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A B S T R A C T

Wildfires have emerged as one of the most destructive natural disasters worldwide, causing catastrophic
losses. These losses have underscored the urgent need to improve public knowledge and advance existing
techniques in wildfire management. Recently, the use of Artificial Intelligence (AI) in wildfires, propelled by
the integration of Unmanned Aerial Vehicles (UAVs) and deep learning models, has created an unprecedented
momentum to implement and develop more effective wildfire management. Although existing survey papers
have explored learning-based approaches in wildfire, drone use in disaster management, and wildfire risk
assessment, a comprehensive review emphasizing the application of AI-enabled UAV systems and investigating
the role of learning-based methods throughout the overall workflow of multi-stage wildfire management,
including pre-fire (e.g., vision-based vegetation fuel measurement), active-fire (e.g., fire growth modeling),
and post-fire tasks (e.g., evacuation planning) is notably lacking. This survey synthesizes and integrates state-
of-the-science reviews and research at the nexus of wildfire observations and modeling, AI, and UAVs — topics
at the forefront of advances in wildfire management, elucidating the role of AI in performing monitoring and
actuation tasks from pre-fire, through the active-fire stage, to post-fire management. To this aim, we provide
an extensive analysis of the existing remote sensing systems with a particular focus on the UAV advancements,
device specifications, and sensor technologies relevant to wildfire management. We also examine the pre-fire
and post-fire management approaches, including fuel monitoring, prevention strategies, as well as evacuation
planning, damage assessment, and operation strategies. Additionally, we review and summarize a wide range
of computer vision techniques in active-fire management, with an emphasis on Machine Learning (ML),
Reinforcement Learning (RL), and Deep Learning (DL) algorithms for wildfire classification, segmentation,
detection, and monitoring tasks. Ultimately, we underscore the substantial advancement in wildfire modeling
through the integration of cutting-edge AI techniques and UAV-based data, providing novel insights and
enhanced predictive capabilities to understand dynamic wildfire behavior.
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1. Introduction

Over the past few decades, although the frequency of natural dis-
asters has slightly decreased across the globe, their impacts have dra-
matically increased. They have caused extensive damage to the natural
environment as well as causing severe harm to the global economy
and human lives [1,2]. These disasters can be caused by geological
forces, such as earthquakes and volcanic eruptions, or by weather and
climate-related events, such as wildfires, hurricanes, and floods. Their
consequences pose a substantial threat not only to developing nations
but also to technologically advanced developed nations. Additionally,
natural disasters can have major long-term impacts such as population
displacement or economic instability [3,4]. In general, disasters are
lassified into two primary categories, natural and technological, and
ach of these categories is further divided into various subgroups.
echnological disasters arise because of human-made hazards such as
ndustrial accidents and transportation accidents, while natural dis-
sters are caused by environmental phenomena such as geophysical
orces and climatological causes, etc. Fig. 1 provides a comprehensive
nsight into the overview of natural disasters.
The National Centers for Environmental Information (NCEI), as

eported by the National Oceanic and Atmospheric Administration
NOAA), documented approximately 390 natural disasters worldwide
n 2022. Fig. 2 reveals the statistical analysis of natural hazards for
ive continents, including America, Asia, Africa, Europe, and Oceania
n 2022. Regarding the frequency of major natural disasters, Asia
ecorded the highest number of disasters with 137 events, followed by
he Americas with 118 events. Africa was impacted by 79 disasters,
hile Europe had 43 disasters, and Oceania had the lowest number
f disasters with 10 events. The high occurrence of disasters in the
mericas and Asia continents can be attributed to factors such as
eographical locations and susceptibility to extreme weather events. In
erms of the economic damages caused by natural disasters, Americas
tands at the top of the list with 69.6% of total losses, which caused
lmost 150 billion US$ damages. Asia comes second on the list with
osses of 48.7 billion US$ dollars and accounted for roughly 22% of
he total losses. Africa and Oceania both suffered 8.6 billion dollars,
ach accounting for 3.8% of the total losses, Europe had the smallest
ercentage of economic damages, with only 0.1% of the total losses.
Wildfires have emerged as one of the most destructive natural

isasters worldwide, causing significant economic losses and long-term
cological damage [5]. It is important to note that while only a small
percentage (3%–5%) of wildfires exceed 100 hectares in size [6], the
largest 1% of fire is responsible for a staggering 80%–96% of the total
area burned [7]. Wildfires pose a direct threat to communities around
2

the world, endangering lives and leading to potentially life-threatening
consequences. Additionally, they have severe impacts on air quality,
water availability and quality, as well as soil integrity. The term
‘‘megafire’’ [8] was coined after the devastating 2000 U.S. wildfire sea-
son, as a reflection of the perception that wildfires, both in the United
States and globally, were reaching unprecedented levels in terms of
size, impact, and severity. This escalation can be attributed, at least
in part, to changing climate patterns and aggressive fire suppression
strategies.

The impacts of wildfires are far-reaching, affecting not only the de-
struction of lives, homes, businesses, and infrastructure but also causing
damage to wildlife, forests, crops, soil erosion, and air quality [9]. The
occurrence and severity of wildfires can be attributed to a combination
of human and natural factors. Human activities, such as human devel-
opment in the wildland–urban interface, unsecured campfires, careless
cigarette disposal, and intentional arson, can act as ignition sources for
wildfires. On the other hand, natural-caused factors include lightning
strikes during hot and dry conditions, influenced by terrain, fuel, and
weather. Certain regions are particularly susceptible to wildfires due to
their arid conditions and high temperatures, while others experience
strong winds that can rapidly spread flames. Understanding the causes
and mechanisms behind fire growth is crucial for developing effective
strategies for managing, controlling, and preventing wildfires. By gain-
ing a comprehensive knowledge of these factors through observations,
modeling, and analysis, we can work towards implementing successful
wildfire management strategies that prioritize prevention, early detec-
tion, and rapid response. This includes measures such as implementing
fire-safe building practices, creating defensible spaces around homes,
improving firefighting techniques, and promoting public awareness and
education.

Wildfire impacts can be categorized into short-term and long-term
effects, each requiring monitoring. Short-term impacts refer to the
immediate consequences that occur during or shortly after the wildfire,
such as property damage, injuries, wildlife habitat displacement, vege-
tation loss, compromised air quality, and firefighting expenses [10,11].
Wildfires can also contribute to acute short-term effects by releasing
gases like nitrogen dioxide (NO2) and ozone O3 and producing record
high concentrations of small particulate matter (PM2.5), which can
impact respiratory health and mortality. Long-term impacts include
ecological changes, soil erosion, land degradation, compromised water
quality, and increased risk of flash flooding [12]. Wildfires can have
long-term effects on the environment, society, and individuals. These
effects may include irreversible changes in plant and animal species
composition, disruption of the water cycle, and psychological trauma
for those affected.
Fig. 1. The overview of the natural disasters and hazards.
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Fig. 2. The statistical analysis of natural disasters around the world in 2022.
At the same time, in social terms, fire is widely recognized in
raditional cultures as having a ‘‘paradoxical’’ nature, serving as a
elpful and necessary tool of land stewardship in some cases and a
angerous threat to human interests in others [13]. Fire is an essen-
ial disturbance factor that has played key roles in the evolution of
lmost all terrestrial ecosystems. In ecological terms, fire serves to
einitiate ecological succession, recycle nutrients, create habitats for
lants and animals, and maintain ecosystem stability. Species of plants
nd animals worldwide have adaptations to characteristic patterns of
ire recurrence, referred to as fire regimes [14]. Around the world,
any contemporary challenges associated with fire are linked to the
isruption of historical fire regimes, for example by seeking to suppress
ll fires or by introducing flammable, non-native vegetation [15]. Given
hese multiple aspects of wildland fire, contemporary approaches to
ddressing problematic fire situations are often based on an integrated
pproach that includes fire suppression in many circumstances, as when
ires threaten human life and infrastructure, but also incorporates the
eliberate use of fire in the form of prescribed burning or managed
ildfire [16]. The reintroduction of traditional burning practices can
3

oster the restoration of social and ecological attributes simultaneously.
As climate change continues to challenge natural and social systems
through increasingly frequent and severe burning conditions [17],
thoughtful approaches to fire management based on natural and social
science will be increasingly necessary to sustain critical ecosystem
functions through the 21st century.

According to the U.S. Agency for International Development, wild-
fire events result in the loss of approximately 400 million hectares of
forest every year, which is equal to the size of France. Fig. 3 represents
some comparative and statistical analysis of wildfire disasters in the
United States during the period of 1980 to 2022. It can be observed that
although the total number of acres burned declined from 10 million
to seven million during the last three years, it is still higher than
the annual average between 1985 and 2019. The same observation
from Fig. 3 illustrates that Texas, California, and Oregon are the most
impacted states by wildfire events in 2022. Therefore, it is essential to
pay more attention to implementing efficient strategies for preventing
and preparing for wildfires.

The objective of this work is to provide an overview of the progress,
status, challenges, and opportunities in wildfire management, focusing

on advancements in research and technology, particularly in the use
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Fig. 3. The pattern of wildfires in the United States. Left: US states with significant wildfire in 2022, Right-Top: Total number of acres burned in the US between 1985 and 2022,
Right-Bottom: Total number of wildfire occurrences in the US throughout the years 1985 to 2022.
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of unmanned aerial vehicles (UAVs) and artificial intelligence (AI)
from pre-fire, through the active phase, to post-fire land management.
While UAVs have the potential to offer unique advantages in wildfire
management, this requires the implementation of smart AI-enabled
UAVs instead of passive UAV sensing and offline processing. Through
a comprehensive review of research in various disciplines, we exam-
ine the challenges in this more sophisticated integration of UAVs in
fire monitoring, such as UAV technology limitations, restricted flight
time, onboard processing capabilities, and closed-loop control using
vision input. Furthermore, we explore the advances made possible by
integrating UAV systems with modeling applications.

1.1. Motivation of this study

The motivation behind this survey paper stems from the urgent
and growing challenge of wildfire management in the context of a
changing climate and the evolving technological landscape. In recent
years, significant advancements have been made in the field of wildfire
management, particularly through the integration of AI and UAVs,
which have revolutionized the methods for detecting, monitoring, and
managing wildfires. However, despite these advancements, effective
wildfire management remains a challenging task due to factors such as
climate change, urban expansion into fire-prone areas, and the accu-
mulation of combustible materials in forests. This situation demands a
more sophisticated and technologically advanced approach to wildfire
management while identifying gaps and opportunities left by previous
research.

This study aims to address these needs by conducting an in-depth
analysis of over seven hundred research and survey articles related
to wildfire management, with a specific focus on the application of
AI-enabled UAV systems across multi-stage wildfire management, in-
cluding early fire detection, real-time fire monitoring, and post-fire
assessment and planning. Additionally, this survey seeks to fill the gaps
in recent review papers by shedding light on the missing synthesize
and integrate state-of-the-science reviews and research at the nexus of
wildfire observations, modeling, AI, and UAVs — areas at the forefront
of advances in effective wildfire management. These gaps include
limitations in current detection and monitoring capabilities, challenges
in data integration and analysis, and the need for more advanced
predictive modeling techniques that can anticipate fire behavior and
4

spread with greater accuracy. By identifying these gaps, this review e
paper aims not only to provide a comprehensive overview of the current
wildfire management technologies but also to pave the way for future
research and development efforts aimed at advancing the field.

The unique theme of this survey arises from our diverse and comple-
mentary backgrounds — both science and engineering, life and physical
sciences, observations and modeling, UAV hardware/field use, and
flight optimization algorithms. From an understanding of the fire pro-
cess and the mechanisms driving fire events, we distill key monitoring
needs and, from technical knowledge and field experience, synthesize
the capabilities and gaps in current observations, instrumentation, and
modeling as these change throughout the anticipatory pre-fire period,
the evolution of an active fire, and impact assessment as a fire is
contained.

∙ In the anticipation of a wildfire, monitoring’s role is to convey a
picture of the shifting fire environment, which includes identifying spa-
tially heterogeneous fuel complexes, the changing atmospheric state,
notably, temperature, humidity, and wind, and their impact on fuel
state. The study explores statistical fire risk analysis, fire prevention
strategies, and fire prediction methods.

∙ Dramatic changes have been occurring in the past decade, built on
infusions of data from traditional and new sources and technology from
other disciplines. For example, traditional models such as the National
Fire Danger Rating System, designed to estimate the potential for large
fire growth, are transitioning to systems containing live data feeds
that are trained by machine learning techniques. Standard fire moni-
toring platforms are being supplemented by spaceborne observations
launched by the private sector and region-specific airborne observa-
tions. UAVs are being integrated into fire operations more frequently.
Our study delves into wildfire detection, monitoring, and control, with
a specific focus on the utilization of computer vision techniques and
deep learning algorithms. Additionally, the efficacy of reinforcement
learning (RL) algorithms for effective wildfire monitoring throughout
this phase is investigated.

∙ Post-fire observations take on increased urgency as secondary
isasters such as mudslides in new fire scars arise from climate change’s
hiplash effects. Our study examines post-fire management
pproaches, including forest recovery techniques, evacuation planning,
nd the application of Augmented Reality (AR)/Virtual Reality (VR)
echnologies for safe operations.
Eventually, this paper can serve as a valuable resource for re-

earchers, policymakers, and professionals in the field of wildfire man-
gement, optimizing their efforts and strategies for more efficient and

ffective wildfire management.
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Fig. 4. The overall perspective and the key contents of this survey paper.
1.2. Contributions of this survey

This survey provides a comprehensive review of AI-enabled UAV
systems designed for or applied to multi-stage wildfire management,
with particular attention to monitoring and detection methods that
have been overlooked in past literature. After exploring and analyzing
over seven hundred existing research and survey articles on wildfire
management, this study examines the role and status of technology
in pre-fire, active-fire, and post-fire phases. This survey paper stands
out as it offers a novel perspective on wildfire management by sys-
tematically dividing the process into three distinct phases: pre-wildfire,
active-wildfire, and post-wildfire. Each stage possesses its unique char-
acteristics and challenges, while there is an inherent overlap between
them that requires a detailed and careful investigation. Beyond this
structural innovation, the article distinguishes itself through an ex-
tensive review of two emergent and crucial technologies in wildfire
management: UAV technologies and AI in wildfire modeling.

To elucidate our methodology and the underlying structure of our
analysis, Fig. 4 presents the overall perspective of our survey paper,
including pre-wildfire, active-wildfire, and post-wildfire stages. This
framework not only highlights the distinct phases of wildfire manage-
ment but also illustrates the interconnection between them, showcasing
how advancements in AI and UAV technologies can be leveraged across
all stages for more effective wildfire management. The main goal of this
survey paper is to bridge the gaps identified in the existing literature
and propose a more integrated approach to tackling the multifaceted
challenges of wildfire management.

In this respect, we present statistical fire risk analysis, fire preven-
tion strategies, and fire prediction methods in pre-fire management, as
well as wildfire detection, monitoring, and control in active-fire man-
agement. Moreover, forest recovery techniques, evacuation planning,
and AR/VR technologies for safe operation are discussed in post-fire
management. In addition to the three primary stages of wildfire man-
agement, we review UAV technologies and wildfire modeling to provide
more efficient management of firefighting efforts.

The major contributions of this survey paper are:

• To conduct an extensive analysis of the AI-based UAVs for wildfire
management with emphasis on three key phases: pre-wildfire,
active-wildfire, and post-wildfire management.
5

• To compare and review significant and recently published survey
papers in the field of wildfire management to summarize their
contents, drawbacks, and limitations. We highlight the key top-
ics discussed in each article, as well as the missing topics not
addressed in these studies.

• To conduct a detailed analysis of various types of UAV-based
visual remote sensing systems and their applications to wild-
fire management. We outline the strengths and weaknesses of
each UAV type and discuss their optimal utilization in wildfire
management.

• Pre-fire management techniques aimed to effectively mitigate
wildfire impacts —We reviewed numerous recent papers focused
on pre-processing approaches, as well as their methodologies
for efficient pre-fire planning, prevention strategies, and early
warning systems in wildfire management.

• Active-fire management systems focus on the successful utiliza-
tion of detection, monitoring, and control methods —We re-
viewed a wide range of the most well-known studies employing
computer vision techniques for UAVs in wildfire management
applications. In this respect, the effectiveness of various deep-
learning algorithms is evaluated for wildfire detection, classifica-
tion, and segmentation tasks.

• To explore and investigate the efficacy of reinforcement learning
algorithms in wildfire monitoring as a promising approach to
wildfire prevention. To the best of our knowledge, this is the
first survey paper that offers a comprehensive exploration and
assessment of RL-based UAVs in wildfire management.

• Post-fire management approaches with attention to assessing and
mitigating the impacts of wildfires —We reviewed several latest
articles on post-processing fire management, including recovery
planning, damage assessment, and operation strategies to address
the potential post-fire damages.

• Wildfire modeling strategies —We identified where UAVs play a
role either in observations or elsewhere in systems, highlighted
where AI methods have been introduced into this area and at
what level modeling can be done by UAVs or using UAV images,
and described unresolved areas where these two technologies may

open advances.
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Fig. 5. The organization of this survey paper.
• We highlight open problems and future directions at the end of
each section of our survey paper for more effective wildfire man-
agement. This survey paper could aid researchers, policymakers,
and wildfire management professionals in optimizing their efforts
and strategies.

.3. Organization of this paper

This paper’s structure is illustrated in Fig. 5. Section 2 reviews the
existing survey literature on wildfire management. Section 3 describes
the details of UAV technologies and device specifications used in wild-
fire applications. The fundamental aspects of wildfire management,
including pre-fire, active-fire, and post-fire management are provided
in Sections 4, 5, and 6, respectively. The potential for improved wildfire
modeling in the context of AI-based UAVs is presented in Section 7.
Lastly, Section 8 contains conclusions and future directions.

2. Background and related literature

Given fire’s paradoxical role, the key functions of upcoming tech-
nology are early detection and monitoring of wildfires to identify if the
fire will grow to have positive impacts or not, how to identify if inter-
vention is needed at early stages, and how to decide the optimal fire
management strategies to prevent large or excessively severe wildfires.
Thoughtful observation and intervention are based on understanding
the fire process, identifying, and measuring key environmental metrics
and thresholds, selecting the most appropriate instrument and platform,
and perhaps, integrating observations with software algorithms to pre-
dict phenomena or direct or optimize further observations. We discuss
these different perspectives, concluding each with aspects that remain
to be addressed.
6

2.1. Fire stages-ignition, spread, and aftermath

Wildfire ignitions may be natural (the most common natural source
being lightning) or human-caused. For example, in the U.S., 84% of
fires are human-caused and these account for 44% of the area burned
and extend the length of fire seasons into less favorable seasons [18].
The wildland–urban interface (WUI), though a small percentage of area,
is a primary origin of wildfires – nearly all human-caused – while
human-caused fires account for nearly all (97%) homes endangered
by fire [19]. In the WUI, fires are usually rapidly reported so detect-
ing (that is, identifying a fire is occurring) and locating (pinpointing
a geographical location) are not an outstanding issue. In contrast,
lightning-ignited fires dominate ignitions mainly in sparsely populated
areas of the U.S. Mountain West and, ultimately, these natural fires pro-
duce most of the area burned. Spawned by thunderstorms (which both
provide detection-obscuring cloud cover and moisture), ignitions may
smolder undetected for days until drier conditions support fire spread.
Despite the data from multiple lighting detection networks, directly
associating detected lightning strikes with fire origins can be diffi-
cult [20]. Improved active fire detection algorithms on geostationary
satellites such as GOES may detect an ignition at a very early stage but,
due to their coarse pixel size, cannot geographically locate ignitions
on their own. Encroachment of humans into wildlands, along with the
advent of wireless camera systems (i.e. the Alert Wildfire system), has
improved monitoring of remote forests. Still, rapid, repeated mapping
of the early growth period of either natural or human-caused cause,
along with detailed information about its near environment, remains
challenging and an area where UASs, either alone or working as teams,
may complement existing capabilities.

Whether an ignition progresses into a self-sustaining open-air com-
bustion process depends on whether the heat released by the thermal
decomposition of fuel (primarily vegetation in wildland fires) over-
comes resistance to burning through fuel moisture and limits fuel
availability in either amount or sufficient continuity. While wall-to-wall
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Fig. 6. Influential factors in wildfire spread.
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fuel data at Landsat-scale (30 m) is broadly available, ultra fine-scale
information about the near-fire environment, including weather is no-
ticeably lacking. Fires may transition from one fuel strata to another
– datasets that are being collected with newer instruments such as
airborne or terrestrial light detection and ranging (LiDAR) – such as a
surface fire into tree canopies. Wildfires may burn in either flaming or
smoldering combustion mode, characterized by different temperatures
and emission products. These processes exist within and are shaped
by the fire environment, consisting of spatially varying fuel complexes
(including their thermal and moisture response to weather), weather
conditions (notably wind, temperature, and humidity), and topography
factors. Weather itself is comprised of a range of scales from microscale
eddies to convective-scale cloud downdrafts to mesoscale storms to
synoptic-scale regional weather systems. Conditions may no longer
support sustained flaming combustion, and fires may change to smol-
dering combustion or be extinguished naturally through precipitation,
humidity increase above a threshold, or lack of further fuel.

Considering such a variety of wildfire types and initiatives, gaining
knowledge about the effective factors on wildfire spread is an initial
step researchers take before designing management mechanisms. An
overview of parameters affecting a wildfire is shown in Fig. 6. The
primary factors involved in the ignition are basically the fire triangle,
including Oxygen, heat, and fuel. While many disrupting activities,
such as excessive land use and campfires, may increase the likelihood
of large-scale ignition, many efforts, such as allocating suppressive
resources, play an important role in controlling and eventually ending
a wildfire. Some other factors such as land topography, slope, and
channeling affect fire propagation as well as short-term weather ef-
fects such as wind, temperature precipitation, and humidity affect the
propagation of the fire front line on small and large scales.

Wildfires may build to larger scales to become a dominant regional
weather event and generate plumes that span the depth of the tropo-
sphere and cross continents, the plumes being observable from space,
creating burn scars up to a half million hectares. However, many of
these controlling factors and thresholds occur at scales beneath what
satellites or mesoscale meteorological observational networks detect or
are obscured by canopies. Thus, although landscape-scale fire behavior
simulation has made significant progress since the advent of wall-to-
wall satellite active fire detection observations at resolutions sufficient
to delineate the fire line, investigation into processes during (and
7

applications of modeling of) other periods of fire management has
lacked detailed initiation data and process observations to make similar
progress in understanding fire effects. UAVs’ higher resolution and
greater control over data gathering provide an opportunity for better
process modeling and data-centric approaches.

2.2. Review of the existing survey papers

In the related literature section, we conducted a systematic search
across academic databases to collect the most well-known and relevant
survey papers on wildfire management throughout the period of 2015
to 2023. In this process, we identified existing survey papers with
the keywords ‘‘wildfire’’, ‘‘wildland’’, ‘‘UAVs’’, ‘‘drones’’, ‘‘computer
vision’’, ‘‘deep learning’’, ‘‘remote sensing’’, ‘‘detection’’, and ‘‘mon-
itoring’’. Afterward, the obtained papers are critically analyzed and
evaluated according to their titles, abstracts, findings, and contents,
as well as the number of their citations. This approach enabled us to
select the most relevant papers that align with our survey focus on AI-
based UAVs in multi-stage wildfire management. Eventually, Table 1
highlights the major pros and cons of each survey as well as potential
limitations and technical gaps in each paper.

In 2015, the review paper [30] investigated the application of
different types of UAVs for automatic forest fire activities including
monitoring, detection, and fighting. This paper explored the conceptual
understanding of various UAVs, their models, characteristics, and the
sensors employed in these systems, along with a clear discussion about
the vision-based techniques specifically for forest fire detection and
monitoring tasks. However, it fails to include an in-depth technical
review of UAVs, datasets, and sensors associated with wildfire tasks.
Moreover, it does not cover vision-based techniques, including DL and
RL methods for wildfire detection and monitoring.

In 2016, the survey paper [29] provided a review of manned and
nmanned aerial systems using semi-automated and fully automated
ethods for wildfire detection and monitoring. It sheds light on various
irborne platforms and sensors, as well as remote sensing technologies
or flame and smoke detection, from image processing and hardware
oint of view. Nevertheless, the ML-based approaches as an automated
ystem for fire detection and monitoring are missing. Additionally,
he provided review of aircraft types used for airborne fire detection
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Table 1
Summary of existing survey papers on different aspects of wildfire management.
Year Survey Content included Potential gaps Application domain

2023 [21] • Wildfire statistics, patterns, severity, impacts, and occurrence. • Recent wildfire technology in fire detection,
monitoring, and control.

□✓ Wildfire
management

• Role of remote sensing data, satellite systems, and risk assessment. • Role of remote sensing technology in post-fire
assessment and recovery.

• Wildfire management, modeling, and predicting techniques. • Technical information about AI-enabled UAV in
wildfire management.

2023 [22] • UAV application, technology, sensors, and data gathering. • Does not include UAV classification, models, and
characteristics.

□✓ Agroforestry
management

• Image processing, classification, and segmentation techniques. • Lack of information about detection techniques and
their scope.

• Remote sensing, supervised and unsupervised ML methods. • Most of the recent computer vision DL-based
approaches are missing.

2022 [23] • UAV-based remote sensing methods, DL-based vision algorithms. • Does not include UAV models, characteristics, and
architectures.

□✓ Wildfire detection

• Image detection, classification, and segmentation methods. • Lack of active wildfire monitoring techniques such
as RL methods.

• Wildfire characteristics, datasets, and evaluation metrics. • Only mentions a few wildfire datasets, most of them
not considered.

2021 [24] • UAV types, models, cameras, and weight-based classification. • Summarize a basic overview of UAVs, not their key
concepts.

□✓ Wildfire detection

• Wildfire statistics, datasets, and fire detection frameworks. • Does not consider all the available image and video
wildfire datasets.

• Vision-based hardware, and AI-based software methods. • Only briefly refers to a few AI-based techniques for
wildfire detection.

2020 [25] • Flame detection, smoke detection, and optical remote Sensing. • Only considers detection methods, missing
classification, and segmentation.

□✓ Forest fire
detection

• Terrestrial-based, aerial-based, and satellite-based systems. • Does not mention recent wildfire DL-based and
RL-based approaches.

• Traditional ML-based methods, and detection DL-based methods. • Lack of information about the wildfire datasets,
UAVs, and sensors.

2019 [26] • Vision-based fire detection methods, indoor, and outdoor detection. • A comprehensive overview of wildfire datasets, and
UAVs are missing.

□✓ Fire detection
systems

• CNN-based and deep CNN-based approaches for forest fire detection. • The review of ML-based techniques for fire detection
is not complete.

• Environment types, benchmark datasets, and evaluation metrics. • Does not consider real-time fire detection techniques
such as RL methods.

2018 [27] • Forest fire background, types, classification, and characteristics. • Does not cover wildfire UAVs, monitoring, and
management approaches.

□✓ Forest fire
detection

• Wildfire detection techniques, types, limitations, and comparison. • Only considers a few embedded sensors with UAVs,
excluding cameras.

• Detection system architectures, sensors, and potential applications. • Lack of sufficient review about the forest fire
detection techniques.

2017 [28] • Active Fire detection, mapping, monitoring, and assessment methods. • Does not consider the vision-based UAV systems for
active fire detection.

□✓ Active fire
management

• Fire sensors, remote sensing data, and satellite sensing systems. • Some of the remote sensing methods for active fire
detection are missing.

• Fire management technologies, earth observing systems for active fire. • Satellite sensing systems only include a few methods
and technologies.

2016 [29] • Airborne sensors, technologies, and platforms for wildfire detection. • Various types of aircraft used for airborne fire
detection are not included.

□✓ Wildfire
management

• Flame detection, smoke detection, and UAV-based detection systems. • Does not consider different technologies for flame
and smoke detection.

• Evaluation of sensor technologies, and detection events classification. • UAV-based approaches for fire detection and
monitoring are not discussed.

2015 [30] • UAV-based forest fire detection, monitoring, and fighting technologies. • Despite the validity of the discussed methods, they
are quite outdated.

□✓ Automatic fire
monitoring

• UAV conceptual, types, classifications, characteristics, and sensors. • Lack of technical information about wildfire UAVs,
datasets, and sensors.

