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Abstract. In this paper, we have studied a decomposition method for solving a class of non-
convex two-stage stochastic programs, where both the objective and constraints of the second-stage
problem are nonlinearly parameterized by the first-stage variables. Due to the failure of the Clarke
regularity of the resulting nonconvex recourse function, classical decomposition approaches such as
Benders decomposition and (augmented) Lagrangian-based algorithms cannot be directly generalized
to solve such models. By exploring an implicitly convex-concave structure of the recourse function,
we introduce a novel decomposition framework based on the so-called partial Moreau envelope. The
algorithm successively generates strongly convex quadratic approximations of the recourse function
based on the solutions of the second-stage convex subproblems and adds them to the first-stage mas-
ter problem. Convergence has been established for both a fixed number of scenarios and a sequential
internal sampling strategy. Numerical experiments are conducted to demonstrate the effectiveness
of the proposed algorithm.
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1. Introduction. Stochastic programming (SP) is a mathematical framework
to model decision making in the presence of uncertainty [4, 54]. Two-stage SPs con-
stitute a special class of this paradigm where partial decisions have to be made before
the observation of the entire information, while the rest of the decisions are deter-
mined after the full information is revealed. Most existing computational studies of
continuous two-stage SPs are devoted to convex problems, especially linear problems
[51, 4, 28, 54].

However, there are many emerging applications in operations research that call
for complex nonlinear two-stage SP models and computational methods. Let us first
introduce the mathematical formulation of such problems before discussing the ap-
plications. The central optimization problem under consideration in this paper takes
the following form:

minimize
x\in X

\zeta (x)\triangleq \varphi (x) +E\~\xi 

\Bigl[ 
\psi (x; \~\xi )

\Bigr] 
,(1.1)

where \psi (x; \xi ) is the second-stage recourse function that is given by

\psi (x; \xi ) \triangleq 

\Biggl\{ 
minimum

y
[f(x, y; \xi ) subject to G(x, y; \xi )\leq 0 ] if x\in X,

+\infty if x /\in X.
(1.2)

In the above formulation, X and X are nonempty convex compact subsets in Rn1 with
X \subseteq int(X), \varphi :Rn1\rightarrow R is a deterministic convex function that only depends on the
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DECOMPOSITION FOR NONCONVEX TWO-STAGE SPs 307

first-stage decision x; \~\xi : \Omega \rightarrow \Xi is a random vector on a probability space (\Omega ,\scrF ,P) with
\Xi \subseteq Rm being a measurable closed set; \xi = \~\xi (\omega ) for some \omega \in \Omega represents a realization
of the random vector \~\xi ; and f :Rn1+n2\times \Xi \rightarrow R andG\triangleq (g1, . . . , g\ell )

\top :Rn1+n2\times \Xi \rightarrow R\ell 
are two Carath\'eodory functions (i.e., f(\bullet ,\bullet ; \xi ) and G(\bullet ,\bullet ; \xi ) are continuous for almost
any \xi \in \Xi ; f(x, y;\bullet ) and G(x, y;\bullet ) are measurable for any (x, y) \in Rn1+n2) that are
jointly determined by the first-stage variable x and the second-stage variable y. We
assume that, for almost any \xi \in \Xi , the function f(\bullet ,\bullet ; \xi ) is concave-convex (i.e.,
f(\bullet , y; \xi ) is concave for y \in Rn2 and f(x,\bullet ; \xi ) is convex for x \in Rn1), gj(\bullet ,\bullet ; \xi ) is
jointly convex for each j = 1, . . . , \ell , and E\~\xi [\psi (x;

\~\xi ) ] is well-defined.

An example of concave-convex f(\bullet ,\bullet ; \xi ) is a bilinear function x\top D(\xi )y for some
random matrix D(\xi ) \in Rn1\times n2 . The above settings notably extend the classical
paradigm for continuous two-stage SPs [54, Chapter 2.3] in the following directions:

(i) The first-stage variable x appears not only in the constraints of the second-
stage problem, but also in the objective f . The recourse function \psi (\bullet ; \xi )
is nonconvex since f(\bullet ,\bullet ; \xi ) is not jointly convex. This is fundamentally
different from the recent papers [25, 24] that have assumed the joint convexity
of f(\bullet ,\bullet ; \xi ).

(ii) Both the objective function f and the constraint map G can be nonsmooth.
These two features together lead to a complex nonconvex and nonsmooth recourse
function \psi (\bullet ; \xi ) (see Figure 1), which constitutes the major challenge for designing
rigorous and efficient numerical methods to solve problem (1.1).

Recourse functions in the form of (1.2) arise from many applications. One im-
portant source of the nonconvex recourse function in (1.2) comes from the decision-
dependent/influenced uncertainty [31, 20, 27, 37], where the probability distribution
of the random vector \~\xi is dependent on the first-stage variable x. This is in contrast
to the classical SP paradigm under exogenous uncertainty, where the distribution of \~\xi 
is not affected by the first-stage decisions. There is growing interest in the endogenous
uncertainty in the recent literature on stochastic and robust programs [21, 22, 56, 27].
A typical example where the random parameters can be altered by a decision is that
the price (as a first-stage variable) may affect the distribution of the product demand.
Assume that the probability distribution of \~\xi is given by Px that depends on the
first-stage variable x. We consider the corresponding two-stage SP model:

minimize
x\in X

\biggl\{ 
\varphi (x) +E\~\xi \sim Px

[\psi (x; \~\xi )] = \varphi (x) +

\int 
\Xi 

\psi (x; \~\xi )dPx(\~\xi )
\biggr\} 
.

If there exists a decision-independent distribution \widehat P such that Px is absolutely contin-
uous with respect to \widehat P for any x\in X, we can apply [18, Proposition 3.9] to reformulate
the above problem into the following one:

Fig. 1. The nonconvex nonsmooth recourse functions for fixed \xi 's. Left: x\in R. Right: x\in R2.
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308 HANYANG LI AND YING CUI

minimize
x\in X

\varphi (x) +E\~\xi \sim \widehat P [ \widehat \psi (x; \~\xi )] with \widehat \psi (x; \xi ) \triangleq \psi (x; \xi )
dPx(\xi )
d\widehat P(\xi ) ,(1.3)

where dPx(\xi )/d\widehat P(\xi ) is the Radon--Nikodym derivative of Px with respect to \widehat P. Even
if originally the first-stage decision x only appears in the constraints of the second-
stage problem in \psi (x; \xi ), the above transformation would make x also appear in the
second-stage objective function through the multiplication of dPx(\xi )/d\widehat P(\xi ).

A specific example of the decision-dependent uncertainty in SPs is a power sys-
tem planning problem originated in [33] and expanded in [27]. Assume that \~\xi =
(\{ \~dj\} j\in \scrJ ,\{ \~\pi j\} j\in \scrJ ,\{ \~qi\} i\in \scrI ) follows a discrete distribution with the support \{ \xi s\} Ss=1,
where \~dj and \~\pi j represent the demand and the price of electricity in the location
j \in \scrJ , and \~qi is the unit production cost of the power plant i \in \scrI . The distribution
of \~\xi is a convex combination of | \scrG | given discrete distributions (each with probability
psg for the scenario \xi s), whose weights \{ xg\} g\in \scrG are parts of the first-stage decisions,
i.e., Px(\~\xi = \xi s) =

\sum 
g\in \scrG psg xg for each s. The capacity of each power plant \{ xi\} i\in \scrI 

also needs to be determined in the first stage. The second-stage decisions are the
production yij from the power plant i to the location j for each s (y= (yij)i\in \scrI ,j\in \scrJ is

bounded between \ell y and uy). By letting \widehat P(\~\xi = \xi s) = 1/S for each s in (1.3), we can
rewrite the recourse function as\widehat \psi (\{ xi\} i\in \scrI ,\{ xg\} g\in \scrG ; \xi 

s) =minimum
\ell y\leq y\leq uy

S
\sum 
g\in \scrG 

psg xg
\sum 

i\in \scrI , j\in \scrJ 
(qis  - \pi js)yij

subject to
\sum 
j\in \scrJ 

yij \leq xi, i\in \scrI ;
\sum 
i\in \scrI 

yij = djs, j \in \scrJ ,
(1.4)

and obtain a decision-independent SP with the recourse function \widehat \psi . Observe that
both the objective and constraints depend on the first-stage variables. In particular,
the objective function is convex in xg and concave in y, which fits our problem setting.
Later, we will apply our proposed algorithms to solve a two-stage SP with the above
recourse function in section 6.

The second example of the nonconvex recourse function in (1.2) is the stochastic
interdiction problem [14, 26], where the defender may want to maximize the second-
stage objective function instead of minimizing it. Even for the simple linear second-
stage problem with only x appearing in the constraints, the recourse function

\widetilde \psi (x; \xi ) \triangleq maximum
y

c(\xi )\top y

subject to T (\xi )x+W (\xi )y= h(\xi )

is not convex in x. One may take the dual of the second-stage maximization problem
so that the recourse function is a parametrized minimization problem

\widetilde \psi (x; \xi ) = minimum
\lambda 

\lambda \top T (\xi )x - \lambda \top h(\xi )
subject to W (\xi )\top \lambda + c(\xi ) = 0.

However, this dualization would bring a bilinear term \lambda \top T (\xi )x of the first-stage vari-
able x and the second-stage variable \lambda to the objective function that necessities the
concave-convex structure of f(\bullet ,\bullet ; \xi ). To the best of our knowledge, there is no
known rigorous decomposition method to solve a general nonconvex two-stage min-
max stochastic program even when the second stage is a linear maximization program
biparametrized by the first-stage variable in both the objective and constraints.
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DECOMPOSITION FOR NONCONVEX TWO-STAGE SPs 309

When the distribution of \~\xi is taken as the empirical distribution of observed
realizations \xi 1, . . . , \xi S , the simplest way to tackle the problem (1.1) is to simultane-
ously solve the first-stage variable x and second-stage variables y1, . . . , yS (each ys is
attached to one scenario \xi s) via the sample average approximation [54]:

minimize
x\in X, y1,...,yS

\varphi (x) +
1

S

S\sum 
s=1

f(x, ys; \xi s)

subject to G(x, ys; \xi s)\leq 0, s= 1, . . . , S.

(1.5)

However, this approach can be prohibitive when the number of scenarios S is large
since the dimension of the unknown variables is n1+n2S. Even if S is small or mod-
erate, the above formulation may still be difficult to handle under our setting as the
function f(\bullet ,\bullet ; \xi ) is not jointly convex (for example, when f(\bullet ,\bullet ; \xi ) is bilinear). It is
also challenging to apply stochastic approximation methods [43, 40, 36, 19, 52, 16, 5]
to solve (1.1), since it is not clear how to compute a (Clarke) subdifferential of the
nonconvex recourse function \psi (\bullet ; \xi ). Without strong assumptions like the uniqueness
of the second-stage solutions, only a superset of the subdifferential \partial \psi (\bullet ; \xi ) at given
x is computable [7, Chapter 4]. When f and G are twice continuously differentiable,
the authors in [8] have adopted a smoothing method to deal with the possibly non-
convex recourse function by adding the Tikhonov-regularized barrier of the inequality
constraints to the second-stage objective function. For a special class of two-stage
nonconvex quadratic SPs under the simplex constraint, the paper [6] has derived
upper and lower approximations of the objective values via copositive programs.

Notice that the constraints in (1.5) are in fact blockwise separable in y1, . . . , yS so
that there is a block-angular structure between the first- and second-stage variables.
Decomposition algorithms of two-stage SPs take advantage of this special structure to
efficiently handle a large number of scenarios via solving S numbers of low-dimensional
subproblems [51]. Two classical decomposition algorithms for two-stage SPs are
(augmented) Lagrangian decomposition and Benders decomposition. (Augmented)
Lagrangian decompositions (including the progressive hedging algorithm) copy the
first-stage variable S times and attach one to each scenario [23, 48]. In order to force
the nonanticipativity of the first-stage decision, one has to add equality constraints
among all copies to ensure that x is the same across different realizations of the uncer-
tainty. However, there are two major bottlenecks to applying this kind of dual-based
algorithm to solve the problem (1.1). One, each subproblem pertaining to one pair of
variables (xs, ys) is still nonconvex if f is not a jointly convex function, so that it is in
general not easy to obtain its global optimal solution. Two, the convergence of these
dual approaches is largely restricted to the convex problems or special integer prob-
lems [48, 10]. Although there are some recent advances for the convergence study of
the progressive hedging algorithm for solving nonconvex SPs under the local convexity
conditions [46, 47], it is not clear whether the problem (1.1) satisfies those conditions
without further assumptions on f and g. Benders decomposition (or L-shaped meth-
ods) [3, 57, 59] alternatively updates the first-stage and second-stage variables, where
the second-stage subproblem can be solved in parallel to save the computational time
and reduce the storage burden. In order to derive valid inequalities of x and add
them to the first-stage master problem, one usually uses subgradient inequalities of
the (convex) recourse function to generate a sequence of lower approximations. How-
ever, when the recourse function is associated with the complex nonconvex function
in (1.1), it is challenging to derive its lower bounds based on the computed second-
stage solutions. In fact, for the recourse functions in Figure 1, there seems not to
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310 HANYANG LI AND YING CUI

exist a convex function that touches one of the downward cusps and at the same time
approximates the original function from below.

