage
setting (or executing small models) to receive disproportionately
large time-slices, which starves applications running at high fre-
quency/voltage (or executing large models). In general, some appli-
cations may be time/latency-sensitive, while others may be energy-
sensitive. As our examples above show, enforcing pure energy-
fairness starves time/latency-sensitive applications (of time) while
enforcing pure time-fairness starves energy-sensitive applications
(of energy). A key insight of our work is that there is a fundamental
dependency between an application’s time and energy allocation
such that enforcing fairness in one inherently results in unfairness
in the other. Since time-fairness and energy-fairness both provide
important properties, cloud and edge platforms should enforce a
balance between them.

To address the problem, we define a novel notion of Energy-
Time Fairness (ETF), which enables a configurable tradeoff between
energy and time fairness, and then design a scheduler that enforces
it. We show that ETF satisfies many well-accepted and desirable
fairness properties, including an energy-efficiency and sharing in-
centive, strategy-proofness, and pareto efficiency [15]. More gen-
erally, while prior work has shown how to enforce fairness when
allocating multiple independent resources (e.g., cores and mem-
ory) [15], ETF shows how to enforce fairness for multiple depen-
dent resources (e.g., processing time and energy). ETF recognizes
that it is impossible to simultaneously enforce both time-fairness
and energy-fairness across applications, and thus instead defines
a smooth and configurable tradeoff between these two competing
dimensions of fairness.

Our hypothesis is that using ETF can bridge the gap between
pure time and energy fairness and thus support both i) a config-
urable incentive for operating energy-efficiently and ii) running
time/latency-sensitive applications. In evaluating our hypothesis,
we make the following contributions.

Fairness Conflict. To motivate our work, we first experimentally
demonstrate the conflict between time-fairness and energy-fairness
by showing that i) enforcing time-fairness starves some applications
of energy and ii) enforcing energy-fairness starves some applica-
tions of time. To our knowledge, this paper is the first to highlight
the conflict between time and energy-fairness.

Energy-Time Fairness. We define the notion of Energy-Time Fair-
ness (ETF), which enables a configurable tradeoff between energy
and time fairness, and show that it satisfies many well-accepted
and desirable fairness properties, including Pareto efficiency and
strategy proofness, while also balancing competing dimensions of
fairness for dependent resources.

Implementation and Evaluation. We implement ETF in a new
scheduling framework, called ETFS, that is designed for edge and
cloud GPUs. We demonstrate that ETF improves the fairness by

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

up to 2X, incentivizes energy efficiency, and allows a configurable
tradeoff between energy-fair and time-fair scheduling for multi-
tenant GPU model serving workloads.

2 BACKGROUND

This section provides background on fair-share scheduling and
energy optimization approaches in cloud and edge settings.

2.1 Cloud and Edge Multitenancy

Our work targets typical cloud and edge platforms that serve mul-
tiple customers and their applications. Cloud and edge servers in
these environments host multiple applications from different cus-
tomers using virtual machines or containers. Doing so enables mul-
tiplexing server resources across multiple applications, increasing
a system’s utilization and providing isolation across applications.
Our work assumes a multi-tenant environment where multiple ap-
plications share a server’s CPU or GPU resources. We assume that
the OS or hypervisor scheduler uses a fair-share scheduling policy
as the underlying resource management technique to multiplex
server resources across multi-tenant applications.

2.2 Fair-share Scheduling Overview

Fair-share schedulers are a class of scheduling algorithms that en-
able each application to be allocated a share (or slice) of the under-
lying resource and enforce these shares when making scheduling
decisions. The share is often specified in terms of a weight W, or
a fraction of the resources, such that the resource is time-shared
among applications in proportion to the weight or fraction. For
example, if two applications are given weights 1:1, each application
receives 50% of the time slices on the underlying resource. Early
fair-share schedulers, such as Weighted Fair Queuing (WFQ) [12]
and Generalized Processor Sharing (GPS) [37], applied this idea to
network routers and server processors, respectively.

Modern variants, such as Dominant Resource Fairness (DRF) [15]
and Dominant Resource Fair Queuing (DRFQ) [14], generalized fair-
share scheduling to multi-resource settings based on the concept of
a dominant resource. Fair-share schedulers are typically based on
an underlying mathematical notion of fairness, such as MAX-MIN
fairness [26], that they strive to achieve through their scheduling
decisions. A detailed discussion of fair-share schedulers is presented
in Section 7.

2.3 Energy Optimization

A complementary consideration to fairly sharing resources is the
energy-efficient use of edge and cloud resources. The recent em-
phasis on the sustainability of cloud data centers has made energy-
efficiency techniques an increasingly important consideration. While
there exist many approaches for optimizing the energy consump-
tion of cloud and edge applications, we highlight two primary
strategies to improve energy efficiency for systems: algorithmic
improvement and system-level configuration. Algorithmic improve-
ments optimize the energy-efficiency and throughput using more
efficient algorithms, data structures, and communication paradigms
[10]. In contrast, system-level configurations, such as dynamic volt-
age and frequency scaling (DVES), increase the efficiency by en-
abling the system to regulate the CPU or GPU energy footprint,

55

e.g., by adjusting its voltage and/or frequency in the case of DVFS.
Lowering the voltage or frequency slows down the execution speed
of the application, while also reducing the energy consumption. In
particular, the power dissipated by the CPU or GPU is governed by
the CMOS chip presented in this well-known equation:

P =aCfV? (1)

where « is a proportional constant indicating the percentage of
the system that is active or switching, C represents the system’s
capacitance, f is the frequency at which the system is switching,
and V denotes the voltage swing across C.

DVFS techniques have been studied for nearly two decades and
have become commonplace in today’s processors and GPUs. A
common approach involves having the OS determine a common
operating frequency for the entire system, and all applications,
based on their current demand. In some systems, schedulers have
begun allowing applications to choose their own desired operating
frequency. For example, Nvidia’s line of GPUs allows individual
applications to choose their own frequency setting whenever they
execute. When applications choose a custom DVFS setting, rather
than a system-wide value, different applications will execute at dif-
ferent power levels during different time slices. This has important
implications for fair-sharing, as discussed in section 3.

2.4 Model Serving Workloads

While our current work on energy time fairness has broad applica-
bility to a range of applications, we highlight its efficacy using a
particular class of edge workloads, namely model serving, which in-
volves running multiple deep learning models on a shared resource
such as a GPU. This workload choice is motivated by the increasing
energy demand of Al applications, which have made energy efhi-
ciency a key goal in designing edge and cloud systems [33, 35, 50].
Along with the increasing use of application-specific accelerators,
such as GPUs, researchers have proposed multiple algorithmic im-
provements to increase their models’ energy efficiency, usually for a
minimal degradation in accuracy. Many of these improvements can
be viewed as design-time approaches, where users select their DNN
architecture and parameters [25, 45, 58]. Separately, researchers
have designed accelerator-specific methods, where DNNs are able
to gain much higher energy efficiency by customizing models to
specific hardware [5, 22, 57]. Researchers have also proposed post-
training methods that alter the architecture and parameters after
training is complete in a static fashion, such as pruning [21, 54],
distillation [24] and quantization [23], or by allowing the network
to alter its resource requirements in run-time [8, 46, 56]. Finally,
we highlight that resource sharing in model-serving systems is a
key objective, as shown in previous research [11, 18, 20, 32, 33, 40].

3 MOTIVATION FOR ENERGY-TIME FAIRNESS

This section discusses some key assumptions made by traditional
fair schedulers and why the assumptions do not hold for emerging
hardware, such as modern GPUs and heterogeneous processors,
resulting in unfairness problems.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

3.1 Fair-Share Scheduling Basics

Classical fair share schedulers make three implicit assumptions that
are starting to break down with emerging CPU and GPU architec-
tures in edge and cloud servers. First, since multi-tenant systems are
time-shared across resident applications, it is natural for fair-share
schedulers to allocate CPU or GPU resources at the granularity
of time slices. For instance, a fair-share scheduler can achieve an
allocation in the ratio 1:2 by allocating one time slice to application
A and two time slices to application B in a round-robin manner.
Second, fair-share schedulers implicitly assume that applications
execute at the same speed (e.g., same clock frequency) across time
slices, which implies that they are allocated the same number of
CPU or GPU cycles in each allocated time slice.