• Vision-based techniques for forest fire detection and monitoring tasks. • DL and RL-based methods for fire detection and
monitoring are missing.

• Wildfire management for pre-fire, mid-fire, and post-fire stages.
• Wildfire statistics, characteristics, pattern, impact, and occurrence.
• Wildfire management, detection, monitoring, modeling, and control.

Our
survey

• AI-based methods for fire detection, classification, and
segmentation.

• N/A □✓ Wildfire
management

• Computer vision RL-based techniques for active wildfire monitoring.
• Wildfire UAV types, models, architectures, technologies, and
sensors.
• Wildfire dataset information, types, characteristics, and
applications.
8
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and models is not complete, and the evaluation of the effectiveness of
airborne fire detection systems is inadequate.

In 2017, a review paper titled ‘‘Advances in the remote sensing
of active fires’’ [28] focused on passive satellite sensing methods for
active fire detection, monitoring, and mapping. This paper highlighted
different sensors and remote-sensing platforms utilized in active fire
detection, and how they can enhance the performance of wildfire man-
agement and decision-making. However, some remote sensing tech-
nologies, vision-based UAV systems, as well as various challenges as-
sociated with using remote sensing methods for active fire detection
and monitoring are not discussed in this paper.

A comparative review of various forest fire detection techniques is
provided in [27]. This paper discussed different aspects related to forest
fires including their background, types, and classification. Furthermore,
it highlighted the limitations, gaps, and challenges associated with
different wildfire detection techniques. Nonetheless, this paper does not
comprehensively cover all available wildfire detection techniques, and
the comparison of these techniques is limited to a few parameters. Also,
it should be noted that there is a lack of technical information about
the different sensors employed for forest fire detection.

Paper [26] offered an exhaustive review with particular attention to
different fire detection systems in various environments. It explores AI-
based and vision-based techniques with an emphasis on convolutional
neural network (CNN)-based approaches for fire detection applications.
Additionally, this paper nicely categorizes fire environmental types,
benchmark datasets, and evaluation metrics in the field of fire de-
tection. However, this paper does not discuss an extensive review of
wildfire datasets, real-time monitoring techniques, and how UAVs can
be used in fire detection tasks.

In 2020, a survey paper [25] explored different types of optical
remote sensing systems used for both early fire and smoke detection.
The primary focus of this paper is on traditional and DL methods devel-
oped for various fire detection systems including terrestrial, airborne,
and satellite-based technologies. Finally, it proposes pros and cons of
existing fire detection frameworks and provides some recommendations
for potential future directions. Nevertheless, the paper is limited only to
detection methods and does not include classification or segmentation.
Besides, it is important to note that there is a lack of information about
the wildfire datasets used in the study.

A review of vision-based UAV systems and their applications to
wildfire detection is provided in [24]. This paper focuses on software
algorithms and hardware implementations of computer vision tech-
niques, along with a qualitative discussion about the integration of
these algorithms in the context of fire detection. Although this paper
explores some existing UAV systems and wildfire datasets, a few key
techniques in UAV technologies as well as detailed information about
wildfire datasets are missing. Additionally, it does not explore all the
potential methods for wildfire detection such as RL-based, DNN-based,
and fusion-based frameworks.

In 2022, the paper [23] offers a comparative review of different
DL-based frameworks employed in UAVs for early fire detection. It
provides fluent insights into the potential applications, benefits, and
drawbacks of various vision-based remote sensing techniques and ex-
isting UAV systems. Moreover, it highlights the existing fire detection,
classification, and segmentation approaches for wildfire management
tasks using DL-based algorithms. However, this paper does not consider
some essential topics such as providing enough comparative analysis of
various DL algorithms, describing the available wildfire datasets, men-
tioning the application of RL-based techniques for wildfire monitoring,
and discussing the limitations and challenges associated with UAVs in
wildfire management.

In 2023, two recent survey papers [21,22] offer a comprehensive
review of the advancements in wildfire management and the current
trends on UAV-based technologies for classification and segmentation
tasks using remote sensing data. The first paper, titled ‘‘Advances in
9

the study of global forest wildfires’’ aims to review the recent research,
methodologies, and advancements employed for managing forest wild-
fires and mitigating their ecological and socio-economic impacts. In
addition, it discusses different aspects of forest wildfires, such as mod-
eling, prevention, and prediction. However, not only some aspects of
wildfires, including detection, monitoring, and control are missing, but
also this paper does not include the scope of UAV-based technologies
and remote sensing systems in wildfire management. The second pa-
per, titled ‘‘Latest trends on tree classification and segmentation using
UAV data’’ reviews various UAV sensors and technologies, along with
their applications for efficient wildfire management. Furthermore, it
highlights some recent supervised and unsupervised ML-based frame-
works using remote sensing data to control and mitigate the spread
of wildfires. Nevertheless, this paper fails to cover other aspects of
wildfire management such as recent wildfire technologies for detection,
segmentation, and classification as well as the role of remote sensing
technology in different stages of wildfire.

3. UAV technology and device specifications

This section provides an overview of the existing remote sens-
ing technologies with a particular focus on the latest UAV advance-
ments [31] and device specifications relevant to wildfire monitor-
ing and detection. Remote sensing technologies have recently revo-
lutionized various scientific fields by offering efficient data collec-
tion methods, real-time monitoring techniques, and comprehensive
management strategies across diverse areas [32]. These techniques
significantly improve our ability to address challenges in complex
scenarios by allowing us to analyze vast amounts of data and make ef-
ficient decisions [33]. There are four types of remote sensing technolo-
gies: unmanned aerial-based systems, manned aerial-based systems,
satellite-based systems, and terrestrial-based systems. Fig. 7 provides an
overview of the existing remote sensing technologies along with their
corresponding pros and cons. This figure presents a comparative anal-
ysis of various remote sensing platforms, outlining the strengths and
weaknesses of each system in the context of aerial wildfire management
and data collection.

At the heart of remote sensing technologies for wildfire monitoring
and detection are the UAV platforms [25]. These platforms typically
consist of a remotely piloted aircraft equipped with various sensors
and imaging devices. These sensors and imaging devices provide high-
resolution images and real-time data collection that can be used to
accurately identify potential fire hotspots and track wildfire spread.
The data collected includes temperature, humidity, wind speed, and
smoke density, which are crucial for effective wildfire management.
By using UAVs, researchers and emergency responders can quickly
assess the size, location, and behavior of wildfires, leading to more
prompt and efficient firefighting efforts. Additionally, the use of UAVs
minimizes human risk by allowing for remote monitoring of wildfires,
especially in inaccessible or dangerous terrain [29]. The selection of an
appropriate UAV platform depends on factors such as flight endurance,
payload capacity, maneuverability, and the specific requirements of the
monitoring and detection tasks.

In summary, UAV technology for wildfire monitoring and detection
relies on the selection of suitable UAV platforms and the integration of
various sensors and imaging devices. Understanding the specifications
and capabilities of these UAV systems is essential for effective wildfire
management and timely response to fire incidents. The subsequent
subsections will delve into further detail on specific UAV device speci-
fications, including the types of sensors used, their functionalities, and
their roles in wildfire monitoring and detection.

3.1. UAV types

UAVs, commonly known as drones, have played a significant role in
advancing remote sensing applications. They have emerged as a promis-

ing technology not only for wildfire monitoring and detection but also
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Fig. 7. The strengths and weaknesses of the current remote sensing technologies.
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or a variety of other applications including precision agriculture [34],
nternet of things [35], search and rescue operations [36], infrastruc-
ure inspections [37], wireless communications [38,39], environmental
onitoring [40], and disaster management [41]. Their abilities, such
s providing aerial perspectives, covering large areas, and operating
n challenging environments, make them invaluable tools for various
urposes.
UAVs are typically classified into various groups, considering factors

uch as application, size, weight, cost, design, and endurance. In this
tudy, we have categorized them into three primary categories based on
heir design and configuration: fixed-wing (single-rotor) UAVs, rotary-
ing (multi-rotor) UAVs, and hybrid-wing UAVs [42]. Fixed-wing
AVs have a conventional aircraft design with a single set of wings,
ffering long flight endurance and large payload capacity. They are
uitable for applications requiring long flight times at high altitudes
nd extensive surveillance. UAVs with rotary wings, also known as
ertical take-off and landing (VTOL), offer excellent maneuverability
nd flexibility at low altitudes while collecting high-resolution data.
hese features make them powerful tools for many applications that
eed close-range aerial surveillance and rapid response to fire incidents.
owever, they are unable to fly quickly and spend a lot of time
earching for a large area. Hybrid UAVs combine the advantages of
ixed-wing and rotary-wing UAVs, allowing for horizontal take-off
10

b

nd landing (HTOL) and VTOL modes. Therefore, due to their great
ersatility, adaptability, and endurance, they are appropriate for long-
ange missions, emergency rescues, and surveillance in complex terrain.
evertheless, the installation of multiple wings and rotors can increase
he system’s complexity as well as wind susceptibility.
In the context of wildfire management, some of the most commonly

sed and popular UAVs based on their architectural characteristics
re presented in Fig. 8. They are classified according to the number
f propellers and rotors into bicopters (two rotors), tricopters (three
otors), quadcopters (four rotors), hexacopters (six rotors), and octo-
opters (eight rotors) [43]. Each of them serves different levels of
tability, maneuverability, payload capacity, flight time, and speed.
his diversity makes them suitable for various wildfire applications,
ncluding mapping, detection, tracking, prediction, and monitoring. Ta-
le 2 describes the detailed specifications of the most significant UAVs
n wildfire management applications. Understanding the specifications
nd capabilities of these UAV systems is essential for effective wildfire
anagement and timely response to fire incidents.
These systems are equipped with advanced sensors and cameras that

rovide real-time data on the fire’s behavior, such as its size, spread,
ntensity, and location. This information is invaluable for firefighters
o strategize and allocate resources efficiently. It allows them to have a

etter point of view, which gives them a comprehensive understanding
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Fig. 8. Commonly used UAVs in wildfire management applications according to the basis of the number of propellers. Green propellers represent clockwise (CW) rotation, while
red propellers indicate counterclockwise (CCW) rotation.
of the fire’s patterns and behavior. Furthermore, they can be used
for aerial firefighting, as some models are equipped with the ability
to carry and drop water or fire retardants on specific areas of the
fire. Overall, the utilization of UAV systems in wildfire management
has revolutionized the way we approach and combat these natural
disasters. The subsequent subsection will exclusively discuss the in-
depth details of various sensors employed in UAVs for efficient wildfire
monitoring and detection.

3.2. UAVs’ sensor types

UAV technology for wildfire monitoring and detection relies on
the selection of suitable UAV platforms and the integration of various
sensors and imaging devices. In addition to the UAV platforms, the
devices and sensors carried by these aircraft play a crucial role in wild-
fire monitoring and detection. A variety of sensors can be employed,
11
including optical sensors, thermal sensors, and gas sensors. Optical
sensors, such as high-resolution cameras and hyperspectral images,
capture visual data that can be used for fire detection, smoke analysis,
and mapping of fire-affected areas. Thermal sensors, such as infrared
cameras, enable the detection of hotspots and the measurement of
surface temperatures, facilitating early fire detection and identification
of fire boundaries. Gas sensors, including those for detecting carbon
monoxide and other combustion-related gases, provide valuable infor-
mation about the presence and spread of fires. The integration of these
different sensors within UAV systems allows for comprehensive and
real-time monitoring of wildfire events.

In the context of wildfire management, perception, acoustic, meteo-
rological, navigation, and chemical sensors are the five main categories
of sensors that are broadly employed in UAVs. Fig. 9 provides an
overview of these sensor types, and the details are summarized in the
following.
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Table 2
Detailed specifications of the most significant UAVs in wildfire management applications.
Criteria Bicopter Tricopter Quadcopter Hexacopter Octocopter Additional note

No. Rotors 2 3 4 6 8 □✓ The number of rotors is equal to the number
of fixed-pitch propellers.

Portability Very high Moderate High Low Very low □✓ Octocopters often require special cases for
transportation due to their large size.

Battery life Very low Low Moderate High Very high □✓ UAVs with a greater number of rotors tend
to have longer battery life.

Stability Very low Low High High Very high □✓ The stability of UAVs is closely influenced
by the number of propellers.

Noise level Low Low Moderate High High □✓ Noise reduction is enhanced by optimized
propulsion systems and propellers.

Skill level Beginner Beginner Moderate Advanced Expert □✓ Skill requirements for safe operation increase
with the number of rotors.

Maneuverability Very low Moderate Moderate High Very high □✓ The maneuverability of UAVs is impacted by
the number of its rotors.

Flight time Short Short Moderate Long Very Long □✓ The flight time varies based on the specific
drone’s design, battery, aerodynamics,

1 min–20 min 10 min–30 min 10 min–30 min 20 min–40 min 10 min–60 min and additional sensors such as cameras.

Payload Very low Low Moderate Very high Very high □✓ UAV payload varies based on some factors
including motor power, frame design,

50 g–250 g 500 g–2 kg 1 kg–5 kg 3 kg–15 kg 10 kg–30 kg and the type of payload mounting.

Cost Affordable Moderate Wide range Expensive Very expensive □✓ The cost of UAVs depends on the number of
propellers and rotors, batteries, as

$300–$7k $200–$25k $50–$25k $800–$30k $1k–$40k well as included additional accessories.

Speed Slow Moderate High Very high High □✓ Hexacopters offer a good balance between
stability and payload capacity. They

10mi–30mi 20mi–40mi 20mi–70mi 20mi–100mi 20mi–70mi are capable of faster speeds than others.

Application Pre-Fire Pre-Fire Mid-Fire Mid-Fire Post-Fire □✓ These recommended applications align with
the unique strengths and capabilities

Initial Mapping & Monitoring Firefighting Assessment & of each UAV configuration that designed
Detection Photography & Tracking Support Rehabilitation for a specific purpose.
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□✓ Here are examples of UAV models that align
with the recommended applications in wildfire
management:
Bicopter: Zero V-Copter Falcon
Tricopters: FreeFly ALTA X
Quadcopter: DJI Matrice 300 RTK
Hexacopter: DJI Matrice 600 Pro
Octocopter: Freefly Alta 8
It is worth mentioning that the choice of a
suitable model depends on various factors such
as budget, payload requirements, compatibility
of suitable sensors, and so on. Therefore,
taking these factors into account will help to
make an informed decision in selecting the
most appropriate UAV for wildfire tasks.
• Perception Sensors include RGB, infrared (IR), multispectral
(MS), hyperspectral (HS), and ultraviolet (UV) cameras, as well as
LiDAR [44] and RADAR sensors. RGB cameras are one of the most
used sensors in UAVs that capture images using three primary
color channels (Red, Green, and Blue) in the visible spectrum
band (400 nm to 700 nm). They can detect observable signs of
smoke and flames but are very sensitive to light conditions, and
12

they cannot capture information beyond the visible spectrum. IR
cameras are another essential component of many UAVs that can
capture information in the electromagnetic spectrum (700 nm to
1 mm), which is beyond the human vision range. Although high-
quality IR cameras can be expensive, they can be highly useful
for detecting thermal radiation emitted by objects and surfaces,
especially during night-time operations and smoky conditions.

MS cameras capture images in multiple discrete spectral bands,
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Fig. 9. The most commonly used UAV sensors in wildfire applications.
often including bands beyond the visible spectrum, such as near-
infrared (NIR). They are extensively used for vegetation analysis
and wildfire risks to provide detailed information about plant
health, stress levels, and the presence of dead or dry vegetation
that can serve as fuel for wildfires. The notable limitation asso-
ciated with MS cameras is that processing and managing large
amounts of MS data can be computationally intensive. Unlike
MS cameras, which can capture 5–12 channels, HS cameras can
record hundreds or even thousands number of narrow and con-
tinuous spectral bands. They provide advanced spectral analysis
of vegetation types, mineral compositions, smoke behaviors, and
chemicals present in the landscape. This information can be a
highly valuable tool for comprehensive wildfire management,
from early detection and risk assessment to precise post-fire re-
covery efforts. Their only limitation is that they typically have a
higher cost than MS cameras.
On the other hand, UV cameras can capture ultraviolet light
(10 nm to 400 nm), which is between the range of X-ray wave-
lengths and visible wavelengths. They are extremely sensitive to
UV radiation emitted by flames, smoke, and gases, enabling them
to search for the electromagnetic wavelengths characteristic of
flames, such as vacuum ultraviolet (VUV) and deep ultraviolet
(DUV) regions at around 200 nm. The detectable level of these
wavelengths means a hidden fire risk that is invisible to other
conventional sensors. This ability makes them an invaluable tool
for identifying fires in situations where early and reliable fire
detection is paramount. UV cameras have a limitation in ac-
curately distinguishing between UV emissions from flames and
UV radiation from the sun during daylight hours due to their
susceptibility to sunlight interference. LiDAR is an active laser-
based sensor that can be helpful in a wide range of wildfire
tasks. They can be used not only to generate high-quality data
but also for assessing fuel load, including the height, density, and
volume of vegetation. Moreover, they can be used in infrastruc-
ture assessment, topographic mapping, and vegetation mapping,
which contribute to more effective wildfire management and
accurate fire behavior prediction. In addition to providing a 3D
point cloud of the surface, which includes surfaces like flame,
smoke, land, trees, and more, they can calculate the distance to
the surface. LiDAR offers advantages such as high-accuracy 3D
data, day and night operation, and large coverage areas. RADAR
is another sensor technology that uses radio waves to detect
objects and their motion, even in adverse weather conditions.
UAVs equipped with RADAR sensors can provide valuable data
not only for drones but also for firefighters in dangerous areas
during any weather conditions, for both day and night opera-
tions. They can be highly effective for searching and rescuing
individuals or even other UAVs, analyzing vegetation, mapping
terrain, and providing critical information about fire behavior.
Their limitation lies in the cost and data complexity involved in
13

processing and interpretation.
• Acoustic Sensors encompass a range of devices, including micro-
phones, Doppler sensors, noise dosimeters, vibration sensors, and
infrasound sensors. Microphones are the most common acoustic
sensors employed in UAVs, where they capture sound waves and
then transform them into electrical signals for analysis. They
are used to detect sounds associated with wildfires, such as the
crackling of burning vegetation, the roar of flames, or the pop-
ping sounds created by combustible materials. Various types of
microphones, such as directional or parabolic models, can assist
wildfire systems in identifying the location and intensity of the
fire. Doppler sensors use the Doppler effect to measure the fre-
quency changes in the source of the wave (object) to provide
real-time information about the target’s motion, velocity, and
direction. They can primarily be used for flame detection, smoke
detection, wind monitoring, and hotspot tracking, as well as
integrated with other sensors such as cameras. Noise dosimeters
and vibration sensors are designed to receive and analyze specific
sounds from the environment. Although they are highly like each
other in terms of their purpose and functionality, noise dosimeters
focus on capturing and interpreting acoustic signals and noise
patterns, while vibration sensors are specialized in detecting phys-
ical movements and environmental vibrations. Additionally, they
serve as valuable tools to ensure the stability, safety, and orienta-
tion of UAVs during wildfire operations. Infrasound sensors detect
low-frequency sound signals that are typically below the range of
human hearing (20 Hz). They can provide a comprehensive view
of fire behavior, fire location, and fire spread by generating data
on wind patterns, atmospheric disturbances, and fire movements.

• Meteorological Sensors include ceilometers, thermometers,
anemometers, hygrometers, and barometers technologies. These
sensors are used to measure various weather parameters that can
directly affect the behavior and spread of wildfires. Ceilometers
are valuable tools for calculating cloud height, smoke visibility,
and dust aerosol. They emit a laser beam and measure the time
it takes for the beam to return from the target particles. Ther-
mometers are widely utilized to measure air temperature, while
anemometers are used to provide critical information about wind
speed and direction. They provide accurate and real-time data on
fire and wind behavior, which allows firefighters to enhance their
planning for controlled burns and enables UAVs to conduct effi-
cient aerial firefighting operations. Hygrometers are another type
of meteorological sensor employed in UAVs to measure humidity
levels during wildfires. It is an important parameter because a
low level of humidity means high flammability of vegetation,
whereas high humidity levels indicate that it is difficult for fires
to spread. Lastly, barometers are used to measure atmospheric
pressure, including smoke and dust. This information is valuable
for forecasting short-term weather changes that may affect wind
patterns, temperature, and humidity, all of which have an impact
on the behavior of fires. It should be noted that these sensors
can be integrated with other sensors, such as imaging cameras or

sound sensors, to provide more in-depth wildfire management.
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• Navigation Sensors comprise a selection of devices, including
ultrasonic, GPS, geomagnetic navigation system (GNS), and in-
ertial measurement unit (IMU) sensors. Ultrasonic sensors use
high-frequency sound waves to determine the distance to an
object. They measure the distance to an object by calculating time
delays between the sending and receiving of the ultrasonic pulse.
They can help not only UAVs with altitude control and obstacle
avoidance, such as trees, power lines, or other UAVs, but also fire-
fighters in identifying the front fire location for efficient real-time
fire tracking and monitoring. In the context of UAVs for wildfire
applications, both GPS and GNS can be used for navigation and
tracking. They rely on satellite signals to provide accurate time
and location information about the fire or UAVs. However, GNS
offers more advantages in terms of accuracy, reliability, and ro-
bustness due to their multi-constellation capabilities, particularly
in challenging environments where GPS signals can be obstructed.
The last widely used navigation sensor is IMU, which typically
consists of three components, including accelerometer, gyroscope,
and magnetometer sensors. Accelerometers measure linear accel-
eration along different axes (generally X, Y, and Z), allowing the
IMU sensor to identify changes in velocity and position. Gyro-
scopes provide valuable information about the orientation and
angular velocity by measuring rotational motion around the 3-
axis. Lastly, magnetometers are used to detect the local magnetic
field for a more efficient UAV heading or compass direction. They
can enhance navigation performance and solve gyroscope drift,
especially when GPS signals are not available. Overall, these types
of sensors are essential for UAV stabilization and ensure more
accurate fire detection, monitoring, and modeling.

• Chemical Sensors include oxygen (O2), particulate matter (PM),
methane (CH4), carbon dioxide (CO2), carbon monoxide (CO)
sensors. O2 sensors are used to detect and monitor changes in
oxygen levels during wildfires. A high level of oxygen shows the
presence of fire, while a low level of oxygen can signify the
presence of an ongoing fire, particularly in smokey areas. PM
sensors [45] perform 3D stereoscopic measurements of airborne
particles, including PM1, PM2.5, and PM10 in the air. Wildfires
produce a substantial amount of PM, which has a negative impact
on both air quality and human health. PM sensors are essential to
assess smoke plumes and fire risks while providing critical infor-
mation for firefighters in both mid-fire and post-fire management.
CH4 sensors measure the amount of methane gas that can be
released from vegetation and soil during wildfires. An increase
in the concentration of CH4 indicates the presence of potential
fire risk, whether active or hidden. CO and CO2 sensors are used
in UAVs to detect carbon emissions during fires. By tracking
the level of these gases in the wildfire, not only UAVs but also
firefighters can be more accurate and efficient in identifying fire
and hotspot locations. Finally, monitoring changes in different
types of gas levels, both increases and decreases, is a crucial
task of wildfire management and helps assess the severity and
behavior of the fire.

3.3. Challenge, discussion, and future directions

UAV technology for wildfire monitoring and detection relies on
the selection of suitable UAV platforms and the integration of various
sensors and imaging devices. Understanding the specifications and
capabilities of these UAV systems is essential for effective wildfire
management and timely response to fire incidents. Several challenges
still exist in UAV technology for monitoring wildfires, creating dif-
ficulties in smoothly implementing and fully realizing the potential
of these systems. Limited endurance and range constrain the contin-
uous coverage of extensive wildfire-prone areas. Payload limitations,
especially for smaller UAVs, pose challenges in integrating advanced
sensors without compromising flight performance. The vast amount
14
of data collected from various sensors, particularly multispectral and
hyperspectral, requires efficient processing, storage, and analysis. Ad-
verse weather conditions, such as strong winds or low visibility due to
smoke, impact UAV operations. Navigating diverse global regulatory
frameworks adds complexity to deploying UAVs in wildfire-prone areas.

Addressing these challenges necessitates collaborative efforts from
researchers, industry stakeholders, and policymakers. Continuous tech-
nological innovations, such as improved battery technologies and
lightweight materials, can enhance UAV endurance and payload ca-
pacity. Advancements in data analytics and artificial intelligence can
optimize processing, enabling real-time analysis and decision-making.
Interdisciplinary collaboration among experts in UAV technology, me-
teorology, fire ecology, and policy-making is crucial for holistic solu-
tions. Developing more sophisticated autonomous systems can enhance
UAV capabilities, allowing them to operate in complex environments.
Advances in sensor fusion techniques and miniaturization can lead to
more compact and versatile UAV systems. Exploring synergies with
emerging technologies, such as 5G connectivity and edge computing,
can contribute to more robust and interconnected UAV systems.

In summary, overcoming challenges and leveraging future opportu-
nities will enable UAV technology to have a more substantial impact on
wildfire monitoring and managing. Continuous research, technological
innovation, and collaborative efforts are essential for realizing the
full potential of UAVs in addressing the complex challenges posed by
wildfires.

4. Pre-fire management

Management decisions made before a fire starts, such as choices
about fuel treatments, forest access, and pre-fire preparation, are crit-
ical to reaching desired outcomes. Wildfire fire behavior is influenced
by three factors: fuels, weather, and topography. Out of these fac-
tors, vegetative fuel is inherently the factor most amenable to forest
management and ecological restoration for fire hazard reduction [46].
Appropriate pre-fire fuel management increases fire personnel safety,
reduces suppression costs, and facilitates ecological resilience [47].
Examples of key fuel treatment activities include thinning of trees to
break up connected tree canopies and fuel ladders, applying prescribed
fires to reduce fuels and restore fire’s ecological role, and removing
invasive non-species [48]. Fuel conditions evolve over years to decades,
so their treatment must be planned and implemented long before a
fire event. AI-enabled UAVs could play an important role in supporting
data-driven decision-making, modeling, and monitoring, given their
capabilities for detailed measurement and monitoring. Relatively few
studies, however, have applied AI and drones to pre-fire management.
In this section, we present three aspects of pre-fire management suitable
for applying AI and UAVs: fuel monitoring (and management), fire
hazard modeling, and fire detection. Wildfire detection research using
AI-enabled UAVs has seen remarkable growth, with similar technolo-
gies adopted for real-world use. In contrast, fire hazard modeling has
garnered significantly less attention to date despite the need to improve
current modeling approaches and data inputs.

4.1. Fuels monitoring and management

Traditional fuel monitoring methods can be divided into direct or
remotely sensed measurement approaches. Destructive sampling and
transect-based fuel measurement, which directly measure the fuel,
remain some of the most accurate monitoring methods [49]. These
methods are very accurate at a local scale, but often fail to capture
the heterogeneity of fuel loading common in forested ecosystems and
can be time-consuming to measure at the forest and landscape scales
while exposing field workers to potential hazards. Remotely sensed fuel
measurements often use spatial data such as ground photos, satellite
and aerial imagery, and 3-dimensional datasets derived from LiDAR
and photogrammetry [50]. Remotely sensed data sets are typically
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trained using ground-truth data to provide fuel estimates with known
accuracy (e.g., [51]). Remote sensing provides wall-to-wall coverage
of forests, barring obstructions such as cloud or tree canopy cover,
and is only temporally limited by the revisit times of the spatial data.
The remotely sensed fuel models are trained using direct samples, and
the performance of these models may be limited by the accuracy of
both datasets. Advances in UAVs and AI have shown the potential to
overcome these limitations.

Recently, UAVs and machine learning have been implemented to
monitor fuel conditions [52]. At the current stage of technology, the im-
agery is processed post-flight, so it is not part of the mission planning or
decision-making of the UAV. However, future directions for UAV appli-
cations could provide real-time AI analysis that would guide appropri-
ate adjustments of the mission. AI can efficiently process large datasets
of diverse and heterogeneous fuel characteristics. Hartley et al. [50]
ound that UAV-derived estimates of biomass were highly accurate
sing deep learning to classify the vegetation types (R2 = 0.87, RMSE
11.3%). They used a convolutional neural network to classify the
AV-derived orthomosaic into five fuel types, improving the model
erformance [50]. Studies comparing various machine learning ap-
roaches found all models performed well when modeling individual
ree metrics from UAV-derived laser scanning data: support vector
egression (SVR), random forest (RF), neural networks, and extreme
radient boosting. Other studies have successfully used AI to classify
hree-dimensional point clouds derived from UAVs to extract tree met-
ics for a forest plot [53]. The forest structural complexity tool uses
ointNet to classify the point cloud into various vegetation types before
enerating individual tree metrics with up to 95% accuracy [54].
In our search for AI applications using UAVs, we found many studies

hat applied machine learning models to data collected with other
latforms, such as manned aircraft and satellites. We also noted many
tudies that used UAVs but not AI. The integration of UAVs with
I technologies is still evolving in this interdisciplinary environment.
esearch has shown that AI approaches to processing UAV-derived data
re comparable to traditional methods and future research may include
ntegration of AI as part of on-board processing for real-time results.