In this paper, we tackle the two-stage stochastic program (1.1) by a novel lift-
ing technique that transforms the complex nonconvex and nondifferentiable recourse
function (1.2) in the original space to a structured convex-concave function in a lifted
space. The reveal of this latent structure enables us to construct convex surrogations
of the recourse function at the latest first-stage iterate, whose evaluations are decom-
posable across different scenarios. Such surrogate functions are then added to the
master problem to generate the next first-stage iterate. We shall prove that repeating
the above procedure, the sequence of the first-stage iterates converges to a properly
defined stationary solution of (1.1). In order to further reduce the computational cost
per step when the number of scenarios S is large as well as to handle the case where \~\xi 
is continuously distributed, we also propose a framework that incorporates sequential
sampling into the surrogation algorithm. The sequential sampling method gradually
adds scenarios and generates cuts along the iterations, which has the advantage that
one may obtain satisfactory descent progress in the early iterations with relatively
small sample sizes to accelerate the overall procedure.

The paper is organized as follows. Section 2 introduces notation and provides pre-
liminary knowledge. In section 3, we discuss the implicitly convex-concave structure
of the recourse function and derive its computationally tractable approximations. A
decomposition algorithm for solving problem (1.1) with a fixed number of scenarios
is proposed and analyzed in section 4. To further handle the continuously distributed
random vectors as well as to reduce the computational cost of the decomposition al-
gorithm in its early stage, we provide an internal sampling version of the algorithm in
section 5 and show the almost sure convergence of the iterative sequence. In section 6,
we conduct extensive numerical experiments to show the effectiveness of our proposed
frameworks. The paper ends with a concluding section.

2. Preliminaries. We first summarize the notation used throughout the paper.
We write Z+ as the set of all nonnegative integers and Rn as the n-dimensional
Euclidean space equipped with the inner product \langle x, y\rangle = x\top y and the induced norm
\| x\| \triangleq 

\surd 
x\top x. The symbol B(x, \delta ) is used to denote the closed ball of radius \delta > 0

centered at a vector x \in Rn. Let A and C be two nonempty subsets of Rn. The
diameter of A is defined as R(A) \triangleq supx,y\in A\| x - y\| , and the distance from a vector

x \in Rn to A is defined as dist(x,A) \triangleq infy\in A\| y  - x\| . The one-sided deviation of A
from C is defined as D(A,C) \triangleq supx\in A dist(x,C).

We next introduce the concepts of generalized derivatives and subdifferentials for
nonsmooth functions. Interested readers are referred to the monographs [12, 49, 35]
for thorough discussions on these subjects. Consider a function f : \scrO \rightarrow R defined
on an open set \scrO \subseteq Rn. The classical one-sided directional derivative and the Clarke
directional derivative of f at \=x\in \scrO along the direction d\in Rn are defined as

f \prime (\=x;d) \triangleq lim
t\downarrow 0

f(\=x+ td) - f(\=x)
t

and f\circ (\=x;d) \triangleq limsup
x\rightarrow \=x, t\downarrow 0

f(x+ td) - f(x)
t

if these two limits exist. f is said to be directionally differentiable at \=x \in \scrO if it
is directionally differentiable along any direction d \in Rn. The Clarke directional
derivative f\circ (\=x;d) is finite for any direction d when f is locally Lipschitz continuous
at \=x. The Clarke subdifferential of f at \=x is the set \partial Cf(\=x) \triangleq \{ v \in Rn | f\circ (\=x;d) \geq 
v\top d for all d\in Rn\} , which coincides with the usual subdifferential in convex analysis
for a convex function. If f is strictly differentiable at \=x, then \partial Cf(\=x) = \{ \nabla f(\=x)\} .
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DECOMPOSITION FOR NONCONVEX TWO-STAGE SPs 311

We say that f is Clarke regular at \=x \in \scrO if f is directionally differentiable at \=x and
f\circ (\=x;d) = f \prime (\=x;d) for all d \in Rn. This Clarke regularity at \=x is equivalent to having
f(x) \geq f(\=x) + \=v\top (x  - \=x) + o(\| x  - \=x\| ) for any \=v \in \partial Cf(\=x). Therefore, if a function
fails to satisfy the Clarke regularity at \=x (for example, at the downward cusp in the
left panel of Figure 1), there does not exist an approximate linear lower bound of the
original function based on the Clarke subdifferentials with small o error locally.

Let X \subseteq Rn be a nonempty closed convex set and f :Rn\rightarrow R be a locally Lipschitz
continuous function that is directionally differentiable. We say \=x\in X is a directional
stationary point of f on X if f \prime (\=x;x - \=x) \geq 0 for all x \in X, and a Clarke stationary
point if f\circ (\=x;x - \=x)\geq 0 for all x \in X; the latter is equivalent to 0 \in \partial Cf(\=x) +\scrN X(\=x)
with \scrN X(\=x) being the normal cone of X.

Let \scrF :Rn\rightrightarrows Rm be a set-valued mapping. Its outer limit at x\in Rn is defined as

limsup
x\rightarrow \=x

\scrF (x)\triangleq 
\bigcup 
x\nu \rightarrow \=x

limsup
\nu \rightarrow \infty 

\scrF (x\nu ) =
\bigl\{ 
u | \exists x\nu \rightarrow \=x,\exists u\nu \rightarrow u with u\nu \in \scrF (x\nu )

\bigr\} 
.

We say \scrF is outer semicontinuous (osc) at \=x\in Rn if limsupx\rightarrow \=x\scrF (x)\subseteq \scrF (\=x).

3. The implicit convexity-concavity of the recourse functions. A key
ingredient in designing a decomposition method for solving the two-stage SP (1.1) is
to derive a computationally friendly approximation of the nonconvex recourse function
(1.2) at any given x\in X and \xi \in \Xi . This is the main content of the present section.

For simplicity, we omit \xi in (1.2) throughout this section and rewrite the recourse
function as, for x\in Rn1 ,

\psi (x) \triangleq 

\Biggl\{ 
minimum

y
[f(x, y) subject to G(x, y)\leq 0 ] if x\in X,

+\infty if x /\in X,
(3.1)

where f(\bullet ,\bullet ) is concave-convex and each gj(\bullet ,\bullet ) is jointly convex for j = 1, . . . , \ell . We
assume that for any x \in X, the minimization problem of y in (3.1) has an optimal
solution, which implies the finiteness of \psi (x) on X. In the following, we show that
the above function, although generally nonconvex and nondifferentiable in Rn1 , has
a benign structure in a lifted space. Leveraging this structure, we then derive an
approximate difference-of-convex (dc) decomposition of the recourse function that is
computationally tractable. Such an approximation is the cornerstone of the decom-
position method to be presented in the next two sections.

3.1. The implicit convexity-concavity of \bfitpsi . As mentioned in the first sec-
tion, the difficulty in designing a decomposition method for solving (1.1) is due to the
lack of a valid inequality of the recourse function, which is partially because x appears
in both the objective and the constraints of the parametric problem in (3.1). However,
if x either in the objective or in the constraints is fixed, the resulting functions are
relatively easy to analyze. Specifically, for any fixed \=x\in X, consider the functions

\psi cvx(x)\triangleq 

\Biggl[ 
minimum

y
f(\=x, y)

subject to G(x, y)\leq 0

\Biggr] 
and \psi cve(x)\triangleq 

\Biggl[ 
minimum

y
f(x, y)

subject to G(\=x, y)\leq 0

\Biggr] 
.

We can easily derive the following structural properties of \psi cvx and \psi cve by using the
fact that the inf-projection of a jointly convex function is convex and the infimum of
a family of concave functions is concave.
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312 HANYANG LI AND YING CUI

Fig. 2. An illustration of the icc structure of the nonconvex recourse function. Left: the original
one-dimensional recourse function that is neither convex nor concave. Middle: the lifted bivariate
counterpart in R2 that is convex in x and concave in z. Right: the exposure of the concave component
in the z coordinate and the convex component in the x coordinate.

Lemma 3.1. Let \=x\in X \subseteq Rn1 be fixed. Suppose that the minimization problems
in defining \psi cvx and \psi cve both have nonempty solution sets for any x \in X. Then the
function \psi cvx is convex and \psi cve is concave on X.

Lemma 3.1 suggests that the recourse function (3.1) has a hidden convex-concave
structure. Indeed, such a function \psi belongs to a special class of nonconvex functions
coined implicitly convex-concave (icc) functions that are formally defined below (See
Figure 2). For an extended-real-valued function f : Rn \rightarrow R \cup \{ \pm \infty \} , the effective
domain of f is defined as domf \triangleq \{ x\in Rn | f(x)<+\infty \} .

Definition 3.2 (see [15, Definition 4.4.4]). A function \theta :Rn\rightarrow R \cup \{ +\infty \} with
dom \theta being a convex set is said to be icc if there exists a function \theta : Rn \times Rn \rightarrow 
R\cup \{ \pm \infty \} satisfying

(a) \theta (x, z) =+\infty if x /\in dom \theta , z \in Rn, and \theta (x, z) = - \infty if x\in dom \theta , z /\in dom \theta ;
(b) \theta (\bullet , z) is convex for any fixed z \in dom \theta ;
(c) \theta (x,\bullet ) is concave for any fixed x\in dom \theta ;
(d) \theta (x) = \theta (x,x) for any x\in dom \theta .

The above concept is first introduced in [32] to analyze the convergence property of
a dc algorithm to solve two-stage convex biparametric quadratic SPs. More properties
of icc functions are studied in the recent monograph [15]. In fact, the term ``icc""
suggests that this class of functions is a generalization of the dc functions, as the
latter is ``explicitly convex-concave,"" i.e., for any dc function \theta (x) = \theta 1(x)  - \theta 2(x)
with both \theta 1 and \theta 2 convex, one can always associate it with the bivariate function
\theta (x, y) = \theta 1(x) - \theta 2(y) to explicitly expose the convexity-concavity of \theta in the lifted
pair (x, y). Back to the recourse function \psi (3.1), we consider its lifted bivariate
counterpart

\psi (x, z) \triangleq 

\left\{     
minimum

y
\{ f(z, y) | G(x, y)\leq 0\} if x, z \in X,

+\infty if x /\in X,
 - \infty if x\in X and z /\in X.

(3.2)

If the minimization problem of y in (3.2) has a nonempty solution set for any (x, z)\in 
X \times X, it is not difficult to see that the assumption in Lemma 3.1 holds. Henceforth,
the following result is a direct consequence of Lemma 3.1. No proof is needed.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

6/
24

 to
 1

28
.3

2.
10

.2
30

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



DECOMPOSITION FOR NONCONVEX TWO-STAGE SPs 313

Proposition 3.3. Assume that for any (x, z)\in X \times X, the minimization problem
of y in (3.2) has a nonempty solution set. Then \psi in (3.1) is an icc function associated
with the lifted function \psi in (3.2).

One shall see from the subsequent sections that the derived icc property of the
recourse function is useful to study the two-stage SP (1.1). On one hand, we can lever-
age this structure to construct an approximation of the nonconvex recourse function
\psi at any given x; on the other hand, it enables us to define a stationary point of (1.1)
that is provably computable by our later designed algorithms. To fulfill these tasks,
we first derive a superset of the Clarke subdifferential of \psi . To proceed, we denote
\partial 1\psi (x, z) as the subdifferential of the convex function \psi (\bullet , z) at x for any z \in X,
and \partial 2( - \psi )(x, z) as the subdifferential of the convex function ( - \psi )(x,\bullet ) at z for any
x\in X. We also write Y (x, z) as the set of all optimal solutions of problem (3.2).

Lemma 3.4. Assume that for any (x, z)\in X \times X, the minimization problem of y
in (3.2) has a nonempty solution set. Then for all (x, z)\in X \times X:

\{ \partial 1( - f)(z, y) | y \in Y (x, z)\} \subseteq \partial 2( - \psi )(x, z).

Proof. For any (x, z) \in X \times X, we take any y \in Y (x, z) and any c \in \partial 1( - f)(z, y)
to obtain

\psi (x, z\prime )\leq f(z\prime , y)\leq f(z, y) + ( - c)\top (z\prime  - z) = \psi (x, z) + c\top (z  - z\prime ) \forall z\prime \in Rn,

where the first inequality holds because \psi (x, z\prime ) = - \infty if z\prime /\in X and y \in Y (x, z) must
be feasible to the constraint G(x, y) \leq 0 if z\prime \in X, and the second inequality is due
to the concavity of f(\bullet , y). By applying [45, Theorem 23.5], we have c\in \partial 2( - \psi )(x, z)
and part (a) is proved.

Part (a) of the above lemma can be viewed as a weaker version of Danskin's
theorem [42, 41, 11]. Instead of a complete characterization of the subdifferential of
an optimal value function in the aforementioned papers, we only need to obtain one
element from this subdifferential to design our algorithms later. Therefore, only a
one-sided inclusion as in part (a) is needed, which holds without the compactness of
the feasible set \{ y | G(x, y)\leq 0\} for any given x\in X.

Next we summarize several results regarding icc functions that will be used in the
subsequent analysis.