The fairness guarantees of such schedulers are predicated on all
applications making equal progress on a weighted basis, which is
achieved by allocating equal, or proportional, amounts of CPU or
GPU cycles. At equal execution speeds, allocating an appropriate
fraction of time slices equates to allocating an appropriate fraction
of the CPU or GPU cycles. Third, fair-share schedulers implicitly
assume the energy used by an application is proportional to their
execution time. Thus, if two applications execute for one time slice
each at the same execution speed (i.e., same CPU or GPU frequency),
the scheduler assumes they will consume the same amount of en-
ergy in their corresponding time slices. This assumption generally
holds since power consumption depends directly on the operating
clock frequency of the CPU or GPU.

While these implicit assumptions have largely held for processors
for many decades, the emergence of heterogeneous core processors
and multi-core GPUs are causing them to break down in many
scenarios. The wide availability of DVFS technology on modern
CPU and GPUs, combined with the ability for applications to run at
different frequencies, means that it is no longer logical to assume
that applications will consume identical cycles and power during
their time slice [19, 51]. The operating frequency may be changed
frequently either by the OS or, in some cases, by the applications
itself. Second, the rise of heterogeneous multi-core processors in
modern CPUs and GPUs means that equal time execution no longer
implies equal energy consumption [27, 34, 47]. This assumption
already breaks down under DVFS, since applications executing at
different frequencies will consume a different amount of power
on homogeneous cores. In heterogeneous settings and for data-
parallel GPU cores, even executing at the same frequency will yield
different amounts of progress and consume different amounts of
energy. These trends have important implications for fair-share
schedulers at edge.

3.2 Unfairness in Classical Fair-share
Schedulers

Given the observations above, we present three different cases of
unfairness in traditional fair-share schedulers when cloud and edge
servers also employ energy optimizations.

3.2.1
applications, each consisting of a deep learning model, that share a
GPU for performing inference tasks. This multi-tenant application
is a common case for edge computing where IoT devices send data

Unfairness due to application heterogeneity. Consider two

56

Figure 1: Power consumption of different ML models when run
under different frequencies on an Nvidia TX2.

(a) Time Fair (b) Energy Fair

Figure 2: Unfairness in time and energy-based fair schedulers.

to edge servers that perform DNN inference over their data [32,
33]. Multi-tenant applications are handled using a model-serving
paradigm, where the server hosts and services multiple DNN models
on its GPU resources. Since the GPU is time-shared, we assume
the scheduler allocates time slices to execute each DNN model and
its inference requests using fair-share scheduling. Notably, due to
the differences in DNN model size and architecture, even when
both applications use the same GPU frequency and number of time
slices, they can consume different amounts of energy.

To illustrate, Figure 1 shows the power consumption of serving
4 different models at various GPU frequencies when running using
Nvidia TX2. The figure shows that each model will consume dif-
ferent amounts of energy within its time slice. The primary cause
of these differences is that GPUs consist of many processing units,
e.g, CUDA and Tensor cores, to satisfy a diverse set of application
requirements of data parallelism and models with different sizes.
Hence, different models exercise different fractions and parts of the
GPU cores. Since the models have different architectural structures
and sizes, where highly parallel models can utilize more cores of the
GPU than thin models, they will incur different amounts of energy
use, as highlighted in recent research [22, 29, 35]. Importantly, fair-
share schedulers try to equalize application progress on a weighted
basis, with some schedulers even allocating resources in units of
cycles, rather than time, to achieve proportionate progress. This
can cause smaller models that use fewer cycles (and GPU cores) to
receive proportionately larger amounts of GPU time and possibly
starve larger DNN models. That is, larger DNN models that try to
utilize all available cores effectively get penalized and may starve.
This is clearly undesirable since resource-efficient use should be
favored rather than penalized.

3.2.2 Unfairness of Time-based fair Schedulers. Next, consider a
conventional time-based fair-share scheduler that allocates time

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

slices in proportion to assigned weights. Consider two GPU ap-
plications that are assigned equal weights. Since GPUs, such as
those from Nvidia, permit fine-grain DVES settings, applications
can choose their own DFS frequency. Assume two applications A
and B, where application A runs a Resnet50 model at 1300 MHz
GPU core frequency and application B runs a MobilenetV2 model
at 726 MHz GPU core frequency on an Nvidia TX2. Figure 2a de-
picts the time allocated to each application as well as their energy
usage. As shown, the resource allocation is fair in the time dimen-
sion, since each application receives an equal number of time slices.
However, the application executing at full speed consumes more
energy than the one running at a lower speed, which implicitly
favors the former application by allowing it to use a larger fraction
of the system’s energy despite being allocated the same weight.
Thus, the allocation is unfair for energy.

3.2.3 Unfairness of Energy-based fair Schedulers. The notion of en-
ergy fair-share scheduling has been proposed to allocate resources
fairly in units of energy, rather than time [13, 19, 51]. In this case,
two applications will be scheduled on the resource, such that their
energy use is in proportion to their weights. Figure 2b shows the
same applications as the previous time fair-share scenario but under
energy fair-share scheduling of the GPU. Figure 2b shows that the
two applications now use equal amounts of energy. However, to
do so, the application running at a lower frequency is allocated
much more GPU time to equalize its energy use with respect to the
second application. Importantly, the lower the GPU frequency (and
power) used by the first application, the more GPU time it receives,
possibly starving applications that run at higher frequencies. This
results in unfairness in the time dimension.

3.3 Desirable Fairness Properties

Our three motivating examples show that time, energy, and cycles
are all tightly coupled with each other. In cloud and edge servers
with heterogeneous applications and heterogeneous multi-core
hardware, conventional fair schedulers can become unfair in one or
more dimensions, and it is infeasible to simultaneously be fair in all
dimensions. Consequently, we need a new notion of fairness such
that edge and cloud systems can achieve their energy-efficiency
goals while also being fair to their multi-tenant workloads.

To address the unfairness disparity, we propose a new notion
of fairness called Energy-Time Fairness (ETF) that bridges the gap
between traditional fairness techniques. Our design stems from
the unfavorable effects of traditional fairness techniques while
guaranteeing their key properties such as:

(1) Pareto-efficiency, which ensures high utilization by ensur-
ing that applications cannot increase their resource shares
without decreasing others;

(2) Strategy-proofness, which ensures that applications don’t
benefit from lying about their resource demand;

(3) Sharing incentives, which promotes sharing the resources
dynamically instead of static allocations.

In addition, ETF extends the notion of fairness by also providing
these additional desirable properties:

(1) Efficiency incentives, which reward energy-efficient applica-
tions with more time on the resource;

57

(2) Time guarantees, where applications are guaranteed a time
slice irrespective of their energy efficiency;

(3) MAX-MIN energy fairness, which maximizes the minimum
energy allocation among applications.

4 ENERGY-TIME FAIRNESS

We present Energy-Time Fairness (ETF), a new concept of fair-
ness that provides minimum time guarantees to prevent starvation,
while targeting energy fairness by maximizing the minimum energy
across applications with heterogeneous rates of energy consump-
tion in multi-tenant scenarios.

ETF allows a system operator to allocate a configurable portion
of the scheduling quantum, T, in a time-fair manner to ensure
that even the resource-hungry applications that starve under pure
energy fair scenario get a minimum guaranteed time slice. However,
the ultimate goal of the approach is to be energy fair, so it adjusts
the rates for the remaining segment of the time quantum to achieve
energy fairness.

4.1 Defining Energy-Time Fairness

Assume there are N applications denoted by A and indexed by i,
where application A; uses power P; and has weight w;.