.2. Fire hazard and risk assessment

Fire is a complex interaction of many factors; clarifying technical
erms and correctly utilizing them is critical to interdisciplinary re-
earch. Fire hazard refers to ‘‘a fuel complex, defined by volume, type
ondition, arrangement, and location, that determines the degree of
ase of ignition and of resistance to control’’, exclusive of weather or
mpacts to values at risk [55]. Fire risk is ‘‘the chance of fire starting,
s determined by the presence and activity of causative agents’’ [55].
hese disparate terms have been applied imprecisely or with alternative
efinitions, sometimes causing confusion [56], because research in
ther disciplines such as natural hazards take a broader definition of
isk: the expectation of loss or benefit, including occurrence and poten-
ial impacts of the natural hazard [57]. Translated to fire research, risk
ould be the likelihood, intensity, and effects (socially, ecologically,
nd economically) from wildfires. Here, we use the broader natural
azards definition of wildfire risk to focus on research that applies
I and/or UAVs to model all the environmental and social elements
ssociated with wildfire.
Reducing risk is often the main objective of fuels management

nd fire suppression. Wildfires historically were a natural and cultural
omponent of nearly all terrestrial ecosystems, but in many cases wild-
ire characteristics have changed from those of the past [58] and/or
he values at risk in contemporary society have led to current fire
uppression policies. Although fire hazard and risk are challenging to
haracterize, ML-based models and AI-enabled UAVs may improve our
nderstanding and predictive capabilities of fire risk. Comprehensive
15

atasets are rare and dependent on local inputs, climate change and
unprecedented forest conditions are forming new fire hazard scenar-
ios, and validating the predictive model necessitates extensive in situ
observation or ex-situ replication.

Recently, research has applied AI to fire risk predictive models [59–
62]. Despite each project using model inputs corresponding to a fire
risk model (weather, fuel, anthropogenic factors), the final layer is
usually labeled other than the natural hazards definition (predicted
fire severity, fire hazard, fire ignition index). Zald and Dunn [61]
used a random forest model with very similar parameters to those
of Costa-Saura et al. [59], finding fuel characteristics are important
predictors of fire severity. Ghorbanzadeh et al. [60] used a neural
network to model fire susceptibility and coupled the layer with a social
and infrastructural vulnerability layer using a multi-criteria decision-
making algorithm. This resulted in a ‘‘forest fire risk’’ map, though it
was not validated [60].

One challenge of fire risk modeling is acquiring spatially and tem-
porally comprehensive datasets. Fine-scale weather, fuels, wildfire igni-
tions, and infrastructure/values data are needed to model and simulate
wildfire behavior, risk, and other phenomena [63]. AI-enabled UAVs
have useful attributes for collecting this data, sampling at scales nec-
essary for advanced fire behavior simulation models. These datasets
and the application of AI would vastly improve current knowledge
gaps of how low-intensity prescribed fires can help managers reduce
future wildfire impacts. Fire modeling often employs satellite-derived
imagery from relatively low-resolution platforms (i.e., LANDSAT and
MODIS) as the geospatial input, limiting results to stand and landscape
scales [64]. AI-enabled UAVs could serve as a source for sub-meter
resolution data sources and capture data such as thermal imagery to
be used for validation.

4.3. Challenge, discussion, and future directions

As described above, AI-enabled UAVs could add detail, precision,
spatial accuracy, and temporal updating capabilities with the poten-
tial to substantially improve pre-fire planning, such as fuel treatment
design, and prevention efforts, such as public education in areas of
high fire risk. This improved capability could help inform strategies
for early warning systems such as the location of AI-enabled camera
systems for smoke detection. In effect, AI-enabled UAVs could facilitate
a shift toward data-based management decisions in the pre-fire context.
Expanding further on the comparison between various pre-treatment
methods, traditional approaches such as manual surveys and satellite
imaging, while they are effective in wildfire management, often lack
the immediacy and granularity that AI-enabled UAVs offer. Manual
surveys are time-consuming and labor-intensive, and satellite images
can suffer from cloud cover interference and infrequent updates. In
contrast, AI-enabled UAVs provide high-resolution, real-time data that
can be crucial for identifying emerging fire risks and enhancing the
effectiveness of pre-fire planning and prevention strategies.

Furthermore, compared to traditional early warning systems, which
primarily rely on static sensor networks and human observations, the
dynamic nature of AI-enabled UAVs allows for adaptive monitoring
strategies. It means that areas of interest can be monitored more fre-
quently and with greater detail, leading to earlier detection of potential
fire outbreaks. The integration of AI further amplifies this capabil-
ity by enabling the analysis of vast datasets to predict and pinpoint
likely fire ignition points based on historical data and real-time con-
ditions. Lastly, within the scope of post-fire management, the utility
of AI-enabled UAVs extends to assessing damage, identifying hotspots
that may reignite, and guiding reforestation efforts. This comprehen-
sive approach not only aids in immediate post-fire response but also
contributes to long-term recovery and resilience planning.

AI-enabled UAVs present new opportunities to study pre-fire fu-
els, risk, and detection, but more research is needed, and significant
challenges exist. Fuels monitoring and management are limited by

the coverage and resolution of current data inputs. Additionally, fire
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risk modeling requires fine-scale datasets with short temporal revisits.
AI-enabled UAVs could close this data gap, providing detailed image
sets of pre-fire conditions and the resulting effects. Currently, UAV
operation in the United States is limited to operations within line of
sight, below 122 meters above ground, and the requirement that one
pilot must continually operate the UAV. The recent FAA’s BEYOND
program aims to determine the standards and guidelines to enable
beyond visual line of sight (BVLOs) operation of UAVs. If it is found
that safety could be maintained under less restrictive regulations, future
advancements could include fleets of UAVs for improved coverage by
sensors. One pilot could conceivably operate a UAV fleet, perhaps
with AI assistance. An expanded UAV operational environment could
make UAVs usable by first responders such as wildfire crews to get
site-specific information on safety, fire behavior, and access. Future
research is needed to test AI-enabled UAVs in the field and assess the
safety and practicality of these options.

5. Active-fire management

Once ignited, fires can rapidly increase in size and complexity. Even
following ‘‘detection’’, information and resources must be gathered. In
the active-fire phase, the rapid advancements in computer vision tech-
niques become invaluable tools for efficient wildfire management. This
section discusses the realm of active-fire phase management systems,
emphasizing the critical role played by UAVs equipped with cutting-
edge AI technologies. Our exploration encompasses a wide range of
studies that engage computer vision techniques, with a particular focus
on machine learning and deep learning algorithms. An in-depth analysis
of the wildfire scenes can be achieved through various image processing
tasks, including detection, classification, and segmentation techniques.
Additionally, we delve into the unexplored territory of RL algorithms
and their potential applications in wildfire monitoring tasks. Lastly,
effective wildfire control is essential for minimizing the damage caused
by wildfires, preventing the fire from further spreading, protecting lives
and property, and restoring ecological balance in affected areas. To
this aim, various methodologies and strategies are explored to suppress
wildfires by providing real-time data and decision-making support to
firefighting teams and AI-enabled UAV systems.

Generally, active-fire management algorithms can be broadly cate-
gorized into one of the following three types: supervised, unsupervised,
and agent-based learning. Fig. 10 provides a comprehensive overview
of the existing ML techniques along with their potential applications
relevant to wildfire management. In supervised learning, algorithms are
trained using labeled data, where each input sample is paired with its
corresponding output label. The goal of supervised learning is to learn
a mapping function that can accurately predict the labels of unseen
data points. These algorithms are frequently used for wildfire tasks in-
volving detection, prediction, and assessment. However, unsupervised
algorithms are characterized by their capability to learn solely from
unlabeled input data, meaning that the algorithms discover patterns
and relationships in the data without any specific guidance or labeled
samples. Unsupervised learning is particularly useful when dealing with
large amounts of unlabeled data where manual labeling may not be
feasible. These algorithms are extremely beneficial for wildfire tasks
related to detection, modeling, and mapping. Agent-based algorithms
are a type of computational learning system that learns by interacting
with an environment and receiving feedback in the form of rewards.
They involve single or multi-intelligent agents to assess situations, take
actions, and then make sequential decisions in a complex system to
maximize cumulative rewards. These algorithms are commonly unsu-
pervised and rely on partial knowledge of the target variables, which
necessitates the development of generalizable models [65]. They offer
valuable insights and decision support in domains where traditional
mathematical models or statistical approaches may not capture the
full complexity of the system. They can be highly useful for wildfire
16

monitoring and control tasks.
This section focuses on three primary tasks that are considered
during this phase. Section 5.1 discusses the latest advanced wildfire
detection techniques through both ML-based and DL-based approaches,
respectively. ML-based techniques include supervised and unsupervised
algorithms, while DL-based techniques include classification, segmen-
tation, and object detection algorithms used in wildfire science and
management. Section 5.2 explores RL-based wildfire monitoring tech-
niques, including agent-based learning algorithms. Lastly, Section 5.3
focuses on the wildfire control methods in facilitating effective wildfire
management.

5.1. Wildfire detection

Early wildfire detection and rapid suppression are imperative during
critical fire weather events for a successful initial attack response de-
tection. Fires successfully contained during the initial attack phase are
significantly less likely to grow and cost. Typically, most wildfires are
detected using fire lookouts and public reporting. While fire lookouts
are well-trained and accurate, they are limited by daytime operations,
topographic occlusions, and complacency. Given appropriate commu-
nication and operational redundancy, the use of AI-based fire detection
could minimize exposure to fire personnel and improve current fire
detection capabilities.

Wildfire detection using computer vision techniques involves the
application of both ML and DL algorithms to analyze the data and
identify the presence of wildfires. ML-based algorithms can be trained
on both image and video datasets to learn features associated with
wildfires, such as smoke, flames, or changes in vegetation. Afterward,
they can be deployed on various AI-based systems such as UAVs to
automatically receive, process, and monitor the data streams, enabling
the early detection of wildfires or active-stage fire control. In con-
trast, DL algorithms, particularly Deep Neural Networks (DNNs), have
demonstrated their significant performance in dealing with highly com-
plex problems within wildfire management tasks. DL-based algorithms
can process large amounts of data, enabling quick, efficient, and more
accurate real-time wildfire detection. Recently, both ML-based and
DL-based algorithms have proven their potential effectiveness in im-
proving the reliability, robustness, and efficiency of wildfire detec-
tion techniques [66–68]. In the subsequent subsections, we will delve
deeper into the specific methodologies and advantages of ML-based and
DL-based techniques and their applications to wildfire detection tasks.

5.1.1. ML-based techniques
Machine learning is a subset of AI that has proven to be a powerful

tool in various domains. It can be defined as a group of techniques
utilized for analyzing a large amount of data to discover hidden pat-
terns or inherent structures. Among the potential applications of ML,
wildfire management is a significant domain where ML techniques have
been extensively used for various tasks, including wildfire detection,
prediction, and mitigation. ML techniques not only leverage data from
various remote sensing sources, such as satellite and drone imagery,
for further processing but can also be employed on UAVs for real-
time fire detection and monitoring. They trained to develop predictive,
descriptive, or intelligent models related to the problem for improving
decision-making performance during pre-fire, mid-fire, and post-fire
management. Additionally, ML can also aid in optimizing resource
allocation and response strategies, ultimately helping to minimize the
impact of wildfires on ecosystems and human lives.

Supervised learning methods are typically divided into two major
types, including classification and regression tasks. Each of these tasks
plays a significant role in different wildfire stages, particularly in
early wildfire detection and prediction. The purpose of classification
tasks is to assign a set of input data to classes, while regression tasks
aim to predict continuous numerical values. Classification techniques
can be used to identify various types of vegetation and terrain that

are vulnerable to wildfires. This information can help in identifying
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otential fire-prone areas and implementing preventive measures. On
he other hand, regression techniques can be employed to predict the
pread and intensity of wildfires based on various environmental factors
uch as temperature, humidity, and wind speed. These predictions aid
n early wildfire detection and enable authorities to take prompt action
o minimize the damage caused by wildfires.
Table 3 provides an in-depth summary of supervised learning al-

orithms, along with their potential applications to wildfire manage-
ent applications. Additionally, the table includes information on the
dvantages and disadvantages associated with supervised ML-based
lgorithms.
Within the domain of unsupervised learning, we can categorize

lgorithms into two primary tasks: clustering and dimension reduction.
ata clustering [104,105] is one of the most popular techniques in

this category that does not require any prior knowledge about data.
It involves the process of separating data points into distinct clusters,
where the data within the same cluster must be extremely like each
other, while the data within different clusters must be highly dissimilar
to each other. Clustering algorithms are designed to facilitate the iden-
tification of wildfire hotspots, enable early fire detection, estimate fire
perimeters, and provide critical support for firefighters. In contrast, the
dimension reduction technique [106,107] is the process of identifying
17

m

independent features and removing irrelevant or redundant ones from
the dataset. In high-dimensional datasets, unnecessary features not
only increase computational complexity but also negatively affect the
performance of learning algorithms [108,109]. Therefore, dimension
eduction algorithms simplify complex environmental data, reveal hid-
en patterns in wildfires, identify factors affecting fire behavior, and
ltimately contribute to more efficient wildfire management.
Table 4 provides an in-depth summary of unsupervised learning

lgorithms, as well as their potential applications to wildfire man-
gement applications. Additionally, the table includes information on
he benefits and limitations associated with unsupervised ML-based
lgorithms.

.1.2. DL-based techniques
Deep learning, another subset of AI, has emerged as a transformative

nd highly influential field in recent years. It encompasses a class
f algorithms and neural network architectures that have displayed
emarkable capabilities in handling complex and large-scale tasks. In
he realm of wildfire management, DL techniques have gained promi-
ence for their prowess in tackling various challenges, especially in
he context of wildfire detection, classification, and segmentation. DL

odels have the capacity to automatically learn inherent patterns and
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Table 3
Summary of the supervised ML-based algorithms for wildfire management tasks including detection, prediction, mapping, and classification techniques.
Classification Regression

Method Definition Methodological Application Method Definition Methodological Application

NB Naive Bayes It is a probabilistic
classifier that can
efficiently identify the
presence or absence of
wildfires and assess their
severity and characteristics
based on sensor
information.

Wildfire Risk
Assessment [69]
Fire Prediction &
Modeling [70]

LR Linear
Regression

It is a statistical modeling
algorithm used to analyze
the relationship between
dependent and
independent factors to
examine the occurrence
and behavior of wildfires.

Forest Fire
Prediction [71]
Wildfire Duration
Estimation [72]

DT Decision Tree It is a non-parametric
algorithm that can be used
for making decisions and
determining appropriate
actions by analyzing
environmental factors
related to wildfires.

Wildfire Pattern
Analysis [73]
Vegetation
Classification [74]

DT Decision Tree DT Regression is used to
predict continuous
variables including fire
spread rates or burned
area sizes, based on
different sensors’ data,
such as weather conditions
and fuel types.

Fire Susceptibility
Mapping [75]
Wildfire Evacuation
Planning [76]

RF Random
Forest

RF is an ensemble learning
method that can predict
fire occurrence, severity, or
behavior based on training
multiple bagged DTs while
improving wildfire
reliability and accuracy.

Wildfire Occurrence
Prediction [77]
Wildfire Severity
Mapping [78]

RF Random
Forest

RF regressions are
employed in wildfire
management tasks to
assess the potential risks of
fire by fusing various
features such as weather
conditions, terrain types,
and fuel sources.

Wildfire Risk
Assessment [79]
Weather Analysis
[80]

AB Adaptive
Boosting

It is typically used to boost
the performance of less
powerful classifiers by
combining them. AB
effectively improves the
accuracy and reliability of
wildfire detection
techniques.

Wildfire Risk
Prediction [81]
Early Smoke
Detection [82]

RR Ridge
Regression

It is a statistical method
employed to analyze and
predict factors that impact
wildfires. It adds a penalty
term to LR model, which
improves stability while
preventing overfitting.

Wildfire Fuel
Prediction [83]
Wildland Smoke
Detection [84]

BC Bayesian
Classifier

It uses Bayesian probability
principles to analyze
sensor data and determine
the likelihood of fire or
smoke presence. It is useful
in wildfire risk assessments
and response strategies.

Wildfire Behavior
Prediction [85]
Wildfire Smoke
Detection [86]

LR Lasso
Regression

It is a statistical technique
that retains essential
predictive features for
better decision-making in
wildfire management tasks
by penalizing less
significant factors.

Wildfire Risk
Assessment [87]
Fuel
Characterization
[88]

LR Logistic
Regression

LR algorithms can be
employed to analyze the
relationship between
various factors received by
sensors and the risk of
wildfires to provide
insightful decision
strategies.

Wildfire Ignition
Analysis [89]
Wildfire Drivers
Modeling [90]

PR Polynomial
Regression

PR algorithm used to
understand complex
relationships between
wildfire factors. It fits a
polynomial curve to the
data and then aids in more
efficient wildfire
management.

Human-caused
Wildfire [91]
Earth Temperature
Analysis [92]

KNN K-Nearest
Neighbors

It is a non-parametric
algorithm that classifies
data based on their
similarities. KNN can be
applied to wildfire
applications for making
real-time decisions for fire
impact mitigation.

Wildfire
Susceptibility
Mapping [75]
Wildfire Damage
Assessment [93]

MLR Multiple
Linear
Regression

It is a statistical method
that determines the
optimal linear equation by
minimizing discrepancies
in sensor data, enabling
quantitative fire analysis
for proactive wildfire
management.

Wildfire
Susceptibility [94]
Fire Occurrence
Modeling [95]

SVM Support
Vector
Machine

The primary goal of SVM
algorithm is to find the
best-fitting hyperplane in
N-dimensional space. It is
useful to ensure model
robustness against
changing conditions during
wildfires.

Wildfire Probability
[96]
Wildfire
Identification [97]

SVR Support
Vector
Regression

SVR models find the
best-fitting hyperplane
based on convex
optimization to accurately
separate data. They are
suitable for modeling
complex relationships in
wildfire behavior.

Wildfire
Susceptibility [98]
Wildfire Spread
Prediction [99]

(continued on next page)
representations from diverse data sources, making them well-suited for
tasks like image recognition, which is crucial in identifying wildfire
18
occurrences. They can process a wide array of inputs, including high-
resolution satellite images, aerial photographs, UAV-based imagery,
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Table 3 (continued).
ANN Artificial

Neural
Network

ANNs are computational
learning systems that try
to analyze and translate
inputs into a desired
output, making them
suited for wildfire
detection, severity, and
spread prediction.

Wildfire Occurrence
Estimation [100]
Wildfire Break
Maintenance [101]

ANN Artificial
Neural
Network

ANN regression models are
widely used to capture
nonlinear patterns in
wildfire behavior
prediction, risk assessment,
and the optimization of
firefighting strategies.

Wildfire Scale
Prediction [102]
Wildfire Occurrence
Prediction [103]

Supervised Learning
Advantages

Supervised Learning
Disadvantages

□✓ Performance Supervised learning
algorithms can achieve
reasonable accuracy in
various wildfire tasks.

To this aim, they
need to be trained
with sufficient and
appropriate data.

□✓ Data
Acquisition

Supervised methods
heavily depend on the
quality and quantity of
training data points.

Inadequate or
biased training data
points lead to a
poor result.

□✓ Applicability They can make predictions
and classifications for a
wide range of wildfire
applications.

These applications
include detection,
prediction, and
assessment.

□✓ Resource
Demand

Some supervised
algorithms require
extensive computational
power and memory.

Their training phase
can be highly time
and
energy-consuming.

□✓ Automation They are able to fully
automate wildfire tasks
such as fire detection and
monitoring.

It contributes to
reducing the
necessity of human
involvement.

□✓ Overfitting
Risk

There is a substantial risk
of overfitting, where the
model fits the training
data noise.

Overfitting generally
happens when the
models are overly
complex.

□✓ Customiza-
tion

They can be customized
for a specific wildfire task
to handle large and
complex problems.

Customization is
performed through
precise
hyper-parameters
tuning.

□✓ Inter-
pretability

The black-box nature of
some algorithms makes it
hard for humans to
understand.

As a result, it is
difficult to solve
errors and regulate
the model.

□✓ Consistency Supervised methods
provide consistent results
for various wildfire
scenarios.

They can be scaled
and adapt to
changing
environmental
conditions.

□✓ Data
Collection

Although a high-quality
dataset is essential for
training process, it is a
challenging task.

Challenges include
data labeling,
quality, diversity,
and accessibility.
Fig. 11. The overall architecture of wildfire classification framework based on deep CNN network.
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nd even real-time video streams from surveillance cameras. Taking
dvantage of these capabilities, DL techniques contribute to enhancing
ildfire management by providing accurate and timely information not
nly for active-fire detection but also for real-time fire monitoring and
ost-fire analysis.
In the following, we provide a comprehensive review of recent

nd powerful DL-based wildfire detection approaches, including those
elated to classification, segmentation, and object detection tasks.

.1.2.1. Wildfire classification approaches. Wildfire classification ap-
roaches aim to accurately categorize different types and severity
evels of wildfires. These approaches leverage deep learning techniques
o analyze various features such as flame color, smoke density, and
emperature patterns to identify and classify wildfires. Through precise
ildfire classification, these methods aid in assessing the potential risk,
etermining appropriate response strategies, and allocating resources
fficiently for the control and administration of wildfires. The general
rchitecture of the wildfire classification framework, which is primarily
ased on the deep CNN network, is illustrated in Fig. 11.
Wildfire classification based on deep CNN networks consists of two
ain components: feature learning and feature classification. Feature
earning block uses a set of convolutional layers and pooling layers,
19
hile feature classification block uses a series of fully connected layers
nd a single flattening layer.
Convolutional Layer is responsible for feature extraction tasks from

nput data. It performs convolution operations on the image data to
dentify specific patterns, such as edges, shapes, and textures in images.
ach convolution operation comprises a small filter (also known as a
ernel) with learnable parameters (weights) that are fine-tuned during
he training process. Afterward, an appropriate activation function
transfer function) is used to introduce non-linearity into the net-
ork, enabling deep CNN models to learn and approximate complex
ata relationships. rectified linear unit (ReLU) [137], dynamic ReLU
DY-ReLU) [138], Swish [139], and Elastic exponential linear unit
EELU) [140] are a few recent and powerful activation functions specif-
ically dealing with classification and detection tasks. Lastly, the result
of this layer is a feature map, which presents information about the
features found in the input data.

Pooling Layer down-samples the spatial dimensions of the feature
maps to minimize the number of parameters within the network while
preserving the most essential information. Some of the latest and most
popular pooling operations commonly used in image classification tasks
are max and average pooling, compact bilinear pooling (CBP) [141],
and spatial pyramid matching (SPM) [142].
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Table 4
Summary of the unsupervised ML-based algorithms for wildfire management tasks including detection, prediction, mapping, and classification techniques.
Clustering Dimension reduction

Method Definition Methodological Application Method Definition Methodological Application

KM K-Means KM is regarded as the
most popular clustering
algorithm that is used to
partition data points into K
clusters based on various
similarity measurements. It
can be employed in UAVs
for forest fire monitoring
and analysis.

Wildfire
Determination [110]

Forest Fuel
Management [111]

AE Auto-
Encoders

AEs are ANN-based
methods where they try to
compress the data into
lower dimensions and then
decode them to minimize
the reconstruction error.
This process is useful in
identifying hidden patterns
in wildfires.

Fire Detection [112]
Fire Detection [113]

HC Hierarchical
Clustering

HS algorithm generates a
tree-based of clusters by
iteratively dividing and
categorizing data points
using different linkage
methods. They are suitable
for exploring the
hierarchical association
within wildfire incidents.

Wildfire UAV
Optimization [114]
Fire Danger Analysis
[115]

MA Meta-
heuristic
Algorithms

MAs can be employed as a
dimension-reduction
technique to identify the
most essential features
within the data. They
serve as valuable tools
when dealing with
high-dimensional data
received from UAv sensors.

Wildfire
Susceptibility
Mapping [116]
Wildfire Monitoring
[117]

MA Meta-
heuristic
Algorithms

MAs are designed to
discover the search space
to extract the best possible
solution. They are widely
used in solving complex
data clustering tasks such
as optimizing resource
allocation and arranging
firefighting UAVs.

Fire Susceptibility
Mapping [118]
Wildfire Path
Planning [119]

LDA Linear
Discriminant
Analysis

LDA considers a linear
combination of features to
provide greater separation
between classes. It
provides a more accurate
representation of the data
while achieving the highest
efficiency in wildfire
modeling and analysis.

Wildfire
Susceptibility
Mapping [120]
Fire Outbreaks
Prediction [121]

FCM Fuzzy
C-Means

FCM algorithm, also
known as a soft clustering
algorithm, assigns each
data point to one or more
clusters with a probability
of membership for each
data point. It can model
uncertain or overlapping
areas during wildfires.

Wildfire Detection
[122]
Wildfire Hotspots
Detection [123]

PCA Principal
Component
Analysis

PCA is the most common
method in reducing the
data dimension while
capturing the most
significant variance in the
data. It assists in
simplifying complex
wildfires by considering
relevant factors influencing
fire behavior.

Forest Fire
Detection [124]
Wildfire Detection
[125]

GMM Gaussian
Mixture
Model

GMM is a probabilistic
algorithm that, unlike KM,
employs a
probability-based approach
instead of a distance-based
one. The characteristics
inside Gaussian
distributions allow for the
prediction of future fire
behavior.

Video Fire Detection
[126]
Fire Image
Segmentation [127]

Max-Ent Maximum
Entropy

Max-Ent is a probabilistic
method that iteratively
picks features based on
their information gain. It is
a valuable technique when
seeking a balance between
accuracy and simplicity in
wildfire modeling.

Forest Fire Mapping
[128]
Active Fire
Prediction [129]

HMM Hidden
Markov
Model

HMM is a probabilistic
graphical algorithm that is
generally used for time
series analysis and
sequence modeling. It can
predict hidden variables
from observed sensor data
based on Markov
assumption.

Image-based Fire
Detection [130]
Video-based Fire
Detection [131]

GDA Generalized
Discriminant
Analysis

GDA is a generalization of
LDA that provides more
flexibility by assuming
varying co-variances for
different classes. It enables
more efficient wildfire
detection when dealing
with multi-source and
multi-variate sensor data.

Wildfire
Susceptibility [120]
Fire Mapping and
Modeling [132]

DBSCAN Density-based
Spatial
Clustering of
Application
with Noise

DBSCAN is a density-based
method that can be
applied to noisy data for
determining clusters with
diverse shapes and
densities. It is highly
effective in identifying
fire-affected regions by
analyzing their spatial
density.

Fire Foot-prints
Extraction [133]
Fire Behavior
Analysis [134]

T-SNE T-Distributed
Stochastic
Neighbor
Embedding

T-SNE projects wildfire
data into the
lower-dimensional space
while preserving their local
similarities. It can be
adapted for situations
where maintaining detailed
information is crucial for
effective wildfire.

Fire Levels
Prediction [135]
Forest Fire
Recognition [136]

(continued on next page)
Flattened Layer converts the dimensions of the feature maps into a
one-dimensional array for the dense layers. It is an essential task during
20
the transition from convolutional layers to fully connected layers.
Fully Connected Layer is responsible for making predictions or
classifications based on the features extracted from previous layers. In
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Table 4 (continued).
Unsupervised Learning
Advantages

Unsupervised Learning
Disadvantages

□✓ Data
Reduction

Unsupervised learning
algorithms do not require
labeled data for the
training process.

Therefore, the
required sensors’
data size
considerably
decreased.

□✓ Unlabeled
Data

They rely on unlabeled
data, which can lead to
challenges in interpreting
the results.

