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A DECOMPOSITION ALGORITHM FOR TWO-STAGE
STOCHASTIC PROGRAMS WITH NONCONVEX RECOURSE
FUNCTIONS*
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Abstract. In this paper, we have studied a decomposition method for solving a class of non-
convex two-stage stochastic programs, where both the objective and constraints of the second-stage
problem are nonlinearly parameterized by the first-stage variables. Due to the failure of the Clarke
regularity of the resulting nonconvex recourse function, classical decomposition approaches such as
Benders decomposition and (augmented) Lagrangian-based algorithms cannot be directly generalized
to solve such models. By exploring an implicitly convex-concave structure of the recourse function,
we introduce a novel decomposition framework based on the so-called partial Moreau envelope. The
algorithm successively generates strongly convex quadratic approximations of the recourse function
based on the solutions of the second-stage convex subproblems and adds them to the first-stage mas-
ter problem. Convergence has been established for both a fixed number of scenarios and a sequential
internal sampling strategy. Numerical experiments are conducted to demonstrate the effectiveness
of the proposed algorithm.
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1. Introduction. Stochastic programming (SP) is a mathematical framework
to model decision making in the presence of uncertainty [4, 54]. Two-stage SPs con-
stitute a special class of this paradigm where partial decisions have to be made before
the observation of the entire information, while the rest of the decisions are deter-
mined after the full information is revealed. Most existing computational studies of
continuous two-stage SPs are devoted to convex problems, especially linear problems
[51, 4, 28, 54].

However, there are many emerging applications in operations research that call
for complex nonlinear two-stage SP models and computational methods. Let us first
introduce the mathematical formulation of such problems before discussing the ap-
plications. The central optimization problem under consideration in this paper takes
the following form:

(L.1) minimize ¢(2) £ o(x) + E¢ [v(w:) ]

where ¥(z;€) is the second-stage recourse function that is given by

minimum [ f(z,y;&) subject to G(z,y;£) <0] ifz€ X,
y

(b2 wwe) = +00 ifr¢ X.

In the above formulation, X and X are nonempty convex compact subsets in R™* with

X Cint(X), ¢ :R™ — R is a deterministic convex function that only depends on the
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first-stage decision x; «f : Q2 — Zis a random vector on a probability space (Q2, F,P) with
E CR™ being a measurable closed set; £ = &(w) for some w € € represents a realization
of the random vector &; and f: R™ 2 xZ »Rand G2 (gy,...,9,) 7 :RMHm2 x5 R
are two Carathéodory functions (i.e., f(e,o;&) and G(e, ;&) are continuous for almost
any ¢ € Z; f(x,y;e) and G(x,y;e) are measurable for any (x,y) € R"**"2) that are
jointly determined by the first-stage variable x and the second-stage variable y. We
assume that, for almost any ¢ € Z, the function f(e,e;&) is concave-convex (i.e.,
f(e,y;€) is concave for y € R™ and f(z,e;&) is convex for x € R™), g,(e, ;&) is
jointly convex for each j=1,...,¢, and Eé[w(x;é)] is well-defined.

An example of concave-convex f(e,e;¢) is a bilinear function 2" D(&)y for some
random matrix D(§) € R™*"2. The above settings notably extend the classical
paradigm for continuous two-stage SPs [54, Chapter 2.3] in the following directions:

(i) The first-stage variable & appears not only in the constraints of the second-
stage problem, but also in the objective f. The recourse function v (e;¢&)
is nonconvex since f(e,e;&) is not jointly convex. This is fundamentally
different from the recent papers [25, 24] that have assumed the joint convexity
of f(e, ;).

(ii) Both the objective function f and the constraint map G can be nonsmooth.
These two features together lead to a complex nonconvex and nonsmooth recourse
function v(e;¢) (see Figure 1), which constitutes the major challenge for designing
rigorous and efficient numerical methods to solve problem (1.1).