Energy Fairness (EF). The time allocation of the application A;
under a perfect EF scenario, Tl.EF , over a scheduling horizon of time
duration T is computed as,

i X P,
T = (1 (@)
> k=0 Wk X Py
The energy consumption EiEF of a given application A; is then

computed as,
EEF = p; x TEF.
Finally, the energy consumption normalized by weight of all
applications under EF, should be the same, as shown below.

E" i = B [w, Y, je[[1,N]]. (3)

Time Fairness (TF). The energy consumption, E;, under a purely
time fair share (TF) scenario can be computed as,

Wi
N—l X T.
Zk=0 Wik

TF

E;" =P X)

The time allocation for an application under time fair share (TF)
scenario is,

Wi

(L

Z k=0 Wi

The energy consumption across applications differs under TF

and deviates from the perfect energy fair-share allocation. The
difference between the two can be computed as,

xT. (5)

AEYTAir _ pTF _ gEF, ©
Energy-Time Fairness (ETF). As motivated in the last section, we
want to provide minimum time guarantees to prevent starvation
of resource-hungry applications while trying to achieve energy
fairness by maximizing the minimum energy consumption across
applications. To do so, we introduce the notion of time-fair factor,
denoted by ¢, which configures the minimum time guarantees to

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

each application as a fraction of time allocated under TF scenario.
It is computed as,

: TETF _ TF
minT;" " = ¢ xT; .

™)

During this time period, the energy consumption of an applica-
tion A; is expressed as,

®

The total time allocated to provide minimum time guarantees is
¢ x T. Our approach uses rest of the time, (1 — ¢) X T to improve
energy fairness. Our approach targets that improvement using a
two step process. First, we allocate the remainder of the time based
on EF, which is computed as,

min EETF = min TETF x p;

A/TiETF — (1 _ ¢) % TiEF' (9)

While this ensures that the remainder of the time slot is allocated
in an energy fair share manner, it does not correct the unfairness
that was caused while providing minimum time guarantees. The
extent of energy unfairness depends on the value of ¢ and the
power difference across applications. If an application runs under
TF for ¢ X T duration, the deviation of its energy consumption from
fair energy fraction can be computed as,

unjair
AES = (10)
Prior work on fair allocations has explored keeping track of
unfairness and allowing disadvantaged applications to catch up
later [4, 48]. Inspired by this work, we enable applications to catch
up by updating A’ TiETF proportional to the unfairness to mitigate
existing unfairness. The updated rate is computed as,

unfair
¢ X AE; .

unfair
o.i

ATETF = N'TETF _ _ unfw
S AE;

(11)

unfair .

If an application’s AE 6 is positive, it means that the applica-
tion disproportionally used more energy than EF and its rate would
further decrease and vice versa.

The total time allocated to an application is a function of ¢,
weights, and power consumption of all the applications. It can be
computed as,

I}ETF = min TiETF + ATiETF.

(12)
Similarly, the total energy consumed by the applications is ex-
pressed as,

ETF
E! (13)

=P, x TiETF.
The energy repatriated during the remainder of the catch up
period is the difference between the energy fair assignment and
new allocation. It can be computed as,
repat _
AE 6i =
Achieving Energy Fairness with ETF. At the extreme values of
¢, ETF devolves to either energy fairness (¢ = 0) or time fairness
(¢ = 1). As we increase the value of ¢, our approach deviates from
energy fairness. If the value of ¢ increases beyond a certain value,
the energy unfairness increases to an extent that it cannot catch up
in the remainder of the time. We denote this value as ¢r,; and at

EF ETF
¢ x EEF — AEFTF, (14)

58

this point, the energy unfairness caused during the time-fair period
is equal to the energy repatriated during the catch up period,
unfair repat
AEGTT = B, (15)
This equation can be solved to compute the value of ¢ ;. For
values between 0 and @y, our approach is able to achieve perfect
energy fairness while providing the minimum time guarantees
given by Eq. 7.
Finally, it is worth noting that the ETF model can effectively be
utilized to guarantee a minimum energy share, while also prioritiz-
ing the equitable distribution of time.

4.2 ETF Scheduling Algorithm

We consider the following set up for the problem: we have N active
applications time-sharing a single resource (e.g. GPUs), which could
consumes energy at varying rates, depending on how applications
utilize it during their respective usage periods. A time quantum con-
sisting of T time units is allocated amongst them. Each application
Aj is allocated a time slice denoted as T;, such that the sum of all
time slices for all applications does not exceed T. Each application
then executes their applications within their allocated time slices,
operating at a power level denoted as P;. The energy consumption
of each application is therefore not only a function of the time for
which it runs but also the power at which it operates. ETF achieves
the design objectives by incrementally allocating time slices to each
application based on their respective demand, weight, and power
usage. This process follows two primary steps: 1) guaranteeing
minimum time fairness, and 2) prioritizing energy efficiency.
Guaranteeing minimum time fairness. In this step, ETF ad-
dresses the objective of limiting performance degradation by ensur-
ing that no application receives a time slice that falls below a ¢-fair
time share allocation as shown in equation 7. This minimum share
is set to ensure that even in scenarios where energy efficiency is
being prioritized, the performance of each application is not unduly
compromised. This step is depicted in line 1 of algorithm 1. Notably,
when an application’s demand is lower than the minimum time
bound, ETF would allocate only the amount equal to the applica-
tion’s demand. This approach ensures that applications allocations
never surpass their demands, which is a necessary condition for
achieving Pareto efficiency.

Prioritizing energy efficiency. In the previous step, we distributed
¢ - T time units evenly among all applications. However, such an
equal distribution of time units can lead to significant disparities in
energy consumption. To encourage energy awareness applications
are repatriated the amount of energy they lost in the first round by
extending their time allocation as explained in equations 12 and
13. Since time slices are indivisible, we use an iterative approach
to distribute the remaining time slices. Lines 2 to 9 in algorithm 1
explains these steps. First (step 2) we calculate the current energy
consumption based on their power profiles and the time slices that
have been allocated to them so far as described in equation 8. Next,
we compute the remaining time slices that still need to be allocated
(line 3). Subsequently, we start allocating the remaining time slices
individually to the application with the minimum current energy
consumption (line 5-6). This process continues until the remaining
time slices have been allocated or all applications’ demands have

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Compute time slice

Input: weights w;, weights of application i.

demands d;, demands for application i.

power P;, power usage for application i.

N, number of active application.

T, schedule interval.

¢ € [0, 1], guarantee fraction of fair time share.
Output: timeSlice[i] time slice for each application i.

weights[i] T .
—Zz;olweights[k] T - ¢, demands[i])

energy[i] = timeSlice[i] - power[i]/weights[i]
remainSlice =T — ZZ;OI timeSlice[k]
while remainSlice > 0 and at least one demand is not met
do
5 k = arg min; energy[i] if
timeSlice[i] < demands[i]
timeSlice[k] += 1
energy[k] = timeSlicel[k] - power[k]/weights[k]
remainSlice -= 1

[

timeSlice[i] = min(

[}

w

'

™

<

®

9 end

m Time guarantees

- Energy fair allocation

Time
Energy
¥ 2 8 3 3 3 3

B
Applications Applications

Figure 3: An illustrative example of ETF at work.

been fulfilled. Similar to the previous step, we ensure that we do
not allocate time slices to applications whose demands have already
been met.

4.3 An Illustrative Example

We now walk through a concrete example. Consider a system with
time quantum size of T = 30 serving three applications: A, B and
C. For simplicity, we assume that these applications have equal
weights and are backlogged. Applications A, B, and C have power
demands of 2, 3, and 8 watts, respectively. Figure 3 shows time and
energy allocations across the applications scheduled under ETF at
¢ =0.7.

In the first step, ETF distributes ¢ - T = 21 time units evenly
among the applications. Since the applications’ weights are equal

and they are backlogged, each application receives 7 time units.

Consequently, their respective energy consumption are 14, 21, and
56 for applications A, B, and C, respectively. The textured bars in
figure 3 show the allocations of this step.