Absence of ground
truth labels
complicates the
algorithms’
validation.

□✓ Scalability They can be used for a
wide range of wildfire
applications with an
acceptable performance.

They are not
suffering from
overfitting issues
due to their
robustness.

□✓ Sensitivity Unsupervised learning
algorithms are highly
vulnerable to the outliers.

They are also
significantly
sensitive to the
quality of input
data.

□✓ Applicability Unsupervised algorithms
can effectively handle
noisy and complex
datasets.

Typically, they are
much quicker due
to the absence of a
training process.

□✓ Performance They are less accurate
compared to the supervised
learning algorithms.

It can be
challenging to
understand and
interpret the results.

□✓ Bias
Tendency

Since they do not rely on
labeled data, they can be
less susceptible to human
bias.

They are suitable
for discovering
unexpected patterns
within the data.

□✓ Parameter
Tuning

They are significantly
dependent on appropriate
hyperparameters selection.

Parameter tuning
affect the results
and require expert
knowledge.

□✓ Resource
Abundance

Generally, unsupervised
algorithms are less
computationally intensive.

Does not require
labeled data, which
can reduce the
labeling burden.

□✓ Data
Processing

They often require data
processing, such as
handling missing data and
feature scaling.

As a result, it
increases
computational costs
and processing
times.
fully connected layers, the neuron applies a linear transformation to the
input vector through the learnable weights. The output of this layer is
used for classification tasks in the final stage of the network.

In Table 5, we explore the DL methods employed by wildfire classi-
fication approaches throughout the period from 2018 to 2023. A com-
prehensive understanding of these methodologies is essential for eval-
uating the strengths and limitations of each approach while assessing
their effectiveness in active-fire management.

Many works have utilized variants of famous previously proposed
models and have redesigned the architecture following the framework
of transfer learning. [143] first converts RGB images into grayscale
images and extracts intensity, texture and shape features through 3
stages. Intensity features are extracted using the mean and standard
deviation of brightness and the probability of gray value. To extract
the texture features, the gray co-occurrence matrix and seven invari-
ant moments based on the co-occurrence matrix are used, and lastly
the shape features, the area, roundness, boundary circumference and
boundary the roughness of fire region are extracted. After normalizing
features, the authors relied on an SVM, and compare the performance
with a Reduce-VGGNet.

• VGGNet-based models are here proposed in a modified version
of the fine-tuned VGGNet [143]. The proposed model aims to
reduce the original training time, and transfers optimal param-
eters in the first 13 layers, and uses 2 fully connected layers
with a softmax, instead of the original 3 fully connected layers
afterward. [154] uses the pre-trained VGG19 model and uses
transfer learning by freezing the weights of its convolutions base
and adding fully connected dense layers with ReLU and sigmoid
activations. [161] uses both VGG16 and Inception-v3. They freeze
the weights of the feature extraction layers of both models, while
the newly added classifiers are trained with an Adam optimizer
and using binary cross-entropy loss.

• ResNet architectures have been one of the most profound models
introduced in deep learning. Introducing deep residual connec-
tions helped the problem of vanishing gradients, and improved
generalization and feature reuse. [163] uses the ResNet-50 as a
rival model against their proposed DenseNet-121 modified model
used as the backbone feature extractor. [160] uses an archi-
tecture called ForestResNet, which is essentially the ResNet-50
model trained on 175 forest fire images obtained from the in-
ternet. [158] uses DSA-ResNet50 in which DSA stands for dual
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semantic attention. In this method, they use two streams of fea-
tures extracted from an intermediate feature map passed through
two transformations (each consisting of a series of convolutional,
batch normalization, and ReLU activation units). Next, they sim-
ply fuse the output of these two output feature streams. After
performing global average pooling on the width and height di-
mensions, they use a fully connected layer to embed all the fused
information in a compact tensor. Finally, they compute atten-
tion weights for the two feature streams using two independent
fully connected layers and output a combined attentive feature
map. [153] applies transfer learning to ResNet50 as well by
considering it as the backbone network, and fine-tuning the last
layers to optimize the network for the target UAV forest fire im-
ages. [155] uses deep ensemble learning and combines ResNet18,
ResNet50, ResNet101, and InceptionResNetV2, through eight fea-
ture vectors extracted from their last layers. They propose two
ensemble methods, with feature fusion, neighbor component anal-
ysis (NCA) selection, and binary SVM classification outputting
fire/no-fire labels. The second architecture differs by implement-
ing an iterative hard majority voting (IHMV) layer operating on
eight prediction vectors generated by parallel SVM classifiers,
instead of using feature fusion.

• DenseNet was proposed following the skip connection concept
introduced in ResNet. [173] introduced DenseNet which connects
each layer to all preceding layers to create very diversified fea-
ture maps. contributing to feature reuse and propagation, and
prevention of vanishing gradients, and a reduction in the num-
ber of parameters. [163] uses DenseNet-121 as the backbone
feature extractor, and feeds the generated features to a multi-
label classifier consisting of fully connected, batch normalization,
ReLU activations, and a sigmoid classifier. [165] on the other
hand, does not change the architecture substantially and focuses
on improving the performance by augmenting new data using
CycleGANs.

• EfficientNet follows a concept called architecture scaling, a com-
mon practice in neural network design to enhance efficiency.
[174] employs a technique known as the ‘‘compound coefficient’’
to uniformly scale all the dimensions of the network (width,
depth, and resolution) using a constant ratio. with the advantage
of improved efficiency in training time. [147] uses Efficient-
NetB7, one of the variants of the popularly-known network, and
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Table 5
Summary and comparative analysis of the DL-based techniques for wildfire classification tasks.
Ref Year Method Dataset Image dataset Performance evaluation

Train set Test set Total Accuracy Precision F1-Score

[143] 2023 Reduce-VGGNet Flame1 1140 380 1900 97.35% 97.22% 97.22%
[144] 2023 BCN-MobileNet-V2 Flame1 27,560 7875 39,375 99.30% 99.60% 95.00%
[145] 2023 RBFN-RAISR ForestFire 1216 380 1900 97.55% 94.19% 93.33%
[146] 2023 LwF-Inception-V3 Kaggle 5311 800 6911 94.63% 88.29% 89.38%
[146] 2023 LwF-Xception Kaggle 5311 800 6911 98.50% 97.47% 96.98%
[147] 2023 EfficientNetB7-ACNet Flame1 31,500 8617 47,992 97.45% 98.20% 97.12%
[147] 2023 EfficientNetB7-ACNet DeepFire 1216 304 1520 95.97% 95.19% 95.54%
[148] 2023 X-MobileNet Kaggle 4792 1198 5990 98.89% 99.41% 98.89%
[149] 2023 FireXnet Multiplea 2736 380 3800 98.42% 98.42% 98.42%
[150] 2022 FFireNet ForestFire 1216 380 1900 98.42% 97.42% 98.43%
[151] 2022 LW-FIRE Corsican 350 100 500 97.30% 97.00% 97.30%
[152] 2022 EfficientNetB5-DenseNet Flame1 31,515 8617 48,010 85.12% 84.91% 84.77%
[153] 2022 FT-ResNet50 Flame1 31,501 8617 47,992 79.48% 80.57% 81.27%
[154] 2022 VGG19 DeepFire 1520 380 1900 95.00% 95.72% 94.96%
[155] 2022 Ensemble ResNet V1 Online 1150 250 1650 99.15% 99.30% 99.19%
[155] 2022 Ensemble ResNet V2 Online 1150 250 1650 98.91% 99.07% 98.96%
[156] 2022 Hybrid CNN-RNN Kaggle 2800 1200 4000 98.19% 98.32% 98.25%
[156] 2022 Hybrid CNN-RNN Mivia 63,000 27,000 90,000 99.12% 99.28% 99.19%
[157] 2022 Inception-ResNet-V2 ImageNet 1765 250 2204 99.09% 100% 99.09%
[158] 2022 DSA-ResNet50 Flame1 6400 800 8000 93.65% 95.34% 94.07%
[159] 2021 Xception Flame1 27,565 8617 39,37 76.23% 78.41% 76.38%
[160] 2021 ForestResNet Internet 150 25 175 92.00% 92.81% 92.21%
[161] 2021 Inception-V3 Flame1 39,375 8617 47,992 87.21% 88.42% 87.79%
[161] 2021 VGG16 Flame1 39,375 8617 47,992 80.76% 81.23% 80.92%
[162] 2021 Yolo-Edge Public 1441 412 2059 78.10% 78.52% 62.00%
[163] 2021 DenseNet-121 Multipleb 1520 2280 3800 98.90% 99.10% 98.50%
[163] 2021 ResNet-50 Multipleb 1520 2280 3800 95.90% 96.60% 95.60%
[164] 2020 TF-Inception-V3 Corsican 480 60 600 98.60% 100.00% 98.91%
[165] 2020 DenseNet-based Generatedc 3585 545 6354 98.27% 99.38% 98.16%
[166] 2020 MobileNetV2 Private 1776 320 2096 93.30% 93.87% 93.41%
[167] 2019 ABi-LSTM Private 1600 200 2000 97.80% 97.81% 97.63%
[168] 2019 SqueezeNet Multipled 30,000 10,000 50,000 97.12% 97.95% 97.10%
[169] 2019 Modified CNN Generatede 1800 300 2100 99.81% 97.65% 96.43%
[170] 2018 Fire-Net Google 850 512 1540 98.00% 98.8% 98.05%
[171] 2018 Improved GoogleNet Benchmark 13,690 54,767 68,457 94.43% 80.00% 86.00%
[172] 2018 DCLRN Public 10,000 3000 29,300 93.30% 90.00% 90.00%

a The related paper utilized data from various sources, including Kaggle, DFire, and Flame1 datasets.
b The related paper consists of 2165 images from the Google, Kaggle, Korean Tourist Spot (KTS), and Day–Night Image Matching (DNIM) datasets.
c The related paper used a Cycle-consistent Generative Adversarial Network (CycleGAN) to create their custom wildfire dataset.
d The related paper collected images from internet copyright-free websites and public wildfire datasets.
e The related paper used the UAV (DJI900) equipped with a SONY A7 camera to collect forest fire images.
fine-tunes it on forest fire datasets by unfreezing the final convo-
lutional layer and adding a classifier, while keeping the backbone
feature extractor frozen during fine-tuning. Moreover, they use an
attention-connected module (ACM) along the main architecture to
boost the model’s performance. [152] combines the EfficientNet-
B5 and the DenseNet-201 [173] in a deep ensemble learning
fashion. Next, they simply add them to an average pooling layer,
a dropout layer, and a sigmoid function for binary classification.

• MobileNet networks were originally proposed to be deployed
on edge devices due to low computational burden. While [166],
uses a transfer learning approach with a pure MobileNetV2, [144]
uses a variation of the original MobileNetV2 with a binary cross
entropy loss, and calls it the BCN-MobileNetV2. [148] also adds
a global average pooling layer and modifies some output layers
of the original MobileNet, by explaining the fact that all the
previous layers are acting as a powerful feature extractor and
the output layers can be tuned for the needed classification task.
MobileNet itself [175] is a lightweight model, initially designed to
be trained and tuned on mobile devices considering its low power
consumption, fast execution, and low memory usage. [150] uses
MobileNetV2 as its backbone and applies transfer learning like-
wise, with adding a sigmoid and ReLU activation layer afterward,
proposing FFireNet. Some other works use MobileNet’s ideas on
other conventional object detection models for fire detection. For
instance, [162] uses the deep separable convolutional structures
present in MobileNetV3 to replace YoloV4’s original backbone
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network (CSPDarknet53) [176]. Their proposed model, Yolo-Edge
aims to reduce the model size and parameters for enhanced
adaptation to edge devices and multi-scale prediction. Moreover,
feature fusion is performed through a feature pyramid to improve
the detection accuracy of small targets.

• Inception, initially introduced in [177], and its variations are
used in many works. [146] uses Inceptionv3, an improved version
of Inception (less computation power), along with factorized
convolutions, regularization, dimension reduction, and parallel
computations to make the network more efficient. They also
modify the Xception architecture that uses depth-wise separable
convolutions, with the same context of holding on to the feature
extractor and changing the output layers. Depth-wise separable
convolutions have the upside of less computation and parameters
compared to separable convolutions but can be slower than them.
For this work, they use a fine-tuning technique on InceptionV3
and Xception, which unfreezes a few last layers of the transferred
model (to learn task-specific features) and adds a classifier as
needed. The other technique used is Learning without Forgetting
(LwF), where a network is trained with new images while keeping
its previous capabilities. Among other works following the same
family of architectures, [157] uses a variant of Inception called
Inception-ResNet-v2, a combination of grid reduction modules
following residual inception modules. They transfer the weights
directly without architecture modification and use the Adam op-
timizer for fine-tuning the network on the new data. [164] simply
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modifies Inceptionv3 by retaining the classifier and substituting
a soft-max function.

• Classic CNN-based Models build upon a simple architecture,
from scratch, rather than a famous backbone model. Although
many models start with a well-known deep learning model and
apply transfer learning for the specific task of wildfire detection,
some start with a basic model designed by their own. [169] for
instance starts with a 9-layer CNN, and then builds their deep
CNN-17, capable of accurate detection after preprocessing raw
images with histogram matching and image smoothing. [170]
proposes a new saliency detection algorithm for fast location and
segmentation of core fire areas in aerial images. A 15-layered self-
learning DCNN architecture named ‘Fire_Net’ is then presented as
a self-learning fire feature extractor and classifier. [145] uses a
radial bases function network after pre-processing multi-spectral
images of wildfires. The authors argue that due to its simplicity,
ease of implementation, and good approximation behavior, the
radial basis function is a popular alternative when generating a
geometric model from multivariate scattered data such as wild-
fires. They next feed the output to a super-resolution module, and
next classify the image as fire/no-fire. [149] first performs data
augmentation and transforms such as rotation, width and height
shift, and zoom on the ForestFire dataset to increase the gen-
eralization of their approach. Their proposed model, FFireXnet,
consists of three convolutional blocks followed by a global av-
erage pooling layer and a classifier head. They also use an X-AI
(explainable-AI) tool named SHAP (Shapely additive explana-
tions) which makes the extracted features interpretable, infers the
positive/negative contribution of features towards fire likelihood,
identifies more important features and model biases. [151] pro-
poses an unsupervised method for labeling sub-images to extend
the original dataset and enhance the supervised core framework.
Next, they discuss the design and implementation of LW-FIRE
(lightweight wildfire image classification), comprising multiple
convolutional blocks to extract global features followed by a fully
connected layer with ReLU activation and a final sigmoid activa-
tion. Like many Inception-based works addressed above, [168]
uses depth-wise separable convolutions as a tool. The authors
here aim to enhance the small SqeezeNet model. Moreover, a
manual design algorithm is implemented beforehand to extract
suspected smoke areas. SqueezeNet was originally proposed to
tackle the problem of model and parameter size, shrinking down
the computational complexity of DNNs [178].

• Federated Learning and distributed machine learning architec-
tures have become popular as a result of both data dissipation and
advances in network communication, security, and edge comput-
ing. Authors in [179] have taken a federated learning approach
towards wildfire classification accounting for the heterogeneity
of UAV specifications and capabilities in a collaborative wild-
fire detection team. They showcase the accuracy improvement
by increasing the number of participating UAVs on 3 different
datasets.

• Spatio Temporal Classifier is a new subset of methods that
take the temporal dependency of consecutive frames into account,
along with the spatial features extracted from each. Authors
in [156] propose an interesting hybrid approach including both
CNN and RNN for feature extraction. They claim to be the first
to use such a hybrid method for forest fire detection. Two fully
connected layers are responsible for aggregating the extracted
features of the two networks. While the CNN extracts high- and
low-level spatial features, the RNN focuses on dependencies of
frames and sequences, while taking the flattened version of the
CNN final output map as its input. A similar spatio-temporal
model is proposed in [172]. They claim to achieve real-time
accurate fire detection by utilizing the static and dynamic charac-
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teristics of the fire. They first convert fire RGB images to optical
flow images in real-time, next use a convolutional neural network
for spatial learning, and finally a class of recurrent convolutional
architectures for sequence learning. After the concept of visual
attention was introduced, many detection models attempted to
improve their performance by taking advantage of the dynamic
focus it provides towards learning important features. [167] pro-
poses an attention-enhanced bidirectional LSTM (ABi-LSTM) for
video-based forest fire smoke recognition. The model consists
of three main parts: the spatial features extraction network, the
Bidirectional Long Short-Term Memory Network (LSTM), and the
temporal attention sub-network. This design helps the model to
pay different levels of attention to different patches.

5.1.2.2. Wildfire segmentation approaches. Segmentation or pixel-wise
classification is another important task in the context of wildfire man-
agement. Accurately categorizing wildfire-affected areas has remained
an ongoing challenge. For this purpose, DL-based segmentation meth-
ods offer an advanced solution to facilitate wildfire management and
mitigate their impacts. They can automatically identify the boundaries
of flame or smoke within various remote sensing technologies, such
as satellite or UAV-based imagery. Generally, these approaches rely on
the ability of DNN networks to determine complex patterns and spatial
relationships in the data, which allows them to precisely classify each
pixel in the image based on their respective object classes. Utilizing
wildfire segmentation methods significantly enhances early detection
performance, allowing for more effective wildfire management. Fig. 12
illustrates the fundamental architecture of a wildfire segmentation
framework based on the deep CNN network.

Wildfire segmentation based on deep CNN networks consists of two
main components: feature extractor and segmentation decoder. Feature
extractor block uses a set of convolutional layers and pooling lay-
ers, while segmentation decoder block utilizes a group of upsampling
layers, convolutional layers, and a softmax layer.

Upsampling Layer, also known as the deconvolution layer, is re-
sponsible for enhancing the spatial resolution of the feature maps by
increasing the dimension of every single pixel in an image. This layer
is particularly critical for wildfire segmentation since it retrieves details
that might have been lost during the downsampling operation. This
layer plays a crucial role in precisely identifying and characterizing the
boundary of fire/smoke regions.

The Softmax Layer serves as the final layer in the segmentation
decoder block. It receives real values of various classes and then
converts the network’s raw output into a probability distribution. In
the context of wildfire segmentation tasks, the softmax layer assigns
probabilities to each pixel for various classes, including fire, no-fire,
smoke, and no-smoke. These probabilities help to detect and classify
different regions within the images.

In Table 6, we investigate the DL methods used in wildfire segmen-
tation approaches between 2018 and 2023. A comprehensive under-
standing of these methodologies is essential for evaluating the strengths
and limitations of each approach while assessing their effectiveness in
active-fire management.

• U-Net-based Models are the main backbone model used for
feature extraction in wildfire segmentation tasks. By compar-
ing the works listed in Tables 5 and 6, we observe that U-
Net architectures are significantly more present in segmentation,
then classification. In fact, the U-Net architecture consists of an
encoder–decoder structure with skip connections, allowing for
precise pixel-wise segmentation, making the model commonly
used for semantic segmentation tasks in various fields. U-Net
models are often combined with other famous backbones for fea-
ture extraction. [180] employed uni-temporal Sentinel-2 images
and deep learning models, specifically U-Net and ResNet, for
wildfire detection. The U-Net model, utilizing different encoders
like ResNet50, ResNet101, and ResNet152, demonstrated effec-

tiveness in wildfire mapping. The authors introduce the attention
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Fig. 12. The overall architecture of wildfire segmentation framework based on deep CNN network.
Table 6
Summary and comparative analysis of the DL-based techniques for wildfire segmentation tasks.
Ref Year Method Dataset Image dataset Performance evaluation

Train set Test set Total Accuracy Precision F1-Score

[180] 2023 UNet-ResNet50 Privatea 17,352 2169 21,690 98.84% 98.91% 98.78%
[181] 2023 FPGA-BNNs Corsican 512 128 640 93.52% 93.88% 93.40%
[182] 2023 U-Net Models BurnedAreaUAV 226 23 249 97.50% 96.92% 97.61%
[183] 2023 FlameTransNet Multipleb 800 100 1000 91.23% 91.88% 90.62%
[149] 2023 FireXNet Multiplec 2736 380 3800 98.42% 98.42% 98.42%
[184] 2023 FBC-ANet Flame1 40,790 7202 47,992 92.19% 92.54% 90.76%
[185] 2023 FFS-UNet Corsican 1746 582 2910 94.89% 0.924% 91.40%
[152] 2022 TransUNet-R50-ViT Flame1 31,515 8617 48,010 99.90% 99.90% 99.90%
[186] 2022 Modified DeepLabV3+ Multipled 2410 803 4016 97.18% 91.33% 89.81%
[158] 2022 DSA-ResNet50 Flame1 6400 800 8000 91.60% 91.85% 90.30%
[187] 2022 Deep-RegSeg Corsican 815 209 1135 94.82% 94.46% 94.46%
[188] 2022 CNN-based Quad-Tree Search Multiplee 1057 151 1510 95.90% 95.90% 95.90%
[189] 2022 UNet-ResNet50 Flame1 3360 420 4200 99.91% 99.25% 98.90%
[190] 2022 Improved DeepLabV3+ Flame1 40,790 7202 47,992 92.46% 92.67% 92.33%
[191] 2021 STNet+DenseFire Customf 706 658 1364 96.91% 96.73% 97.50%
[192] 2021 Faster-RCNN FS-data 3571 1285 4856 99.60% 98.87% 98.44%
[159] 2021 Customized U-Net Flame1 27,565 8617 39,37 87.17% 91.99% 87.75%
[193] 2021 Improved CNN Corsican 350 100 500 98.02% 94.32% 91.77%
[194] 2021 Modified CNN Corsican 476 119 595 97.46% 94.46% 94.70%
[194] 2021 Modified CNN FiSmo 7560 1888 9448 99.19% 79.82% 84.91%
[195] 2021 Modified U-Net Landsat-8 73,107 73,107 146,214 85.22% 87.20% 89.70%
[196] 2021 Customized VGGNET-16 Private 7224 366 9150 94.66% 88.23% 87.70%
[197] 2021 Residual DeepLabV3 Corsican 1746 582 2910 98.48% 95.23% 92.91%
[198] 2021 wUUNet Custom 5000 1250 6250 95.34% 93.96% 94.43%
[199] 2021 SFBSNet Corsican 476 119 595 91.22% 90.41% 90.58%
[199] 2021 SFBSNet FiSmo 7560 1888 9448 89.34% 88.80% 88.93%
[200] 2020 Validation DeepLabV3+ Multipleg 4000 150 4150 91.22% 90.30% 94.60%
[201] 2020 DeepLabV3+ Corsican 1746 582 2910 97.67% 95.35% 92.23%
[202] 2019 CNN-SqueezeNet CIFAR-10 50,000 10,000 60,000 94.20% 92.51% 92.43%
[203] 2019 WSDD-Net Wildfire 3676 919 4595 99.20% 96.18% 99.25%
[170] 2018 Fire-Net Google 850 512 1540 91.70% 92.20% 91.88%
[204] 2018 Deep-Fire DNN Corsican 377 42 419 93.17% 90.13% 87.00%

a The related paper creates its own datasets from Turkey’s wildfires using Sentinel-2 multiband images.
b This article collected images from the Flame1 dataset (500 Images) and other online sources (500 images).
c The related article collected images from Kaggle (1900 images), Github’s DFireDataset, and Flame2 dataset.
d This paper used three public datasets, including Corsican (1775 images), Firefront-Gestosa (238 images), and Flame1 (2003 images) datasets.
e The related article gathered the images from the Corsican dataset and online resources.
f This paper collected data from three different video resources, including the NTUST dataset (1033 videos), online sources (300 videos), and the Foggia dataset (31 videos).
g The related paper utilized six different datasets consisting of 4000 images for the training, including Corsican, FireNet, two private wildfires, and two public smoke datasets.
For the test, they used a 360-dataset consisting of 150 images.
ResU-Net model, incorporating an attention mechanism for en-
hanced wildfire detection performance. In the Flame1 dataset,
presented in [159], a customized U-Net architecture is used for
fire segmentation. The U-Net comprises a contracting path and
an expanding path forming a U shape. The input layer matches
the size of input images with three RGB channels. The contracting
path consists of fully convolutional layers using the ELU activa-
tion function, dropout layers, and max pooling layers, repeated
four times to shape the left side of the U. The right side mirrors the
left with up-convolutional layers replacing max pooling layers.
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Concatenation occurs between the current and peer blocks from
the contracting path, and the final layer employs the Sigmoid
activation function for binary classification.
[198] introduces advancements in multiclass fire segmentation
using the UNet architecture, presenting the UUNet-concatenative
architecture and the wUUNet model. The UUNet-concatenative
architecture incorporates two UNet models, with the first per-
forming binary flame segmentation and the second indicating spe-
cific fire classes through concatenation. Skip connections between
the binary model decoder and multiclass model encoder enhance
results across model levels. The wUUNet model, an advanced
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UNet version, employs a loss function with cross-entropy and soft-
Jaccard for both binary and multiclass segmentation. Demonstrat-
ing superior performance, the wUUNet outperforms the baseline
UNet model in binary and multiclass segmentation accuracy by
2% and 3%, respectively, contributing to the improved capabil-
ities of fully convolutional neural networks for multiclass fire
segmentation. Among works utilizing different variations of U-
net, some focus on input shape adaptation. [195] for instance,
explores active fire detection in Landsat-8 imagery using three
variations of the U-Net architecture: U-Net (10c), U-Net (3c), and
U-Net-Light (3c). U-Net (10c) processes a 10-channel image with
all Landsat-8 bands, while U-Net (3c) and U-Net-Light (3c) use
a reduced 3-channel input with specific bands. Additionally, the
architectures are evaluated using a ‘‘best-of-three’’ voting scheme,
where a pixel is identified as active fire if at least two sets of
conditions align on its classification.
[191] introduces a novel spatiotemporal feature fusion technique
called FuseNet combining temporal and spatial features extracted
by TemporalNet and SpatioNet. TemporalNet focuses on learn-
ing temporal features using 3D convolutions, employing semi-
supervised learning with ground truth masks for one frame, and
incorporating VGG blocks with 3D for temporal behavior. Spa-
tioNet processes single frames, integrating skip connections, U-
Net-inspired architecture, and attention mechanisms to capture
spatial features. FuseNet combines outputs from TemporalNet and
SpatioNet, using a self-attention mechanism for spatial–temporal
dependencies. Modifications include multi-stage training, a two-
stage pipeline for fire detection, and sensitivity to fires of vary-
ing sizes. Notable novelties include spatiotemporal self-attention,
semi-supervised learning in TemporalNet, and a two-stage detec-
tion pipeline, making it effective for real-world wildfire surveil-
lance. This work is also reviewed in the detection section follow-
ing this section, where the pipeline differences for segmentation
and detection are discussed. Authors in [181] also modify the
original UNet architecture for wildfire image segmentation. Spe-
cific adaptations, including adding batch normalization layers
and reducing the number of filters in the deepest layers, were
made to optimize the U-Net for efficient processing of drone-
captured wildfire imagery. These modifications aim to enhance
both efficiency and effectiveness, considering the constraints of
drone-based processing. Further optimization techniques, such as
quantization and pruning, were applied to achieve reduced infer-
ence times while maintaining segmentation performance. [188]
use U-Net for the segmentation network they propose along clas-
sification, specifically trained for fire and smoke segmentation.
Besides integrating classification and segmentation, the study in-
troduces novel elements the use of a Quad-Tree search algorithm
for scalable segmentation, and a comprehensive evaluation of
different model configurations.

• DenseNet is used for segmentation as well as classification (men-
tioned in previous section) due to its efficiency and feature reuse
properties. [203] uses DenseNet while emphasizing a segmenta-
tion strategy relying on the YUV color space. The paper introduces
a formula for the segmentation process and presents segmentation
results in the YUV color space, showcasing the RGB image, Y,
U, and V components, along with identified candidate smoke
regions.