Recourse functions in the form of (1.2) arise from many applications. One im-
portant source of the nonconvex recourse function in (1.2) comes from the decision-
dependent/influenced uncertainty [31, 20, 27, 37], where the probability distribution
of the random vector é is dependent on the first-stage variable x. This is in contrast
to the classical SP paradigm under exogenous uncertainty, where the distribution of 5
is not affected by the first-stage decisions. There is growing interest in the endogenous
uncertainty in the recent literature on stochastic and robust programs [21, 22, 56, 27].
A typical example where the random parameters can be altered by a decision is that
the price (as a first-stage variable) may affect the distribution of the product demand.
Assume that the probability distribution of §~ is given by P, that depends on the
first-stage variable . We consider the corresponding two-stage SP model:

wisingze { (a) + Bg.. )] = ole) + [ 0(a:)aB.(6 |-
If there exists a decision-independent distribution P such that P, is absolutely contin-
uous with respect to IP for any x € X, we can apply [18, Proposition 3.9] to reformulate
the above problem into the following one:

Recourse function v
Recourse function ¢

F1G. 1. The nonconvex nonsmooth recourse functions for fized &’s. Left: x € R. Right: = € R2.
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dP (¢)
dP(g)

(13)  minimize (x) + Bz 5[ (2;¢)] with ¢ (2;6) 2 v(x;€)

rzeX

where dP,(§)/ d@({ ) is the Radon-Nikodym derivative of P, with respect to P. Even
if originally the first-stage decision z only appears in the constraints of the second-
stage problem in ¥(z;€), the above transformation would make z also appear in the
second-stage objective function through the multiplication of dP,(&)/dP(£).

A specific example of the decision-dependent uncertainty in SPs is a power sys-
tem planning problem originated in [33] and expanded in [27]. Assume that £ =
({d;}jer:{7j}tier,{Gi}icz) follows a discrete distribution with the support {£5}9_;,
where czj and 7; represent the demand and the price of electricity in the location
J €J, and ¢; is the unit production cost of the power plant ¢ € Z. The distribution
of £ is a convex combination of |G| given discrete distributions (each with probability
psq for the scenario £°), whose weights {x4},eg are parts of the first-stage decisions,
ie., Po(E=¢%) = > geg PsgTg for each s. The capacity of each power plant {z;}iez
also needs to be determined in the first stage. The second-stage decisions are the
production y;; from the power plant i to the location j for each s (y = (yi;)iez,jes I8
bounded between ¢, and u,). By letting @(5: £€°) =1/8 for each s in (1.3), we can
rewrite the recourse function as

V({zitiez, {zg}geg; %) :n;ir%iynglgin SY pegy Y (dis =) i

(1 4) geg €L, jeT
subject to Z Yij <y, 1 €L, Zyij =d;s, j€J,
JjET i€l

and obtain a decision-independent SP with the recourse function 1} Observe that
both the objective and constraints depend on the first-stage variables. In particular,
the objective function is convex in x4, and concave in y, which fits our problem setting.
Later, we will apply our proposed algorithms to solve a two-stage SP with the above
recourse function in section 6.

The second example of the nonconvex recourse function in (1.2) is the stochastic
interdiction problem [14, 26], where the defender may want to maximize the second-
stage objective function instead of minimizing it. Even for the simple linear second-
stage problem with only z appearing in the constraints, the recourse function

P(a:€) £ maximum <€)y

subject to  T(&)z + W (&)y = h(§)

is not convex in z. One may take the dual of the second-stage maximization problem
so that the recourse function is a parametrized minimization problem

P(z;€) = minimum ATT(E)x — ATh(€)
subject to  W(&)TA+¢(€) =0.