Next, ETF distributes the remaining (1 — ¢)T = 9 time units
by prioritizing the applications consuming less energy. Since A
currently has the least energy consumption, ETF allocates additional
time units to application A until its energy consumption catches

59

up with others. In this round, indicated by the number @ in figure
3, ETF allocates 4 additional time units to A, to be assigned equal
energy as B. After this round, the time slices for A, B, and C are 11, 7,
and 7 and the energy consumption are 22, 21, and 56 respectively.

Now, B becomes the application with the least energy consump-
tion. Consequently, ETF allocates an additional time unit to appli-
cation B in round @. This process continues iteratively, until all of
the 30 time units have been allocated after round @. After the final
allocation, the time slices assigned to applications A, B, and C are 14,
9, and 7, while the allocated energy are 28, 27, and 56, respectively.

4.4 ETF Properties

In this section, we prove that ETF achieves a set of desirable prop-
erties explained in section 3.3, including Pareto efficiency, strategy-
proofness and maximizing minimum energy consumption with
minimum time bounds.

THEOREM 1 (PARETO EFFICIENCY). When the workloads are back-
logged, it is not possible to increase the allocation of an application
without decreasing the allocation of at least one other application.

ETF is Pareto efficient by design. First, it ensures that no applica-
tion is allocated more time than their demand. Second, it exhaus-
tively allocates all available time units. Hence, there is no other
allocation that can provide more time to an application without
taking away time from another application.

THEOREM 2 (STRATEGY-PROOFNESS). In ETF, applications cannot
gain a more useful allocation by misrepresenting their energy and
time demands.

To prove this theorem, we first prove the following Lemmas:
LEmMA 1. Energy fair allocation is strategy-proof.

Proor. We prove this lemma by contradiction. Let (t;, ;) be
the time and energy allocation for application i using energy fair
allocation (equation 2). Since energy fair allocation maximizes the
minimum energy consumption among applications (the proof will
be provided later in this section), it results in equal energy con-
sumption, see equation 3.

Let’s assume that there exists an alternative allocation (¢, e])
such that either t] > t;,e] > e;ort] > tj,e] > e;. If €] > e;, it would
result in e} > ej for i # j, which contradicts the condition that the
energy consumption is equal across all applications under energy
fair scheduling. If ¢/ > t;, it would decrease the time received
by other applications due to the Pareto efficiency property, and
consequently, the energy received by other applications would
also decrease. This would lead to e < e;, contradicting our initial
assumption.

Since these contradictions arise from our assumption, we con-
clude that such an allocation cannot exist. Therefore, this demon-
strates that energy fair allocation is strategy-proof. O

LEMMA 2. Inthe absence of knowledge of other application’s energy
demands, becoming either energy-efficient or energy-gluttonous does
not yield an advantage over other tenants.

This behavior results from the minimum time scheduling (step
1) of ETF, where a minimum amount of time is allocated to each
application regardless of their energy consumption. If an application

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

is so energy-gluttonous that they receive no time units in step 2,
they can benefit by increasing their energy consumption further.
Since they have already received the minimum time allocation,
increasing their energy consumption does not result in any time
penalty. For example, consider the scenario depicted in figure 3: if
application C were to increase the power profile from 8 to 10, the
energy application C ultimately receives would increase from 56 to
70 without any decrease in time allocation.

Moreover, an application that consumes so little energy that all
remaining time units in step 2 are allocated to them (i.e., despite
the additional time allotted, they still consume the least amount of
energy) can increase the energy consumption to match that of the
second least energy-consuming application without incurring any
time penalty.

However, both these scenarios are highly contingent on the
energy profiles of other applications. Without knowledge of other
applications’ energy consumption, an application cannot accurately
determine its scenario, making it uncertain whether the potential
gain would be realized. Thus, manipulating time and energy demand
can lead to decreased useful allocations. This effectively deters
applications from exploiting the system for additional allocation,
thereby enhancing the strategy-proofness of ETF.

Intuitively, ETF maximizes the minimum energy consumption
by allocating time units to least energy-consuming applications.
We prove it using the following lemma:

LEMMA 3. Let emin denote the minimum energy consumption
among all applications after iteration t of energy fair allocation. For
any application i that receives a time allocation during the first t
iterations, removing one unit from an application i will result in the
energy consumption e; < emin.

ProOF. We prove by contradiction. Assume that e; > enin after
removing one time unit from application i. This indicates that when
allocating the removed time unit, the application i is not the least
energy-consuming application, and the allocation of the time unit
to application i contradicts ETF. O

THEOREM 3. ETF maximizes the minimum energy consumption
among applications while providing the minimum time guarantee.

Proor. The minimum time guarantee follows trivially by con-
struction. Suppose application i has the least energy consumption
after allocation, with (#;, e;) being the time and energy allocation for
application i. Assume there exists an alternative allocation where
the minimum energy allocation is higher, and application i has an
allocation of (¢], ;) in this case. Note that in this scenario, we must
have e] > e; and thus t] > t;.

Since application i is receiving more time in this new scenario,
due to the Pareto efficiency property, the system must decrease
the time allocation for at least one other application, say appli-
cation j, to maintain the same total time. However, by Lemma 3,
the reduction of time from application j will result in the energy
consumption for application j, ej < e;, which contradicts our as-
sumption that the minimum energy consumption is higher in the
new scenario. Hence, ETF does maximize the minimum energy
consumption among applications, as desired. O

60

Accounting

(mmmmmms ETF Scheduler
& |

E "g : submit Application queues Launcher

1 B =0 =
o |

¢ [BK -0 B0

[Nt

Ho! 000

> 1

___r__l

Profiler

Figure 4: Architecture of ETF implementation.

5 ENERGY TIME FAIR SCHEDULER
IMPLEMENTATION

Although the concept of ETF can be used to arbitrate any shared
resource, we have decided to implement it as a GPU scheduler due
to its important role in many cloud and edge systems. The structure
of the scheduler is depicted in figure 4. Our scheduler is a user-space
scheduling library that abstracts the GPU and provides application-
level interfaces similar to what the GPU runtimes, such as CUDA,
offers!. The only difference is that the scheduling decisions incor-
porate the notion of Energy Time Fairness rather than time fairness
alone. In this system, applications submit their CUDA kernels to
their respective queues, similar to how applications submit their re-
quests to CUDA streams. Upon receipt of these kernels, the system
calculates the application’s share, monitors their resource consump-
tion, and determines the sequence of kernel execution. Following
this, the scheduler launches the next kernel to the GPU or the CPU
processor, which is shared among multiple applications, with tasks
from different applications interleaved over time. The scheduler is
implemented in C++ using about 2,000 lines of code, and will be
open-source at github.com/umassos/energy-time-fairness.

In the rest of this section, we discuss the details of the scheduler,
the utilized model-serving application, and the application profiler.
Scheduler. In designing the ETF scheduler, we had two key objec-
tives in mind: compatibility and efficiency. The scheduler should
be compatible with current frameworks APIs and the scheduling
decisions overhead should be minimal. To achieve the first goal our
scheduler API closely mimics that of GPU runtimes such as CUDA.
In this case, when the application submits a kernel to the GPU
our ETF scheduler queues this request and submit it later based on
the Energy Time Fair resource allocation. Our application queue
applies the same first come, first served (FCFS) as CUDA streams to
guarantee correctness. It should be noted that a single application
may have multiple queues similar to how applications can have
multiple CUDA streams.

The second objective was to minimize the overhead of the sched-
uler. The scheduling overhead stems from three sources, the ap-
plication queues, resource accounting, and application ordering
decisions. To facilitate an efficient queuing process, the application
queues are implemented using doubly-linked list data structures,
which allows us to support enqueue and dequeue operations in
O(1) time. ETFS counts time using the virtual runtime (vruntime)
technique similar to the Completely Fair Scheduler (CFS). As each

The implementation can be extended to intercept kernel calls, which don’t require
application modifications

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

kernel executes, it accumulates vruntime, defined as:

. : t
vruntime; = vruntime; + - (16)

timeSlice;

Where, t; is the actual runtime of application i’s time and timeSlice;
is the time slice computed by Alg.1 using the time and power con-
sumption profiles collected at run time or through a profiler. The
scheduler also accounts for energy consumption to ensure that
applications respect their share.