• SqueezeNet [178] has emerged into a popular backbone for
segmentation on edge devices for its lightweight design, striking a
balance between model size and accuracy, making it efficient for
real-time applications on resource-constrained devices. Its impact
extends to embedded systems and IoT, influencing subsequent
architectures that prioritize efficiency without sacrificing perfor-
mance. In this vein, fire segmentation applications for real-time
operating systems are no exception. [199] present the Squeezed
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Fire Binary Segmentation Network (SFBSNet) is a novel architec-
ture designed for binary semantic segmentation of fire images,
based on the lightweight SqueezeNet model. They add depthwise
separable convolution and 1 × 1 convolution to reduce parame-
ters and model size while maintaining high performance. Depth-
wise separable convolutions, first introduced in Xception [205],
provide cross-channel feature extraction capabilities while main-
taining spatial feature extraction with a lighter design. [184]
utilizes these separable convolutions in the proposed FBC-ANet
model. Xception, from which these convolutions are inherited,
is the encoder in the FBC-ANet architecture. The authors use of
separable convolutions helps to reduce the number of parame-
ters and the computational complexity of the model, making it
more efficient while maintaining strong performance in semantic
segmentation tasks.
[202] utilizes a modified SqueezeNet architecture for dense pre-
diction in forest fire segmentation. The network includes a front-
end prediction module without pooling layers and intermediate
map padding, enhancing segmentation accuracy. A context mod-
ule, employing dilated convolutions for multi-scale contextual
information aggregation, further improves accuracy.

• ResNet-based Models have been a popular backbone for segmen-
tation tasks, as well as classification, which was reviewed in the
previous part. These models rely on the famous ResNet proposed
in [206] and build on its architecture through transfer learning,
adapting it to wildfire scenarios. Lately, some works have in-
tegrated attention mechanisms with a famous backbone model.
The work in [158] introduces two solutions for forest fire image
classification and segmentation. The first solution, the DSA mod-
ule, is a novel attention mechanism enhancing feature channel
representation for improved accuracy in incipient forest fire clas-
sification. The second solution, MaskSU R-CNN, is an enhanced
instance segmentation model combining Mask Scoring R-CNN and
a U-shaped network to reduce segmentation errors and accu-
rately distinguish fire regions. The model utilizes DSA-ResNet50
as its backbone, incorporating the DSA module to improve feature
extraction. The architecture includes the feature pyramid net-
work for multi-scale fusion. Collectively, these solutions provide
a flexible model, MaskSU R-CNN, for efficient unmanned fire
monitoring across large forest areas. [194] uses residual blocks in
its proposed encoder–decoder for wildfire segmentation, inspired
by FusionNet model [207]. The residual connections are integral
for feature extraction and information propagation. Besides their
main purpose, addressing the vanishing gradient problem, In the
encoder–decoder architecture, the residual block contributes to
complex feature extraction in the encoder and aids in refining the
segmented output in the decoder, enhancing the model’s ability
to capture intricate details and spatial information for accurate
wildfire segmentation.

• DeepLabV3 was introduced in 2017 [208] with the primary
motivation to enhance the model’s ability to capture contextual
information and generate more accurate, finer-grained segmen-
tation maps [209]. The breakthroughs of DeepLabv3 included
the addition of an improved encoder–decoder architecture, batch
normalization, and regularization, which aimed to improve the
model’s performance in semantic image segmentation [209]. Au-
thors in [201] use DeepLabv3+, an extension of DeepLabv3, for
wildfire segmentation. It employs an encoder–decoder structure,
utilizing a ResNet backbone as the encoder, and incorporates
an Atrous Spatial Pyramid Pooling (ASPP) module. The ASPP
module employs parallel atrous convolutions with different dila-
tion rates to capture multi-scale contextual information, enabling
accurate segmentation of objects with fine details and small sizes.
The ResNet backbone, pre-trained on a large dataset, extracts
high-level features. DeepLabv3+ demonstrates proficiency at han-
dling images of varying sizes and aspect ratios through a spatial
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pyramid pooling module. DeepLabv3+ is also used in [197] but
with backbone differences. The authors applied the Deeplabv3+
architecture to the French Corsican dataset with a modified Xcep-
tion backbone for wildfire segmentation. The modifications to
the Xception model include adjustments to the entry flow path
for faster computation and higher memory efficiency, replac-
ing max-pooling layers with depthwise separable convolutions
connected to an atrous separable convolution for random res-
olution feature extraction. The Deeplabv3+ model implements
Atrous Spatial Pyramid Pooling (ASPP) with depthwise separable
convolutions at atrous rates of 6, 12, and 18, enhancing multi-
scale feature extraction. The decoder module involves bilinear
upsampling, concatenation with encoder features, and subsequent
convolutions for refined segmentation.
[190] enhance the original DeepLabv3+ with some modifica-
tions. The encoder network combines a deep convolutional neural
network with atrous spatial pyramid pooling, producing feature
maps at four different resolutions. To optimize segmentation
speed, the authors here replace the original deep convolutional
neural network with the lightweight MobileNetV3. However, to
address potential accuracy loss due to the absence of atrous con-
volution, two additional shallow features are incorporated into
the original decoder network, ensuring a wealth of fire feature
information. [186] focuses on refining the DeeplabV3+ model
for precise fire segmentation in aerial images. Modifications in-
volved fine-tuning with various backbones, including ResNet-50,
and experimenting with different loss functions to optimize the
model for detecting fire pixels. The study considered the im-
pact of diverse loss functions, highlighting a tailored approach
to the model’s training for the unique characteristics of aerial
fire images. Leveraging the inherent encoder–decoder architec-
ture of DeeplabV3+, the study potentially further optimized this
structure to meet the demands of fire segmentation.

• Attention-based Models are further used in DeepLabV3+ back-
bones to improve feature extraction with a focus on flame-related
areas. FlameTransNet [183], designed for wildfire segmenta-
tion, follows an encoder–decoder architecture, leveraging Mo-
bileNetV2 for feature extraction and integrating a transformer
module for global feature capture. It utilizes the DeepLabV3+
decoder, enhancing spatial context preservation. Notably, the
CBAM attention mechanism refines lower-level features during
fusion, prioritizing flame regions. Modifications include adaptive
Copy-Paste data augmentation to handle class imbalance, dice
loss for flame emphasis, and addressing CNN’s limited receptive
field. Novelties involve global feature extraction via transform-
ers, attention mechanisms for detail refinement, and innovative
data augmentation and loss functions. The network architecture
proposed by [193] for joint fire classification and segmentation
incorporates several key modifications and innovations, with a fo-
cus on leveraging the DeepLab-v3+ framework for segmentation.
Notable adaptations include the introduction of a spatial self-
attention mechanism for capturing long-range dependencies, a
channel attention module to enhance feature relevance, and joint
training for simultaneous segmentation and classification tasks.
The utilization of the DeepLab-v3+ encoder backbone, initialized
with pre-trained ImageNet weights, further contributes to the
network’s capabilities.

• Transformers have shown significant success leading the state-
of-the-art models for attentive segmentation and detection, and
wildfire segmentation has been no exception. [152] discusses
the integration of two vision transformers, TransUNet and Trans-
Fire, into wildfire segmentation in aerial images. Vision trans-
formers utilize self-attention mechanisms to effectively capture
long-range dependencies in images. Notably, TransUNet com-
bines U-Net architecture with vision transformers, enabling the
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incorporation of self-attention for capturing global dependencies
between inputs and outputs. This integration proves beneficial
for tasks like wildfire segmentation by extracting fine details and
long-range interactions in input features. Additionally, TransFire,
based on the Medical Transformer (MedT) architecture [210],
utilizes gated position-sensitive axial attention and a LoGo (Local-
Global) training methodology to enhance segmentation perfor-
mance. Like classification and detection, temporal information
can be beneficial for segmentation as well. [185] introduces
the FFS-UNet model, a spatiotemporal architecture for forest
fire segmentation, integrating a temporal transformer module
(TTM) into a modified lightweight U-Net model. The TTM as-
sesses temporal relevance and indications across a sequence of
frames, addressing challenges posed by fast-moving UAVs, irreg-
ular fire shapes, and cluttered backgrounds. The TTM employs
patch embedding and a temporal REST-block encoder to extract
CNN feature maps, enhancing feature learning and extraction in
UAV video semantic segmentation. Additionally, the model incor-
porates long-skip connections between the encoder and decoder
layers to improve precision in fire region detection. By explic-
itly learning fire features from the temporal transformer, the
FFS-UNet achieves promising results in forest fire segmentation,
showcasing the efficacy of integrating temporal information for
robust feature extraction in the context of U-Net architecture.
Transformers have also shown their substantial capabilities in
combination with U-net architectures in other works. Authors
in [200] employ an ImageNet pre-trained InceptionResNet v2 as
the primary feature extractor, recognized for its robust perfor-
mance in image recognition. Two DeepLab V3+ networks are
trained in the study, and a modified loss function is implemented
to better suit the task of detecting candidate fire regions. The
modified loss function incorporates weighting factors to empha-
size the importance of fire pixels, aiming to enhance the model’s
effectiveness in detecting fire events.

• Other Approaches are based on modifying a traditional CN
structure with elements specializing in the network for wildfire
segmentation. Deep-RegSeg [187], a novel deep learning-based
method for wildfire segmentation, achieves a high F1-score of
94.46%, outperforming recent state-of-the-art techniques. It ex-
cels in accurately detecting and segmenting fire pixels in chal-
lenging, non-structured environments, including conditions like
smoke and changing luminosity. Notably, Deep-RegSeg proves
effective in identifying small fire areas under diverse weather
and brightness conditions, crucial for early wildfire detection
and management. The method offers adaptability with various
backbone options, termed RegNet models (RegNetX800MF, Reg-
NetX200MF, RegNetX400MF, RegNetX16GF, and RegNetX32GF),
and two loss functions (Dice loss and Binary Cross Entropy Dice
loss), providing flexibility for optimizing performance in wildfire
segmentation tasks. RegNet models, known for scalability and ef-
ficient feature extraction, serve as the backbone in Deep-RegSeg,
contributing to its ability to accurately segment wildfire pixels
and detect fire areas under varying environmental conditions.
The study conducted in [170] is comprehensively described in
the next subsection for wildfire detection models, but they also
propose a segmentation pipeline utilizing their saliency detection-
based method to efficiently locate and isolate core fire regions in
aerial images.
Region-based CNNs are used for segmentation as well as classi-
fication (described in the previous section). [192], for instance,
designs a segmentation network called LS-Net, specifically to
perform pixel-wise segmentation for fire and smoke regions. The
segmentation results obtained from LS-Net are then utilized in
the decision network (AD-Net) to predict the probability of fire
smoke existing in an image, contributing to the classification

objective. The proposed framework enhances the efficiency of
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Fig. 13. The overall architecture of wildfire detection framework based on deep CNN network.
a baseline R-CNN for forest fire and smoke detection by em-
ploying knowledge distillation, reducing computational complex-
ity through a teacher–student model. This approach combines
a complex CNN feature extractor with a simplified student net-
work, striking a balance between computational efficiency and
detection performance, resulting in faster inference times for
real-world applications.
As discussed above, there are many options to choose when it
comes to applying transfer learning from a backbone network and
the choice depends on the hardware and software requirements.
However, [189] compares four widely used fully convolutional
network models (FCN, U-Net, PSPNet, and DeepLabV3+), eval-
uating their performance in forest fire image segmentation. The
study employs different backbone networks, such as VGG16 and
ResNet50, and finds that the U-Net model with ResNet50 as
a backbone exhibits the highest segmentation accuracy for for-
est fires. Additionally, DeepLabV3+ with ResNet50 demonstrates
satisfactory segmentation performance with faster running speed.

.1.2.3. Wildfire object detection approaches. Detecting and locating
pecific objects within a wildfire-affected area, such as individual
lames, smoke plumes, or structures in danger, is a crucial aspect of
ildfire management. By accurately identifying and tracking specific
bjects related to wildfires, firefighters and emergency responders
an make informed decisions about managing and responding to the
ildfires. To this aim, DL-based wildfire object detection approaches
re at the forefront of addressing the challenges within efficient wildfire
etection. DL models can identify objects of interest within images or
ideo streams, such as fire fronts, burned areas, and potential ignition.
ike wildfire classification and segmentation, object detection methods
mploy deep neural networks, primarily built upon the foundation of
NNs. Their goal is to enable automated recognition and delineation
f wildfire-related objects, providing valuable information for Precise
ituational awareness and timely decision-making.
Fig. 13 shows the general architecture of a wildfire object detection

ramework based on deep CNN networks. The network is trained to
ecognize distinctive patterns associated with different wildfire-related
bjects, ensuring a comprehensive understanding of the evolving situa-
ion. They commonly analyze multi-spectral or high-resolution imagery
rom diverse sources, such as satellites, UAVs, or ground-based sensors.
In Table 7, we explore the DL methods employed by wildfire classi-

ication approaches throughout the period from 2018 to 2023. A com-
rehensive understanding of these methodologies is essential for eval-
ating the strengths and limitations of each approach while assessing
heir effectiveness in active-fire management.

• YOLO (You Only Look Once) has pioneered the realm of ob-
ject detection in computer vision for many years [229]. Many
works listed in Table 7 use the popular Yolo object detection
model. The Yolo model is a pioneering approach in the field of
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object detection, known for its real-time processing capabilities
and unified architecture [229]. The main distinguishing factor of
Yolo models from previous object detection models lies in their
unified approach to object detection. Unlike traditional models
that rely on region proposal algorithms to hypothesize object
locations [230], Yolo frames object detection as a regression prob-
lem, directly predicting bounding boxes and class probabilities in
a single step [229]. This unified architecture allows Yolo models
to process images in real-time, making them significantly faster
than previous methods [231]. Additionally, Yolo models can de-
tect a wide range of object categories, with Yolo9000 predicting
detections for over 9000 different object categories [232].
The original Yolo model was introduced in 2016, aiming to
provide a unified solution for real-time object detection. Since
then, several variants of the Yolo model have been developed,
each with its own improvements in terms of accuracy, speed,
and model size [233]. YoloV2, an improved model, has been
reported to be state-of-the-art on standard detection tasks such
as PASCAL VOC and COCO [232]. YoloV3 and YoloV4 are fur-
ther enhanced versions of the original Yolo algorithm, offering
improvements in both accuracy and speed [232]. Additionally,
Tiny Yolo is a simplified architecture derived from YoloV3, de-
signed to be more lightweight and suitable for deployment on
embedded devices [234]. YoloV5, presented in [235], shares a
foundational architecture with YoloV4 but incorporates numerous
enhancements in terms of speed, precision, and user-friendliness.
The inclusion of ‘‘SPP’’ (Spatial Pyramid Pooling) is a notable
innovation, effectively diminishing the computational load nec-
essary for object detection. Additionally, YoloV5 introduces a
novel backbone architecture referred to as ‘‘CSPNet’’ (Cross-Stage
Partial Network), which refines the feature extraction phase,
contributing to heightened model accuracy. The proposed YoloV6
model [236] incorporates several modifications to the YoloV5
architecture, including a novel anchor-free detection approach
and a new feature pyramid network. The anchor-free approach
eliminates the need for predefined anchors, which makes the
model more flexible and robust to object size variations. The
feature pyramid network enhances the model’s ability to detect
objects of different sizes and resolutions. The YoloV7 [237] model
is based on a single-shot detector architecture and is trained
end-to-end on a large dataset of annotated images. It incorpo-
rates several advanced features, including a backbone network
based on the EfficientNet architecture, an SPP (Spatial Pyramid
Pooling) module for capturing multi-scale features, and a PAN
(Path Aggregation Network) module for integrating features from
different scales. YoloV8 offers improved speed and accuracy and
is suitable for real-time applications. However, the performance
of the aforementioned models may vary from one dataset to the
other. Thus, the choice of the Yolo version for an object detection
framework should be based on the necessities of the application.
Following the discussion on Yolo object detection models, several

works as listed in Table 7 have used a backbone Yolo model as the
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Table 7
Summary and comparative analysis of the DL-based techniques for wildfire detection tasks.
Ref Year Method Dataset Image dataset Performance evaluation

Train set Test set Total Accuracy Precision F1-Score

[144] 2023 BCN-MobileNet-V2 Flame1 27,560 7875 39,375 81.15% 80.00% 83.35%
[143] 2023 Reduce-VGGNet Flame1 1140 380 1900 97.35% 97.22% 97.22%
[211]a 2023 YoloV8 Foggia 6300 899 8974 90.22% 90.50% 88.70%
[211] 2023 YoloV7 Foggia 6300 899 8974 90.10% 90.40% 88.70%
[211] 2023 YoloV6 Foggia 6300 899 8974 90.15% 91.90% 89.50%
[211] 2023 YoloV5 Foggia 6300 899 8974 89.50% 89.50% 89.40%
[149] 2023 FireXNet Multipleb 2736 380 3800 98.42% 98.42% 98.42%
[212] 2023 Dual-Channel CNN Online 10,000 4000 14,000 98.90% 99.24% 98.43%
[213] 2023 Detectron2 Customc 129,720 3300 13,020 99.40% 99.30% 99.50%
[214] 2023 FireDetn Customd 2806 934 4674 82.50% 82.60% 82.15%
[67] 2022 ResNet MSER-NMS Flame2 43,760 10,691 53,451 93.87% 94.55% 93.27%
[215] 2022 Tiny YoloV4 Private 100 100 200 91.00% 91.00% 91.00%
[216] 2022 Fire-Yolo Public Website 13,873 1982 19,819 82.44% 91.50% 73.00%
[217] 2022 Improved YoloV5 Online 2777 344 3433 82.00% 82.10% 81.92%
[218] 2022 FCDM Public 880 110 1088 86.03% 86.86% 86.88%
[219] 2022 STPM-SAHI Private 2537 630 3167 89.15% 89.40% 88.45%
[191] 2021 STNet+DenseFire Custome 706 658 1364 99.50% 99.56% 99.20%
[220] 2021 EfficientDet YoloV5 Customf 2381 476 10,581 82.40% 79.70% 84.10%
[221] 2021 MobileNetV3 YoloV4 MSCOCO 1475 369 1844 99.78% 99.21% 99.41%
[222] 2021 UNet YoloV5 Customg 990 185 1300 99.60% 99.81% 99.22%
[223] 2020 UAV-FFD YoloV3 Private N/A 60 N/A 82.00% 84.00% 81.00%
[224] 2020 ARSB YoloV3 Public 4K UAS 1151 249 1400 92.44% 92.81% 92.03%
[225] 2019 Modified SqueezeNet Customh 52,597 12,583 62,916 88.15% 86.00% 91.00%
[226] 2019 Improved YoloV3 Private N/A 60 N/A 81.50% 82.00% 81.00%
[227] 2019 Improved R-CNN Corsican 610 440 1050 99.75% 99.79% 99.70%
[228] 2018 R-CNN YoloV3 Private 668 342 1010 99.88% 99.88% 99.88%
[170] 2018 Fire-Net Google 850 512 1540 98.00% 98.8% 98.05%

a This paper evaluated the different versions of Yolo architectures, including YoloV5, YoloV6, YoloV7, and YoloV8. Each one of these models has different variants, and the best
one is highlighted in this table.
b The related article collected images from Kaggle (1900 images), Github’s DFireDataset, and Flame2 dataset.
c This paper gathered images from different public forest fire datasets and online sources such as Google.
d This paper customized their dataset, namely the FireDetn dataset, where the data have been selected from five various resources, including the FireClips, BoWFire, FireNet,
Fire-Detection-Image-Dataset, and Paddle Fire datasets.
e This paper collected data from three different video resources, including the NTUST dataset (1033 videos), online sources (300 videos), and the Foggia dataset (31 videos).
f This paper used four public datasets, including BoWFire, FD-dataset, ForestryImages, and VisiFire datasets.
g The related article collected images from Kaggle (1900 images), Github’s DFireDataset, and Flame2 dataset.
h The related paper collected data from the Corsican Dataset and other online sources.
main architecture of their detection model and have applied little
modifications to make it suitable for wildfire detection applica-
tion. [228] explores three object detection methods for real-time
forest fire detection: Faster R-CNN, YoloV3, and SSD. Faster R-
CNN uses a Region Proposal Network but has a low frame rate,
limiting its real-time applicability. YoloV3 employs anchor boxes
and logistic regression, introducing an improved structure for en-
hanced fire detection. SSD eliminates the need for bounding box
proposals, using small convolutional filters for efficient category
score predictions. Each method has unique strengths and trade-
offs, providing options for real-time forest fire detection based on
specific requirements. [238] proposes a model adapting YoloV3
to the task of wildfire detection by implementing a small-scale
CNN with the help of YoloV3, resulting in improved detection
speed and reliable accuracy. Additionally, [224] uses YoloV3 to
develop a coarse-to-fine framework for auto-detecting wildfires in
high-resolution aerial images acquired by UAS. This framework
involves a two-phase learning process that significantly reduces
time overhead while maintaining high accuracy. By combining a
coarse detector for adaptive sub-region selection and a fine detec-
tor for detailed scrutiny, the model improves the mean average
precision (mAP) from while achieving, surpassing real-time one-
stage YoloV3 in average inference speed. Specifically designed
for high-resolution aerial images from Unmanned Aerial Systems
(UAS), it effectively addresses challenges in detecting sparse,
small, and irregularly shaped wildfires. The proposed method
provides a speed-accuracy trade-off, outperforming the baseline
Yolo-crop (a modification of the Yolo specifically tailored for pro-
cessing high-resolution images) in real-world wildfire detection
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applications. Authors in [223] present multiple key features in
their UAV-FFD platform, including real-time image transmission,
high-performance computing, edge computing architecture, and
integration with big data analysis, which all contribute to the
efficient and accurate detection of forest fires using the YoloV3.
Some works have used different ideas proposed in deep learn-
ing to handle sequential detection and segmentation. [222] for
instance, relies on YoloV5 for detection and a U-net for seg-
mentation. The YoloV5 model utilizes Cross Stage Partial Net-
works (CSPN) as a backbone for fire detection and localization,
generating bounding boxes with class scores. A Crop Layer is
subsequently applied to extract regions limited by the bounding
boxes, containing the localized fire area. The cropped images are
fed into a U-Net model for pixel-level segmentation, confirming
the presence of flames and producing a binary mask representing
fire pixels, offering precise location detection. This integrated
approach enhances fire detection accuracy by combining object
localization and pixel-level segmentation. Authors in [221] follow
the same hybrid approach, but here to improve the challenges
present in YoloV4. The study initially employs YoloV4 for object
detection but replaces it with a more lightweight MobileNetV3
model due to computational and memory constraints. Further
compression is achieved by removing redundant parts, leading to
the creation of a Pruned + KD model through knowledge distilla-
tion. Redundancies in weights, channels, and layers are addressed
by pruning, with a focus on channel-level sparsity-induced reg-
ularization. This regularization involves scaling factors inserted
into each channel of MobileNetV3, subsequently serving as L1
regularization for training. The resulting model exhibits reduced
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size and improved efficiency compared to the initial network.
In another work, ensemble learning is used to integrate YoloV5
and EfficientDet models together. Ensemble learning enhances
forest fire detection accuracy by integrating multiple learners,
such as YoloV5 and EfficientDet, to improve model robustness
and performance. EfficientDet [224], a highly efficient object
detection model by Google, is renowned for its performance under
resource constraints. Leveraging the EfficientNet backbone, Bi-
FPN neck, and compound scaling method, it excels in detecting
diverse forest fires. Individual learners may exhibit limitations,
focusing too much on local information and generating false
positives. The integration of YoloV5 and EfficientDet in parallel
within the system synergistically improves the detection accuracy
of various forest fire types.
Despite the substantial amount of work deploying Yolo variants
for forest fire detection, there are limitations in detecting small
fires in particular which authors in [217] point out. To address
this, the authors enhance YoloV5 by introducing a very-small-
target detection layer, a CBAM attention module, and refining
the SPPF module into SPPFP(Spatial Pyramid Pooling-Fast-Plus).
These modifications aim to improve the model’s focus on global
information and mitigate the issue of missing details in small-
target forest fires. The resulting YoloV5 Improvement model is
designed to adaptively extract features, particularly for small-
target forest fires, enhancing overall detection performance. Au-
thors in [216] also tackle the problem of small target object
detection and propose their fire variant of Yolo. The Fire-Yolo
deep learning method enhances small target object detection
in fire inspection through expanded three-dimensional feature
extraction, improving network performance. It outperforms other
models like Faster R-CNN and unimproved YoloV3 in terms of
detection efficiency for very small target objects. Achieving real-
time detection with an average time of 0.04 s per frame at
416 × 416 resolution, the model adapts dimensions for small
target images, strengthening information interaction and enhanc-
ing detection accuracy in fire scenarios—proving valuable for
public safety and forest fire management. [215] mentions the
crucial role of sensing technologies such as LiDAR (Light Detec-
tion and Ranging) in improving fire detection accuracy through
various methods. In their work, LiDAR enables the creation of
high-resolution 3D models of forested areas, serving as input for
YoloV4 tiny. Additionally, it aids in feature extraction, providing
information on tree height and canopy density for enhanced fire
and smoke detection. Integration with visual and thermal imagery
further enhances the overall accuracy of forest fire detection and
prediction. Among all the work done with Yolo for wildfire detec-
tion, one work has studied how different variants of Yolo perform
under fire detection tasks. [211] proposes a model demonstrating
a decreased sensitivity level and improved anomaly identification
speed on these original Yolo models. Utilizing a dataset with
three detection zones, the model outperforms the gold-standard
detection approach for forest fires by 96.8%, achieving an mAP
of 50 and FPS of 122 on a multi-oriented dataset. Comparative
analysis indicates superior performance over advanced object-
detection algorithms, especially in detecting smoke from wildfires
under challenging environmental conditions. (Detailed results are
shown in terms of accuracy in Table 7)

• Classic CNN-based Models have been utilized by several works,
such that a popular backbone network has been transferred for
the task of wildfire detection, working with a modified classifica-
tion/detection head. Some of the models listed in Table 7 share
their detection task with a classification/segmentation and are
also listed in Tables 5 and 6. Here we will present other models,
not mainly based on Yolo object detection models.
[67] investigates feature fusion in handling RGB and IR image
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pairs using two approaches: Early Fusion, concatenating images
and modifying the network, and Late Fusion, training separate
networks for each modality and merging features later. The Flame
network, a lightweight CNN with less than 1000 parameters,
serves as a baseline, featuring three convolutional layers, max-
pooling, and two fully connected layers. Transfer learning with
pre-trained models is employed, substantially expediting training.
Overall, the study compares Early and Late Fusion in conjunction
with the Flame network and underscores the efficacy of transfer
learning for improved training efficiency.
[143] designs a hierarchical approach to wildfire detection, com-
prising two modules: wildfire image classification and wildfire
region detection. The first module employs traditional machine
learning (SVM) and Reduce-VGGNet to classify extracted video
frames based on normalized shape, texture, and color features.
In the second module, the Vibe algorithm identifies candidate
fire regions, and an optimized CNN extracts temporal and spatial
features to enhance detection accuracy. This approach, aimed at
improving wildfire detection precision, showcases high accuracy
in the experiment. The Reduce-VGGNet model and the optimized
CNN contribute to reduced parameters and effective combina-
tion of spatial and temporal features for accurate wildfire image
classification and region detection. [144] employs an ensemble
CNN architecture, incorporating MobileNetV2, XceptionNet, and
ResNet-50, to enhance overall performance in wildfire detection.
Through transfer learning and data augmentation, the models
are trained on a dataset containing smoke and fire images. The
ensemble CNN is integrated with a staged Yolo model, forming
a two-stage detection system. The ensemble CNN identifies ab-
normalities, and if detected, the staged Yolo model is employed
to localize smoke or fire, providing a comprehensive approach to
improve the accuracy of smoke and fire detection.
[149] proposes FireXnet; developed to address limitations in con-
ventional wildfire detection methods, leveraging data-driven deep
learning solutions. Its tailored lightweight architecture, with re-
duced trainable parameters, allows for efficient deployment on
resource-constrained devices like drones. Notably, FireXnet incor-
porates explainable AI using the SHapley Additive Explanations
(SHAP) tool. This enhances interpretability, allowing for a de-
tailed understanding of the features contributing to wildfire pre-
dictions, thus improving accuracy and reliability. Furthermore,
FireXnet is compared with five pre-trained models (VGG16, In-
ceptionResNetV2, InceptionV3, DenseNet201, and MobileNetV2)
through transfer learning, providing insights into their respective
performances for wildfire segmentation. [170] presents a saliency
detection algorithm for rapid identification and segmentation of
core fire areas in UAV aerial images, addressing the challenge of
wildfire detection. The 15-layered self-learning DCNN architec-
ture, ‘FireNet’, efficiently extracts wildfire features and serves as
a classifier, achieving an impressive 98% overall accuracy. The
combination of saliency detection and the proposed DCNN proves
effective in localizing and recognizing wildfires, preventing fea-
ture loss and enriching the image database. The practical utility of
‘FireNet’ is demonstrated through accurate wildfire identification
in sampled images from news reports, showcasing its real-time
inspection capabilities.
[171] introduces an energy-efficient and computationally effi-
cient CNN architecture for fire detection and localization, inspired
by the SqueezeNet model, utilizing smaller convolutional ker-
nels to minimize computational requirements. The model differs
from complex models by excluding dense, fully connected layers,
further reducing computational needs. Despite its simplicity, the
model achieves comparable accuracies to more complex counter-
parts, primarily due to increased depth. Notably, the proposed
model is significantly smaller in size, making it more feasible for
implementation in resource-constrained equipment. [213] pro-
poses Detectron2, a model utilizing the Mask R-CNN (Region-

based Convolutional Neural Network) for fire detection. The Mask
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R-CNN is a popular deep learning model for instance segmen-
tation, which can identify and locate objects at the pixel level.
It combines the Faster R-CNN object detection framework with
a semantic segmentation task, allowing it to not only detect
objects but also precisely outline their shapes within an image.
The use of Mask R-CNN in the Detectron2 model enables accu-
rate and detailed detection of fire regions, even in challenging
conditions such as varying lighting, motion, and different fire
characteristics. [212] proposes a novel dual-channel Convolu-
tional Neural Network (CNN) for forest fire detection, designed
to handle different-sized fire scenes. The model comprises two
single-channel networks with distinct input sizes, fused to create
a novel two-channel network. Two feature fusion approaches are
employed to combine the results of the two networks, enhancing
feature characterization. An attention mechanism focuses on key
details in the fused features for improved efficiency. Transfer
learning is utilized to mitigate overfitting and reduce training
time. Experimental results, shown in Table 7 demonstrate the
model’s superior performance in fire recognition, surpassing the
single-channel network.