However, this dualization would bring a bilinear term AT T(¢)x of the first-stage vari-
able z and the second-stage variable A to the objective function that necessities the
concave-convex structure of f(e,e;£). To the best of our knowledge, there is no
known rigorous decomposition method to solve a general nonconvex two-stage min-
max stochastic program even when the second stage is a linear maximization program
biparametrized by the first-stage variable in both the objective and constraints.
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When the distribution of € is taken as the empirical distribution of observed
realizations &',...,¢°, the simplest way to tackle the problem (1.1) is to simultane-
ously solve the first-stage variable 2 and second-stage variables 3',..., 4" (each y° is
attached to one scenario ) via the sample average approximation [54]:

S
minimize Z (z
(1.5) ze€X,yl,...,ys e e

subject to G(z,y® f)g s=1,...,8.

However, this approach can be prohibitive when the number of scenarios S is large
since the dimension of the unknown variables is nq +n2S. Even if S is small or mod-
erate, the above formulation may still be difficult to handle under our setting as the
function f(e,e;&) is not jointly convex (for example, when f(e,e;¢) is bilinear). It is
also challenging to apply stochastic approximation methods [43, 40, 36, 19, 52, 16, 5]
to solve (1.1), since it is not clear how to compute a (Clarke) subdifferential of the
nonconvex recourse function ¢ (e;¢). Without strong assumptions like the uniqueness
of the second-stage solutions, only a superset of the subdifferential 9v(e;&) at given
x is computable [7, Chapter 4]. When f and G are twice continuously differentiable,
the authors in [8] have adopted a smoothing method to deal with the possibly non-
convex recourse function by adding the Tikhonov-regularized barrier of the inequality
constraints to the second-stage objective function. For a special class of two-stage
nonconvex quadratic SPs under the simplex constraint, the paper [6] has derived
upper and lower approximations of the objective values via copositive programs.
Notice that the constraints in (1.5) are in fact blockwise separable in y!,...,y* so
that there is a block-angular structure between the first- and second-stage variables.
Decomposition algorithms of two-stage SPs take advantage of this special structure to
efficiently handle a large number of scenarios via solving S numbers of low-dimensional
subproblems [51]. Two classical decomposition algorithms for two-stage SPs are
(augmented) Lagrangian decomposition and Benders decomposition. (Augmented)
Lagrangian decompositions (including the progressive hedging algorithm) copy the
first-stage variable S times and attach one to each scenario [23, 48]. In order to force
the nonanticipativity of the first-stage decision, one has to add equality constraints
among all copies to ensure that z is the same across different realizations of the uncer-
tainty. However, there are two major bottlenecks to applying this kind of dual-based
algorithm to solve the problem (1.1). One, each subproblem pertaining to one pair of
variables (x*, y*) is still nonconvex if f is not a jointly convex function, so that it is in
general not easy to obtain its global optimal solution. Two, the convergence of these
dual approaches is largely restricted to the convex problems or special integer prob-
lems [48, 10]. Although there are some recent advances for the convergence study of
the progressive hedging algorithm for solving nonconvex SPs under the local convexity
conditions [46, 47], it is not clear whether the problem (1.1) satisfies those conditions
without further assumptions on f and g. Benders decomposition (or L-shaped meth-
ods) [3, 57, 59] alternatively updates the first-stage and second-stage variables, where
the second-stage subproblem can be solved in parallel to save the computational time
and reduce the storage burden. In order to derive valid inequalities of x and add
them to the first-stage master problem, one usually uses subgradient inequalities of
the (convex) recourse function to generate a sequence of lower approximations. How-
ever, when the recourse function is associated with the complex nonconvex function
n (1.1), it is challenging to derive its lower bounds based on the computed second-
stage solutions. In fact, for the recourse functions in Figure 1, there seems not to
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exist a convex function that touches one of the downward cusps and at the same time
approximates the original function from below.