When a scheduling decision occurs, the scheduler selects the
application, denoted by j, with the lowest vruntime to execute next.
Specifically, the scheduler pops the task at the head of application
J’s queue and allows it to run for timeSlice; time units or until the
application’s queue becomes empty. Note that the scheduler only
considers applications who have non-empty queues, meaning it will
not assign time slices to applications with no incoming requests.
To achieve efficient ordering, we implement vruntime counting
using a Red-Black Tree data structure. Applications are ordered
in the tree by their vruntime, allowing for most operations such
as insertion and deletion to be executed in logarithmic time (i.e.
O(logn)).

Model-Serving applications. To evaluate the ETF scheduler we
used model-serving applications. In model-serving systems, each
request is processed by submitting a batch of kernels that execute se-
quentially and the result is only available when the last one finishes.
Since our scheduler is a user-space library that required altering the
way kernels are submitted to the GPU, we utilized Apache TVM[9],
an open-source machine learning compiler framework, to utilize
our scheduling library to submit kernels to the ETF’s queues rather
than directly to the GPU.

Application Profiling. When using the ETF approach, it is impor-
tant to keep track of time and energy consumption in a detailed
manner. While it is possible to do this in a way that is not specific
to the application being used, we have found that this is not al-
ways accurate, particularly when it comes to energy usage. This
is because GPU kernels typically only last for a few milliseconds
or less, and even with the presence of built in power monitoring,
the propagation delay is much higher. To overcome this issue, we
perform a one-time profiling each time a new model is loaded. This
process gathers information about the resources consumed by the
DNN during task execution. The profiler achieves this by repeatedly
executing the inference requests for 5 seconds using the model and
collecting the following profile data: (i) average kernels service time,
which indicates the amount of time required to process the kernel;
(ii) average power usage when executing the kernels. To ensure
accurate profiling, we monitor the variance of measurements. If
the coefficient of variance exceeds 5%, we redo the profiling. These
steps are repeated for each processing frequency and model vari-
ant to gather information about each runtime configuration. This
information guides the scheduler to accurately calculate the shares
for each application and track their resource utilization.

In our implementation, the profiling overhead for the model-
serving applications is in the range of tens of seconds. For appli-
cations that cannot be profiled with negligible overhead, we can
leverage power models[7, 53] that estimate the energy required
based on the application architecture and update their estimates as

61

(a) Time (b) Energy

Figure 5: Energy and Time allocations of the two users under
Time Fairness (TF), Energy Fairness (EF), and Energy Time
Fairness (ETF) at ¢ = 0.7.

applications run and actual power consumption is measured. How-
ever, given the recent focus on energy consumption and carbon
footprint of computing, there have been many efforts on bench-
marking applications’ power consumption[39]. We expect such
effort to be more prevalent and profiling for most applications to
be available, even for highly specialized use cases.

6 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the practical performance
of ETF by applying it to popular DNN model serving workloads.
Our goal is to demonstrate how the theoretical properties of ETF
(§4.4) translate into real-world benefits.

6.1 Experimental Setup.

Hardware. We conduct our experiments on Nvidia Jetson TX2
unless stated otherwise, which integrates an Nvidia Pascal GPU
with 256 CUDA cores, a Dual-Core Nvidia Denver2, and a Quad-core
ARM Cortex A57 CPU. It has 8GB memory with 59.7GB/s memory
bandwidth and consumes a maximum power of 15W. Jetson TX2
supports GPU DVFS, with available GPU core frequency range
from 115 MHz to 1300 MHz.

Workloads. Our experimental workloads primarily focus on the
use case of DNN model serving. We use a diverse set of popular
DNN models such as ResNet and MobileNet, each characterized
by different sizes and energy profiles (figure 1). In our evaluation,
users first load their respective models onto the GPU. Subsequently,
they send inference requests to the model serving system driven by
ETF. The results are transmitted back to the users after processing.
We assume that workloads are backlogged and requests are always
queued.

Baselines. We compare ETF with two widely used scheduling algo-
rithms that use the notion of: 1) Time Fairness (TF), which ensures
the equity of the process time across users, and 2) Energy Fairness
(EF [13]), which is similar to TF but the resource that is to be shared
fairly is the energy consumption.

Metrics. To quantitatively assess the fairness of allocations across
applications, we use three metrics:
mingps time
maXgpps time
time is distributed among users, with a maximum value of 1
indicating perfect time fairness.

(1) Time Fairness F4- = : It measures how evenly

. ming,,s ener
(2) Energy Fairness g = er‘z‘z: It measures the even-

ness of energy consumption among users, with a maximum
value of 1 indicating perfect energy fairness.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

Figure 6: System fairness for ETF (¢ = 0.7) and baseline ap-
proaches at various levels of power disparity (decreases from
left to right) between two applications. Application A; always
operates at 1300MHz. The operating frequency of A, increases
from 114MHz to 1300MHz.

(3) System Fairness ¥g = min(¥q, Fg): It captures the system-
level fairness across both time and energy. The closer the
value to 1, the fairer the allocation.

Here, both time and energy allocations are normalized by appli-
cation weights to make them comparable across users.

6.2 TIllustrating ETF in Action

As outlined in prior sections, EF and TF only allow pure energy
and pure time fairness, respectively. ETF allows operating at a con-
figurable point between the two extremes.

Figure 5 presents the time and energy allocations under ETF for
a given value of ¢ and other baseline fair scheduling approaches.
In our setup, application A; executes a ResNet50 model running at a
frequency of 1300 MHz, while application Az executes aMobileNet-V2
model at a 726 MHz frequency. As shown, TF guarantees absolute
time fairness and both applications get GPU access for an equal
amount of time. However, this equal time allocation results in a
substantial disparity in energy consumption, resulting in an energy
fairness measure Fg(TF) = 0.19. Consequently, the overall system
fairness for TF, Fg(TF) = 0.19.

On the other hand, EF operates in an inverse manner, achieving

Fs(EF) = 0.21. ETF strikes a balance between energy and time
fairness, achieving superior time fairness compared to EF and better
energy fairness than TF. Consequently, it yields g (ETF) of 0.42,
which is 2x that of TF and EF.
Key takeaway: ETF provides minimum time guarantees that are
absent under EF while achieving better energy fairness than TF. As a
result, ETF can achieve up to 2X improvements in system-level fairness
over pure TF- or EF-scheduling.

6.3 Mitigating the Effect of Power Disparity

The energy and time allocations are fair if all the applications op-
erate at the power. However, as the disparity between power con-
sumption increases, the energy and time allocations start to diverge
under time- and energy-fair policies, respectively. ETF is able to
mind this gap and its ability to bridge the gap is highest when the
power disparity between the applications is maximum. To demon-
strate this experimentally, we conduct an experiment with two
applications using ResNet50 model, where A; always operates at a

62

Figure 7: Energy and time allocations under ETF at vary-
ing values of ¢. A1 runs ResNet50 at 1300 MHz and A runs
MobileNet-V2 at 726 MHz on Jetson TX2.

Figure 8: Energy and time allocations under ETF at varying
values of ¢. A1 runs GPT-2 and A, runs MobileNet-V2 at max-
imum frequency on Nvidia A10G GPU on AWS.

fixed frequency of 1300MHz while we vary the operating frequency
of Ay varies between 114MHz and 1300MHz.

Figure 6 shows the system level fairness on y-axis for the three
scheduling policies when power disparity decreases from 1-to-7.9
at 114MHz to 1-to-1 (no disparity) at 1300MHz on x-axis. At the
highest power disparity, ETF outperforms both TF and EF by a factor
of 2x and 1.6X, respectively. As the power disparity decreases,
the fairness improvement decreases and all scheduling policies
converge when there is no disparity.