• Attention-based Models and transformers have also been used
in some works. Authors in [191] utilize modern computer vi-
sion techniques such as visual attention to improve wildfire de-
tection performance. [191], specifically uses attention to fuse
spatial and temporal extracted features together. The proposed
Spatio-Temporal Self-Attention Network consists of three main
components: TemporalNet, SpatioNet, and FuseNet. TemporalNet
focuses on learning temporal features from a sequence of frames,
while SpatioNet processes a single frame. Both networks produce
64-channel feature maps, which are concatenated and passed
through a 1 × 1 convolution layer for size reduction. FuseNet then
employs a self-attention mechanism to capture spatial–temporal
dependencies crucial for fire detection and segmentation. The
network undergoes multi-stage training, with independent train-
ing for SpatioNet and TemporalNet to extract fire segmentation
masks for individual frames, followed by training FuseNet to
integrate their outputs. The approach also incorporates transfer
learning and a two-stage pipeline for fire detection and verifica-
tion, enhancing the network’s effectiveness. While this work is
also highlighted in the segmentation section, the segmentation
and detection pipelines include subtle differences. The segmen-
tation architecture focuses on identifying fire regions in single
frames using SpatioNet, TemporalNet, and FuseNet, while the
detection architecture processes frame sequences, employing the
spatiotemporal network for high-quality segmentation maps in
the region proposal stage and a subsequent classifier for fire
presence determination. Segmentation targets individual frames,
while detection assesses fire existence across sequential frames,
with segmentation playing a vital role in the region proposal for
detection.

• Transformers Models have recently been used as a powerful tool
for wildfire detection. The FireDetn model is designed by authors
in [214] for efficient real-time wildfire detection in complex
scenarios, featuring key elements to enhance accuracy. It employs
four detection heads for flames of various sizes, improving overall
model accuracy. The integration of Transformer Encoder blocks
with multi-head attention allows the model to capture global
and contextual features, enabling better detection in complex
scenarios. This integration facilitates learning from relationships
between different image features, enhancing the model’s con-
textual understanding and prediction accuracy. The multi-head
attention mechanism enables simultaneous focus on different im-
age regions, further improving the model’s ability to capture
global and contextual information. Notably, the model also inte-
grates a spatial pyramid pooling fast structure into the smallest
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detection head, efficiently capturing multi-scale flame objects
with lower computational cost. Overall, the FireDetn model’s fea-
tures collectively contribute to its accuracy in detecting wildfires
in real-time and complex environments.
The STPM_SAHI forest fire detection model proposed by [219]
incorporates the Swin Transformer for enhanced global informa-
tion capture, leveraging its self-attention mechanism for improved
context understanding. It replaces the traditional Feature Pyra-
mid NEtwork (FPN) with the proposed Path Aggregation FPN
(PAFPN) for more effective feature fusion, reducing the impact of
down-sampling. The model also introduces Slicing Aided Hyper
Inference (SAHI) technology to address small-target fire detec-
tion challenges, providing a slice-aided reasoning pipeline and
significantly improving accuracy for such fires. These innovations
distinguish the model from traditional CNN models, offering im-
proved feature extraction and small-target detection capabilities.
Following this path, one other work upraged the idea of path
aggregation networks [218]. The Forest Fire Classification and
Detection Model (FCDM) first optimizes the loss function by
switching to SIoU Loss in the YoloV5 bounding box, incorporating
directionality for faster convergence during training and infer-
ence. FCDM introduces the Convolutional Block Attention Module
(CBAM) to fuse channel and spatial attention, improving classifi-
cation recognition accuracy. The model, next, advances feature
fusion by upgrading the Path Aggregation Network (PANet) layer
to Bidirectional Feature Pyramid Network (BiFPN), preventing
feature loss and enhancing forest fire detection across different
scales.

5.2. Wildfire monitoring

After discussing state-of-the-art approaches toward wildfire detec-
tion, this section aims to present a broad overview of techniques
for wildfire monitoring. It is worth highlighting that ‘detection’ and
‘monitoring’ are usually vaguely defined, and no clear objective-based
boundary separates them from each other. However, in this paper, we
consider monitoring as active exploration to find ignited areas, relying
on input data that is processed and annotated by the detection module
onboard an aerial system, yielding acceptable detection accuracy. Re-
garding this point of view, the output of the detection module pointing
out ignited areas within the field of view is considered to be the input
to path-planning modules.

Fig. 14 depicts how different modules can be integrated sequentially
in a wildfire management system. The crucial effect of the outcome of
one stage on the quality of the next stage being executed is emphasized
here. To be more specific, path planning, the core to active monitoring,
uses an observation map inside the field of view of the UAS, which is
processed by the detection module (fire locations are indicated after
segmentation), while it can also benefit from the prediction, prediction,
or a statistic the spread modeling module is generating for a few
time steps in the future and build an aggregated probabilistic map
to choose the best action possible. However, not all actions may be
executed due to physical limitations on the current state of the UAV;
the possible action is executed through the action execution module,
yielding a completely new state based on the new position of the
UAS in the environment and the new state of the environment itself.
After measuring and pre-processing the new raw data, detection, and
segmentation are done again to complete the loop.

Wildfire management systems, especially for real-time applications,
need a strategy to identify and capture images/video streams from
the wildfire in the shortest possible time. Such a strategy can use
prior knowledge about the environment’s landscape, fuel, and weather
to plan more efficiently. When it comes to modeling the wildfire
monitoring problem, it seems that taking different aspects of active
monitoring into account, we are dealing with a complicated objective,
or to be more specific, an aggregation of multiple objectives, expressing

the main of optimally tracking fire frontiers in terms of maintaining
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Fig. 14. The data flow cycle between modules involved in wildfire management: sensing, prepossessing and detection, modeling and planning, and control.
ufficient coverage, minimizing computation load and communication
verhead, and tracing shortest paths between local destinations [239].
ontrolling the balance for aggregation of such objectives while re-
pecting the limitations and constraints becomes crucial. Fig. 15 depicts
he main tasks involved in a general wildfire monitoring problem with
ingle and multiple aerial devices. While path planning creates a high-
evel trajectory to follow between waypoints or towards a destination
tation, front-line tracking models the main task with lower-level nav-
gation, task coordination controls how different tasks are balanced
ith each other, and team coordination involves how fleet members
ommunicate, share information, and choose actions as a team.
Considering a single aerial system (usually a UAV), a path planning

ask [240] refers to intelligently generating a trajectory (set of points)
o optimize an objective we are interested in, with respect to constraints
hat model either physical limitations or time/power sensitivity of
ission completion. After the aerial vehicle has reached its destination,
he main task of coverage maximization is to be executed. As hovering
bove ignited areas causes damage and eventual fatality for the vehicle,
onitoring the fire around the frontier is a fine threshold for covering
large forest fire. This task is referred to as front-line tracking. Driven
y the scale of sensing equipment and the area of interest, a fleet of
erial vehicles is required to monitor wildfires at low altitudes. Some
orks focus on how one of such vehicles is deployed and planned.
n contrast, many works consider how a fleet of vehicles should be
esigned in a cooperative setting to jointly perform and optimize
heir actions regarding the final goal [241]. To manage a fleet of
UAVs, either in a centralized or decentralized network, many technical
aspects should be considered in system design, including the commu-
nication scheme and algorithm, control signal distribution, hierarchy
formation, etc., [242,243]. Such tasks are under the umbrella of team
coordination. Moreover, when a fleet of vehicles is jointly optimizing
a complex objective, the main problem of interest may be divided
into subproblems such as navigation, front-line coverage, GBS (Ground
Base Station) communication, model learning, recharging, alarming
systems, etc. Managing these tasks from a single vehicle point of view
throughout the whole mission is considered as task coordination.
31
5.2.1. Trajectory optimization and Path planning
Trajectory optimization or Path Planning refers to a vast area of

control in mobile devices, in which the goal is to find the most efficient
path for satisfying an objective [244,245]. This path is determined
not only in terms of a continuous or discrete sequence of locations
in a 2D or 3D area of interest but usually also in determining higher-
order derivatives like velocity and acceleration (When derivatives are
the optimization variables, the problem is known as motion planning).
Path planning is usually referred to as determining the set of optimal
way-points within the area, to optimize an objective function such as
the coverage of an area. Other objectives, (which are usually modeled
as constraints) are usually time and power consumption rates of the
vehicle. To model the real-world scenarios, some limitations to the
UAV speed, angle gradient, etc., are also usually considered as other
constraints in the optimization problem.

Following the general concept of trajectory optimization, some ap-
proaches have modeled the wildfire monitoring/tracking problem as an
optimization problem [240]. By optimizing the drone’s trajectory, this
process maximizes data collection, enhances situational awareness, and
aids in timely decision-making for firefighting efforts. Some approaches
consider manually designed or intelligently selected mid-points for nav-
igating towards a fire front. These midpoints are known as waypoints,
and their selection directly affects the total cost as they are modeled as
a decomposition point of the cost function over the flight path.

A general scheme of a way-point path planning framework is de-
picted in Fig. 16. A UAV, limited by its small field of view compared
to the target environment size undercover, as well as limited by its
battery time, is aiming to optimize its path along waypoints starting
from an initial location (source) and ending at a terminal location
(destination). While variables expressing way-point locations and the
kinematic profile of the UAV are considered control variables, the
target variable is usually a measure of the coverage or the distance
to the front line. The way-points can be generated through a variety
of algorithms and in various levels of granularity; for example, in
reinforcement learning for path planning, the next action takes us to
the next state, where the states represent location along other variables,
thus way-points are translated to fine grain destinations of every sin-
gle action, whereas many graph path planning methods such as tree
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Fig. 15. Main tasks in wildfire monitoring for a single and multi-UAV system.

Fig. 16. Waypoint-based aerial path planning for a UAV. The UAV field of view is shown in red, and the source, destination, and waypoints are also shown in circles and rings,
respectively.
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Fig. 17. A taxonomy of main path planning methods deployed for wildfire monitoring.
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search follow a hierarchical procedure exploring a random tree for path
planning in different levels of granularity. It is worth noting that in a
Euclidean space such as the physical world, in the absence of obstacles
in the environment, the straight path from the origin to the destination
would be the optimal solution of trivial optimization, whereas power
constraints, safety constraints, collision/obstacles avoidance, etc. nar-
row make the optimization non-trivial, and approximation algorithms
become popular.

Many works have extensively studied the variety of path planning
algorithms, the advantages and disadvantages of each and the po-
tential applications. Among them, [246] explores A*, Time-Enhanced
A* (TEA*), RRT, Time Windows, and Genetic Algorithms while em-
phasizing how adapting and combining them may help path-planning
advancements. Fig. 17 shows the four main categories of algorithms
for path planning. It is worth to mention many algorithms, such as
evolutionary algorithms and, in particular, genetic algorithms, were
also proposed in the past for path planning, yet due to extensive
population iterations to find the optimal solution in large and con-
strained algorithms, not many recent works have studied them with
the application of wildfire monitoring.

5.2.2. Graph-search path planning
Inspired by how communication networks find the optimal path

of delivering a message, some approaches rely on search methods on
a planar graph to determine the optimal way-points within a path
planning problem. The A* (A-Star) algorithm [247] and its variations
have been widely studied in the path planning literature. A* relies
on the famous Dijkstra algorithm, which works by neighbor node
communication in an extensive iterative search on the graph, aiming
to find the shortest path. Motivated by the high computational expense
of A*, it adds a heuristic estimation of the minimum cost path between
source and destination nodes to the general idea of Dijkstra, so the
search space is narrowed down to nodes within a directed subspace.
A general comparison of these two algorithms is shown in Fig. 18. The
earch space shown in red demonstrates which paths are eliminated
ue to modified link costs as we move toward the target node.
However, most approaches that model the set of possible way-

oints as a graph and follow shortest path search algorithms in the
odeled graph fall short when the number of nodes in the target
raph increases, for example, where fine granularity in way-points is
eeded or the distance between the source and destination exceed a
ertain amount and make the graph grow large. Aiming to reduce
he computational complexity of graph-based search [248] introduces
risk-aware graph search approach for path planning in UAVs and
iscusses potential use cases in wildfire monitoring. Extensions of A*
uch as D* and D*-Lite [249] have been proposed to effectively tackle
hallenges in dynamic environments such as wildfires. [250] uses an
nhanced version of A*, particularly aimed at reducing the number of
obot turnings through its path, while works such as [251] combine
mage-processing techniques applied visual scenes with A* for dynamic
ath planning in autonomous navigation and vision for fire-fighting
obots.
33
.2.3. Sampling-based path planning
Sample-based path-planning algorithms, such as Rapidly-exploring

andom Trees (RRT) and Probabilistic Roadmaps (PRM), are widely
mployed in robotics and autonomous systems to efficiently navigate
omplex environments. These algorithms work by randomly sampling
he configuration space and building a graph connecting these samples
o create feasible paths. In the context of wildfire monitoring with
erial devices, where path planning is crucial for efficient coverage of
ast areas, sample-based algorithms hold promise. By generating paths
hrough sampled points in the wildfire-prone region, these algorithms
an help aerial devices navigate through challenging terrain, dynami-
ally avoiding obstacles and optimizing their routes to capture critical
ata. One main problem with sampling-based algorithms is that it is
hallenging to ensure the optimality and completeness of the solutions
sing this method.
Among works employing sampling-based algorithms in wildfire
onitoring [252] uses an RRT algorithm, which is an algorithm for

path planning that operates by continually growing and extending
a tree structure from an initial starting point, employing a random
sampling approach to construct the path. The algorithm begins by
randomly selecting a point in the traversal space. It then finds the
nearest node to this point among all existing nodes. A new node is
created and connected to the nearest node via a direct link, with a
predefined distance known as the step size. Fig. 19 shows how a sample
point is selected based on these two main steps and appended to the
path. This work notes that existing UAVs have limited flight time and
onboard processing power, necessitating efficient algorithms to maxi-
mize coverage of affected areas while minimizing energy consumption
and computational demands. Effective traversal patterns are crucial for
optimizing the use of limited UAV resources and covering the entire
affected area within specified thresholds.

5.2.4. Control-based path planning
From a control theory perspective, trajectory optimization can be

considered as an open-loop solution to an optimal control problem.
For example, [253] uses two trajectory generation and trajectory track-
ing modules beside one another to guide the UAV towards already
detected fires in the shortest path and time possible. The UAV first
receives an alarm signal from a 360◦ thermal camera installed on top
of telecommunication towers, responsible for detecting fires in a 3.5
km proximity, and next runs a path generation algorithm to generate
waypoints of the optimal path between its take-off point and the fire
coordinates. The waypoints start with a safe take-off point and two
safety points to ensure flight in collision-free zones with respect to the
base location, which is traversed towards circular paths. Finally, the
main way-point generation is done by dividing the main into first, orbit
and return sub-trajectories. The orbit radius is defined as a parameter
prior to trajectory generation, and the first sub-trajectory terminates on
the closest point of the orbit, preparing to circulate the fire.
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Fig. 18. Comparison of A-Star and Dijkstra’s algorithms and how path planning is performed in each of them.
Fig. 19. Main steps involved in path generation via the RRT sampling-based path planning algorithm.
[254,255] divide approaches of aerial wildfire monitoring based
on the altitude range of operation into two main categories. High-
Altitude Disaster Monitoring (HADM) and Low-Altitude Fire Perimeter
Monitoring (LAFMP). The LAFMP problem deals with monitoring the
rate of spread in a real-time fashion, whereas the HADM problem
deals with coordinating tasks of a fleet of UAVs maximizing aggregated
wildfire coverage [256].

[257] appears to be one of the first works aiming to find a solution
to the LAFMP problem in a cooperative manner. The fleet of UAVs is
specified as low-altitude, short-endurance (referred to as LASE in the
paper), where short-endurance denotes limited communication range
to the base station and other UAVs and limited flight duration resulting
in periodic returns to the base station for refueling. Their approach
involves considering the latency for transmitting the captured and
processed images of each UAV to the base station as a quality mea-
sure for time-sensitive wildfire monitoring. Their approach involves
a controlling framework aiming to align the fire perimeter over the
middle of each UAV’s field of view through the classification of real-
time thermal images. Next, they propose a load-balancing algorithm
34
for the fleet of UAVs to converge to a global low-latency configuration
with the objective.

5.2.5. Reinforcement Learning (RL) path planning
Control-based methods and traditional optimization work great for

simple wildfires with moderate growth pace but fail to capture the
uncertainty of decisions (variables) and quantify them in dynamic
environments [258,259]. They are also programmed to work with
hard-engineered formulations that try to model various constraints,
which may lead to non-convexity in many cases and make the problem
even more difficult. In contrast, a subset of AI-based methods that
use sequential decision-making, known as reinforcement learning, have
shown success in uncertain environments and account for the com-
plexity of the joint existence of multiple constraints along a dominant
objective such as coverage. Thus, they naturally suit problems with
multiple objectives much better, such as active wildfire monitoring with
drones.

Set aside this natural fit, in wildfire monitoring compared to many

other path planning applications such as routing in wireless networks,
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the shortest path is no longer the main concern, or to be precise, even
an explicit concern! On the other hand, in many applications such
as navigation, routing, etc., the origin–destination pairs are defined,
and the set of solutions exists in the constrained subset of paths to
this origin–destination path. In wildfire monitoring, the main goal is
essentially to cover as much wildfire content safely in a limited time.
Thus, the pairwise navigation is not even explicitly modeled anymore.
The trajectory is planned based on a series of actions that optimize the
overall goal to an extent. The sequential decision-making framework
with such a free reward design framework to solve an optimization
problem approximately and indirectly in complex and dynamic con-
straints is very valuable, and MDP, which is the basis for reinforcement
learning, provides such a suitable framework. As previously shown
in Fig. 15, path planning is just a preliminary task in active wildfire
onitoring. Along with other tasks such as tracking, coordination, and
ommunication, it raises the question of whether a system can handle
he complexity of the problem in large and constrained environments.
his is the reason most of the work discussed in this chapter focuses
n either continuous space control or reinforcement learning instead of
iscrete pairwise search methods, which suit navigation tasks better.
Moreover, since deep reinforcement learning [260] was popularized

round 2012, RL has been equipped with the power of contextual
nformation extraction for states. Many works have been focused on
isual representation learning ever since, advancing the methods for
eneralized decision-making in unseen scenarios. This makes real-time
ildfire monitoring much closer to reality, as the agent sees scenar-
os that have not been modeled in the simulated world it has been
re-trained on.
Reinforcement Learning has shown substantial growth in popularity

n time-sensitive monitoring tasks over the past decade [261]. The
lexible framework of reinforcement learning, especially in modeling
n objective by designing appropriate reward functions, has made it
reasonable alternative to solving an optimization problem through
raditional approaches [262]. The noticeable performance is mainly
ooted back in the computational feasibility of RL algorithms in multi-
onstraint high-dimensional parameter spaces. The gap becomes larger
hen the environment variables are mostly unknown. Traditional op-
imization in such situations becomes an infeasible solution. In such
roblem configurations, RL offers the ability to learn the optimal
ariables at any given time, namely the policy, through interactions
ith the environment governed by a feedback signal the expert has
esigned (the reward). This results in the ability to achieve the target
ithout being explicitly trained to do so and to work in environments
nknown to the agent [263].
Fig. 20 shows how reinforcement learning algorithms are cate-

gorized, and State-Of-The-Art (SOTA) models for each category are
presented. It is worth noting that many of these algorithms are not
tested for path-planning problems in general, but they are set aside for
path-planning problems applied to wildfire monitoring. This identifies
an important algorithmic research gap. By filling it, we may gain
new insights into aerial path planning and, more broadly, wildfire
monitoring. It should be noted that in complex and dynamic envi-
ronments such as wildfires, the optimal policy may be a stochastic
policy, which emphasizes the urge to follow the line of work on model-
based approaches where transition probabilities of states, which model
environment dynamic, are explicitly inferred and prediction of futures
states can be explicitly calculated through with conditional probabil-
ities. On the other hand, model-free methods benefit from generality
to various environments as they do not rely on the inferred transition
probabilities, and most advancements in deep RL have been made to
improve model-free algorithms. The choice between policy-based and
value-based methods can be made based on various factors, such as
the dimensionality of the state and action space (which control the
complexity of the algorithm directly) and the actual need to compare
35

state (and actions) values.
A general scheme of reinforcement learning for a wildfire mon-
itoring task is depicted in Fig. 21. The state here usually includes
the position and angles, along with speed and fleet information in
some works, while the action is almost always a change in the UAV
dynamics such as movement direction or angle tilts. Moreover, the
reward is usually a simple formulation of multiple tasks or objectives.
Assuming no control is done in the procedure, the environment state
is not affected by the agent’s actions. The agent’s visual observations
are basically a function of the environment’s state within its observable
fields of view, which depends on illumination conditions, any objects
hindering the fire, such as trees and smoke, and other information that
is omitted through prepossessing. It is important to account for such
information shifts when working with probabilistic models, especially
when they are equipped with uncertainty measurements.

Learning through interaction shows beneficial features in prob-
lems where spatiotemporal processes govern the environmental states,
meaning the optimal policy is time-dependent. One such process is the
progression of natural disasters, in which several mutually correlated
variables interact with one another to create the final phenomenon. A
significant amount of effort has been dedicated to simulating or model-
ing the actual occurrence of natural disasters, relying on observations
and pre-existing knowledge discussed in Section 7.

[264] has used a group of drones to track the fire front line in
an 𝜖-neighborhood of it while maintaining a minimum distance from
stationary and mobile obstacles within the region as a collision avoid-
ance mechanism and a minimum distance from the fire front itself for
safe operation. They consider a Gaussian measurement error for the
localization of drones, obstacles, and fire fronts. Next, they formulate a
Markov Decision Process (MDP) with the actions being the movement
in 4 main directions or hovering, and the state space simply consists of
the location of the agent in the 2D space [265]. They use an aggregated
reward function, which takes the collision avoidance and safe zone
constraints into account along with the main objective, which is moving
towards the fire fronts, each of which is modeled with a sub-function
of the UAV locations. Next, they use Q-learning as their algorithm
and a sequential exploration method while tackling the trade-off in
exploration–exploitation phases (in terms of system overhead and value
estimation accuracy) with thresholds on Q-value difference.

[266] proposes two cooperative methods for wildfire monitoring
with a team of UAVs, in one of which the team of UAVs consists of
Multiple Single Trained Agents (MSTA) using deep Q-learning, and in
the other, a value decomposition network is proposed which trains the
agents to cooperate. Their results justify the proposed algorithms by
outperforming two state-of-the-art approaches (independent and joint
Q-learner) [267,268].

[269] proposes a framework for planning optimized trajectories
for a swarm of UAVs to sense wildfires in forests and nearby regions
using distributed multi-agent Deep Reinforcement Learning (DRL). The
environment is simulated for a 1 km2 area with two dynamic fuel and
fire maps. The fuel map is updated every 2.5 s based on the probability
of a source cell igniting the neighboring cells within a threshold radius,
which is also affected by wind. The state consists of the fuel map,
the position of the UAV, the yaw, and the tilt angle. The action space
only consists of increasing or decreasing the tilt angle by five degrees,
which is chosen every 0.1 s. The observations of each UAV consist
of two main parts. The first part includes a feature vector of all UAV
states, including their bank angle, the relative distance of other UAVs
to the UAV, and the relative heading angles. The second part includes
a crop view of wildfire occurring beneath the UAV and captured by
its camera. The reward includes four main parts: the distance from the
fire, the number of safe (not ignited) cells nearby, high bank angles,
and collision possibility based on the distance to other agents. They
use a bipartite network to take in feature vectors and the observations
together in two branches and then fuse them later. They evaluate
the proposed model based on the cumulative episode reward and the

trajectories plotted on the simulated wildfire map.
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Fig. 20. The taxonomy of RL algorithms. Algorithms acronyms - MCTS: Monte Carlo Tree Search, I2A: Imagination Augmented Agents, PlaNet: Deep Planning Network, D2C:
Diversify for Disagreement & Conquer, SARSA: State Action Reward State Action, MBPO: Model-based Policy Optimization, DQN: Deep Q Network, PG: Policy Gradient, PPO:
Proximal Policy Optimization, TRPO: Trust-Region Policy Optimization, ACKTR: Actor-Critic using Kronecker-Factored Trust Region, AC: Actor-Critic, A2C: Advantage Actor-Critic,
A3C: Asynchronous Advantage Actor-Critic, SAC: Soft Actor Critic.
Fig. 21. General framework of the RL agent and the environment interaction in a wildfire monitoring task.
b
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[270] formulates the wildfire monitoring problem using multiple
ircraft as a POMDP (Partially Observable Markov Decision Process),
ses a fuel and wind-based wildfire model with linear decay for fuel
ynamics, and formulates the ignition probability for not-ignited cells
ased on the number and distance of their neighboring ignited cells.
he authors consider the observation or the probability of observation
belief) along with position, heading, and banking angles as their state
nd fixed increase/decrease in the bank angle as their action. The re-
ard consists of tracking distance and captured information efficiency,
hile low bank angles are also encouragements for the aircraft. They
se a Deep Q-learning approach and evaluate their model against a
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aseline receding-horizon controller in the presence and absence of c
wind. In a similar work, [271] follows the POMDP problem formulation
while choosing different state components as the state. Besides the
position and the angles, the speed of the UAV, as well as the frontline
predictive posterior and covariance matrix, is also used in a rather
different approach of nominal belief optimization. The posterior mean
vector and covariance matrix are here Kalman filters of the tracker
state. The use of the Kalman filter facilitates the integration of a simple
spread model with the original planning model and, therefore, suits the
dynamic and fast wildfire progression cases. [272] uses a mixture of
i-variate Gaussians as its model for the wildfire, such that the value
f each cell is chosen from the Gaussian with the highest value in that
ell (i.e., the closest fire center). For actions, each of the UAVs can take
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the four main directions, and the states consist of the location of all
UAVs and their respective environmental value within their fields of
view. The reward formulation is simple, with penalties given for UAV
collision attempts to exit the operational zone and positive rewards
while hovering above fires. They use distributed deep Q-learning as
their algorithm, and they show the effectiveness of their approach using
the number of successful episodes and their converged time graphs.