In this paper, we tackle the two-stage stochastic program (1.1) by a novel lift-
ing technique that transforms the complex nonconvex and nondifferentiable recourse
function (1.2) in the original space to a structured convex-concave function in a lifted
space. The reveal of this latent structure enables us to construct convex surrogations
of the recourse function at the latest first-stage iterate, whose evaluations are decom-
posable across different scenarios. Such surrogate functions are then added to the
master problem to generate the next first-stage iterate. We shall prove that repeating
the above procedure, the sequence of the first-stage iterates converges to a properly
defined stationary solution of (1.1). In order to further reduce the computational cost
per step when the number of scenarios S is large as well as to handle the case where £
is continuously distributed, we also propose a framework that incorporates sequential
sampling into the surrogation algorithm. The sequential sampling method gradually
adds scenarios and generates cuts along the iterations, which has the advantage that
one may obtain satisfactory descent progress in the early iterations with relatively
small sample sizes to accelerate the overall procedure.

The paper is organized as follows. Section 2 introduces notation and provides pre-
liminary knowledge. In section 3, we discuss the implicitly convex-concave structure
of the recourse function and derive its computationally tractable approximations. A
decomposition algorithm for solving problem (1.1) with a fixed number of scenarios
is proposed and analyzed in section 4. To further handle the continuously distributed
random vectors as well as to reduce the computational cost of the decomposition al-
gorithm in its early stage, we provide an internal sampling version of the algorithm in
section 5 and show the almost sure convergence of the iterative sequence. In section 6,
we conduct extensive numerical experiments to show the effectiveness of our proposed
frameworks. The paper ends with a concluding section.

2. Preliminaries. We first summarize the notation used throughout the paper.
We write Z; as the set of all nonnegative integers and R™ as the n-dimensional
Euclidean space equipped with the inner product (z,y) =2y and the induced norm
|z|| & V2T, The symbol B(z,§) is used to denote the closed ball of radius § > 0
centered at a vector x € R®. Let A and C be two nonempty subsets of R™. The
diameter of A is defined as R(A) £ sup, ,c4llT — yl[, and the distance from a vector
x € R™ to A is defined as dist(z, A) £ infycly — z||. The one-sided deviation of A
from C' is defined as D(4,C) £ sup,¢ 4 dist(x, C).

We next introduce the concepts of generalized derivatives and subdifferentials for
nonsmooth functions. Interested readers are referred to the monographs [12, 49, 35]
for thorough discussions on these subjects. Consider a function f : O — R defined
on an open set O CR™. The classical one-sided directional derivative and the Clarke
directional derivative of f at £ € O along the direction d € R™ are defined as

f(z;d) £ lim fa+td) - f(z) and f°(7;d) £ limsup flz+td) — f(z)
0 t r—Z,t)0 t

if these two limits exist. f is said to be directionally differentiable at z € O if it
is directionally differentiable along any direction d € R™. The Clarke directional
derivative f°(Z;d) is finite for any direction d when f is locally Lipschitz continuous
at Z. The Clarke subdifferential of f at Z is the set dc f(z) = {v € R™ | f°(%;d) >
v'd for all d € R"}, which coincides with the usual subdifferential in convex analysis
for a convex function. If f is strictly differentiable at z, then ¢ f(z) = {Vf(Z)}.
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We say that f is Clarke regular at £ € O if f is directionally differentiable at Z and
fo(z;d) = f(z;d) for all d € R™. This Clarke regularity at T is equivalent to having
fx)> f(@)+0"(x —2)+ 0|z — z||) for any v € Oc f(Z). Therefore, if a function
fails to satisfy the Clarke regularity at z (for example, at the downward cusp in the
left panel of Figure 1), there does not exist an approximate linear lower bound of the
original function based on the Clarke subdifferentials with small o error locally.

Let X CR™ be a nonempty closed convex set and f : R™ — R be a locally Lipschitz
continuous function that is directionally differentiable. We say z € X is a directional
stationary point of f on X if f/(Z;2 — Z) >0 for all z € X, and a Clarke stationary
point if f°(z;2 — ) >0 for all z € X; the latter is equivalent to 0 € ¢ f(Z) + Nx ()
with AMx (Z) being the normal cone of X.