Key takeaway: The performance of ETF improves under adversity.
The greater the disparity in power, the higher the improvement in
system fairness, e.g., 2X at 1-to-7.9.

6.4 Improving Energy Fairness under Time
Guarantee

Our experiments so far have used a static value of the time-fair
factor, ¢, that configures the minimum time guarantee for applica-
tions. However, ETF exposes ¢ as a configurable knob that allows

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

Figure 9: Dynamic allocation of energy and time under ETF (¢
= 0.7) for three applications that have different arrival and
departure times. Applications run ResNet50 at 1300, 1032, and
726 MHz GPU frequencies, respectively.

selecting any values of minimum time and energy between the two
extremes offered by EF and TF, respectively.

Figure 7 demonstrates the effect ¢ on energy and time allocations
using the same experimental setup as Figure 5. The top figure shows
the time allocations under ETF and the time allocated to the low
power application (E1) under EF. For ¢ values of less than 0.3, it is
able to achieve perfect energy fairness for the application. For the
remainder of ¢ values, ETF guarantees each application receives a
minimum amount of time with respect to ¢ and maximizes energy
fairness. This also empirically verifies theorem 3. The bottom figure
shows the corresponding energy allocations that demonstrate that
it achieves better energy fairness than TF. As expected, it reduces
to pure time-fair scheduling at ¢ of 1.

Thus far, we have evaluated ETF using the Jetson TX2 platform.

To affirm that our technique is adaptable and effective across various
platforms, we repeat our experiments on the Nvidia A10G GPU.
Figure 8 illustrates energy and time allocations when running a
GPT-2 model concurrently with a MobileNetV2 model, with all
models operating at the same maximum GPU frequency. As shown,
the result mirrors those obtained on the TX2, with the exception
that the convergence point for energy fairness occurs at a higher
¢ value. This is due to a smaller power disparity in this scenario,
which is approximately 2.2X, compared to the 4x on TX2.
Key takeaway: ETF exposes ¢ that system operators configure to
navigate the tradeoff between the energy and time allocations offered
by the EF and TF, respectively. The effective range of ¢ depends on the
power disparity across applications.

6.5 Handling Dynamic Workloads

In the experiments so far, we had a static set of applications that
ran for the whole duration of the experiment. However, in practice,
applications will arrive and leave over time. ETF is robust to dynamic
workload changes as it can quickly recompute the time allocated

63

Figure 10: Throughput and latency for two applications run-
ning ResNet50 model. A; always runs at 1300 MHz while A
runs at varying frequency given by x-axis.

to each of the applications. To demonstrate that, we conduct an
experiment with three applications A; to As, all running ResNet50
model at GPU frequencies of 1300, 1032, and 726 MHz, respectively.
Figure 9 shows energy and time shares of the applications over
time. Application A; runs throughout the experiment, but its share
changes based on the presence of Ay and As. When only A; and
Aj are present, A; is guaranteed 50% - ¢ = 45%. Since the power
disparity between A; and Ay is not significant (1-to-1.5), ETF is able
to mitigate the unfairness during the catch-up period. As A3 enters
the system, ETF has more work to do. ETF guarantees 33.3%-¢ ~ 23%
time share to each application. However, since the power disparity
hasincreased to 1-to-2.5, ETF tries to mitigate the effect by assigning
disproportionally high time share to low-power application As.
However, in the remaining 0.3XT duration, it cannot mitigate the
unfairness caused by the assignment of minimum time share to the
most resource-hungry application. As a result, the energy shares
are not exactly the same. It is also worth noting that ETF always
uses 100% of GPU time, which confirms that ETF is Pareto efficient
(theorem 1).
Key takeaway: ETF provides minimum time guarantees while maxi-
mizing energy fairness when allocating resources to a dynamic set of
applications in a pareto-efficient manner.

6.6 Incentivizing Energy Efficiency

A key property of ETF is to incentivize energy efficiency. This hap-
pens because applications operating at lower power are rewarded
with an increased time share, as demonstrated in the previous exper-
iments. This incentivizes applications to operate at higher efficiency
by operating at a different frequency under DVFS or by using a
smaller model. The decrease in throughput from a lower operating
frequency or a smaller model is compensated by the increase time
share.

Figure 10 demonstrates the incentives for improving energy effi-
ciency. We have two applications that operate at the same frequency
(and power) in one scenario (left bars). In the second scenario, one
of the applications (A2) reduces its operating frequency (and power).
As a result, application Ay gets a higher time share than A; that
yields 1.3% higher throughput while reducing the execution latency
by 10%.

Key takeaway: ETF rewards energy-efficient applications with a
higher throughput and a lower execution latency, while providing
minimum time guarantee to the inefficient application.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

6.7 Managing Application Weights

Our experiments so far have used equal weights across applications
to simplify the results. In practice, applications can have different
weights that indicate their priority to the system operator. ETF can
handle any arbitrary weight allocations. To demonstrated that, we
modify the experimental setup used in Figure 5 such that A; has
twice the weight of Aj.

Figure 11 illustrates the energy and time allocations between A
and Aj. As depicted, when ¢ = 1 (i.e. perfect time fair), A; receives
twice the time share compared to Ay. When ¢ < 0.6, ETF is able
to achieve perfect energy fairness. In this case, A; receives twice
the energy share as Az. These results effectively demonstrate ETF’s
ability to respect the predefined application weights during the
allocation process.

Key takeaway: ETF can handle any arbitrary set of application
weights while satisfying all of its properties.

7 RELATED WORK

Fair share scheduling The scarcity of resources in multi-tenant
deployments made fair sharing key to ensuring the proper distri-
bution of resources. In the context of a single resource, time-fair-
sharing [12, 16, 26, 37, 43, 48] ensures key fairness objectives such
as Pareto efficiency, strategy-proofness, and sharing incentives. In
such work, the general assumption is that users utilize the allocated
time in the same way, which makes energy just a utility and a
factor of time. As we highlighted earlier, when applications run at
different power levels, the energy unfairness of the presumably fair
schedulers arises as highlighted in previous research [13, 19, 51].
Moreover, in many scenarios, such as battery-powered systems,
energy is no longer a utility but a constrained resource that must be
distributed fairly between applications. However, previous attempts
to address the issue of energy unfairness were directed towards
multi-resource environments [13, 19, 51]. As we showed earlier,
these solutions could lead to starvation when applied to a single
resource. Furthermore, as noted by ShapeShifter[38], the pursuit
of time-fairness often comes at the expense of other performance
metrics, such as SLO. In contrast, we present Energy Time Fairness
— a configurable system designed to harmoniously reconcile both
time and energy fairness.

Asymmetric-resource Fairness The presence of asymmetric re-
sources, such as big-little CPU [17], is another example where the
traditional notions of time fair sharing fail to distribute resources
equally. The difference between resources capabilities and energy
efficiency made progress and efficiency almost independent of the
allocated time [27, 28, 30, 31, 34, 41, 47]. To address these discrepan-
cies, authors devised new fairness mechanisms that users share the
faster core equally [28, 30, 31] to ensure that no user hogs the fast
resource. Authors highlighted the importance of fair distribution
CPU cycles [47], energy [34, 41], and slowdowns [27]. On the other
hand, we highlight that these techniques boil down to traditional
time fair sharing or energy fair sharing when applied to a single
resource.