Lemma 3.5. Consider any icc function \psi associated with a lifted function \psi that
is continuous relative to int(dom\psi )\times int(dom\psi ). The following properties of the set-
valued mappings \partial 1\psi and \partial 2( - \psi ) hold:
(a) \partial 1\psi and \partial 2( - \psi ) are osc relative to int(dom\psi )\times int(dom\psi );
(b) \partial 1\psi and \partial 2( - \psi ) are locally bounded on int(dom\psi )\times int(dom\psi ), and \psi is locally

Lipschitz continuous relative to int(dom\psi )\times int(dom\psi );
(c) \partial C\psi (x) \subseteq \partial 1 \psi (x,x) - \partial 2( - \psi )(x,x) for any x\in int(dom\psi ).

Proof. (a) To prove that \partial 1\psi is osc relative to int(dom\psi )\times int(dom\psi ), we first

notice that for any fixed d \in Rn1 , the directional derivative \psi 
\prime 
1((\bullet ,\bullet );d) is upper

semicontinuous jointly at (\=x, \=z)\in int(dom\psi )\times int(dom\psi ) [15, Proposition 4.4.26(a)].

Since \psi 
\prime 
1((x, z);\bullet ) is the support function of the partial subgradient \partial 1\psi (x, z), we have
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314 HANYANG LI AND YING CUI

limsup
(x,z)\rightarrow (\=x,\=z)

\Biggl( 
sup

a\in \partial 1\psi (x,z)
a\top d

\Biggr) 
\leq sup
a\prime \in \partial 1\psi (\=x,\=z)

(a\prime )\top d \forall d\in Rn1 ,

which implies limsup(x,z)\rightarrow (\=x,\=z) \partial 1\psi (x, z) \subseteq \partial 1\psi (\=x, \=z) by [45, Corollary 13.1.1]. The

outer semicontinuity of \partial 2( - \=\psi ) relative to int(dom\psi ) \times int(dom\psi ) can be proved
similarly.

(b) Suppose for the sake of contradiction that \partial 1\psi is not locally bounded at
some (\=x, \=z) \in int(dom\psi )\times int(dom\psi ). Then there exists a sequence of subgradients
ck \in \partial 1\psi (xk, zk) with (xk, zk) \rightarrow (\=x, \=z), and \| ck\| \rightarrow +\infty . By taking a subsequence
if necessary, we assume that the normalized subgradient dk = ck/\| ck\| converges to
some d of unit length. Since xk\rightarrow \=x \in int(dom\psi ), there exists a positive scalar t > 0
such that B(\=x, t) \subseteq int(dom\psi ) and B(xk, t) \subseteq int(dom\psi ) for all sufficiently large k.
Using the convexity of \psi (\bullet , zk), we obtain \psi (xk + tdk, zk)  - \psi (xk, zk) \geq (ck)\top tdk =
t\| ck\| . Taking limits on both sides and using the continuity of \psi (\bullet ,\bullet ) relative to
int(dom\psi )\times int(dom\psi ), we have

+\infty >\psi (\=x+ td, \=z) - \psi (\=x, \=z)\geq t lim
k\rightarrow \infty 

\| ck\| ,

which is a contradiction. The local Lipschitz continuity of \psi relative to int(dom\psi )\times 
int(dom\psi ) can then be easily proved. Part (c) is a consequence of [15, Proposition
4.4.26(c)] on the relationship between the subdifferentials of an icc function and its
lifted counterpart.

3.2. The partial Moreau envelope. Equipped with the lifted function \psi ,
one may be able to construct computationally friendly surrogations of the recourse
function in (3.1) via a modification of the usual Moreau envelope. Let us first recall
the definition of the classical Moreau envelope. An extended-real-valued function f
is said to be proper if f(x) < +\infty for some x \in Rn, and f(x) >  - \infty for all x \in Rn.
Given a proper, lower semicontinuous (lsc) function \theta :Rn\rightarrow R\cup \{ +\infty \} and a positive
scalar \gamma , its Moreau envelope is

eori\gamma \theta (x) \triangleq inf
z\in Rn

\biggl\{ 
\theta (z) +

1

2\gamma 
\| x - z\| 2

\biggr\} 
, x\in Rn.

We use the superscript ``ori"" to emphasize that this is the original definition of the
Moreau envelope and is different from our later modification. The function \theta is said to
be prox-bounded if there exists \gamma > 0 such that eori\gamma \theta (x)> - \infty for some x\in Rn. It is
known that a proper, lsc, and convex function is always prox-bounded and its Moreau
envelope is continuously differentiable (cf. [49, Theorem 2.26]). In general, for any
proper, lsc, and prox-bounded function \theta , the parametric functions eori\gamma \theta (x) \uparrow \theta (x)
as \gamma \downarrow 0 for all x \in Rn. Therefore, one can view the Moreau envelope as a lower
approximation of the original function. However, if \theta is nonconvex and nonsmooth,
the function eori\gamma \theta may be neither convex nor smooth. Nevertheless, for any x \in Rn,
it holds that (see, e.g., [2, 34])

eori\gamma \theta (x) =
1

2\gamma 
\| x\| 2  - sup

z\in Rn

\biggl\{ 
 - \theta (z) - 1

2\gamma 
\| z\| 2 + 1

\gamma 
z\top x

\biggr\} 
\underbrace{}  \underbrace{}  

convex in x even if \theta is nonconvex

,(3.3)

which indicates that one can always obtain a dc decomposition of eori\gamma \theta whether \theta is
convex or not. The only trouble brought by the nonconvexity of \theta is that the inner

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

6/
24

 to
 1

28
.3

2.
10

.2
30

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



DECOMPOSITION FOR NONCONVEX TWO-STAGE SPs 315

sup problem for z may not be concave (especially if \theta is not weakly convex), thus one
may not be able to evaluate the subgradient of the second term at a given x when
using the dc algorithm to minimize the function eori\gamma \theta . Specifically, in the context of
the recourse function (3.1), its associated Moreau envelope is

eori\gamma \psi (x) = inf
z\in Rn

\biggl\{ 
\psi (z) +

1

2\gamma 
\| x - z\| 2

\biggr\} 
=

1

2\gamma 
\| x\| 2  - sup

z\in X,y

\biggl\{ 
 - f(z, y) - 1

2\gamma 
\| z\| 2 + 1

\gamma 
z\top y

\bigm| \bigm| \bigm| \bigm| G(z, y)\leq 0

\biggr\} 
,

where the inner sup problem is not jointly concave in (z, y) since f is not assumed
to be jointly convex. This issue motivates us to introduce the following new type of
envelopes tailored to icc functions that is more computationally tractable:

e\gamma \theta (z)\triangleq inf
x\in Rn

\biggl\{ 
\theta (x, z) +

1

2\gamma 
\| x - z\| 2

\biggr\} 
,(3.4)

where \theta : Rn \rightarrow R \cup \{ +\infty \} is any icc function and \theta : Rn \times Rn \rightarrow R \cup \{ \pm \infty \} is its
lifted counterpart as in Definition 3.2. When \theta (x, z) is independent of z (so that this
function only has the convex part), the above definition reduces to the usual Moreau
envelope. Hence, we term the new regularization of \theta in (3.4) its partial Moreau
envelope. Similarly as in (3.3), the newly defined partial Moreau has the following
explicit dc decomposition:

e\gamma \theta (z) =
1

2\gamma 
\| z\| 2\underbrace{}  \underbrace{}  

strongly convex

 - sup
x\in Rn

\biggl\{ 
 - \theta (x, z) - 1

2\gamma 
\| x\| 2 + 1

\gamma 
z\top x

\biggr\} 
\underbrace{}  \underbrace{}  

denoted as g\gamma (z), convex

.(3.5)

We denote the optimal solution mapping of the minimization problem in (3.4) as

P\gamma \theta (z) \triangleq argmin
x\in Rn

\biggl\{ 
\theta (x, z) +

1

2\gamma 
\| x - z\| 2

\biggr\} 
, z \in Rn.

For any z \in Rn, it holds that \emptyset \not = P\gamma \theta (z) \subseteq dom \theta . When z \in dom \theta , the mapping is
single-valued since the inner objective function is strongly convex in x; for this case,
we follow the terminology in the literature to call P\gamma \theta (z) the proximal point of \theta at z.
Similar to the classical Moreau envelope, the partial Moreau envelope approximates
the original function from below. The following lemma establishes the gap between
the partial Moreau envelope and the original function under the Lipschitz continuity
of \theta (\bullet , z) relative to dom \theta for any fixed z from a compact set contained in int(dom \theta ).
The latter Lipschitz continuity is stronger than the one derived in Lemma 3.5(b) that
is only relative to int(dom\psi )\times int(dom\psi ). The proof is adapted from [39, Proposition
3.4] on a similar property regarding the classical Moreau envelope.

Lemma 3.6. Consider an icc function \theta :Rn\rightarrow R \cup \{ +\infty \} and its lifted counter-
part \theta :Rn\times Rn\rightarrow R\cup \{ \pm \infty \} . Let X be a compact subset of int(dom \theta ). Assume that
\theta (\bullet , z) is Lipschitz continuous relative to dom\theta with Lipschitz constant \kappa for every
z \in X, i.e., \bigm| \bigm| \theta (x1, z) - \theta (x2, z)\bigm| \bigm| \leq \kappa \| x1  - x2\| \forall x1, x2 \in dom\theta , z \in X,

then 0\leq \theta (z) - e\gamma \theta (z) \leq \gamma \kappa 2/2 for any z \in X.
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316 HANYANG LI AND YING CUI

Proof. For any z \in X, it holds that

0\leq \theta (z) - e\gamma \theta (z) = \theta (z, z) - \theta (P\gamma \theta (z), z) - \| P\gamma \theta (z) - z\| 2 /(2\gamma )
\leq \kappa \| P\gamma \theta (z) - z\|  - \| P\gamma \theta (z) - z\| 2 /(2\gamma ) \leq \gamma \kappa 2/2,

where the second inequality follows from the Lipschitz continuity of \theta (\bullet , z) and the
last inequality uses the fact that maxt\geq 0

\bigl[ 
\kappa t - t2/(2\gamma )

\bigr] 
= \gamma \kappa 2/2.

With g\gamma defined in (3.5), it follows from similar arguments in the proof of Lemma
3.4 that for any z \in dom \theta ,

1

\gamma 
P\gamma \theta (z) + \partial 2( - \theta )(P\gamma \theta (z), z)\subseteq \partial g\gamma (z).

One can then obtain the following convex majorization of e\gamma \theta (z) at any given point
z\prime \in dom \theta based on the subgradient inequality of the convex function g\gamma :

e\gamma \theta (z) \leq \widehat e\gamma \theta (z; z\prime )\triangleq 1

2\gamma 
\| z\| 2  - g\gamma (z\prime ) - 

\bigl( 
P\gamma \theta (z

\prime )/\gamma + c
\bigr) \top 

(z  - z\prime ) \forall z \in dom \theta ,(3.6)

where c\in \partial 2( - \theta ) (P\gamma \theta (z\prime ), z\prime ).

4. The decomposition algorithm and its convergence. Based on the dis-
cussion in the last section, we are now ready to present the decomposition algorithm
for solving the nonconvex two-stage SP (1.1) and analyze its convergence. In this sec-
tion, we focus on the case where there are fixed scenarios \{ \xi 1, . . . , \xi S\} , each realized
with probability 1/S. The problem (1.1) then reduces to

minimize
x\in X\subseteq Rn1

\Biggl\{ 
\varphi (x) +

1

S

S\sum 
s=1

\psi (x; \xi s)

\Biggr\} 
,(4.1)

where each \psi (x; \xi s) is given by (1.2). The above problem can be viewed as a sample
average approximation of the two-stage SP (1.1) under a prescribed sample size S. All
the discussions in this section can be easily adapted to the case where the distribution
of \~\xi has finite support (but unequal probability mass for different \xi s). We will work
on the internal sampling scheme for continuously distributed \~\xi in the next section.

4.1. The algorithmic framework. Our goal is to solve the nonconvex problem
(4.1) via a successive approximation scheme. For any \xi \in \Xi and z \in X, the partial
Moreau envelope of the recourse function (1.2) associated with the bivariate function
(3.2) is

e\gamma \psi (z; \xi ) \triangleq minimum
x\in Rn1

\biggl\{ 
\psi (x, z; \xi ) +

1

2\gamma 
\| x - z\| 2

\biggr\} 

=

\left[  minimum
x\in X,y\in Rn2

f(z, y; \xi ) +
1

2\gamma 
\| x - z\| 2

subject to G(x, y; \xi )\leq 0

\right]  .(4.2)

We consider a double-loop algorithm where the outer loop updates the parameter
\gamma in the partial Moreau envelope and the inner loop solves the nonconvex problem
minimizex\in X [\varphi (x) +

\sum S
s=1 e\gamma \nu \psi (x; \xi 

s)/S ] to stationarity for a fixed \gamma \nu . To solve
the latter nonconvex problem during the \nu th inner loop, we replace the Moreau-
regularized recourse function e\gamma \nu \psi (x; \xi ) with its upper approximation constructed
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DECOMPOSITION FOR NONCONVEX TWO-STAGE SPs 317

at the latest iterate x\nu ,i, where i denotes the inner iterate index. For each s, let\bigl( 
xs\nu ,i, y

s
\nu ,i

\bigr) 
be one of the optimal solutions of (4.2) at (z, \xi ) = (x\nu ,i, \xi 

s), which can be
computed by solving a convex optimization problem. Notice that xs\nu ,i = P\gamma \nu \psi (x\nu ,i; \xi 

s)

\in X. One may then derive from (3.6) the following upper approximating function of
e\gamma \nu \psi (x; \xi 

s):

\widehat e\gamma \nu \psi (x; \xi s;x\nu ,i)\triangleq 1

2\gamma \nu 
\| x\| 2  - g\gamma \nu (x\nu ,i; \xi s) - 

\bigl( 
xs\nu ,i/\gamma \nu + cs\nu ,i

\bigr) \top 
(x - x\nu ,i),(4.3)

where g\gamma \nu (x\nu ,i; \xi 
s) \triangleq \| x\nu ,i\| 2/(2\gamma \nu )  - e\gamma \nu \psi (x\nu ,i; \xi s) and cs\nu ,i \in \partial 2( - \psi )(xs\nu ,i, x\nu ,i; \xi 

s).
Due to Lemma 3.4, a particular way to choose cs\nu ,i is to take an element from
\partial 1( - f)

\bigl( 
xs\nu ,i, y

s
\nu ,i; \xi 

s
\bigr) 
. The resulting master problem to generate the next first-stage

iterate x\nu ,i+1 is

minimize
x\in X

\Biggl\{ 
\varphi (x) +

1

S

S\sum 
s=1

\widehat e\gamma \nu \psi (x; \xi s;x\nu ,i)
\Biggr\} 
.(4.4)

The inner iteration continues until the distance between two consecutive iterates x\nu ,i
and x\nu ,i+1 is sufficiently close. We summarize the procedure of the decomposition
algorithm below. When S = 1, it reduces to the algorithm in [15, Algorithm 7.2.1] to
minimize an icc function (without decomposition).