Let F:R® =2 R™ be a set-valued mapping. Its outer limit at x € R™ is defined as

limsup F(z) £ U limsup F(2") = {u| 32" = &,Fu” — u with v’ € F(z")}.
vV—00

T—T _
¥V —T

We say F is outer semicontinuous (osc) at z € R™ if limsup,_, ;. F(z) C F(z).

3. The implicit convexity-concavity of the recourse functions. A key
ingredient in designing a decomposition method for solving the two-stage SP (1.1) is
to derive a computationally friendly approximation of the nonconvex recourse function
(1.2) at any given x € X and £ € Z. This is the main content of the present section.

For simplicity, we omit £ in (1.2) throughout this section and rewrite the recourse
function as, for x € R,

minimum [ f(z,y) subject to G(z,y) <0] ifre X,
b1 o & | L) (@) <0] itaeX
+o0 ifrxéd X,
where f(e,e) is concave-convex and each g;(e,e) is jointly convex for j=1,...,£. We

assume that for any = € X, the minimization problem of y in (3.1) has an optimal
solution, which implies the finiteness of ¢(x) on X. In the following, we show that
the above function, although generally nonconvex and nondifferentiable in R™! | has
a benign structure in a lifted space. Leveraging this structure, we then derive an
approximate difference-of-convex (dc) decomposition of the recourse function that is
computationally tractable. Such an approximation is the cornerstone of the decom-
position method to be presented in the next two sections.

3.1. The implicit convexity-concavity of 1. As mentioned in the first sec-
tion, the difficulty in designing a decomposition method for solving (1.1) is due to the
lack of a valid inequality of the recourse function, which is partially because x appears
in both the objective and the constraints of the parametric problem in (3.1). However,
if  either in the objective or in the constraints is fixed, the resulting functions are
relatively easy to analyze. Specifically, for any fixed z € X, consider the functions

minimum  f(Z,y) minimum  f(z,y)

v () 2 y and Yeye(z) £ y .
Vevs(@) subject to  G(z,y) <0 Yere() subject to  G(7,y) <0

We can easily derive the following structural properties of 1cyx and ¥eye by using the

fact that the inf-projection of a jointly convex function is convex and the infimum of
a family of concave functions is concave.
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Lifting

Recourse function 4

F1G. 2. Anillustration of the icc structure of the nonconvex recourse function. Left: the original
one-dimensional recourse function that is neither convex mor concave. Middle: the lifted bivariate
counterpart in R? that is convex in x and concave in z. Right: the exposure of the concave component
in the z coordinate and the convexr component in the x coordinate.

LEMMA 3.1. Let z € X CR™ be fired. Suppose that the minimization problems
in defining Yeyx and Yeve both have nonempty solution sets for any x € X. Then the
Sfunction Yevy is conver and Peyve 1S concave on X.

Lemma 3.1 suggests that the recourse function (3.1) has a hidden convex-concave
structure. Indeed, such a function 1 belongs to a special class of nonconvex functions
coined implicitly convex-concave (icc) functions that are formally defined below (See
Figure 2). For an extended-real-valued function f:R™ — R U {£o0}, the effective
domain of f is defined as dom f = {z € R" | f(z) < +o0}.

DEFINITION 3.2 (see [15, Definition 4.4.4]). A function 6 : R™ — RU {400} with
dom 6 being a convex set is said to be icc if there exists a function 6 : R™ x R® —
RU {+oo} satisfying

(a) O(x,2) =400 if z ¢ dom 0,2 €R", and O(x,z) = —o0 if x € dom 6,z ¢ dom 6;

(b) (e, 2) is convex for any fized z € dom 6;

(c) O(x,e) is concave for any fixed x € dom 6;

(d) 0(z) =0(z,z) for any x € dom 6.