5.2.6. Aerial fleets for wildfire monitoring
Many works deploy multiple devices in a hierarchy or network,

in general, to tackle the challenges of environment dynamics and
computational expenses. However, managing tasks among a fleet of
aerial devices and coordinating the control signals introduces new
challenges, such as connectivity and communication constraints. In this
vein, [256] points out the necessity of using Unmanned Ground Systems
(UGS) besides fleets of UAS. Among works considering both ground and
aerial systems, [273] introduces a top-level mobile mission controller
providing effective planning and system-level decision-making with the
aim of optimizing resource expenditure and overall mission comple-
tion time. Their hierarchical framework involves a top-level generic
mission planner constructing the model of the UAVs, UGVs, and the
environment and feeding it to a refined mission planner that receives
the latest aggregated measured information for UAVs and UGVs. The
refined controller supervises UAV and UGV task allocators, followed
by collision avoidance modules and low-level trajectory generators
deployed onboard each UAV and UGV.

[274] have used a multi-objective optimization formulation to de-
sign a bipartite controller for a team of UAVs. The controller consists of
a coverage and tracking component at the upper level and a potential
field component at the lower level responsible for UAV navigation
between fire spots and collision avoidance. [275] describes wildfire
monitoring as shaping a coverage pattern with a team of UAVs, min-
imizing the distance to fire fronts via a positive semi-definite utility
function, taking the fire front and the UAV locations as inputs.

[276] points out the importance of considering a decentralized
multi-UAS for wildfire monitoring in large areas, emphasizing the fast
dynamics of wildfires and the limitations of centralized approaches
in applicability and adaptability. Moreover, the authors consider the
uneven importance of fire boundaries based on different factors con-
tributing to the spread of wildfire. They first developed a single version
of the UAS and then extended it to an importance-based decentralized
multi-UAS system. A cell within a 2D grid is assigned an important
value, which depends on the Rate of Spread (RoS) of the outward
direction from the inner ignited cell, the time elapsed from the last visit
of the cell, and the time needed to reach the cell. After reconstruction of
the fire perimeter, the UAV performs path planning by segmenting the
estimated perimeter into front and back semi-perimeters and comparing
the sum of calculated importance values to decide between forward
and backward motion. These forward and backward segments are
limited to the closest forward and backward UAVs of the UAV. They
use the DEVS-FIRE environment simulator [277] for the fire spread
scenario and show the fire perimeter being reconstructed in 2, 3, and 4-
UAV scenarios, improving in accuracy. They consider broadcasting the
location of each UAV to decrease the reconstruction error of the wildfire
and believe the communication overhead is worth the decentralization
of their approach.

[278] uses a leader–follower coalition of UAVs on an elliptic fire
growth model to track the fire frontline. In this work, a Ground Station
(GS) recalculates the reference trajectory for each UAV in every round
of information passing. This is completed after sensory information
measured by the UAVs is sent to the GS, and prior to sending the
recalculated trajectory to the leader UAV, the leader UAV sends recon-
figuration commands to follower UAVs to complete a round. Finally,
the whole team will reconfigure its formation shape while preserving an
elliptic fire radius around a fire and a separation angle between leader
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and follower UAVs in orbit.
Authors in [66] design a distributed leader–follower coalition frame-
work to form multiple coalitions from a set of drones. The coalition
leader employs observer heterogeneous drones (in sensing and imaging
capabilities) to hover in circular paths and wildfire data as effectively
and efficiently as possible. The objective is to cover the entire fire
zone with a minimum number of drones and to minimize the drones’
energy consumption and latency. Here, the leader identifies a set of
tasks for every region, each requiring certain resources and monitoring
properties. If the leader finds out the mission cannot be completed in
the specified duration with its own properties, it forms a coalition and,
during the formation process, broadcasts information about the mission
duration and properties to the potential followers. The UAVs requiring
the demanded properties respond to the leader UAV by reporting their
properties, available resources (e.g., battery), and their current posi-
tion. The objective of the leaders consists of multiple sub-objectives:
providing the minimum required resources and properties for mission
completion, guaranteeing the timely execution of the mission, choosing
the closest UAVs to the region of interest, and selecting UAVs with a
longer lifetime. Respecting this objective, for each coalition, a value is
computed to be maximized (with constraints) and among all possible
configurations for the number of sectors, coalitions and UAVs, the
mapping (configuration) maximizing the sum of coalition values will
be chosen. Fig. 22 illustrates an abstract design of a multi-UAV sys-
tem functioning in a coordinated leader–follower arrangement. While
the leader controls operational zones and gives controlling signals to
followers, it also relays inter-UAV communication and in the case of
distributed learning, it aggregates local models into a global model. On
the other hand, collision avoidance mechanisms are usually deployed
on the edge, and the follower UAV is responsible for ensuring safety,
hazard, and some parts of local path planning itself.

The driving force for an efficient tracking strategy is sufficient
and accurate knowledge about the environment. Some works propose
communication with an expert or central ground control, while others
follow a decentralized fashion to share information across a team
of UAVs. In this vein, [279] proposes a method that minimizes the
uncertainty of the fire-front locations over time while focusing on the
areas of human operation, along with a weighted multi-agent consensus
protocol that ensures appropriate global performance by enforcing an
extra control term that considers easily measurable information such
as the relative displacements to neighboring drones. [280] proposes a
minimum spanning-tree structure to form a communication network
across a team of UAVs, in combination with a consensus algorithm
resulting in a globally fused target probability map. Next, a Future-
dependent Model Predictive Control (FMPC) method is used to figure
out a cooperative trajectory for the UAVs to follow. The objective
function of their work consists of two terms corresponding to commu-
nication cost and search gain while constraining the joint distance of
UAVs to stay in the range of the network connectivity criteria.

5.3. Wildfire control

Effective methods for intelligent detection and monitoring will only
be useful when their outputs are used for a well-designed wildfire
suppression (control) framework. Controlling is considered as an ac-
tive process and thus control theory, optimization, and reinforcement
learning approaches can be more useful in this area. The mobile nature
of UAVs and other aerial vehicles, relatively close to the ground level,
makes them suitable as a platform for developing early-stage wildfire
control algorithms. To be more specific, UAVs can help firefighters with
disposing of suppressant material such as fire retardants or water on top
of batch fires and help prevent their spread to more dangerous areas,
for instance, industrial or residential borders. The use of aerial suppres-
sion has been found to impact the containment time of wildfires, with
comparisons of containment time with and without aircraft being used
to develop operational tools to aid in the decision-making process for

deploying aircraft to newly detected fires.
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Fig. 22. An abstract design of a multi-UAV system (UAV fleet) operating in a leader–follower fashion.
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In this vein, authors in [281] have used a distributed multi-agent
RL setting where each agent develops a policy based on its local
information in a 2D lattice, where trees are located at the nodes, and
the ignition state of each tree varies in a ternary manner (healthy, fire,
burnt), while having a combined action space containing a movement
action in nine directions and a controlling action of dumping fire
retardant on the tree using the UAVs or not. The agents communicate
with their nearest neighbor sharing their position in the 2D lattice,
designing the whole forest as a network of locally interacting MDPs,
the agents are encouraged when moving to a boundary tree on fire,
and discouraged otherwise. Moreover, they are encouraged to move
towards a healthy tree with at least one burnt or ignited neighbor,
and discouraged otherwise, along with some partial rewards model-
ing the problem the constrains. Finally, they use a multi-agent DQN
(MADQN) with a shared replay buffer that aids faster exploration and
generalization in partially observed cases.

[282] describes a framework where the drones are activated in case
of a forest fire and take off from the firetruck, each with a payload of
retardants. After that, the drones either encircle the fire or cover a large
section of the fire (if it is too big) and prepare to drop. When they have
gotten into position, they crash into the ground, deploying their fire
retardant in the process, and the process can be repeated as much as
necessary. [283] outlines criteria and methodologies for evaluating the
effectiveness of aerial suppression drops during experimental fires. It
focuses on assessing drop placement, coverage, and their impact on fire
behavior. The proposed methods rely on the analysis of ortho-rectified
airborne infrared imagery to measure drop dimensions, proximity to
the fire perimeter, and their influence on fire spread, providing valuable
insights for comparing tactics, suppressants, and delivery systems.

[146] explains a very important point in the process of dropping
fire retardant with aerial vehicles. Achieving precise and swift delivery
of fire extinguishing agents via UAVs presents a challenge involving a
delicate trade-off. Dropping the agent from significant altitudes may
result in its dissipation or evaporation before reaching the fire while
38
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flying too close risks exposing the aircraft to elevated temperatures.
To minimize exposure time, faster flight is an option, but this is
constrained by the inverse relationship between payload weight and
maximum attainable speed. Rotary-wing aircraft, specifically, face this
trade-off acutely, as they need to tilt for forward movement, allocating
thrust to overcome aerodynamic drag and diminishing their vertical
lift capacity. The translational motion of a multicopter is intricately
influenced by these dynamics. Not many works have considered this
trade-off and when modeling the task as a decision-making problem,
modeling this relationship as rewards, makes the solution many steps
closer to reality. [146] formulates the problem as a constrained Op-
imal Control Problem (OCP) and solves it while taking into account
nvironmental parameters such as wind and terrain gradients, as well
s various payload-releasing mechanisms. The authors verify their ap-
roach with both simulations and real-world experiments. The drop-off
ocations of the payload for the selected scenarios are demonstrated in
heir evaluation as a visual result.
At the end, Table 8 presents a comprehensive summary of the

atest research papers focused on wildfire monitoring and control,
ategorizing them according to their overarching methodologies and
pecific components.

.4. Challenge, discussion, and future directions

Active-fire management highlights the crucial role of UAVs
quipped with cutting-edge AI technologies in efficiently managing
ildfires during the active-fire phase. The integration of computer
ision techniques, particularly machine learning (ML), deep learning
DL), and Reinforcement Learning (RL) algorithms, plays a pivotal
ole in wildfire detection, classification, segmentation, and monitoring.
ctive-fire management algorithms encounter various challenges that
ustify the necessity of further advancement. Limited real-time data
rocessing capabilities pose a challenge, particularly in dynamic wild-

ire scenarios where quick decision-making is crucial. The integration
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Table 8
Review of prior works on wildfire monitoring and control, classified based on general approach and components.
Article Approach Objective Single/Multi Variables Dataset/Simulator Evaluation metric

[253] Optimization &
Control

Path minimization Single Src, Dst, Waypoinys, Alt,
Orbit Rad.

Real Fires Around
Madrid

□✓ Position Graph
□✓ Orientation Graph

[256] Optimization &
Control

Coverage maximization,
Path minimization

Multi UAV position, Velocity,
Heading angle

Historical California
fires

□✓ Route Graphs
□✓ Flight Length

[273] Optimization &
Control

Task allocation, Path
minimization, Collision
avoidance

Multi Number of Tasks and
UAVs, Positions

UTIAS (2 pairs of
UAV+UGV)

□✓ N/A
□✓ N/A

[276] Optimization &
Control

Fire frontline tracking,
Path minimization

Multi Rate of spread, Last visit,
Estimated arrival

DEVS-FIRE (Spread
Simulator)

□✓ Importance
□✓ Trajectory Graph

[274] Optimization &
Control

Fire tracking, Path
minimization, Coverage,
Collision avoidance

Multi Position, Rate of Spread,
Wind Speed and Angle

Simulation in
Matlab with
10UAVs

□✓ Altitude
□✓ Field of View Graphs

[275] Optimization &
Control

Fire frontline tracking, Fire
suppression

Multi UAV position, Velocity,
Fire perimeter shape

Mathematical fire
growth model

□✓ Trajectory Graph
□✓ Number of Cells

[278] Optimization &
Control

Fire frontline tracking,
Leader tracking

Multi UAV position, Roll, Pitch
and Yaw angles

Manual, 3 UAVs and
Elliptical fire model

□✓ Follower Position Error
□✓ Formation Angle Graphs

[66] Optimization &
Control

Minimizing number of
drones for total coverage

Multi Task and Device
Characteristics, UAV
Resources

Manual Simulation
with 20 Drones and
3 Groups

□✓ Coverage Graph
□✓ Intra-Group Distance

[280] Optimization &
Control

Minimize communication
cost with target probability
map

Multi Velocity, Acceleration,
Heading Angle, Yaw Rate

Manual Simulation
in Matlab with 8
UAVs

□✓ Communication Cost
□✓ Intra-Network Distance
□✓ Search Gain

[279] Control & RL Minimizing fire location
uncertainty and UAV
displacement

Multi UAV Positions, Observation
Angles, Wildfire Dynamics

FARSITE Wildfire
Spread Simulator

□✓ Cumulative Uncertainty
□✓ Fire and Human
Distance

Article Approach Reward function Single/Multi State and action space Algorithm Evaluation metric

[264] Reinforcement
learning

Frontline proximity,
Collision avoidance

Multi State: UAV Positions,
Action: 4 Main Directions
+ Hovering

Q-learning □✓ Localization Error
□✓ Collision Frequency
Graphs

[266] Reinforcement
learning

Fixed positive reward for
ignited burning cell

Multi State: Position, 3D Angles,
Actions: 4 Main
Directions, Observations:
Relative Distances and
Angles

DQN + Value
Decomposition
Network

□✓ Coverage and Belief
Map
□✓ Monitoring Score, Fire
Miss

[269] Reinforcement
learning

Safe frontline proximity,
High bank angle and
collision avoidance

Multi State: Fuel Map, UAV
Position, Yaw and Tilt,
Action: Tilt ±5◦

Two Branch DQN □✓ Cumulative Reward
□✓ Trajectory Graphs

[270] Reinforcement
learning

Frontline tracking,
Information efficiency, Low
banking angles

Multi State: Observation/Belief
+ Aircraft Position,
Heading and Banking
Angle, Action: Fixed
Increase/Decrease in Bank
Angle

DQN, Receding
Horizon Controller

□✓ Aircraft Trajectory
Graph
□✓ Accumulated Reward

[272] Reinforcement
learning

Ignition detection,
Collision avoidance, Map
exit avoidance

Multi State: UAV Positions +
UAV Field of View
Observations Action:
Moving in 4 main
directions

Distributed DQL □✓ % of Successful
Episodes
□✓ Episode Length

[271] Optimization in
POMDP

Minimizing covariance
matrix error for fire targets

Multi State: Frontline Position,
UAV Speed, Heading
Angle, Frontline Predictive
Posterior Mean and
Covariance, Action:
Acceleration, Bank Angle

Nominal Belief State
Optimization

□✓ Trajectory Graphs
□✓ Heading Angle Graphs
□✓ Bank Angle Graphs

[281] Reinforcement
learning

Safe frontline tracking,
Collision avoidance

Multi State: Self and Neighbor
Position, Ignition State
Image and Memory,
Rotation Status, Action:
Dumping Retardant

MADQN, Heuristic □✓ Fraction of Healthy
Trees
□✓ Loss, Limit, and Win
Acc
of AI technologies in UAV systems requires addressing computational
limitations to ensure efficient and timely data analysis. Additionally,
ensuring the reliability and accuracy of ML and DL algorithms in
diverse environmental conditions, such as varying weather and terrain,
is essential for their practical implementation.

Addressing the challenges in active-fire management algorithms
requires a comprehensive understanding of the intricacies involved
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in wildfire behavior. For this purpose, research efforts should focus
on advancing real-time data processing capabilities through optimized
algorithms and hardware enhancements. Collaborative initiatives be-
tween computer scientists, wildfire experts, and UAV engineers can lead
to the development of robust algorithms that consider the complexities
of different environmental conditions. Testing and validation processes
must be rigorous to ensure the reliability and accuracy of active-fire

management algorithms across diverse scenarios.
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In Reinforcement Learning (RL) specifically, numerous
approaches—such as imitation learning and inverse RL, which facilitate
the acquisition of complex behaviors from patterns observed in human
operators—remain largely unexplored. Moreover, how the visual state
is processed within the deep neural networks in deep reinforcement
learning to ensure sample efficient information extraction introduces
many research gaps. On the other hand, DL research has accelerated in
the past few years, especially after the introduction and development
of foundation models and large language models. Many tasks can now
be encoded into instructional prompts, while visual information can
be processed much better and integrated with contextual information
from prompts in multi-modal frameworks. Multi-modal agents are thus
a very new area, ready for investment and exploration, especially
from the perspective of generalization and efficiency, where they suit
real-time online integrated wildfire management systems.

In conclusion, active-fire management algorithms stand at the fore-
front of leveraging AI and UAV technologies for effective wildfire
detection, monitoring, and control. Addressing current challenges and
embracing future directions will pave the way for more resilient, adap-
tive, and efficient systems, ultimately contributing to enhanced wildfire
management strategies.

6. Post-fire management

In the aftermath of devastating wildfires, effective and timely post-
fire management is critical for ecosystem recovery and mitigating
further damage. A new era of post-wildfire management has emerged
owing to the latest advancements in UAV technologies. UAV-assisted
post-wildfire management harnesses the capabilities of UAVs to assess
the extent of fire damage, plan evacuation, and aid in rehabilitation ef-
forts. In this section, we comprehensively survey the existing literature
on UAV-assisted post-wildfire management, encompassing forest recov-
ery monitoring and damage assessment using post-fire UAV imagery,
evacuation planning, and the application of AR/VR for workforce
training and safe operation.

6.1. Forest recovery monitoring

Forest recovery monitoring is a pivotal component of post-fire
management, supporting efficient assessment and restoration of fire-
affected areas. The rapid progress in computer vision technology for
UAVs [284] has paved the way for the utilization of post-fire UAV
imagery as a potent tool for monitoring forest recovery processes.
By capturing high-resolution aerial images, UAVs provide valuable
insights into the extent of fire damage, vegetation regrowth patterns,
and ecosystem dynamics.

The work of [285] shows that a low-cost UAV equipped with a
camera constitutes a cost-effective tool for monitoring the recovery of
a wildfire-affected forest. Two UAVs are deployed to acquire multi-
spectral data and RGB imagery at different resolutions for post-fire
forestry recovery monitoring [286]. It is highlighted in [287] the
suitability of a UAV deployment for evaluating post-fire vegetation
recovery using RGB and multi-spectral cameras in boreal ecosystems,
where field campaigns are spatially limited, and available satellite
data are reduced by short growing seasons and frequent cloud cover.
The study of [288] evaluated the challenges of using UAVs to obtain
multispectral orthomosaics at ultra-high resolution that could be useful
for monitoring large and heterogeneous burned areas. Furthermore, it
is demonstrated that UAV imagery could constitute a viable alternative
for the evaluation of post-fire forest vegetation as compared to the
40

satellite imagery remote sensing method.
6.2. Damage assessment

Wildfire damage assessment via post-fire UAV imagery has be-
come pivotal in disaster management and environmental monitoring.
UAV technology equipped with advanced imaging capabilities provides
rapid, high-resolution data for the evaluation of fire-affected areas. This
approach empowers responders, agencies, and researchers to assess
damage effectively, facilitating informed decision-making and recovery
planning in an era marked by escalating wildfire threats.

In the work of [289], a UAV is endowed with computer-vision
structure-from-motion (SFM) algorithms, abbreviated as UAV-SfM, to
collect and process multispectral data for monitoring forest impacts of
wildfire. Furthermore, a comparison in assessing post-fire changes is
conducted between UAV-SfM and airborne laser scanners (ALS), where
the latter is an alternative remote sensing method. Fire severity is mea-
sured using UAV imagery [290–292]. Specifically, UAV LiDAR-derived
variables with supervised classification are utilized to map land cover
type and fire severity [291], whereas in [292] post-fire multispectral
imagery sensed from UAV is used for evaluating fire severity indices.
In [293], an approach using a UAV to classify and estimate wildfire
damage is demonstrated, whose classification accuracy is compared to
that given by satellite imagery. A deep learning-based framework for
segmenting burnt areas from UAV images is developed in [294].

Post-fire management utilizing AI-enabled UASs can offer a proac-
tive approach to early warning systems. Specifically, through real-time
aerial monitoring, AI algorithms can rapidly analyze terrain, vegeta-
tion, and weather patterns to detect potential post-fire hazards such
as landslides, erosion, or flash floods. By integrating data collected
by a UAS with predictive models, authorities can quickly identify
vulnerable areas and implement targeted mitigation strategies, thus
reducing risks associated with post-fire disasters. This integration of
AI and UAS technology not only enhances the efficiency of post-fire
assessments but also revolutionizes the way rehabilitation efforts are
planned and executed. More specifically, accurate data gathered allows
for the precise allocation of resources, ensuring that reforestation and
erosion control measures are directed where they are most needed.
Moreover, the use of AI-enabled UASs in post-fire scenarios supports
ecological monitoring, helping to track the recovery of flora and fauna
over time. This long-term monitoring is crucial for understanding the
effectiveness of restoration strategies and for adapting management
practices to support ecosystem resilience. Ultimately, the application
of these advanced technologies in post-fire management underscores a
shift towards more adaptive, responsive, and informed approaches to
disaster recovery and environmental management.

6.3. Evacuation planning

UAV-assisted evacuation planning plays a crucial role in post-fire
management, ensuring the safety and well-being of affected commu-
nities [295]. UAVs equipped with advanced imaging and mapping
capabilities offer invaluable support in assessing fire-affected areas
and gathering real-time data on road conditions, traffic congestion,
and potential hazards. By capturing aerial imagery and conducting
rapid surveys, UAVs provide critical information that aids in identi-
fying safe evacuation routes, determining the capacity of evacuation
centers, and coordinating emergency response efforts. The utilization
of UAVs in evacuation planning significantly enhances the efficiency
and effectiveness of post-fire management by enabling timely decision-
making, reducing response time, and minimizing the risks associated
with evacuations.

The work of [296] investigates the use of UAVs in search and res-
cue operations in wildfires while revealing advantages and limitations
observed in a field trial. In [297], a framework for burnt area mapping
and evacuation planning using UAV imagery analysis is developed.
Specifically, this study proposes an optimization model for a maximal

area coverage of the fire-affected region wherein the advanced Artificial
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Bee Colony (ABC) algorithm will be applied to the swarm of drones to
capture images and gather data vital for enhancing disaster response.
The captured images will facilitate the development of burnt area
maps, locating access points to the region, estimating damages, and
preventing the further spread of fire. A holistic model that uses a mixed-
method approach of Geographical Information System (GIS), remote
sensing, and UAV imagery for wildfire assessment and mitigation is
developed in [298]. In particular, the UAV paths are optimized using
five algorithms, including greedy, intra route, inter route, tabu, and
Particle Swarm Optimization (PSO), where PSO search surpassed all the
tested methods in terms of faster run time and lesser costs to manage
the wildfire disasters.

6.4. AR/VR for workforce training

Augmented reality (AR) and virtual reality (VR) have emerged as
transformative technologies in the realm of workforce training and
safe operations, especially in high-risk scenarios like wildfire manage-
ment [299]. These immersive technologies provide an unprecedented
opportunity to enhance training programs and equip professionals with
the skills and knowledge necessary to effectively combat wildfires
while ensuring their safety. Through AR, trainees can overlay critical
information onto their real-world surroundings, enabling them to iden-
tify fire-prone areas, understand wind patterns, and interpret complex
terrain in real-time [300]. VR, on the other hand, offers realistic sim-
ulations of firefighting scenarios, allowing personnel to practice crisis
response and decision-making within a controlled environment [301].
By integrating AR/VR into workforce training, organizations can signif-
icantly reduce the learning curve, foster better retention of information,
and ultimately bolster the efficiency and effectiveness of wildfire man-
agement efforts, thereby contributing to safer and more successful
operations.

Situation awareness (SA) is crucial in Air Attack Supervision (AAS).
Timely decision-making should be made by the AAS predicated on the
information collected while airborne. The type of display utilized in
virtual reality training systems affords different levels of SA because
of factors such as field of view, presence within the virtual environ-
ment and the system. In [302], a study is conducted to evaluate SA
acquisition and immersion in three display types: a High-Definition
TV (HDTV), an oculus rift Head-Mounted Display (HMD), and a 270◦
ylindrical projection system (SimPit). It is shown a significant dif-
erence between the HMD and the HDTV, as well as with the SimPit
nd the HDTV for SA levels. Preference was given more to the HMD
or immersion and portability, but the SimPit provided the best en-
ironment for the actual role. In [303], a study was carried out to
xamine the efficacy of two distinct multi-sensory VR training systems
HMD and SimPit) concerning situational awareness, workload, and
resence among professional and volunteer firefighters during an AAS
raining session. Moreover, it is shown that the HMD delivers greater
enses of SA and presence, and reduced workload compared to SimPit.
n [304], the authors created a stressful decision-making environment
or aerial firefighter training in VR. Specifically, they investigated
he deployment of a multi-user, collaborative, multi-sensory (vision,
udio, tactile) VR system to create a realistic training environment for
racticing aerial firefighting training scenarios. The results indicated
hat there were no significant differences between the proposed VR
raining exercise and the real-world exercise in terms of stress levels, as
easured by Heart Rate Variability (HRV). Additionally, no significant
ifference was reported between VR and radio-only exercises, as shown
y the short stress state questionnaire. A VR environment for aerial
irefighting that considers disruptions in radio communication has been
eveloped in [305]. This research examined the impact of realistic
ommunication disruptions on behavioral changes in communication
requency and physiological stress, utilizing HRV measurements. The
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tudy revealed that experts have a better ability to manage stress.
The research conducted by [306] introduces a robotics prototyping
latform known as Measurable Augmented Reality for prototyping
yber-Physical Systems (MAR-CPS). MAR-CPS is an experimental ar-
hitecture that enables controlled testing of planning and learning al-
orithms in an indoor setting that closely emulates outdoor conditions.
his experimental architecture leverages motion-capture technology
ith edge-blended multi-projection displays to improve state-of-the-art
ndoor testing facilities by augmenting them with interactive, dynamic,
artially unknown simulated environments. In [307], MAR-CPS is used
or visualization and perception of a dynamic wildfire. In this work,
discretized 12 × 30 forest environment composed of varying terrain
nd vegetation types (such as trees, bushes, and rocks) was built and
rojected in MAR-CPS. Seed fires of varying intensities were initiated
n the terrain, with a fire-propagation model used for dynamically
pdating the intensities and distribution over the terrain. A quadrotor
sed an onboard camera (Sony 700 TVL FPV ultralow-light mini cam-
ra) to wirelessly transmit images to a perception central processing
nit, which created a segmented panorama of the complete forest envi-
onment. The work of [308] proposes a framework for employing drone
warms in firefighting scenarios. Specifically, the proposed system
nvolves a swarm of quadcopters that individually possess limited capa-
ilities, while collectively executing multiple tasks such as surveillance,
apping, monitoring, etc. Three operator roles are introduced, each
ne with different access to information and functions in the mission:
ission commander, team leaders, and team members. These operators
everage VR and AR interfaces to intuitively acquire information about
he scenario and, in the case of the mission commander, control the
rone swarm.

.5. Challenge, discussion, and future directions

In this section, we comprehensively provided an overview of the
xisting literature on UAV-assisted post-wildfire management. Table 9
ategorizes and summarizes the surveyed articles within each subsec-
ion for reference. Future research directions should focus on inte-
rating computer vision and machine learning to automate recovery
onitoring and damage assessments. Furthermore, recent advances in
afe autonomy could be leveraged to design AI-based planning mech-
nisms that determine optimal evacuation paths using autonomous
AVs to guide ground vehicles and firefighters safely through highly
ynamic and uncertain dangerous zones. Finally, developing AR-based
ildfire-fighting training systems is essential, given the limited existing
iterature in this area.

. Wildfire modeling

Models of the evolving active fire and the post-fire state a wild-
ire creates have multiple uses including testing our understanding
bout the mechanisms underlying what was observed, exploring what-
f scenarios about hypothetical conditions, gaining information about
rocesses or variables that are not directly observed, as well as pre-
icting what might happen in the future. Fire behavior model method-
logies span scientific disciplines and include statistical correlation,
emi-empirical formulas derived from laboratory experiments, compu-
ational fluid dynamics models ranging from minute-scale combustion
imulations to global-scale weather and climate models, and machine
earning. Historically and in statistical and AI approaches, fire behavior
nd fire effects have been modeled separately, estimating responses
n terms of environmental variables. More physically based, dynamic
imulation systems model the time-dependent fire processes and how
fire interacts with the surrounding fluid medium, leaving impacts on
he atmospheric environment, vegetation, and soil. Here, we identify
here UAVs play a role either in observations or elsewhere in systems,
ighlight where AI methods have been introduced into this area and
t what level modeling can be done by UAVs or using UAV images,
nd describe unresolved areas where these two technologies may open
dvances.
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Table 9
Summary and taxonomy of the recent works on post-fire management.
Subsection Article Summary

6.1 Forest recovery [285] A low-cost UAV equipped with a camera constitutes a cost-effective tool.
monitoring [286] Two UAVs are deployed to acquire multi-spectral data and RGB imagery at different resolutions.