Notice that each \widehat e\gamma \nu \psi (x; \xi s;x\nu ,i) is a strongly convex quadratic function in x.
Therefore, the master problem (4.4) is a strongly convex optimization problem with
n1 number of variables, which is usually easy to solve. In practical implementation,
solutions to the subproblem (4.2) and the master problem (4.4) may be calculated
inaccurately. For the sake of concise analysis, we have chosen not to include these
potential errors in our study.

4.2. Convergence analysis. This subsection is about the global convergence of
the sequence generated by Algorithm 1. We begin with several technical assumptions
that will be used in our convergence analysis. Since our focus of this section is to solve
problem (4.1) with fixed scenarios \{ \xi 1, . . . , \xi S\} , one should interpret Assumptions
A--B as requirements on all realizations \{ \xi 1, . . . , \xi S\} . The ``almost surely"" part will
be used in the next section where a generally distributed \~\xi is considered.

Algorithm 1 A decomposition algorithm for the nonconvex two-stage SP (4.1)
Input: Initial point x0 \in X, and two scalar sequences \{ \gamma \nu \} \nu \geq 0 \downarrow 0 and \{ \varepsilon \nu \} \nu \geq 0 \downarrow 0.
Outer loop: Set \nu = 0.
1: Execute the inner loop with the initial point x\nu , and parameters \gamma \nu and \varepsilon \nu .
2: Set \nu \leftarrow \nu + 1 and repeat step 1 until a prescribed stopping criterion is satisfied.
Inner loop: Set i= 0 and x\nu ,0 = x\nu .
1: Solve the subproblem (4.2) at (z, \xi )=(x\nu ,i, \xi 

s) for all s to get solutions (xs\nu ,i, y
s
\nu ,i).

2: Select cs\nu ,i \in \partial 1( - f)(xs\nu ,i, ys\nu ,i; \xi s)\subseteq \partial 2( - \psi )(xs\nu ,i, x\nu ,i; \xi 
s) for each s.

3: Solve the master problem (4.4) to obtain x\nu ,i+1.
4: Set i\leftarrow i+ 1 and repeat the above steps if \| x\nu ,i+1  - x\nu ,i\| > \varepsilon \nu \gamma \nu . Otherwise,

break the inner loop with x\nu +1 \triangleq x\nu ,i+1.
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318 HANYANG LI AND YING CUI

Assumption A. The minimization problem of y in defining \psi (x, z; \~\xi ) in (3.2)
has an optimal solution for any (x, z)\in X \times X almost surely.

Assumption B. There exists a measurable function \kappa 1 : \Xi \rightarrow R+ such that
E\~\xi [\kappa 1(

\~\xi )]<\infty and the following condition holds almost surely:\bigm| \bigm| \bigm| \psi (x1, z; \~\xi ) - \psi (x2, z; \~\xi )\bigm| \bigm| \bigm| \leq \kappa 1(\~\xi )\| x1  - x2\| \forall (x1, x2, z)\in X \times X \times X.

Some remarks are in order. Assumption A guarantees that for any z \in X, the op-
timal solution of (4.2) in terms of y exists. This assumption also implies the relatively
complete recourse of the original problem (1.1) that \psi (x; \~\xi ) is finite for all feasible
x \in X almost surely. Assumption B is a stochastic version of the Lipschitz condition
in Lemma 3.6.

For convenience, we denote

\zeta S(x)\triangleq \varphi (x) +
1

S

S\sum 
s=1

\psi (x; \xi s) and \widehat \zeta S,\gamma \nu (x)\triangleq \varphi (x) +
1

S

S\sum 
s=1

e\gamma \nu \psi (x; \xi 
s).(4.5)

In the proposition below, we show that for any prescribed positive scalar \varepsilon \nu , the \nu th
inner loop of Algorithm 1 terminates in finite steps.

Proposition 4.1 (convergence of the inner loop for Algorithm 1). Suppose that
Assumptions A--B hold. Then the following statements hold for any \nu th inner loop.

(a) \widehat \zeta S,\gamma \nu (x\nu ,i+1)\leq \widehat \zeta S,\gamma \nu (x\nu ,i) - \| x\nu ,i  - x\nu ,i+1\| 2/(2\gamma \nu ) for any i\geq 0.
(b) limi\rightarrow +\infty \| x\nu ,i  - x\nu ,i+1\| = 0 and the stopping criterion \| x\nu ,i+1  - x\nu ,i\| \leq \varepsilon \nu \gamma \nu 

is achievable in finite steps, i.e.,

i\nu \triangleq min\{ i\in Z+ | \| x\nu ,i+1  - x\nu ,i\| \leq \varepsilon \nu \gamma \nu \} <+\infty .

In addition, we have

dist

\left(   0,
1

S

S\sum 
s=1

\bigl[ 
\partial 1\psi (x

s
\nu ,i\nu , x\nu ,i\nu ; \xi 

s) - \partial 2( - \psi )(xs\nu ,i\nu , x\nu ,i\nu ; \xi 
s)+\scrN X(xs\nu ,i\nu )

\bigr] 
+ \partial \varphi (x\nu ,i\nu +1) +\scrN X(x\nu ,i\nu +1)

\right)   \leq \varepsilon \nu .
Proof. Consider the \nu th inner loop of Algorithm 1. We first show that the se-

quence \{ \widehat \zeta S,\gamma \nu (x\nu ,i)\} i\geq 0 is nonincreasing. Since the function \widehat e\gamma \nu \psi (\bullet ; \xi s;x\nu ,i) defined
in (4.3) is quadratic, we have, by writing as\nu ,i \triangleq \nabla x \widehat e\gamma \nu \psi (\bullet ; \xi s;x\nu ,i)(x\nu ,i+1),

\widehat \zeta S,\gamma \nu (x\nu ,i) = \varphi (x\nu ,i) +
1

S

S\sum 
s=1

\widehat e\gamma \nu \psi (x\nu ,i; \xi s;x\nu ,i)
=\varphi (x\nu ,i) +

1

S

S\sum 
s=1

\widehat e\gamma \nu \psi (x\nu ,i+1; \xi 
s;x\nu ,i)

+
1

S

S\sum 
s=1

(as\nu ,i)
\top 
(x\nu ,i  - x\nu ,i+1) +

1

2\gamma \nu 
\| x\nu ,i  - x\nu ,i+1\| 2,

where the first equality is because \widehat e\gamma \nu \psi (x\nu ,i; \xi s;x\nu ,i) = e\gamma \nu \psi (x\nu ,i; \xi 
s). Since x\nu ,i+1 is

the optimal solution of the master problem (4.4), one may obtain that\Biggl( 
b\nu ,i +

1

S

S\sum 
s=1

as\nu ,i

\Biggr) \top 

(x\nu ,i  - x\nu ,i+1)\geq 0 for some b\nu ,i \in \partial \varphi (x\nu ,i+1).
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DECOMPOSITION FOR NONCONVEX TWO-STAGE SPs 319

The convexity of \varphi and the above inequalities imply that

\widehat \zeta S,\gamma \nu (x\nu ,i)\geq \varphi (x\nu ,i+1) +
1

S

S\sum 
s=1

\widehat e\gamma \nu \psi (x\nu ,i+1; \xi 
s;x\nu ,i) +

1

2\gamma \nu 
\| x\nu ,i  - x\nu ,i+1\| 2

\geq \varphi (x\nu ,i+1) +
1

S

S\sum 
s=1

e\gamma \nu \psi (x\nu ,i+1; \xi 
s) +

1

2\gamma \nu 
\| x\nu ,i  - x\nu ,i+1\| 2

= \widehat \zeta S,\gamma \nu (x\nu ,i+1) +
1

2\gamma \nu 
\| x\nu ,i  - x\nu ,i+1\| 2,

(4.6)

where the second inequality uses the fact that \widehat e\gamma \psi (x; \xi s; \=x)\geq e\gamma \psi (x; \xi s) for any x, \=x,
and \xi s. We thus prove part (a). Using the compactness of X and Assumption B, one
may further derive from Lemma 3.6 that

inf
x\in X

\widehat \zeta S,\gamma \nu (x) \geq \biggl[ 
inf
x\in X

\varphi (x)

\biggr] 
+

1

S

S\sum 
s=1

\biggl[ 
inf
x\in X

\psi (x; \xi s) - \gamma \nu 
2
\cdot \kappa 1(\xi s)2

\biggr] 
> - \infty .

Hence, the sequence \{ \widehat \zeta S,\gamma \nu (x\nu ,i)\} i\geq 0 is bounded below, which further yields that

\{ \widehat \zeta S,\gamma \nu (x\nu ,i)\} i\geq 0 converges and \| x\nu ,i+1  - x\nu ,i\| converges to 0 as i \rightarrow \infty . The latter
convergence indicates that the inner iterations terminate after finite steps.

To show the rest of the statement of this proposition, we first obtain from the
optimality condition of the master problem (4.4) at x\nu ,i\nu +1 that

0\in \partial 

\Biggl( 
\varphi (x\nu ,i\nu +1) +

1

S

S\sum 
s=1

\widehat e\gamma \nu \psi (x\nu ,i\nu +1; \xi 
s;x\nu ,i\nu )

\Biggr) 
+\scrN X(x\nu ,i\nu +1)

= \partial \varphi (x\nu ,i\nu +1) +
1

S

S\sum 
s=1

\biggl( 
x\nu ,i\nu +1  - xs\nu ,i\nu 

\gamma \nu 
 - cs\nu ,i\nu 

\biggr) 
+\scrN X(x\nu ,i\nu +1),(4.7)

where the equation is due to the sum rule of the subdifferentials for convex functions
[45, Theorem 23.8]. From the optimality condition of the subproblem (4.2), we obtain

0 \in \partial 1 \psi 
\bigl( 
xs\nu ,i\nu , x\nu ,i\nu ; \xi 

s
\bigr) 
+

\bigl( 
xs\nu ,i\nu  - x\nu ,i\nu 

\bigr) 
/\gamma \nu +\scrN X(xs\nu ,i\nu ) \forall s= 1, . . . , S.

Taking the sum over (4.7) and the above inclusions from s= 1, . . . , S, we get

0\in 1

S

S\sum 
s=1

\partial 1 \psi 
\bigl( 
xs\nu ,i\nu , x\nu ,i\nu ; \xi 

s
\bigr) 
+

\Biggl[ 
\partial \varphi (x\nu ,i\nu +1) - 

1

S

S\sum 
s=1

cs\nu ,i\nu +\scrN X(x\nu ,i\nu +1)

\Biggr] 

+ (x\nu ,i\nu +1  - x\nu ,i\nu )/\gamma \nu +
1

S

S\sum 
s=1

\scrN X(xs\nu ,i\nu )

\subseteq 1

S

S\sum 
s=1

\bigl[ 
\partial 1\psi (x

s
\nu ,i\nu , x\nu ,i\nu ; \xi 

s) - \partial 2( - \psi )(xs\nu ,i\nu , x\nu ,i\nu ; \xi 
s)
\bigr] 
+ \partial \varphi (x\nu ,i\nu +1)

+ (x\nu ,i\nu +1  - x\nu ,i\nu )/\gamma \nu +\scrN X(x\nu ,i\nu +1)+
1

S

S\sum 
s=1

\scrN X(xs\nu ,i\nu ),

where the last inclusion is due to the definition of cs\nu ,i\nu . Consequently, we derive

dist

\left(   0,
1

S

S\sum 
s=1

\bigl[ 
\partial 1\psi (x

s
\nu ,i\nu , x\nu ,i\nu ; \xi 

s) - \partial 2( - \psi )(xs\nu ,i\nu , x\nu ,i\nu ; \xi 
s)+\scrN X(xs\nu ,i\nu )

\bigr] 
+ \partial \varphi (x\nu ,i\nu +1) +\scrN X(x\nu ,i\nu +1)

\right)   
\leq \| x\nu ,i\nu +1  - x\nu ,i\nu \| /\gamma \nu \leq \varepsilon \nu ,

where the last inequality is due to the stopping rule of the inner loop.
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320 HANYANG LI AND YING CUI

We are now ready to present the global convergence of the sequence generated by
Theorem 4.2. We shall prove that every accumulation point \=x of \{ x\nu \} \nu \geq 0 is a critical
point of problem (4.1) satisfying

0\in \partial \varphi (\=x) + 1

S

S\sum 
s=1

\bigl[ 
\partial 1\psi (\=x, \=x; \xi s) - \partial 2( - \psi ) (\=x, \=x; \xi s)

\bigr] 
+\scrN X(\=x).(4.8)

It has been shown in Lemma 3.5 that under Assumptions A and B, we have \partial C\psi (x; \xi )\subseteq 
\partial 1\psi (x,x; \xi ) - \partial 2( - \psi )(x,x; \xi ). Hence, the condition (4.8) is weaker than the Clarke
stationarity of problem (4.1) pertaining to 0 \in \partial \varphi (\=x) +

\sum S
s=1 \partial C\psi (\=x; \xi 

s)/S +\scrN X(\=x).
The term ``critical point"" is adapted from the result of the dc algorithm to solve
a dc problem minimizex\in X [\theta 1(x) - \theta 2(x) ], where the accumulation point satisfies
0\in \partial \theta 1(x) - \partial \theta 2(x) +\scrN X(x).