The above concept is first introduced in [32] to analyze the convergence property of
a dc algorithm to solve two-stage convex biparametric quadratic SPs. More properties
of icc functions are studied in the recent monograph [15]. In fact, the term “icc”
suggests that this class of functions is a generalization of the dc functions, as the
latter is “explicitly convex-concave,” i.e., for any dc function 0(x) = 601(z) — 02(x)
with both 6; and #; convex, one can always associate it with the bivariate function
0(z,y) = 01(x) — B2(y) to explicitly expose the convexity-concavity of @ in the lifted
pair (z,y). Back to the recourse function v (3.1), we consider its lifted bivariate
counterpart

minimum { f(z,y) | G(z,y) <0} ifz,z€ X,
y

(32 T2 2] o g X,
—00 if r€ X and 2 ¢ X.

If the minimization problem of y in (3.2) has a nonempty solution set for any (x,z) €
X x X, it is not difficult to see that the assumption in Lemma 3.1 holds. Henceforth,
the following result is a direct consequence of Lemma 3.1. No proof is needed.
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PROPOSITION 3.3. Assume that for any (z,z) € X x X, the minimization problem

of y in (3.2) has a nonempty solution set. Then ) in (3.1) is an icc function associated
with the lifted function v in (3.2).

One shall see from the subsequent sections that the derived icc property of the
recourse function is useful to study the two-stage SP (1.1). On one hand, we can lever-
age this structure to construct an approximation of the nonconvex recourse function
¥ at any given x; on the other hand, it enables us to define a stationary point of (1.1)
that is provably computable by our later designed algorithms. To fulfill these tasks,
we first derive a superset of the Clarke subdifferential of . To proceed, we denote
01Y(z,2) as the subdifferential of the convex function (e, z) at x for any z € X,
and do(—1)(7, 2) as the subdifferential of the convex function (—)(z,) at z for any
x € X. We also write Y (z,2) as the set of all optimal solutions of problem (3.2).

LEMMA 3.4. Assume that for any (v,z) € X x X, the minimization problem of y
in (3.2) has a nonempty solution set. Then for all (x,2) € X x X:

{01(=N) =) [y €Y (2,2)} C 0a(=1)(,2).

Proof. For any (z,2) € X x X, we take any y € Y (z,2) and any c € 0 (—f)(z,y)
to obtain

V(@) S F(2y) S fy) + (=) (2 —2) =0(x,2) +c (2 =) V2 €R",

where the first inequality holds because ¥ (x,2’) = —oo if 2/ ¢ X and y € Y («, z) must
be feasible to the constraint G(z,y) <0 if 2’ € X, and the second inequality is due

to the concavity of f(e,y). By applying [45, Theorem 23.5], we have ¢ € dy(—v)(z, 2)
and part (a) is proved. |

Part (a) of the above lemma can be viewed as a weaker version of Danskin’s
theorem [42, 41, 11]. Instead of a complete characterization of the subdifferential of
an optimal value function in the aforementioned papers, we only need to obtain one
element from this subdifferential to design our algorithms later. Therefore, only a
one-sided inclusion as in part (a) is needed, which holds without the compactness of
the feasible set {y | G(x,y) <0} for any given x € X.

Next we summarize several results regarding icc functions that will be used in the
subsequent analysis.

LEMMA 3.5. Consider any icc function 1 associated with a lifted function 1 that
is continuous relative to int(dom) x int(domw)). The following properties of the set-
valued mappings 017 and O2(—1)) hold:

(a) 019 and O2(—) are osc relative to int(domep) x int(dom));
(b) 019 and Bo(—1)) are locally bounded on int(dom1)) x int(domw), and 9 is locally

Lipschitz continuous relative to int(domt) x int(dom);

(¢) Octp(x) C Oy ¥(x,x) — Oo(—)(x,x) for any = € int(dom)).