[287] It emphasizes the effectiveness of deploying UAVs with RGB and multi-spectral cameras, overcoming
limitations of satellite data due to frequent cloud cover.

[288] UAVs obtain ultra-high resolution multispectral orthomosaics for monitoring large and heterogeneous
burned areas.

6.2 Damage
assessment

[289] A comparison in assessing post-fire changes is conducted between UAV-SfM and ALS.

[290] Fire severity is measured using UAV imagery.
[291] UAV LiDAR-derived variables with supervised classification are utilized to map land cover type and

fire severity.
[292] Post-fire multispectral imagery sensed from UAV is used for evaluating fire severity indices.
[293] The classification accuracy using UAV imagery for estimating wildfire damage is compared to that

given by satellite imagery.
[294] A deep learning-based architecture for segmenting burnt areas from UAV images is developed.

6.3 Evacuation
planning

[296] UAVs are deployed in search and rescue operations in wildfires, while advantages and limitations
observed in a field trial are shown.

[297] The ABC algorithm is applied to the swarm of drones to capture images and gather data vital for
burnt area mapping and evacuation planning.

[298] The PSO algorithm outperformed various methods in UAV path optimization, ensuring faster runtime
and lower costs for managing wildfires.

6.4 AR/VR for [299] AR and VR are used for workforce training and safe operations in wildfire management.
workforce training [300] Trainees use AR to overlay vital info on real-world settings, identify fire-prone areas, understand wind

patterns, and interpret terrain in real-time.
[301] VR offers realistic simulations of firefighting scenarios, allowing personnel to practice crisis response

and decision-making within a controlled environment.
[302] It compared SA acquisition and immersion, finding HMD preferred for immersion and portability,

while SimPit provided the best environment for the actual role.
[303] It is shown that the HMD delivers greater senses of SA and presence and reduced workload compared

to SimPit.
[304] The VR training exercise showed no significant stress level differences compared to the real-world

exercise, as measured by HRV.
[305] Aerial firefighting VR using radio communication disruptions to examine behavioral changes in

communication frequency and physiological stress.
[306] A robotics prototyping platform is introduced, named MAR-CPS, which is used for visualization and

perception of a dynamic wildfire
[308] An architecture leveraging VR and AR interfaces is developed for employing drone swarms in

firefighting scenarios.
7.1. Physics-aware approaches to fire behavior and effects

Several decades of research have been directed toward advancing
models of fire behavior – that is, modeling (either retroactively repro-
ducing or predicting in a future sense) how fast and in what direction
a fire will spread through various fuel strata and – with newer, more
physically based dynamic models, what phenomena it will produce –
in response to environmental conditions. When viewed through the
lens of traditional operational models, recent extreme fire behavior
has been described as beyond model capabilities and unpredictable.
However, newer physically based computational modeling systems that
integrate the interaction between fluid dynamics and fire behavior
have emerged. These come with increased cost and complexity but
have yielded groundbreaking insights. Some have been used to in-
vestigate the effects of fuel mitigation and the mechanisms driving
outlier wildfire events. When combined with remotely sensed active
fire detection data, these can not only forecast a fire’s growth but
also anticipate when fires may bifurcate, merge, or change directions,
and produce phenomena like large fire whirls. An example simulation
of the 2020 Calwood Fire using the CAWFE® coupled weather-fire
model [309], which simulates the evolving three-dimensional atmo-
sphere as modified by terrain and its moment by moment interaction
with fire behavior that is parameterized with semi-empirical algo-
rithms, along with validation satellite active fire detection data from
the Visible and Infrared Imaging Radiometer Suite (VIIRS) [310], is
shown in Fig. 23. Nevertheless, the term ‘‘modeling’’ includes more
than merely reproducing fire spread and behavior and extends to
estimating a fire’s impacts, including its effects on vegetation, soil, and
the atmosphere, some effects of which are mortality, burn severity, and
emissions.
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Modeling has evolved from kinematic calculations (where behavior
and consumption and/or fire effects done separately, e.g. in U.S.,
the FARSITE fire behavior [311] and First Order Fire Effects Model
(FOFEM) [312] or CONSUME [313] models developed to estimate fuel
consumption and emissions from wildland fires [314]) to computa-
tional fluid dynamics calculations using physics-based models, data-
driven approaches, and, more recently, ML approaches (summarized
by [315]). In physical models, key predicted outcomes are heat release
rate, fuel mass loss, and smoke concentration (notably PM2.5) [314].
These correspond to measurements of fire intensity and severity, or
more specifically, measurement-based products such as Fire Radiative
Power (FRP), i.e., the radiant energy release rate, and the differenced
Normalized Burn Ratio (dNBR), which is used to distinguish burned
from the unburned area and to distinguish vegetation burn severity
classes, respectively. These modeled variables are presumed to be
correlated with their analogous products, but this has only been loosely
examined. The fire science and applications community have an inter-
est in fire effects such as burn severity – both vegetation burn severity
(e.g., RAVG) and soil burn severity, which assesses impacts on soil –
as well as mortality, consumption, and emissions. The community has
recognized the need to conduct both fire behavior calculations jointly
with fire effects [316] and, to reconcile physical modeling of fire effects
with observations, which are generally available at a much coarser
landscape scale.

7.2. Data driven fire modeling

With the substantial growth of computational resources and deep

learning algorithms, wildfire modeling work has moved toward using
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Fig. 23. Modeled heat flux and near surface winds at 2:50 MDT on Oct. 17, 2020, during the 2020 Calwood Fire (color bars, lower right) using the CAWFE model, along with
contemporaneous VIIRS active fire detection data (lower left), where bright red is active fire and brick red is previously detected active fire, and Landsat 8 post-fire imagery (upper
left).
data to infer wildfire spread. Obviously, the most important prereq-
uisites of using data-driven approaches are data quantity and quality.
The lack of rich and diverse data sets that contain aerial images from
the wildfire as well as works that have tried to cover this gap will be
discussed in the next chapter. However, it is worth noting that when
analyzing such a complex phenomenon which is influenced by several
parameters, the number of meaningful features we consider for training
a model will be a crucial factor in its performance.

This translates to meaningful physical variables, which can either
be considered constant or variable throughout the wildfire. Some fac-
tors like vegetation density and type, slope, and canopy height are
considered constant features, as the amount of variation within the
monitoring mission time span is negligible. Other factors like fuel,
humidity, wind, and temperature vary over time. Among data-driven
approaches, the models usually either import such parameters as pure
numerical/categorical inputs or as image layers (captured by different
filters). Next, the model aims to predict a target variable such as the
rate of spread or fire intensity in a specific area. Thus, the classic
problem is formulated as a regression problem (predicting a continu-
ous measure of fire intensity, rate of spread, etc.), which beforehand
presents a classification problem of fire/no-fire, or segmented areas
based on ignition probabilities.

Wildfire spread modeling or fire-front spread modeling can be
defined as the process of inferring the state of the wildfire at the
location of interest and at a specific time after the ignition. Here, the
intensity, presence, remaining fuel, or any other variable representing
the fire spread can be the target variable. Based on a probabilistic or
non-probabilistic approach, predictions for one- or multiple-time steps
further are then made by the environment model inferred from the
data.

Here, like the ’Wildfire Monitoring’ section (presented in 5.2, we
classify the work focused on wildfire spread modeling and prediction
based on the general method or algorithm used for modeling the
spread. First, works using cellular automata which is a simulation-
based approach are discussed. Next, works using machine-learning-
based models on satellite and UAV data are summarized. Finally, the
literature formulating the spread problem probabilistically and dealing
with Bayesian updates or posterior sampling/prediction is explained.

7.2.1. Cellular automata for spread modeling
Some approaches such as cellular automata rely on recursive spatial

rules applied to the state of cells within a grid, meaning each cell state
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at a certain time is a function of the adjacent cell states at previous
times. Cellular Automata essentially run a simulation based on the
states of each cell assigned in a grid to model a spatiotemporal process.
One limitation of such an approach is the simultaneous update of cells
which is not necessarily like what happens. This roots back to the
lack of a probabilistic/fuzzy structure in the state generation/update
mechanism.

Wildfire spread modeling using cellular automata has been exten-
sively researched due to its ability to capture complex spatial dynamics
and interactions. [317] proposed an adaptive forest fire spread simula-
tion algorithm based on cellular automata to address the limitations of
traditional fixed-time step models in reflecting actual fire development.
Similarly, [318] introduced an optimal cellular automata algorithm
for simulating wildfire spread, which overcomes limitations in ignition
points’ locations and fire spread directions, resulting in shapes more
closely resembling the theoretically elliptic shape. Furthermore, [319]
highlighted the common use of cellular automata models for forest fire
spread but emphasized the need to incorporate the unique combustion
properties of forest fire spreading for accurate simulation results. The
integration of cellular automata with Geographical Information Sys-
tems (GIS) has been explored in [320] to model and show wildfire
propagation, providing relief agencies with a tool for environmental
safeguarding. This integration, for wildfire modeling has been demon-
strated to be a quick, efficient, and versatile approach, as it captures
the spatial distribution and evolution of fire breaks in heterogeneous
forest landscapes. [321]. [322] applied cellular automata to simulate
wildfire propagation and assist in fire management, highlighting the
successful application of cellular automata in modeling wildfire spread
and supporting fire management efforts. Moreover, [323] developed
a model for predicting forest fire spreading using cellular automata,
demonstrating the use of cellular automata as a modeling approach
for wildfire spread prediction. Overall, the research on wildfire spread
modeling using cellular automata emphasizes the importance of ad-
dressing the limitations of traditional models, incorporating unique
combustion properties, and integrating spatial dynamics to accurately
simulate wildfire propagation.

7.2.2. Deep-learning based spread modeling
Deep learning can be used to automatically extract spatiotemporal

features in Earth system science by leveraging its ability to process
and analyze complex, high-dimensional, and multi-scale data. Specif-

ically, deep learning architectures and algorithms can be developed to
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address spatial and temporal contexts at different scales, allowing for
the extraction of abstract spatiotemporal features [324]. Wildfires are
among earth system phenomena, where multi-source, multi-scale, and
complex spatiotemporal relations, including long-distance relationships
between variables, need to be adequately modeled. Deep learning’s
capacity to handle such data challenges positions it as a valuable tool
for this automatic feature extraction. In terms of wildfire prediction,
deep learning has shown significant promise, and by integrating deep
learning with physical modeling, approaches can be used to model
spatial dynamics with limited observations. Hybrid physics-aware and
data-driven models are crucial as they exploit the benefits of big data
and computational complexity while considering the necessary biases
that humans inject into the systems from prior knowledge of the data
and natural mechanisms. In the section below DL-based works focused
on satellite and UAS data will be discussed separately

• DL-Based Modeling on Satellite Data
Some works use satellite data to predict wildfire spread in the
upcoming days. Geosynchronous Earth Orbit (GEO) satellites are
locked in Earth’s orbit due to the specific altitude generating
an angular velocity equal to Earth. This property makes them
ideal for long-term monitoring as many temporal features may
get extracted in a long sequence of observations. However, due to
their high altitude compared to Low Earth Orbit (LEO) satellites,
the spatial resolution they can provide is relatively low. Low
spatial resolution and smoke occlusion hinder the evolving nature
of forest fires for a real-time management framework. Thus, a sub-
sequent urge to design multi-resolution frameworks with various
monitoring devices is observed. With all the limitations on low-
resolution wildfire monitoring, many spread models need to be
predicted in large areas for management strategy optimization. As
a result, satellite-based wildfire spread modeling can yet be very
useful in designing such management frameworks. Fig. 24 repre-
sents the details of the spatiotemporal resolution trade-off. The
high temporal resolution of GEO satellites can be integrated with
the high spatial resolution of LEO satellites to facilitate sequence
prediction tasks as well as single sample tasks, leveraging spread
modeling methods with a hierarchical information fusion design.
It is worth mentioning the trade-off goes beyond only LEO and
GEO satellites and UAVs, despite their high-resolution imaging,
due to their battery constraints, are unable to operate for more
than around an hour.
Among the works using satellite data, [325] has used GEO data
and designed a deep fully convolutional network to produce
daily maps of the probability of a wildfire burn over the next
week. The input data to the predictive network are fifteen factors
that were extracted from six different datasets and resulted in
29 quantitative features, which were selected as input to our
model’s predicted probability of wildfire burn. These features
encode the factors associated with wildfire burns, such as topog-
raphy, weather, proximity to anthropogenic interfaces, and fuel
characteristics. For the data source, they use the ‘‘Fire History
Records of Fires primarily on Public Land’’ explicitly for the state
of Victoria, Australia. They mention the benefit of the gathered
dataset compared to the MODIS-recorded (Moderate Resolution
Imaging Spectroradiometer) datasets on distinguishing prescribed
fires from wildfires and not missing smaller and low-intensity
wildfires. They perform the prediction within batches of 7-day
recorded data and aim to predict the next 7-day spread of the
fire frontier. The core architecture consists of multiple layers of
2D convolution, ELU activation, and batch normalization, fol-
lowed by a sigmoid activation and a cross-entropy loss function
in the last layer. They finally output a burn-likelihood map for
every location within the area of interest, comparing the perfor-
mance of their model to a famous pixel-wise classification model,
SegNet [326], a simple multi-layer perceptron and a logistic
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regression classifier, using Beta-biased F-score, Class Balanced
Accuracy (CBA), and Matthews Correlation Coefficient (MCC),
which results in outperforming them in most measures.
Recently, many papers have reviewed deep learning-based ap-
proaches for fire spread prediction using satellite data. They
generally describe the spread modeling problem as predicting
the fire risk by fixed and variable factors that affect the rate
of fire spread and the difficulty in controlling them. Next, this
estimate is used to predict how the fire would propagate over
time. The influential factors include weather, fuel, topography,
and fire behavior data.
[327] uses data aggregated from various sources; NASA FIRMS
resource management system, environment data including air
temperature, window speed, and humidity; forest vegetation data
obtained from the European Space Agency Climate Change Ini-
tiative’s global annual Land Cover Map; and weather data from
Ventusky InMeteo. Four CNNs are used as the model; the first to
recognize objects in the forest fire, the other three to estimate
the environmental data, air temperature 2 m above the ground,
wind speed at the height of 10 m above the ground, and relative
air humidity. These CNNs are followed by an autoencoder that
generates the fire forecast.

• DL-based Modeling on UAS Data
[328] use Thermal Infrared Radiation (TIR) data gathered from
multiple UAS and first perform the Canny edge detection method
(based on double thresholding an intensity gradient) equipped
with some pre and post-processing modules to detect an auto-
mated fire perimeter with a spatial resolution of 5/10 m. Next,
a fire front spread simulation is done based on Rothermel’s rate
of spread (ROS) estimation [329] and the propagation is simu-
lated by Huygen’s elliptical expansion [330]. Rothermel’s model
estimates the ROS based on 9 parameters (the fuel depth, the
oven-dry fuel loading, the surface-to-area volume ratio, the fuel
moisture content, the moisture of extinction, the wind mid-flame
speed, the wind main direction, the terrain slope and terrain
aspect). Finally, for optimizing the fire fronts of the simulated
model, a cost function is used that measures the similarity of
the modeled and observed fire fronts based on a combination of
multiple similarity factors, including the Shape Deviation Index
(SDI), Sorensen’s index, and Jaccard’s similarity index. Fig. 25
depicts how the similarity of two fire perimeters can be evaluated
through these metrics. The assessment of fire growth simulations,
spatial patterns, and fire spread derived from satellite observa-
tions often involves the use of evaluation metrics such as the
Jaccard index, SDI, and Sorensen index. For instance, in the fa-
mous Jaccard index, the intersection-to-union ratio is used, while
in the other two metrics, the number of elements is explicitly
added together. It is worth mentioning that all equations such as
the Jaccard index, the size intersection, and the union are meant.
Plus, these metrics compare the similarity of a predicted perime-
ter and the actual perimeter indirectly using the area enclosed in
them and not the perimeter (contour) itself.
The similarity indices used are popular among works aiming
for wildfire spread prediction and the ones using fire simula-
tions. [331] utilized the Sørensen similarity index and the Kappa
coefficient to evaluate fire growth simulations based on satellite
active fire data, demonstrating the common derivation of simple
indices and statistics from observed and simulated final burnt
perimeters. [332] employed the event area (EA) and the shape
index (SI) metrics to characterize the size and complexity of fire
event perimeters, indicating the use of spatial metrics for evaluat-
ing fire spatial patterns. Additionally, [333] utilized object-based
tracking systems and evaluated the spatial distance between the
perimeters of newly classified clusters and existing active fire
objects, demonstrating the assessment of fire spread using spatial
metrics.
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Fig. 24. The spatiotemporal resolution trade-off is depicted. Assuming similar equipment, the higher a satellite’s altitude, the lower spatial resolution and higher temporal resolution
(continuous frames) it obtains from a designated area of interest.
Fig. 25. Some simple similarity measures for fire front forecasting evaluation.
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.2.3. Bayesian spread modeling
Several studies have employed Bayesian methods and other prob-

bilistic modeling approaches for wildfire spread modeling. [334] uti-
ized dynamic Bayesian networks to model wildfire spread in wildland–
ndustrial interfaces, demonstrating the application of Bayesian meth-
ds in wildfire modeling. Additionally, [335] presented a stochastic
orest fire model for future land cover scenarios assessment, showcasing
he use of Bayesian methods in assessing wildfire spread under different
and cover conditions.
[336] derives a Bayesian wildfire spread model through several

teps. First, a set of wildfire Rate of Spread (ROS) observations is
ollected from pairs of GIS polygons covering active wildfires. These
bservations are then used to develop a Bayesian statistical model that
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w

ccounts for the complex and stochastic nature of wildfire spread by ex-
licitly considering uncertainty in the data to produce probabilistic ROS
redictions. This innovative wildfire prediction approach utilizes actual
ildfire observations, enhancing its suitability for real-world condi-
ions. The Bayesian model incorporates variables such as wind speed,
elative humidity, and soil moisture, offering informative and proba-
ilistic predictions of ROS. The simplicity of the model contributes to
ore effective decision-making in firefighting operations.
[96] studies wildfire spread modeling in the Zagros mountains

n Iran in a Bayesian fashion. Their modeling steps include spread
nvolve comprehensive data collection, including various environmen-
al variables including slope degree, aspect, altitude, plan curvature,
opographic Wetness Index (TWI), annual temperature and rainfall,
ind effect, soil type, land use, and proximity to settlements, roads,
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and rivers. Data preparation includes transforming continuous pre-
dictors based on literature and field observations. Multicollinearity is
assessed using Variance Inflation Factors (VIF) and tolerance values,
ensuring analysis reliability. The model, built using the Weights-of-
Evidence approach, considers spatial relationships for binary predictor
variables. Variable effects analysis is conducted to understand each
variable’s influence and assess prediction uncertainties. Overall, this
approach integrates diverse predictor variables, encompassing both
continuous and categorical factors, to comprehensively address multi-
scale influences on wildfire probability. Additionally, it employs spatial
relationship assessment and sensitivity analysis to provide insights into
landscape-level differences and assess the impact of individual variables
on wildfire predictions, enhancing the model’s robustness.

In [337], the authors used Bayesian finite sample maxima to predict
wildfire size extremes, integrating a 30-year wildfire record, meteoro-
logical, and housing data. The Bayesian finite sample maxima approach
involves obtaining a distribution over maximum fire sizes by marginal-
izing over unknowns, including the number of events, size of each
event, and parameters of their distributions. They employed zero-
inflated negative binomial and lognormal models, yielding the best
performance, to estimate probabilities of extreme wildfires in various
regions and times. Overall, this approach involved obtaining poste-
rior distributions for maximum fire sizes by considering uncertainties
in event count, size, and distribution parameters, enabling the gen-
eration of prediction intervals for maximum fire sizes in different
spatiotemporal domains.

[338] proposes a novel method for posterior uncertainty quantifica-
tion in wildland fire spread simulation, employing calibrated ensembles
with input distributions defined by a posterior Probability Density
Function (PDF). The calibration process utilizes a pseudo-likelihood
function incorporating Wasserstein distance between simulated and
observed burned surfaces. To address high dimensionality and com-
putational demands, a Gaussian process emulator is employed, en-
abling efficient sample generation through a Markov Chain Monte Carlo
(MCMC) algorithm. Calibrated ensembles exhibit enhanced accuracy,
favoring lower values of spread rate and reduced uncertainty in wind
direction, leading to improved predictions of burned areas in wildland
fire spread simulations while accounting for input parameter uncertain-
ties. The entire computational process is completed in approximately
one day using eight computing cores.

7.2.4. Other data-driven spread modeling techniques
Some works combine particle filters, also known as Sequential

Monte Carlo (SMC) methods, which are used in inverse modeling
procedures to assimilate measurements into a computational model
and provide feedback information on uncertain model state variables
and/or parameters. In the case of wildfire spread, particle filters are
used to improve the simulation and forecast of wildfire propagation as
new firefront observations become available. Particle filters combine
Monte Carlo samplings with sequential Bayesian filtering problems,
and they can deal with non-linear models and non-Gaussian errors.
By assimilating time-evolving fire front locations and using a front-
tracking fire spread simulator, particle filters can provide more accurate
posterior distributions of the state variables, such as the Rate of Spread
(ROS) and vegetation properties. Overall, particle filters show promise
in predicting the propagation of controlled fires and increasing fire
simulation accuracy, which can be valuable for regional-scale wildfire
spread forecasting and prevention strategies.

[339] explains that the adaptive particle filtering algorithm en-
hances wildfire spread simulation by dynamically adjusting the num-
ber of particles based on inferred state uncertainty. This approach
overcomes the limitations of standard Sequential Monte Carlo (SMC)
methods, allowing for more flexible and efficient simulations. Particle
filters utilize random samples to approximate probability distributions,
improving the accuracy of predictions by estimating wildfire intensity
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and position. These filters assimilate real-time data, adaptively adjust
particle numbers, and effectively approximate probability distributions,
collectively enhancing the accuracy and efficiency of wildfire spread
modeling and prediction.

[340] proposes a spatial partition-based particle filtering framework
to tackle challenges in high-dimensional state spaces of simulation
models, particularly those covering large areas with numerous spatially
dependent variables. It breaks down the system state and observation
data into smaller spatial regions, enabling localized particle filtering.
This approach leverages the spatial locality property, employing a
divide-and-conquer principle to reduce state dimension and data com-
plexity. Specifically developed for discrete event cellular space models,
it differs from prior works using continuous variable-based Partial Dif-
ferential Equations (PDEs). The framework involves sampling, weight
calculation, and resampling in each iteration. Sampling is based on the
full state, while weight calculation and resampling are performed on
sub-states, considering observation coverage by sensors in each sub-
states area. The framework addresses challenges such as system state
division, weight calculation for sub-states with boundary sensors, and
resampling to reconstruct new particles.

7.3. The role of UAVs in wildfire behavior and effects modeling

In conjunction with measurements of the pre-fire conditions, active
fire combustion behavior such as flaming vs. smoldering combustion
mode, involvement of and consumption among disparate fuel elements
and sizes, and remaining fuels’ post-fire status, UAVs offer the opportu-
nity to explore and investigate additional aspects of fire impacts, such
as the well-known but poorly explained burn mosaic — the fine-scale
variability in burn severity for which higher resolution UAV observa-
tions are well suited (e.g. [341]). While physical models are beginning
to broach this space and simulate fire impacts [342], machine learning
is being used to segment burned areas with satellite imagery, e.g. [343].
While the latter offers a new approach, a common limitation is that
learning methods are trained on a specific data set, reporting high and
must be retrained on a new data set, instrument, or different location.
An approach that instead leverages different instrument characteristics
is [344], in which Landsat-8 derived burned area reference data (with
revisit time 16 days) was used to train a DL algorithm, which was
subsequently refined with a smaller set of training data from Plan-
etScope CubeSats — microsats that provide multi-spectral data at 3–4 m
spatial resolution with a 30 h global median average revisit interval,
thereby providing finer-grained burned area data. Similar multi-scale
instrumentation methods can be extended to UAV data. Thus, UAVs
carrying multispectral instruments, as have been used at coarser scales,
may provide a fire severity evaluation dataset for a wide range of
models.

Recognizing that fine-scale atmospheric simulations (the basis of
coupled weather-fire models) have very limited predictability, roughly
1–2 days), progress in landscape-scale fire progression modeling has
relied on adapting the weather forecast cycling approach [345], which
applies a sequence of simulations, each initialized (and later validated
against) with the latest weather and fire mapping data. Initially made
possible with the advent of VIIRS spatially refined fire detection data,
additional data sources (airborne, incident information, other polar-
orbiting satellites, etc.) that provide the entire fire perimeter have been
used as well.

7.4. Challenges, gaps, and future directions

Fire behavior models share a need for information on the time
and location of ignition or a recent map of extent, information on the
fire environment including weather, notably wind and humidity, fuel
including moisture state, and terrain, and information for validation,
typically fire extent at a later time. Data sets may be collected with

legacy models in mind yet prove incomplete for more recent higher
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dimensional models or a mismatch for a particular model type’s spatial
and temporal resolution.

Fire perimeter or origin/ignition time geospatial data with sufficient
resolution to delineate the fire line is ubiquitous fire modeling data
needed for initializing fire growth simulations. New constellations with
high temporal and sufficient spatial resolution and swath width may
help all model types forecast fire growth. While instruments on high-
flying aircraft (e.g. FireMapper, NIROPs) or Predator-class UAVs have
demonstrated that they can encompass the entire perimeter of all
but the largest wildfires in a single time image, smaller low-flying
single UAVs are not well suited for directly gathering full perimeter
observations other than for small fires and face several challenges —
notably, mosaicing of images gathered from instrumentation on several
coordinated drones at perhaps staggered times. Such cyber–physical
systems are at the conceptual stage of current research. Still, they may
greatly support a new niche in validating not only simulations of fire
extent, fire spread mechanisms, hot spots, and fire effects.

Each model type has strengths and weaknesses, perhaps hinting
at a mix of approaches for optimal forecasting. Coupled weather-fire
models have a spin-up period in both skill and catching up to real-
time, while their skill decreases with time. In contrast, data-driven
approaches may serve best for short-term prediction. Weather station
observations are not dense enough on their own to accurately represent
conditions driving a fire, some of which are produced by and in the
fire itself. However, although temperature and humidity are air mass
properties and differences may not generally be meaningful for fire
prediction, targeted observations by UAVs may produce key near-fire
environmental observations.

Among data-driven models, there is a gap for spread modeling
with devices other than satellites. High-resolution modeling can help
understanding the interactions of landscape variables with fire while
providing models with generalization capabilities. Large-scale spread
modeling. There is also a gap in integrating spread modeling systems
with efficient monitoring/tracking models. Such large modular sys-
tems demand low computational complexity to be deployed onboard
real-time monitoring aerial vehicles such as low-altitude drones. An
interactive modeling and monitoring design can help adaptation to dy-
namic and various environments. In addition, integrating information
from multiple sources (Satellites, UAVs, human operators, etc.) with
deep learning techniques (multi-modal and multi-level imaging fusion)
remains a large gap in the existing literature.

8. Conclusion

This survey paper presents an in-depth review of the deployment
of UAVs and AI technologies in managing wildfires, structured around
three crucial phases: pre-wildfire, active-wildfire, and post-wildfire.
In pre-wildfire management, we delve into recent literature on pre-
processing approaches, prevention strategies, and early warning sys-
tems, examining their methodologies and efficacy. The active-wildfire
phase focuses on reviewing well-known studies utilizing computer
vision techniques for UAVs and assessing the effectiveness of vari-
ous deep-learning algorithms in modeling fire behavior through early
detection of fire flames, obscured fire detection, classification of fire
zones and severity, spatial and temporal analysis of fire expansion,
and localizing fire zones through image-based and video-based seg-
mentation. The paper also explores the potential of reinforcement
learning algorithms in wildfire monitoring and control, marking a
novel approach in the field. Post-wildfire management is addressed by
reviewing the latest articles on recovery planning and damage assess-
ment, as well as evaluating strategies for mitigating post-fire impacts.
The paper also presents existing datasets and tools, while discussing
open problems and future directions to assist researchers, policymakers,
47

and professionals in enhancing wildfire management strategies.
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