Heterogeneous-resource Fairness The previous notions of fair-
ness work only when resources are replaceable or exchangeable.
However, in large-scale applications where a single resource type,
such as CPUgs, is not always readily available, traditional fair share

64

Figure 11: Energy and time allocations under ETF at vary-
ing values of ¢. A; runs ResNet50 at 1300 MHz and A; runs
MobileNet-V2 at 726 MHz with weights 2-to-1.

schedulers can fail to provide the guarantees they promise [14, 15,
55]. To address these problems, the authors extended the concepts
of fairness to multiple resources and show how fairness can be
achieved in this context. DRF [15] introduced the concept of domi-
nant resource, where the assumption is that application resource
requirements are skewed. Although DRF targets space-sharing, sev-
eral variations addressed the problem in the context of time-sharing.
For example, DRFQ [14] extends the concept of time-fair sharing
to multiple resources by altering the accounted allocation based
on the most utilized resource. However, the key assumption of
these solutions was that resources are independent, which makes
these techniques inapplicable to the energy-time fairness problem.
Our solution fixes these problems by implementing a hierarchical
scheduler that addresses the dependency between time and energy
resources.

8 CONCLUSION

Since traditional notions of fairness break down for newer hetero-
geneous hardware and applications, in this paper, we introduced
a new notion of fairness called Energy-Time Fairness (ETF). Our
approach aims to promote energy efficiency while ensuring that
applications do not suffer from starvation by providing minimum
time guarantees. We demonstrate that ETF satisfies many estab-
lished fairness principles and successfully bridges the gap between
energy and time fairness. We implemented ETF as a user-space GPU
scheduler and showed that it supports both i) running time/latency-
sensitive applications and ii) a configurable incentive for operating
energy-efficiently. In the future, we plan to expand our system by
creating a runtime library and adding support for other devices
such as CPUs. As part of our future work, we plan to extend ETF to
other types of accelerators and heterogeneous processors.

ACKNOWLEDGMENTS

We thank the SEC reviewers for their valuable comments, which
improved the quality of this paper. This research is supported by
NSF grants 2211302, 2211888, 2213636, 2105494, US Army contract
WO911NF-17-2-0196, Adobe, VMware, and Amazon Web Services.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

(1]
(2]

[3

[10

[11

[12]

[13

[14]

[15]

[16

[17

[18]

[19

[20

2023. Hadoop Fair Scheduler. https://hadoop.apache.org/docs/stable/hadoop-
yarn/hadoop-yarn-site/FairScheduler.html.

2023. Slurm Workload Manager Classic Fairshare Algorithm.
slurm.schedmd.com/classic_fair_share.html.

Noman Bashir, Tian Guo, Mohammad Hajiesmaili, David Irwin, Prashant Shenoy,
Ramesh Sitaraman, Abel Souza, and Adam Wierman. 2021. Enabling Sustainable
Clouds: The Case for Virtualizing the Energy System. In Proceedings of the ACM
Symposium on Cloud Computing (Seattle, WA, USA) (SoCC °21). Association for
Computing Machinery, New York, NY, USA, 350-358. https://doi.org/10.1145/
3472883.3487009

Noman Bashir, David Irwin, Prashant Shenoy, and Jay Taneja. 2017. Enforcing Fair
Grid Energy Access for Controllable Distributed Solar Capacity. In Proceedings
of the 4th ACM International Conference on Systems for Energy-Efficient Built
Environments (Delft, Netherlands) (BuildSys ’17). Association for Computing
Machinery, New York, NY, USA, Article 28, 10 pages. https://doi.org/10.1145/
3137133.3137147

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Mar-
tin Wistuba, and Naigang Wang. 2021. A Comprehensive Survey on Hardware-
Aware Neural Architecture Search. arXiv:2101.09336 [cs.LG]

Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes: Lessons Learned from Three Container-
Management Systems Over a Decade. ACM Queue - Containers 14, 1 (January-
February 2016).

Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. 2017.
Neuralpower: Predict and deploy energy-efficient convolutional neural networks.
arXiv preprint arXiv:1710.05420 (2017).

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020.
Once-for-All: Train One Network and Specialize it for Efficient Deployment.
arXiv:1908.09791 [cs.LG]

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578-
594. https://www.usenix.org/conference/osdi18/presentation/chen

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonza-
lez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving Sys-
tem. In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). USENIX Association, Boston, MA, 613-627. https://www.usenix.org/
conference/nsdil7/technical-sessions/presentation/crankshaw

A. Demers, S. Keshav, and S. Shenker. 1989. Analysis and Simulation of a Fair
Queueing Algorithm. SIGCOMM Comput. Commun. Rev. 19, 4 (aug 1989), 1-12.
https://doi.org/10.1145/75247.75248

Yiannis Georgiou, David Glesser, Krzysztof Rzadca, and Denis Trystram. 2015. A
Scheduler-Level Incentive Mechanism for Energy Efficiency in HPC. 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (2015),
617-626.

Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. 2012. Multi-Resource
Fair Queueing for Packet Processing. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (Helsinki, Finland) (SIGCOMM °12). Association for Computing
Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/2342356.2342358
Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. 2011. Dominant Resource Fairness: Fair Alloca-
tion of Multiple Resource Types. In 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 11). USENIX Association, Boston,
MA. https://www.usenix.org/conference/nsdill/dominant- resource- fairness-
fair-allocation- multiple-resource- types

Pawan Goyal, Harrick M. Vin, and Haichen Cheng. 1997. Start-Time Fair Queue-
ing: A Scheduling Algorithm for Integrated Services Packet Switching Networks.
IEEE/ACM Trans. Netw. 5, 5 (oct 1997), 690-704. https://doi.org/10.1109/90.649569
Peter Greenhalgh. 2011. Big. little processing with arm cortex-al5 & cortex-a7.
ARM White paper 17 (2011).

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving DNNs like Clockwork: Performance
Predictability from the Bottom Up. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, 443-462.
https://www.usenix.org/conference/osdi20/presentation/gujarati

Daniel Hagimont, Christine Mayap Kamga, Laurent Broto, Alain Tchana, and
Noel De Palma. 2013. DVFS Aware CPU Credit Enforcement in a Virtualized
System. In Middleware 2013, David Eyers and Karsten Schwan (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 123-142.

Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022. Microsecond-
scale Preemption for Concurrent GPU-accelerated DNN Inferences. In 16th

https://

65

[21]

[22

(23

[24

(25

[26

[27]

[28]

[29]

[30

[31

[32

[33

[34

(35

[36]

[37]

[38

[39

USENIX Symposium on Operating Systems Design and Implementation (OSDI
22). USENIX Association, Carlsbad, CA, 539-558. https://www.usenix.org/
conference/osdi22/presentation/han

Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning Both
Weights and Connections for Efficient Neural Networks. In Proceedings of the
28th International Conference on Neural Information Processing Systems - Volume
1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 1135-1143.
Walid A. Hanafy, Tergel Molom-Ochir, and Rohan Shenoy. 2021. Design Con-
siderations for Energy-Efficient Inference on Edge Devices. In Proceedings of the
Twelfth ACM International Conference on Future Energy Systems (Virtual Event,
Italy) (e-Energy ’21). Association for Computing Machinery, New York, NY, USA,
302-308. https://doi.org/10.1145/3447555.3465326

Soheil Hashemi, Nicholas Anthony, Hokchhay Tann, R. Iris Bahar, and Sherief
Reda. 2017. Understanding the Impact of Precision Quantization on the Accuracy
and Energy of Neural Networks. In Proceedings of the Conference on Design,
Automation & Test in Europe (Lausanne, Switzerland) (DATE ’17). European Design
and Automation Association, Leuven, BEL, 1478—1483.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. ArXiv abs/1503.02531 (2015).

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le,
and Hartwig Adam. 2019. Searching for MobileNetV3. arXiv:1905.02244 [cs.CV]
F.P.Kelly, A. K. Maulloo, and D. K. H. Tan. 1998. Rate Control for Communication
Networks: Shadow Prices, Proportional Fairness and Stability. The Journal of the
Operational Research Society 49, 3 (1998), 237-252. http://www.jstor.org/stable/
3010473

Changdae Kim and Jaehyuk Huh. 2018. Exploring the Design Space of Fair
Scheduling Supports for Asymmetric Multicore Systems. IEEE Transactions on
Computers 67, 8 (2018), 1136-1152. https://doi.org/10.1109/TC.2018.2796077
Youngjin Kwon, Changdae Kim, Seungryoul Maeng, and Jachyuk Huh. 2011.
Virtualizing performance asymmetric multi-core systems. In 2011 38th Annual
International Symposium on Computer Architecture (ISCA). 45-56.

Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong. 2016. Evaluating the
Energy Efficiency of Deep Convolutional Neural Networks on CPUs and GPUs.
In 2016 IEEE International Conferences on Big Data and Cloud Computing (BD-
Cloud), Social Computing and Networking (SocialCom), Sustainable Computing
and Communications (SustainCom) (BDCloud-SocialCom-SustainCom). 477-484.
https://doi.org/10.1109/BDCloud-Social Com-SustainCom.2016.76

Tong Li, Dan Baumberger, David A. Koufaty, and Scott Hahn. 2007. Efficient op-
erating system scheduling for performance-asymmetric multi-core architectures.
In SC ’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. 1-11.
https://doi.org/10.1145/1362622.1362694

Tong Li, Paul Brett, Rob Knauerhase, David Koufaty, Dheeraj Reddy, and Scott
Hahn. 2010. Operating system support for overlapping-ISA heterogeneous multi-
core architectures. In HPCA - 16 2010 The Sixteenth International Symposium
on High-Performance Computer Architecture. 1-12. https://doi.org/10.1109/
HPCA.2010.5416660

Qianlin Liang, Walid A. Hanafy, Ahmed Ali-Eldin, and Prashant Shenoy. 2023.
Model-Driven Cluster Resource Management for AI Workloads in Edge Clouds.
ACM Trans. Auton. Adapt. Syst. 18, 1, Article 2 (mar 2023), 26 pages. https:
//doi.org/10.1145/3582080

Qianlin Liang, Walid A. Hanafy, Noman Bashir, Ahmed Ali-Eldin, David Irwin,
and Prashant Shenoy. 2023. DéLen: Enabling Flexible and Adaptive Model-
Serving for Multi-Tenant Edge AL In Proceedings of the 8th ACM/IEEE Conference
on Internet of Things Design and Implementation (San Antonio, TX, USA) (IoTDI
’23). Association for Computing Machinery, New York, NY, USA, 209-221. https:
//doi.org/10.1145/3576842.3582375

Ching-Chi Lin, Hsiang-Hsin Li, Jan-Jan Wu, and Pangfeng Liu. 2016. An Energy-
Efficient Scheduler for Throughput Guaranteed Jobs on Asymmetric Multi-Core
Platforms. In 2016 IEEE 22nd International Conference on Parallel and Distributed
Systems (ICPADS). 810-817. https://doi.org/10.1109/ICPADS.2016.0110

Seyed Morteza Nabavinejad and Tian Guo. 2023. Opportunities of Renewable
Energy Powered DNN Inference. arXiv:2306.12247 [cs.DC]

Chandandeep Singh Pabla. 2009. Completely Fair Scheduler. Linux J. 2009, 184,
Article 4 (aug 2009).

AK. Parekh and R.G. Gallager. 1993. A generalized processor sharing ap-
proach to flow control in integrated services networks: the single-node case.
IEEE/ACM Transactions on Networking 1, 3 (1993), 344-357. https://doi.org/
10.1109/90.234856

Valentin Rakovic, Ke-Jou Hsu, Ketan Bhardwaj, Ada Gavrilovska, and Liljana
Gavrilovska. 2022. ShapeShifter: Resolving the Hidden Latency Contention
Problem in MEC. In 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC).
237-251. https://doi.org/10.1109/SEC54971.2022.00026

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jef-
fery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius,
Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei,
Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong,
Peizhao Zhang, and Yuchen Zhou. 2020. MLPerf Inference Benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
446-459. https://doi.org/10.1109/ISCA45697.2020.00045

Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis.
2021. INFaaS: Automated Model-less Inference Serving. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21). USENIX Association, 397-411.
https://www.usenix.org/conference/atc21/presentation/romero

Bagher Salami, Hamid Noori, and Mahmoud Naghibzadeh. 2021. Fairness-
Aware Energy Efficient Scheduling on Heterogeneous Multi-Core Processors.
IEEE Transactions on Computers 70, 1 (2021), 72-82. https://doi.org/10.1109/

[48] Midhul Vuppalapati, Giannis Fikioris, Rachit Agarwal, Asaf Cidon, Anurag

Khandelwal, and Eva Tardos. 2023. Karma: Resource Allocation for Dynamic
Demands. In 17th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 23). USENIX Association, Boston, MA, 645-662. https:
//www.usenix.org/conference/osdi23/presentation/vuppalapati

Carl A Waldspurger and William E Weihl. 1994. Lottery scheduling: Flexible
proportional-share resource management. In Proceedings of the 1st USENIX con-
ference on Operating Systems Design and Implementation. 1-es.

Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann, Michael
Maire, and Shan Lu. 2020. ALERT: Accurate Learning for Energy and Timeliness.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Associa-
tion, 353-369. https://www.usenix.org/conference/atc20/presentation/wan
Chengjian Wen, Jun He, Jiong Zhang, and Xiang Long. 2010. PCFS: Power
Credit Based Fair Scheduler Under DVFS for Muliticore Virtualization Platform.
In 2010 IEEE/ACM Int’l Conference on Green Computing and Communications

TC.2020.2984607 & Int’l Conference on Cyber, Physical and Social Computing. 163-170. https:

[42] Roy Schwartz, Jesse Dodge, Noah Smith, and Oren Etzioni. 2019. Green AL //doi.org/10.1109/GreenCom-CPSCom.2010.126
Commun. ACM 63 (2019), 54 — 63. [52] Xen. 2018. Credit Scheduler. https://wiki.xenproject.org/wiki/Credit_Scheduler.
[43] M. Shreedhar and G. Varghese. 1996. Efficient fair queuing using deficit round- [53] Tien-Ju Yang, Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2017. A method to
robin. IEEE/ACM Transactions on Networking 4,3 (1996), 375-385. https://doi.org/ estimate the energy consumption of deep neural networks. In 2017 51st Asilomar
10.1109/90.502236 Conference on Signals, Systems, and Computers. 1916-1920. https://doi.org/
[44] Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David 10.1109/ACSSC.2017.8335698
Irwin, and Prashant Shenoy. 2023. Ecovisor: A Virtual Energy System for Carbon- [54] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017. Designing Energy-Efficient
Efficient Applications. In ASPLOS. Convolutional Neural Networks Using Energy-Aware Pruning. In Proceedings of
[45] M. Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for Convo- the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
lutional Neural Networks. ArXiv abs/1905.11946 (2019). [55] Chaoqun You, Yangming Zhao, Gang Feng, Tony Q. S. Quek, and Lemin Li.
[46] Surat Teerapittayanon, Bradley McDanel, and H.T. Kung. 2016. BranchyNet: Fast 2023. Hierarchical Multiresource Fair Queueing for Packet Processing. TEEE

inference via early exiting from deep neural networks. In 2016 23rd International
Conference on Pattern Recognition (ICPR). 2464-2469. https://doi.org/10.1109/
ICPR.2016.7900006

Transactions on Network and Service Management 20, 1 (2023), 726-740. https:
//doi.org/10.1109/TNSM.2022.3197747

[56] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. 2018.
Slimmable Neural Networks. arXiv:1812.08928 [cs.CV]

[47] Kenzo Van Craeynest, Shoaib Akram, Wim Heirman, Aamer Jaleel, and Lieven

Eeckhout. 2013. Fairness-aware scheduling on single-ISA heterogeneous
multi-cores. In Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques. 177-187. https://doi.org/10.1109/
PACT.2013.6618815

Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu. 2020.
Fast Hardware-Aware Neural Architecture Search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
Barret Zoph and Quoc V. Le. 2017. Neural Architecture Search with Reinforcement
Learning. arXiv:1611.01578 [cs.LG]

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 26,2024 at 13:42:47 UTC from IEEE Xplore. Restrictions apply.