Proof. (a) To prove that 917 is osc relative to int(dom ) x int(dom), we first
notice that for any fixed d € R™, the directional derivative @{((0,0);61) is upper
semicontinuous jointly at (Z,Z) € int(dom ) x int(dom1)) [15, Proposition 4.4.26(a)].
Since E{ ((x,2);e) is the support function of the partial subgradient d;1(z, 2), we have
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limsup sup a'd| < sup (d)'d VdeR™,
(2,2)=(Z,2) \a€di(z,z) a’ €01(%,%)

which implies limsup(, .,z z) O1(z,2) C O11p(, %) by [45, Corollary 13.1.1]. The
outer semicontinuity of dx(—1) relative to int(dom1)) x int(dom1p) can be proved
similarly.

(b) Suppose for the sake of contradiction that 91 is not locally bounded at
some (T, z) € int(dom) X int(dom)). Then there exists a sequence of subgradients
ck € Oyp(a®, 2%) with (zF,2%) — (z,2), and ||c¥|| — +oo. By taking a subsequence
if necessary, we assume that the normalized subgradient d* = ¢*/||c*| converges to
some d of unit length. Since z* — Z € int(dom 1)), there exists a positive scalar ¢ >0
such that B(z,t) C int(domt) and B(z*,¢) C int(dom1) for all sufficiently large k.
Using the convexity of 1(e, 2¥), we obtain 1 (z* + td*, 2F) — (a2, 2%) > (F) Ttd" =
t||c¥||. Taking limits on both sides and using the continuity of v (e,e) relative to
int(dom) x int(dom)), we have

+00 > (T +td,Z) — (%, Z) >t lim ¥,
k—o0

which is a contradiction. The local Lipschitz continuity of v relative to int(dom) x
int(domt) can then be easily proved. Part (c) is a consequence of [15, Proposition
4.4.26(c)] on the relationship between the subdifferentials of an icc function and its
lifted counterpart. O

3.2. The partial Moreau envelope. Equipped with the lifted function 1,
one may be able to construct computationally friendly surrogations of the recourse
function in (3.1) via a modification of the usual Moreau envelope. Let us first recall
the definition of the classical Moreau envelope. An extended-real-valued function f
is said to be proper if f(x) < 400 for some x € R", and f(x) > —oo for all z € R™.
Given a proper, lower semicontinuous (lsc) function 6 : R™ — RU{+4o00} and a positive
scalar v, its Moreau envelope is

. 1
e 0(x) £ zignﬂ{” {G(z) + ZHJ: — z||2} , xeR"
We use the superscript “ori” to emphasize that this is the original definition of the
Moreau envelope and is different from our later modification. The function 6 is said to
be prox-bounded if there exists v > 0 such that egri 0(z) > —oo for some x € R™. It is
known that a proper, Isc, and convex function is always prox-bounded and its Moreau
envelope is continuously differentiable (cf. [49, Theorem 2.26]). In general, for any
proper, Isc, and prox-bounded function €, the parametric functions egrie(z) 1 0(x)
as v | 0 for all z € R™. Therefore, one can view the Moreau envelope as a lower
approximation of the original function. However, if 6 is nonconvex and nonsmooth,
the function egri 0 may be neither convex nor smooth. Nevertheless, for any = € R",
it holds that (see, e.g., [2, 34])

) 1 1 1
3.3 e 0(z) = —||z||* — sup {—92 - — 22+2Tm},
(33) 6(a) = g-llel = sup {~6(2) — -1l + -

convex in z even if 6 is nonconvex

which indicates that one can always obtain a dc decomposition of egri 0 whether 0 is
convex or not. The only trouble brought by the nonconvexity of € is that the inner
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sup problem for z may not be concave (especially if 6 is not weakly convex), thus one
may not be able to evaluate the subgradient of the second term at a given x when
using the dc algorithm to minimize the function e?fi 0. Specifically, in the context of
the recourse function (3.1), its associated Moreau envelope is