Theorem 4.2 (subsequential convergence for Algorithm 1). Let Assumptions
A--B hold. Then any accumulation point of the sequence

\bigl\{ 
x\nu 

\bigr\} 
\nu \geq 0

generated by Algo-

rithm 1 is a critical point of (4.1) satisfying (4.8).

Proof. Let \=x be the limit of a convergent subsequence
\bigl\{ 
x\nu +1

\bigr\} 
\nu \in N , where N is a

subset of Z+. We first show that \{ xs\nu ,i\nu \} \nu \in N also converges to \=x. By Proposition 4.1,
we know that x\nu ,i\nu \rightarrow \=x as \nu (\in N)\rightarrow \infty . For each s = 1, . . . , S and \nu \in N , we have,
by the definition of xs\nu ,i\nu = P\gamma \nu \psi (x\nu ,i\nu ; \xi 

s)\in X,

1

2\gamma \nu 

\bigm\| \bigm\| xs\nu ,i\nu  - x\nu ,i\nu \bigm\| \bigm\| 2
+ inf
x\in X

\psi (x,x\nu ,i\nu ; \xi 
s)

\leq 1

2\gamma \nu 

\bigm\| \bigm\| xs\nu ,i\nu  - x\nu ,i\nu \bigm\| \bigm\| 2
+\psi 

\bigl( 
xs\nu ,i\nu , x\nu ,i\nu ; \xi 

s
\bigr) 

= e\gamma \nu \psi (x\nu ,i\nu ; \xi 
s)\leq 1

2\gamma \nu 
\| \=x - x\nu ,i\nu \| 2 +\psi (\=x,x\nu ,i\nu ; \xi 

s).

The above inequality yields that

\bigm\| \bigm\| xs\nu ,i\nu  - x\nu ,i\nu \bigm\| \bigm\| \leq 
\sqrt{} 
\| \=x - x\nu ,i\nu \| 2 + 2\gamma \nu 

\biggl( 
\psi (\=x,x\nu ,i\nu ; \xi 

s) - inf
x\in X

\psi (x,x\nu ,i\nu ; \xi 
s)

\biggr) 

\leq \| \=x - x\nu ,i\nu \| +

\sqrt{} 
2\gamma \nu 

\biggl( 
\psi (\=x,x\nu ,i\nu ; \xi 

s) - inf
x\in X

\psi (x,x\nu ,i\nu ; \xi 
s)

\biggr) 
\leq \| \=x - x\nu ,i\nu \| +

\sqrt{} 
2\gamma \nu \kappa 1(\xi s)R(X) \rightarrow 0 as \nu (\in N)\rightarrow \infty ,

where R(X) denotes the diameter of the compact set X, and the last inequality
follows from the uniform Lipschitz continuity of \psi (\bullet , z; \xi ) on X in Assumption B.
Since \kappa 1(\xi 

s)<\infty for each s and \gamma \nu \downarrow 0, we derive that\bigm\| \bigm\| xs\nu ,i\nu  - \=x
\bigm\| \bigm\| \leq \bigm\| \bigm\| xs\nu ,i\nu  - x\nu ,i\nu \bigm\| \bigm\| + \| x\nu ,i\nu  - \=x\| \rightarrow 0 as \nu (\in N)\rightarrow \infty .

Hence, we have obtained the convergence of
\bigl\{ 
xs\nu ,i\nu 

\bigr\} 
\nu \in N to \=x for all s. Using the

triangle inequality of the distance function, we have that
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DECOMPOSITION FOR NONCONVEX TWO-STAGE SPs 321

dist

\Biggl( 
0,

1

S

S\sum 
s=1

\bigl[ 
\partial 1\psi (\=x, \=x; \xi s) - \partial 2( - \psi ) (\=x, \=x; \xi s)

\bigr] 
+ \partial \varphi (\=x) +\scrN X(\=x)

\Biggr) 

\leq dist

\left(   0,
1

S

S\sum 
s=1

\bigl[ 
\partial 1\psi (x

s
\nu ,i\nu , x\nu ,i\nu ; \xi 

s) - \partial 2( - \psi )(xs\nu ,i\nu , x\nu ,i\nu ; \xi 
s)+\scrN X(xs\nu ,i\nu )

\bigr] 
+ \partial \varphi (x\nu ,i\nu +1) +w\nu 

\right)   
\underbrace{}  \underbrace{}  

(i)

+
1

S

S\sum 
s=1

D
\biggl( \biggl[ 

\partial 1\psi (x
s
\nu ,i\nu 

, x\nu ,i\nu ; \xi 
s)

 - \partial 2( - \psi )(xs\nu ,i\nu , x\nu ,i\nu ; \xi 
s)

\biggr] 
,

\biggl[ 
\partial 1\psi (\=x, \=x; \xi s)

 - \partial 2( - \psi ) (\=x, \=x; \xi s)

\biggr] \biggr) 
\underbrace{}  \underbrace{}  

(ii)

+
1

S

S\sum 
s=1

D
\bigl( 
\scrN X(xs\nu ,i\nu ),\{ 0\} 

\bigr) \underbrace{}  \underbrace{}  
(iii)

+D (\partial \varphi (x\nu ,i\nu +1), \partial \varphi (\=x) )\underbrace{}  \underbrace{}  
(iv)

+dist (w\nu , \scrN X(\=x) )\underbrace{}  \underbrace{}  
(v)

,

where w\nu can be any element in \scrN X(x\nu ,i\nu +1). By Proposition 4.1, there is a se-
quence \{ w\nu \} \nu \geq 0 with w\nu \in \scrN X(x\nu ,i\nu +1) such that (i) converges to 0. Since for all s,
lim\nu (\in N)\rightarrow \infty xs\nu ,i\nu = \=x \in X \subseteq int(X), we thus obtain \scrN X(xs\nu ,i\nu ) = \{ 0\} for sufficiently
large \nu and any s. Then (iii) \rightarrow 0 as \nu (\in N) \rightarrow \infty . Next we show that the terms
(ii), (iv), and (v) converge to 0. It is known that the following terms are osc: \partial 1\psi ,
\partial 2( - \psi ) (see Lemma 3.5(a)), \partial \varphi , and \scrN X(\=x) [49, Propositions 6.6 and 8.7]. Based on
[49, Proposition 5.12], we only need to prove that for each s, the sequences

\{ \partial 1\psi (xs\nu ,i\nu , x\nu ,i\nu ; \xi 
s)\} \nu (\in N)\geq \nu 0 , \{ \partial \varphi (x\nu ,i\nu +1)\} \nu (\in N)\geq \nu 0 and \{ w\nu \} \nu (\in N)\geq \nu 0(4.9)

are uniformly bounded for sufficiently large \nu 0. Indeed, Lemma 3.5(b) implies that
for \nu \in N sufficiently large and any s, the first sequence in (4.9) is uniformly bounded.
The uniform boundedness of the second sequence in (4.9) is a direct consequence of
[45, Theorem 24.7] since \varphi is real-valued and convex, and x\nu ,i\nu +1\rightarrow \=x. Last, \{ w\nu \} \nu \geq 0

must be bounded because (i) converges to 0 and all sequences in (i) except w\nu have
proven to be uniformly bounded. Henceforth, we have proved that any accumulation
point \=x is a critical point of (4.1) satisfying (4.8).

In the following, we establish the convergence to a stronger type of stationarity
under additional assumptions. Suppose that f(\bullet ,\bullet ; \xi s) andG(\bullet ,\bullet ; \xi s) are continuously
differentiable for all \xi s. At x= \=x, we say \=ys is an optimal solution of the convex second-
stage problem with \xi = \xi s and \=\lambda s being the corresponding multiplier if the following
Karush--Kuhn--Tucker (KKT) condition is satisfied:

0\in \nabla yf(\=x, \=ys; \xi s) +
\ell \sum 
j=1

\=\lambda sj\nabla ygj(\=x, \=ys; \xi s) and \=\lambda s \in NR\ell 
 - 
(G(\=x, \=ys; \xi s)) .(4.10)

We use Y (\=x, \xi s) andM(\=x, \xi s) to denote the set of all optimal solutions and multipliers
satisfying the above condition, respectively. When M(\=x, \xi s) is nonempty, one may
write the critical cone of the second-stage problem at \=ys \in Y (\=x, \xi s) as

C\=x(\=y
s, \xi s)\triangleq 

\biggl\{ 
d\in Rn2

\bigm| \bigm| \bigm| \bigm| \nabla yf(\=x, \=ys; \xi s)\top d= 0,
\nabla y gj(\=x, \=ys; \xi s)\top d\in \scrT R - (gj(\=x, y; \xi )), j = 1, . . . , \ell 

\biggr\} 
,

where \scrT D(x) denotes the tangent cone of a closed convex set D. In the following, we
show that if the second-stage solutions \{ \=ys\} Ss=1 are unique at the accumulation point
\=x for each s, then \=x in fact satisfies a stronger condition.
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322 HANYANG LI AND YING CUI

Corollary 4.3 (convergence to a directional stationary point). Let \=x be an
accumulation point of the sequence

\bigl\{ 
x\nu 

\bigr\} 
\nu \geq 0

generated by Algorithm 1. In addition to
the assumptions in Theorem 4.2, if the conditions

(a) the feasible set \{ y \in Rn2 | G(x, y; \xi s)\leq 0\} is bounded, uniformly for x\in X;
(b) f(\bullet ,\bullet ; \xi s) and G(\bullet ,\bullet ; \xi s) are twice continuously differentiable;
(c) the set of multipliers M(\=x, \xi s) is nonempty and there exists \=ys \in Y (\=x, \xi s)

satisfying the second order sufficient condition that for all d\in C\=x(\=y
s, \xi s)\setminus \{ 0\} ,

sup
\lambda \in M(\=ys,\xi s)

d\top \nabla 2
yy

\left[  f(\=x, \=ys; \xi s) + \ell \sum 
j=1

\lambda jgj(\=x, \=y
s; \xi s)

\right]  d> 0,

are satisfied for each s, then \=x is a directional stationary point of problem (4.1),
i.e.,

\varphi \prime (\=x;d) +
1

S

S\sum 
s=1

\psi \prime (\=x;d)\geq 0 \forall d\in \scrT X(\=x).

Proof. We first prove that \partial 2( - \psi )(\=x, \=x; \xi s) is a singleton under given assumptions.
By condition (a) and the convexity of ( - f)(\bullet , z), we can apply the Danskin theorem
[11, Theorem 2.1] to get

\partial 2( - \psi )(\=x, \=x; \xi s) = conv
\Bigl\{ 
 - \nabla xf(\=x, y; \xi s) | y \in Y (\=x; \xi s)

\Bigr\} 
.

Since the second order sufficient condition of the second-stage problem holds at \=x for
any \xi s, we have that Y (\=x; \xi s) is a singleton [49, Example 13.25], which further implies
that \partial 2( - \psi )(\=x, \=x; \xi s) is a singleton. The desired directional stationarity of \=x then
follows from [15, Proposition 6.1.11].

Theorem 4.2 and Corollary 4.3 pertain to the subsequential convergence of the
iterative sequence generated by Algorithm 1. In the following, we show that the
full sequence of the objective values along the iterations converges if the sequence of
the Moreau parameters \{ \gamma \nu \} \nu \geq 0 is summable. This result particularly indicates that
although the sequence \{ x\nu \} \nu \geq 0 may have multiple accumulation points, the objective
values at the accumulation points are the same. To proceed, we remind the readers
of the definition of \zeta S in (4.5).

Theorem 4.4 (convergence of objective values for Algorithm 1). Suppose that
Assumptions A--B hold. Let \{ x\nu \} \nu \geq 0 be the sequence generated by Algorithm 1 under
the additional condition that

\sum \infty 
\nu =0 \gamma \nu <\infty . Then lim\nu \rightarrow \infty \zeta S(x\nu ) = \zeta S(\=x), where \=x is

any accumulation point of the iterative sequence \{ x\nu \} \nu \geq 0.

Proof. One may derive that

\zeta S(x\nu +1) - \zeta S(x\nu ) =
\Bigl[ 
\zeta S(x\nu +1) - \widehat \zeta S,\gamma \nu (x\nu +1)

\Bigr] 
+

\Bigl[ \widehat \zeta S,\gamma \nu (x\nu +1) - \widehat \zeta S,\gamma \nu (x\nu )\Bigr] + \Bigl[ \widehat \zeta S,\gamma \nu (x\nu ) - \zeta S(x\nu )\Bigr] ,(4.11)

where the first and last terms on the right side are gaps between the partial Moreau
envelopes \widehat \zeta S,\gamma \nu and original functions \zeta S at x\nu +1 and x\nu , respectively. By Lemma
3.6 and Assumption B, we may obtain that

\zeta S(x\nu +1) - \widehat \zeta S,\gamma \nu (x\nu +1)\leq 
1

S

S\sum 
s=1

\gamma \nu \kappa 1(\xi 
s)2/2 and \widehat \zeta S,\gamma \nu (x\nu ) - \zeta S(x\nu )\leq 0.(4.12)

Recall that x\nu +1 = x\nu ,i\nu +1 and x\nu = x\nu ,0. Then the second term on the right side of
(4.11) can be bounded above based on Proposition 4.1(a) that
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DECOMPOSITION FOR NONCONVEX TWO-STAGE SPs 323

\widehat \zeta S,\gamma \nu (x\nu +1) - \widehat \zeta S,\gamma \nu (x\nu )\leq  - 1

2\gamma \nu 

i\nu \sum 
i=0

\| x\nu ,i+1  - x\nu ,i\| 2.(4.13)

Substituting (4.12) and (4.13) into the inequality (4.11), we have

\zeta S(x\nu +1) - \zeta S(x\nu )\leq  - 
1

2\gamma \nu 

i\nu \sum 
i=0

\| x\nu ,i+1  - x\nu ,i\| 2 +
\gamma \nu 
2

\Biggl[ 
1

S

S\sum 
s=1

\kappa 1(\xi 
s)2

\Biggr] 
.

Since the sequence \{ \zeta S(x\nu )\} \nu \geq 0 must be bounded below due to Assumption A and\sum \infty 
\nu =1 \gamma \nu 

\sum S
s=1 \kappa 1(\xi 

s)2/S <\infty , one may easily obtain the convergence of \{ \zeta S(x\nu )\} \nu \geq 0

that is a so-called quasi-Fej\'er monotone sequence; see, e.g., [13, Lemma 3.1]. For any
convergent subsequence \{ x\nu +1\} \nu \in N and its limit \=x, by the continuity of \psi (x; \xi s) on
X for each s, we have \zeta S(x\nu +1)\rightarrow \zeta S(\=x) as \nu (\in N)\rightarrow \infty . Therefore, the full sequence
\{ \zeta S(x\nu )\} \nu \geq 0 converges to \zeta S(\=x) for any accumulation point \=x.

5. A sampling-based decomposition algorithm. In this section, we consider
a generally distributed random vector \~\xi with a known distribution. Instead of the
approach in the previous section that deals with a fixed batch of samples throughout
the algorithm, we incorporate the sampling strategy into the outer loop to progres-
sively enlarge the problem size. In general, there are two ways to do the sampling
for solving SPs. One is to use the sample average approximation to select a subset
of data before the execution of the numerical algorithm [53, 54, 30]. The other is to
adopt a sequential sampling technique [28, 29, 38, 50] where scenarios are gradually
added along the iterations. Our method falls into the latter category.

We rely on the law of large numbers (LLN) for convex subdifferentials to establish
the almost sure convergence of \{ x\nu \} \nu \geq 0 generated by Algorithm 2. To facilitate this
tool, the Lipschitz continuity of the original function is needed. We have already
assumed in Assumption B that \psi (\bullet , z; \~\xi ) is Lipschitz continuous relative to X for
z \in X almost surely. In the following, we further assume that \psi (x,\bullet ; \~\xi ) is Lipschitz
continuous relative to X for any x \in X almost surely. We remind readers that based
on Lemma 3.5, for any fixed \xi , this Lipschitz continuity automatically holds relative
to int(X).

Assumption C. There exists a measurable function \kappa 2 : \Xi \rightarrow R+ such that
E\~\xi [\kappa 2(

\~\xi )]<\infty and the following inequality holds almost surely:\bigm| \bigm| \bigm| \psi (x,x1; \~\xi ) - \psi (x,x2; \~\xi )\bigm| \bigm| \bigm| \leq \kappa 2(\~\xi )\| x1  - x2\| \forall (x,x1, x2)\in X \times X \times X.

Algorithm 2 A sampling-based decomposition algorithm for the SP (1.1)
Input: Initial point x0 \in X, two positive scalar sequences \{ \gamma \nu \} \nu \geq 0 \downarrow 0, \{ \varepsilon \nu \} \nu \geq 0 \downarrow 0,
and a sequence of incremental sample size \{ S\nu \} \nu \geq 0.
Outer loop: Set S - 1 = 0 and \nu = 0.

1: Generate independent and identically distributed samples \{ \xi S\nu  - 1+\bigtriangleup \} S\nu  - S\nu  - 1

\bigtriangleup =1

from the distribution of \~\xi that are independent of previous samples.
2: Execute the inner loop of Algorithm 1 with the initial point x\nu , samples

\{ \xi s\} S\nu 
s=1 \triangleq \{ \xi s\} 

S\nu  - 1

s=1 \cup \{ \xi S\nu  - 1+\bigtriangleup \} S\nu  - S\nu  - 1

\bigtriangleup =1 , and parameters \gamma \nu and \varepsilon \nu .

3: Set \nu \leftarrow \nu + 1 and repeat step 1 until a prescribed stopping criterion is satisfied.
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324 HANYANG LI AND YING CUI

For any r > 0, we denote

\partial r1 \psi (\=x, \=x; \xi )\triangleq 
\bigcup 

x,z\in B(\=x,r)

\partial 1 \psi (x, z; \xi ),

and similarly for \partial r2 ( - \psi ). We have the following result on the LLN for the sub-
differentials of icc functions, which is a consequence of the LLN for random set-
valued mappings [1]. In fact, the result can be viewed as a pointwise version of [55,
Theorem 2].

Lemma 5.1. Suppose that Assumptions A--C hold. For any fixed x \in X and any
r > r\prime \geq 0 such that B(x, r)\subseteq int(X), the following limit holds almost surely:

lim
\nu \rightarrow \infty 

D

\left(  1

S\nu 

S\nu \sum 
s=1

\biggl[ 
\partial r

\prime 

1 \psi (x,x; \xi s)

 - \partial r\prime 2 ( - \psi )(x,x; \xi s)

\biggr] 
,

E\~\xi 

\Bigl[ 
\partial r1 \psi (x,x;

\~\xi )
\Bigr] 

 - E\~\xi 

\Bigl[ 
\partial r2 ( - \psi )(x,x; \~\xi )

\Bigr] \right)  = 0,

where the expectation of a random set-valued mapping E\~\xi [\scrA (x; \~\xi )] is defined as the set

of E\~\xi [a(x;
\~\xi )] for all measurable selections a(x; \~\xi )\in \scrA (x; \~\xi ).

A noteworthy remark about the preceding lemma is that we can interchange the
partial subdifferential and expectation in the right-hand side of the distance, i.e.,

E\~\xi 

\Bigl[ 
\partial 1\psi (x,x; \~\xi )

\Bigr] 
= \partial 1E\~\xi 

\Bigl[ 
\psi (x,x; \~\xi )

\Bigr] 
\forall x\in X.

This is because a convex function is Clarke regular at x if it is finite-valued in a
neighborhood of x, and the Clarke regularity ensures the interchangeability of the
subdifferential and the expectation [12, Proposition 2.3.6 and Theorem 2.7.2]. Below
is the main theorem of this section on the almost surely subsequential convergence of
the iterative sequence generated by Algorithm 2.

Theorem 5.2 (subsequential convergence of Algorithm 2). Suppose that As-
sumptions A--C hold and \kappa 1(\~\xi ) in Assumption B is essentially bounded, i.e., inf

\bigl\{ 
t | 

P
\bigl( 
\kappa 1(\~\xi )> t

\bigr) 
= 0

\bigr\} 
<+\infty . Let \{ x\nu \} \nu \geq 0 be the sequence generated by Algorithm 2 and

\=x be any accumulation point. For any r > 0 such that B(\=x, r)\subseteq int(X), the following
inclusion holds almost surely:

0\in \partial \varphi (\=x) + \partial r1 E\~\xi 

\Bigl[ 
\psi (\=x, \=x; \~\xi )

\Bigr] 
 - \partial r2 E\~\xi 

\Bigl[ 
( - \psi )(\=x, \=x; \~\xi )

\Bigr] 
+\scrN X(\=x).

In addition, if the set-valued mapping \partial 1E\~\xi [\psi (\bullet ,\bullet ; \~\xi )] - \partial 2E\~\xi [ ( - \psi )(\bullet ,\bullet ; \~\xi )] is contin-
uous at (\=x, \=x), then almost surely

0\in \partial \varphi (\=x) + \partial 1E\~\xi 

\Bigl[ 
\psi (\=x, \=x; \~\xi )

\Bigr] 
 - \partial 2E\~\xi 

\Bigl[ 
( - \psi )(\=x, \=x; \~\xi )

\Bigr] 
+\scrN X(\=x),

i.e., every accumulation point \=x is a critical point of problem (1.1) almost surely.

Proof. Consider any subsequence \{ x\nu +1\} \nu \in N that converges to \=x. Using similar
derivations as in the proof of Theorem 4.2, one can obtain the almost sure convergence
of \{ x\nu ,i\nu \} \nu \in N to \=x and the following inequalities for each \nu \in N and s= 1, . . . , S\nu :\bigm\| \bigm\| xs\nu ,i\nu  - \=x

\bigm\| \bigm\| \leq \bigm\| \bigm\| xs\nu ,i\nu  - x\nu ,i\nu \bigm\| \bigm\| + \| x\nu ,i\nu  - \=x\| 

\leq 2\| x\nu ,i\nu  - \=x\| +
\sqrt{} 
2\gamma \nu \kappa 1(\xi s)R(X).
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DECOMPOSITION FOR NONCONVEX TWO-STAGE SPs 325

Notice that \gamma \nu \downarrow 0 and \kappa 1(\xi 
s) is almost surely bounded by a constant independent of

s. Thus, for any given r\prime > 0, the ball B(\=x, r\prime ) almost surely contains x\nu ,i\nu and the
proximal points \{ xs\nu ,i\nu \} 

S\nu 
s=1 for all \nu \in N sufficiently large. Consequently,

\partial 1\psi (x
s
\nu ,i\nu , x\nu ,i\nu ; \xi 

s)\subseteq \partial r
\prime 

1 \psi (\=x, \=x; \xi s) almost surely for all \nu \in N sufficiently large.

We then obtain from Lemma 5.1 that, for any r > 0 such that B(\=x, r) \subseteq int(X), the
following limit holds almost surely:

lim
\nu (\in N)\rightarrow \infty 

D

\left(  1

S\nu 

S\nu \sum 
s=1

\biggl[ 
\partial 1\psi (x

s
\nu ,i\nu 

, x\nu ,i\nu ; \xi 
s)

 - \partial 2( - \psi )(xs\nu ,i\nu , x\nu ,i\nu ; \xi 
s)

\biggr] 
,
\partial r1 E\~\xi 

\Bigl[ 
\psi (\=x, \=x; \~\xi )

\Bigr] 
 - \partial r2 E\~\xi 

\Bigl[ 
( - \psi )(\=x, \=x; \~\xi )

\Bigr] \right)  = 0.

(5.1)

Thus, the following estimation follows almost surely:

dist
\Bigl( 
0, \partial \varphi (\=x) + \partial r1 E\~\xi 

\Bigl[ 
\psi (\=x, \=x; \~\xi )

\Bigr] 
 - \partial r2 E\~\xi 

\Bigl[ 
( - \psi )(\=x, \=x; \~\xi )

\Bigr] 
+\scrN X(\=x)

\Bigr) 
\leq dist

\left(   0,
1

S\nu 

S\nu \sum 
s=1

\bigl[ 
\partial 1\psi (x

s
\nu ,i\nu , x\nu ,i\nu ; \xi 

s) - \partial 2( - \psi )(xs\nu ,i\nu , x\nu ,i\nu ; \xi 
s)+\scrN X(xs\nu ,i\nu )

\bigr] 
+ \partial \varphi (x\nu ,i\nu +1) +w\nu 

\right)   
\underbrace{}  \underbrace{}  

(i\prime )

+D

\left(  1

S\nu 

S\nu \sum 
s=1

\biggl[ 
\partial 1\psi (x

s
\nu ,i\nu 

, x\nu ,i\nu ; \xi 
s)

 - \partial 2( - \psi )(xs\nu ,i\nu , x\nu ,i\nu ; \xi 
s)

\biggr] 
,
\partial r1 E\~\xi 

\Bigl[ 
\psi (\=x, \=x; \~\xi )

\Bigr] 
 - \partial r2 E\~\xi 

\Bigl[ 
( - \psi )(\=x, \=x; \~\xi )

\Bigr] \right)  
\underbrace{}  \underbrace{}  

(ii\prime )

+
1

S\nu 

S\nu \sum 
s=1

D
\bigl( 
\scrN X(xs\nu ,i\nu ),\{ 0\} 

\bigr) 
\underbrace{}  \underbrace{}  

(iii\prime )

+D (\partial \varphi (x\nu ,i\nu +1), \partial \varphi (\=x) )\underbrace{}  \underbrace{}  
(iv\prime )

+dist (w\nu , \scrN X(\=x))\underbrace{}  \underbrace{}  
(v\prime )

,

where w\nu can be any element in \scrN X(x\nu ,i\nu +1). By Proposition 4.1 (with sample size
S\nu instead of S), there is a sequence \{ w\nu \} \nu \geq 0 with w\nu \in \scrN X(x\nu ,i\nu +1) such that
(i\prime ) converges to 0. As shown in (5.1), we have (ii\prime ) \rightarrow 0. The term (iii\prime ) \rightarrow 0
because \{ xs\nu ,i\nu \} 

S\nu 
s=1 \subseteq B(\=x, r) \subseteq int(X) holds almost surely for sufficiently large \nu .

The convergence of the last two terms (iv\prime ) and (v\prime ) to 0 can be derived based on
similar arguments to their counterparts in the proof of Theorem 4.2. Finally, if the
set-valued mapping \partial 1E\~\xi [\psi (\bullet ,\bullet ; \~\xi )] - \partial 2E\~\xi [( - \psi )(\bullet ,\bullet ; \~\xi )] is continuous at (\=x, \=x), one
may adopt similar arguments as in the proof of [55, Theorem 3] to derive the almost
sure convergence to a critical point.

One can further derive an analogous result of Corollary 4.3 for the sequence
generated by Algorithm 2 by strengthening the conditions (a), (b), and (c) in the
former corollary to almost any \xi \in \Xi so that \partial 2E\~\xi [( - \psi )(\=x, \=x; \~\xi )] is a singleton. We
omit the details here for brevity. The last result of this section is the almost sure
convergence of the objective values of \{ \zeta S\nu 

(x\nu )\} \nu \geq 0 under proper assumptions on the
sample sizes S\nu and Moreau parameters \gamma \nu . To proceed, we first present a lemma on
the convergence rate of the sample average approximation in expectation. This result
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326 HANYANG LI AND YING CUI

is obtained by using the Rademacher average of the random function \psi (x; \~\xi ), which
has its source in [17, Corollary 3.2]; see also [15, Theorem 10.1.5].

Lemma 5.3. Let X be a compact set in Rn and \~\xi : \Omega \rightarrow \Xi \subseteq Rm be a random
vector defined on a probability space (\Omega ,\scrF ,P). Let \psi :X \times \Xi \rightarrow R be a Carath\'eodory
function. Suppose that \psi is uniformly bounded on X\times \Xi and Lipschitz continuous in x
with modulus independent of \xi . Let \{ \xi s\} Ss=1 be independent and identically distributed
random vectors following the distribution of \~\xi . Then there exists a constant C such
that for any \eta \in (0,1/2), we have

E

\Biggl[ 
sup
x\in X

\bigm| \bigm| \bigm| \bigm| \bigm| 1S
S\sum 
s=1

\psi (x; \xi s) - E\~\xi 

\Bigl[ 
\psi (x; \~\xi )

\Bigr] \bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr] 
\leq C
\surd 
1 - 2\eta 

S\eta 
\forall S > 0.

We make a remark about the above lemma. For an icc function \psi (x; \xi ) as-
sociated with the lifted counterpart \psi (x, z; \xi ), the uniform Lipschitz continuity of
\psi (\bullet ; \xi ) holds on X when \psi (\bullet , z; \xi ) is uniformly Lipschitz continuous over (z, \xi ) \in 
X \times \Xi and \psi (x,\bullet ; \xi ) is uniformly Lipschitz continuous over (x, \xi ) \in X \times \Xi . Indeed,
one can deduce this uniform Lipschitz continuity from Assumptions B and C with
sup\xi \in \Xi [max(\kappa 1(\xi ), \kappa 2(\xi )) ]<\infty , which also implies the essential boundedness of \kappa 1(\~\xi )
assumed in Theorem 5.2. We are now ready to present the almost surely sequential
convergence of the objective values generated by the internal sampling scheme.

Theorem 5.4 (sequential convergence of objective values for Algorithm 2). Sup-
pose that assumptions in Theorem 5.2 and conditions for \psi in Lemma 5.3 hold. Let
\{ x\nu \} \nu \geq 0 be the sequence generated by Algorithm 2. Assume that the parameter of the
partial Moreau envelope \gamma \nu and the sample size S\nu satisfy

\infty \sum 
\nu =1

\gamma \nu <\infty ,
\infty \sum 
\nu =1

S\nu +1  - S\nu 
S\nu +1 (S\nu )\eta 

<\infty for some \eta \in (0,1/2).

Then lim\nu \rightarrow \infty \zeta S\nu 
(x\nu ) = \zeta (\=x) almost surely, where \=x is any accumulation point of the

iterative sequence \{ x\nu \} \nu \geq 0.

Proof. We first prove the almost sure convergence of \{ \zeta S\nu 
(x\nu )\} \nu \geq 0. We have

\zeta S\nu +1
(x\nu +1) - \zeta S\nu 

(x\nu )

=
\Bigl[ 
\zeta S\nu +1

(x\nu +1) - \zeta S\nu 
(x\nu +1)

\Bigr] 
\underbrace{}  \underbrace{}  

\triangleq R\nu ,1

+
\Bigl[ 
\zeta S\nu 

(x\nu +1) - \widehat \zeta S\nu ,\gamma \nu (x\nu +1)
\Bigr] 

\underbrace{}  \underbrace{}  
\triangleq R\nu ,2

+
\Bigl[ \widehat \zeta S\nu ,\gamma \nu (x\nu +1) - \widehat \zeta S\nu ,\gamma \nu (x\nu )

\Bigr] 
\underbrace{}  \underbrace{}  

\triangleq R\nu ,3

+
\Bigl[ \widehat \zeta S\nu ,\gamma \nu (x\nu ) - \zeta S\nu 

(x\nu )
\Bigr] 

\underbrace{}  \underbrace{}  
\triangleq R\nu ,4

.

(5.2)

Using results of (4.12) and (4.13), we obtain

R\nu ,2 \leq 
1

S\nu 

S\nu \sum 
s=1

\gamma \nu \kappa 1(\xi 
s)2

2
, R\nu ,3 \leq  - 

1

2\gamma \nu 

i\nu \sum 
i=0

\| x\nu ,i+1  - x\nu ,i\| 2, and R\nu ,4 \leq 0.
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DECOMPOSITION FOR NONCONVEX TWO-STAGE SPs 327

Next we compute R\nu ,1 that is the error of the sample augmentation. It holds that

R\nu ,1 =
1

S\nu +1

\left[  S\nu \sum 
s=1

\psi (x\nu +1; \xi 
s) +

S\nu +1\sum 
s=S\nu +1

\psi (x\nu +1; \xi 
s)

\right]   - 1

S\nu 

S\nu \sum 
s=1

\psi (x\nu +1; \xi 
s)

=

\biggl( 
S\nu 
S\nu +1

 - 1

\biggr) 
1

S\nu 

S\nu \sum 
s=1

\psi (x\nu +1; \xi 
s) +

1

S\nu +1

S\nu +1\sum 
s=S\nu +1

\psi (x\nu +1; \xi 
s)

=

\biggl( 
S\nu 
S\nu +1

 - 1

\biggr) \left[  1

S\nu 

S\nu \sum 
s=1

\psi (x\nu +1; \xi 
s) - 1

S\nu +1  - S\nu 

S\nu +1\sum 
s=S\nu +1

\psi (x\nu +1; \xi 
s)

\right]  .
Let \scrF \nu \triangleq \sigma (\xi 1, \xi 2, . . . , \xi S\nu ) be a filtration, i.e., an increasing sequence of \sigma -fields
generated by samples used in outer iterations. Obviously x\nu +1 is adapted to \scrF \nu and
\{ \xi s\} S\nu +1

s=S\nu +1 are independent of \scrF \nu . Therefore, by taking conditional expectation of
R\nu ,1 given \scrF \nu , we obtain

E[R\nu ,1 | \scrF \nu ] =
\biggl( 

S\nu 
S\nu +1

 - 1

\biggr) \Biggl[ 
1

S\nu 

S\nu \sum 
s=1

\psi (x\nu +1; \xi 
s) - E\~\xi 

\Bigl[ 
\psi (x\nu +1; \~\xi )

\Bigr] \Biggr] 
,

where \{ \xi s\} S\nu 
s=1 and

\~\xi are independent and identically distributed. Based on the estima-
tions of the terms R\nu ,1,R\nu ,2,R\nu ,3, and R\nu ,4, we have, by taking conditional expectation
of (5.2) given \scrF \nu ,

E
\Bigl[ 
\zeta S\nu +1

(x\nu +1) | \scrF \nu 
\Bigr] 
 - \zeta S\nu 

(x\nu ) - 
1

2\gamma \nu 

i\nu \sum 
i=0

\| x\nu ,i+1  - x\nu ,i\| 2

\leq S\nu +1  - S\nu 
S\nu +1

\bigm| \bigm| \bigm| \bigm| \bigm| 1

S\nu 

S\nu \sum 
s=1

\psi (x\nu +1; \xi 
s) - E\~\xi 

\Bigl[ 
\psi (x\nu +1; \~\xi )

\Bigr] \bigm| \bigm| \bigm| \bigm| \bigm| + 1

S\nu 

S\nu \sum 
s=1

\gamma \nu \kappa 1(\xi 
s)2

2
.

(5.3)

In order to show the almost sure convergence of \{ \zeta s\nu (x\nu )\} \nu \geq 0, we need to verify that
the right side of the preceding inequality is summable over \nu almost surely and the
sequence \{ \zeta S\nu 

(x\nu )\} \nu \geq 0 is bounded below almost surely. We have

E

\Biggl[ \infty \sum 
\nu =1

\biggl( 
S\nu +1  - S\nu 
S\nu +1

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 1

S\nu 

S\nu \sum 
s=1

\psi (x\nu +1; \xi 
s) - E\~\xi 

\Bigl[ 
\psi (x\nu +1; \~\xi )

\Bigr] \bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr] 

=
\infty \sum 
\nu =1

S\nu +1  - S\nu 
S\nu +1

E

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 1

S\nu 

S\nu \sum 
s=1

\psi (x\nu +1; \xi 
s) - E\~\xi 

\Bigl[ 
\psi (x\nu +1; \~\xi )

\Bigr] \bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr] 

\leq 
\infty \sum 
\nu =1

S\nu +1  - S\nu 
S\nu +1

E

\Biggl[ 
sup
x\in X

\bigm| \bigm| \bigm| \bigm| \bigm| 1

S\nu 

S\nu \sum 
s=1

\psi (x; \xi s) - E\~\xi 

\Bigl[ 
\psi (x; \~\xi )

\Bigr] \bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr] 

\leq 
\infty \sum 
\nu =1

(S\nu +1  - S\nu )C
\surd 
1 - 2\eta 

S\nu +1 (S\nu )\eta 
<\infty , for some \eta \in (0,1/2), by Lemma 5.3.

Hence, we derive that

\infty \sum 
\nu =1

\biggl( 
S\nu +1  - S\nu 
S\nu +1

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 1

S\nu 

S\nu \sum 
s=1

\psi (x\nu +1; \xi 
s) - E\~\xi 

\Bigl[ 
\psi (x\nu +1; \~\xi )

\Bigr] \bigm| \bigm| \bigm| \bigm| \bigm| <\infty almost surely.
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328 HANYANG LI AND YING CUI

Since \{ \gamma \nu \} \nu \geq 0 is assumed to be summable, we can obtain

E

\Biggl[ \infty \sum 
\nu =0

\Biggl( 
1

S\nu 

S\nu \sum 
s=1

\gamma \nu \kappa 1(\xi 
s)2

2

\Biggr) \Biggr] 
=

\infty \sum 
\nu =0

E

\Biggl[ 
\gamma \nu 
S\nu 

S\nu \sum 
s=1

\kappa 1(\xi 
s)2

2

\Biggr] 
=

\infty \sum 
\nu =0

\gamma \nu E\~\xi 

\Bigl[ 
\kappa 1(\~\xi )

2
\Bigr] 

2
<\infty .

Consequently,
\sum \infty 
\nu =1

\sum S\nu 

s=1 \gamma \nu \kappa (\xi 
s)2/(2S\nu ) <\infty almost surely. We have thus proved

that the right side of (5.3) is summable over \nu almost surely. Next, we show that
\{ \zeta S\nu 

(x\nu )\} \nu \geq 0 is bounded below almost surely. To see this, note that

sup
x\in X

\bigm| \bigm| \zeta S\nu 
(x)

\bigm| \bigm| \leq sup
x\in X

\bigm| \bigm| \zeta S\nu 
(x) - \zeta (x)

\bigm| \bigm| + sup
x\in X
| \zeta (x)| ,

where the first term converges to 0 almost surely by the uniform LLN (cf. [54, Theorem
9.60]) and the second one is bounded due to the continuity of \zeta (x) = \varphi (x)+E\~\xi [\psi (x;

\~\xi )]

on the compact set X. Therefore, there exists a constant M such that \zeta S\nu 
(x\nu ) is

bounded below by M almost surely for any \nu . Applying the Robbins--Siegmund non-
negative almost supermartingale convergence lemma (cf. [44, Theorem 1]), we have\sum \infty 
\nu =1

\sum i\nu 
i=0 \| x\nu ,i+1  - x\nu ,i\| 2/(2\gamma \nu )<\infty almost surely and the sequence \{ \zeta S\nu 

(x\nu )\} \nu \geq 0

converges almost surely. Finally, let \=x be the limit of a convergent subsequence
\{ x\nu \} \nu \in N . Using the uniform convergence of \zeta S\nu 

to \zeta and the continuity of \zeta on
the compact set X, it follows from [54, Proposition 5.1] that \zeta S\nu 

(x\nu ) converges to
\zeta (\=x) almost surely as \nu (\in N)\rightarrow \infty . This argument, together with the convergence of
the full sequence \{ \zeta S\nu 

(x\nu )\} \nu \geq 0, completes the proof of this theorem.

6. Numerical experiments. In this section, we present numerical results for
a power system planning problem with the recourse function in (1.4) and a linear
first-stage objective in terms of x = (\{ xi\} i\in \scrI ,\{ xg\} g\in \scrG ). The overall deterministic
equivalent formulation to minimize the total cost is given by

minimize
\ell x\leq x\leq ux,

\{ \ell y\leq ys\leq uy\} S
s=1

\sum 
i\in \scrI 

ci xi +
\sum 
g\in \scrG 

cg xg +

S\sum 
s=1

\left(  \sum 
g\in \scrG 

psg xg

\right)  \left[  \sum 
i\in \scrI 

\sum 
j\in \scrJ 

(qis  - \pi js)yijs

\right]  
subject to

\sum 
i\in \scrI 

ci xi +
\sum 
g\in \scrG 

cg xg \leq B (budget constraint),
\sum 
g\in \scrG 

xg = 1,\sum 
j\in \scrJ 

yijs \leq xi, i\in \scrI , s= 1, . . . , S (capacity constraints),\sum 
i\in \scrI 

yijs = djs, j \in \scrJ , s= 1, . . . , S (demand constraints).

(6.1)

In our experiments, we set | \scrI | = | \scrG | = 5 and | \scrJ | = 8. The box constraints of x and
ys are [8,15]

5\times [0,1]5 and [0,2]5\times 8 for each s= 1, . . . , S. The unit costs in the first-stage
\{ ci\} i\in \scrI \cup \{ cg\} g\in \scrG are independently generated from a uniform distribution on [0,2].
For each scenario, \{ qis\} i\in \scrI ,\{ \pi js\} j\in \scrJ , and \{ djs\} j\in \scrJ are generated from truncated
normal distributions \scrN (1,22) on [2,3], [4,5], and [1,4], respectively. To construct a
set of probabilities \cup Ss=1\{ psg\} g\in \scrG satisfying

\sum S
s=1 psg = 1, we first randomly generate

S \times | \scrG | values from uniform distributions on [0,1], and then group every S value and
normalize them such that the sum of values in each group is 1. All the experiments
are conducted in MATLAB 2021a on a desktop (Intel Core i7-10700 CPU at 2.90GHz
processors and 16GB of RAM).
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6.1. Fixed scenarios. Since the test example with fixed scenarios is in fact a
large-scale nonconvex quadratic problem, it can also be directly solved by off-the-
shelf nonlinear programming solvers. We compare the performance of our proposed
decomposition algorithm based on the partial Moreau envelope (DPME) with the
interior-point-based solvers Knitro [9] and IPOPT [58], both of which run with linear
solver MUMPS 5.4.1. The absolute and relative feasibility and optimality errors are
computed according to the termination criteria of Knitro.1

The quantities KKTabs and KKTrel are defined as the maximum of absolute and
relative feasibility and optimality errors, respectively. The initial points are chosen
to be the same for all algorithms. Although this may not necessarily force all algo-
rithms to converge to the same objective values, we do observe such a phenomenon
in the experiments. Further implementation details of these algorithms are provided
below.

Knitro (version 13.0.0). The ``knitro qp"" function is called in our numerical
experiments to solve nonconvex quadratic programs from the MATLAB environment.
We have set ``hessopt=0"" to compute the exact Hessian in the interior point method
instead of using the (L)BFGS approximations, as we have observed that the former
choice is faster for all the problems tested here. We have directly set ``convex=0"" to
declare our problems are nonconvex so that the solver does not need to spend time
on checking the convexity of the problems. In order to fairly compare the KKT errors
at the computed solutions by different methods, we have disabled problem scaling
and presolve options by setting ``scale= 0"" and ``presolve= 0."" We report the results
based on three different settings:

1. Knitro-direct: Set ``algorithm = 1"" so that the direct solver is used to solve
linear equations. For the termination options, the KKT relative and absolute
tolerances are set to be 10 - 4 and 10 - 2, respectively, i.e., ``feastol = opttol =
10 - 4"" and ``feastol abs = opttol abs = 10 - 2.""

2. Knitro-CG-1: Set ``algorithm = 2"" so that the KKT system is solved using
a projected conjugate gradient method. Stopping criteria are the same as
above.

3. Knitro-CG-2: All are the same as Knitro-CG-1 except that the KKT relative
and absolute tolerances are set to be 10 - 6 and 10 - 3, respectively.

IPOPT (version 3.14.4). Due to different scaling strategies and reformulations,
the termination criteria of Knitro and IPOPT are not directly comparable. We set
``ipopt.tol = 5\times 10 - 2"" in our experiments as we find the computed solutions based
on this tolerance are about the same quality in terms of KKTabs and KKTrel as those
provided by Knitro. We also set ``ipopt.hessian constant = `yes'"" to use exact Hessian
in the interior point method, and we have not adopted the (L)BFGS method for the
same reason as mentioned above.

DPME. Each master problem for the first stage and the subproblem of the sec-
ond stage are convex quadratic programs, which we have called Gurobi to solve. In
the same way as Knitro, we compute the relative and absolute feasibility errors (de-
noted as feasrel and feasabs, respectively) and optimality errors (denoted as optrel
and optabs, respectively). Let the overall objective value at the \nu th outer loop be
obj\nu . We terminate the algorithm if (6.2a) holds, and either (6.2b) or (6.2c) is
true.

1Knitro user guide: https://www.artelys.com/docs/knitro/2 userGuide/termination.html.
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feasrel \leq 10 - 4, feasabs \leq 10 - 2,(6.2a)

optrel \leq 10 - 4, optabs \leq 10 - 2,(6.2b)

| obj\nu  - 1  - obj\nu | 
max\{ 1, | obj\nu  - 1| \} 

\leq 10 - 3.(6.2c)

Table 2 and Figure 3 summarize the performance of different algorithms when
the number of scenarios S varies from 1,000 to 110,000 over 50 independent replica-
tions (the sizes of the deterministic equivalent problems are listed in Table 1). For
each algorithm, we report the mean and the standard deviation of the total iteration
numbers, the absolute and relative KKT errors, objective values, and the wall-clock
time. One may find that for small-sized problems (such as when S \leq 10,000), the
interior point method that is implemented by either Knitro or IPOPT can solve the
problem faster than our DPME, which may be due to two reasons: one is that the
gain of the decomposition cannot compensate for the overhead of the communication
between the master problem and the subproblems; the other is that we have not used
the second order information as in the interior point method. However, for the cases
where S is large (such as when S \geq 30,000), DPME is the fastest method and scales
linearly in terms of S, which shows the power of the decomposition.

6.2. Sampling-based decomposition. We test the sampling-based DPME
proposed in Algorithm 2 for the same test problem with the total number of scenarios
S = 40,000. Instead of using all scenarios at each iteration, we gradually add them to
reduce the computational cost especially at the early stage. In our experiments, the
sample size S\nu is taken as \eta \nu for different values of \eta . In order to understand how

Fig. 3. Performance of all algorithms with different numbers of scenarios S over 50 indepen-
dent replications. Shaded areas: the tubes between 25\% and 75\% quantiles of the running time. Solid
lines: means of the running time.

Table 1
Dimensions of test problems. ``Rows"" stands for the number of constraints; ``Columns"" stands

for the number of variables.

Problem sizes

S Rows Columns

1,000 13,000 40,010
5,000 65,000 200,010

10,000 130,000 400,010

30,000 390,000 1,200,010
80,000 1,040,000 3,200,010

110,000 1,430,000 4,400,010
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Table 3
The performance of the sampling-based DPME. In the table, ``\sigma "" is the standard deviation of

the normal distribution from which we generate the data; ``\eta "" represents the linear growth rate of
sample size such that the number of scenarios used in \nu th outer iteration S\nu = \eta \nu ; ``--"" in the column
of \eta stands for the benchmark of DPME using full scenarios.

Iterations

\sigma \eta outer | total KKT\mathrm{a}\mathrm{b}\mathrm{s} KKT\mathrm{r}\mathrm{e}\mathrm{l} Objective values Time (s)

100 2 (0) | 9 (12) 6.7-2 (1.4-1) 5.8-3 (1.2-2) 28.4047 28 (31)

0.5 400 2 (0) | 8 (10) 2.3-2 (5.5-2) 2.0-3 (4.8-3) 28.3349 38 (48)
800 2 (0) | 7 (9) 1.2-2 (4.1-2) 1.0-3 (3.6-3) 28.3176 40 (41)

1600 1 (0) | 6 (8) 6.7-3 (2.3-2) 5.8-4 (2.0-3) 28.3113 34 (37)
3200 1 (0) | 6 (8) 1.2-3 (3.4-3) 1.0-4 (3.0-4) 28.3002 32 (37)

-- 1 (0) | 6 (8) 1.1-3 (3.4-3) 9.9-5 (2.9-4) 28.3001 41 (47)

200 2 (0) | 8 (10) 4.6-2 (7.0-2) 2.8-3 (4.2-3) 23.2485 33 (37)

1 800 2 (0) | 8 (10) 2.1-2 (5.4-2) 1.3-3 (3.3-3) 23.1989 42 (45)

1600 2 (0) | 6 (8) 1.3-2 (3.7-2) 7.8-4 (2.3-3) 23.1871 34 (35)
3200 2 (0) | 6 (8) 8.1-3 (2.8-2) 4.8-4 (1.7-3) 23.1778 36 (40)

6400 1 (0) | 6 (8) 1.7-3 (3.2-3) 9.9-5 (1.9-4) 23.1648 35 (40)

-- 1 (0) | 5 (6) 1.3-3 (2.8-3) 7.8-5 (1.6-4) 23.1644 38 (37)

400 2 (0) | 14 (13) 8.2-2 (1.3-1) 3.1-3 (4.9-3) 13.5780 69 (58)
2 1600 2 (0) | 11 (11) 4.0-2 (6.1-2) 1.5-3 (2.3-3) 13.5039 58 (53)

3200 2 (0) | 11 (13) 2.8-2 (4.8-2) 1.1-3 (1.8-3) 13.4851 63 (65)

6400 2 (0) | 11 (12) 2.3-2 (3.4-2) 8.5-4 (1.3-3) 13.4685 64 (65)
12800 2 (0) | 10 (11) 1.4-2 (2.0-2) 5.4-4 (7.5-4) 13.4515 65 (69)

-- 2 (0) | 10 (12) 1.4-2 (1.9-2) 5.1-4 (7.4-4) 13.4494 69 (73)

the growth rate \eta depends on the distributions of the random scenarios, we generate
\{ qis\} i\in \scrI ,\{ \pi js\} j\in \scrJ , and \{ djs\} j\in \scrJ from truncated normal distributions \scrN (1, \sigma 2) on
[2,13], [3,10], and [1,4] with \sigma \in \{ 0.5,1,2\} , and vary the values of \eta .

The stopping criteria for the sampling-based DPME are the same as the ones for
fixed scenarios, where we check the violation of the KKT system for the deterministic
equivalent problem formulated using all scenarios S = 40,000. However, unlike the case
for fixed scenarios, we do not have all the second-stage solutions \{ ys\} Ss=1 to compute
the KKT residual since some samples may not have been used yet. To resolve this
issue, we compute all \{ ys\} Ss=1 at every \nu th outer iteration, and then estimate the
multipliers corresponding to the first-stage budget and box constraints by minimizing
the current KKT residual.

In Table 3, we summarize the performance of Algorithm 2 for different combina-
tions of (\sigma , \eta ), where we also provide the results obtained from Algorithm 1 without
sampling for benchmarks. It can be observed from the table that problems with larger
variability may need a faster growth rate of the batch size to retain the same level
of solution quality. If the growth rate is properly chosen, the sampling-based DPME
can outperform the fixed-scenario version in the computational time with comparable
solution qualities.

7. Conclusion. Compared with the extensive research on the algorithms for
convex (especially linear) two-stage SPs, efficient computational algorithms for solving
continuous nonconvex two-stage SPs have been much less explored. In this paper, we
have made a first attempt in developing the decomposition scheme for a special class
of latter problems. The key of the proposed algorithm is the derivation of successive
strongly convex approximations of the nonconvex recourse functions. We hope the
work done in the paper will stimulate researchers' interests in a broader paradigm of
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two-stage SPs that goes beyond the classical convex settings. There are a lot of open
questions that deserve future investigations, such as how to combine the stochastic
dual dynamic programming approach with the tools developed in the current paper
to solve nonconvex multistage SPs, as well as how to design rigorous stopping criteria
for the general nonconvex SPs with continuous distributions.
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