2 p(a) = inf {w<z>+;7 |w—z|2}

1 1
z||* — sup {—f z,y) — —||z 2+zTy’G 2,y <0},
] uf (2,9) 27|| | 5 (2,9)

z€X,y

where the inner sup problem is not jointly concave in (z,y) since f is not assumed
to be jointly convex. This issue motivates us to introduce the following new type of
envelopes tailored to icc functions that is more computationally tractable:

— 1

(3.4 002 int {Be2) 4 o= 1P |

where 6 : R® — RU {400} is any icc function and 6 : R" x R" — RU {#o0} is its
lifted counterpart as in Definition 3.2. When 6(z, z) is independent of z (so that this
function only has the convex part), the above definition reduces to the usual Moreau
envelope. Hence, we term the new regularization of 6 in (3.4) its partial Moreau
envelope. Similarly as in (3.3), the newly defined partial Moreau has the following
explicit dc decomposition:

1 — 1 1
3.5 e0(z) = —|2||? —sup{—&x,z—xQ—i—sz}.
(3.5) +0(2) 2ﬂy|| | Sup (z,2) 27” | 5
——
strongly convex denoted as g~ (z), convex

We denote the optimal solution mapping of the minimization problem in (3.4) as

P,0(z) £ argmin {9(33, z)+ i||:13 - z||2} , z€R™
TER™ 2’7

For any z € R™, it holds that ) # P,6(z) C dom §. When z € dom 6, the mapping is
single-valued since the inner objective function is strongly convex in x; for this case,
we follow the terminology in the literature to call P,6(z) the proximal point of 0 at z.
Similar to the classical Moreau envelope, the partial Moreau envelope approximates
the original function from below. The following lemma establishes the gap between
the partial Moreau envelope and the original function under the Lipschitz continuity
of O(e, 2) relative to dom @ for any fixed z from a compact set contained in int(dom 6).
The latter Lipschitz continuity is stronger than the one derived in Lemma 3.5(b) that
is only relative to int(dom 1) x int(dom ). The proof is adapted from [39, Proposition
3.4] on a similar property regarding the classical Moreau envelope.

LEMMA 3.6. Consider an icc function 0 :R™ — R U {+oc} and its lifted counter-
part 0:R" x R™ — RU{+o0}. Let X be a compact subset of int(dom 6). Assume that
O(e, z) is Lipschitz continuous relative to dom6 with Lipschitz constant k for every
ze€X, i.e.,

|0(21,2) — 0(22,2)| S K |lw1 — 22| Var,22 € domb, 2 € X,

then 0 < 0(z) — e,0(2) < v&*/2 for any z € X.
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Proof. For any z € X, it holds that

0< 0(2) = e,0(2) = B(z,2) — 6 (P,6(2), 2) — | P,6(=) — =|* /(27)
< &[|Py0(2) = 2|l = | P,6(2) — 2* /(29) < 4&°/2,

where the second inequality follows from the Lipschitz continuity of (e, z) and the
last inequality uses the fact that max,;>o [kt —t%/(27)] = yk?/2. 0

With g., defined in (3.5), it follows from similar arguments in the proof of Lemma
3.4 that for any z € dom 0,

~P0E) + 0u(-B)(P,0(:),2) € 00 ().

One can then obtain the following convex majorization of e,6(z) at any given point
2" € dom 6 based on the subgradient inequality of the convex function g.:

~ 1
(3.6) e,0(z) < &,0(z;2) = ﬂHzH? —g,(2") = (Py0() /v + C)T(Z —2')Vz€dom ¥,

where ¢ € 05(—0) (P,0(2'), 2").

4. The decomposition algorithm and its convergence. Based on the dis-
cussion in the last section, we are now ready to present the decomposition algorithm
for solving the nonconvex two-stage SP (1.1) and analyze its convergence. In this sec-
tion, we focus on the case where there are fixed scenarios {¢',...,£%}, each realized
with probability 1/S. The problem (1.1) then reduces to

o LR o
(4.1) minimize {@(w) +tg ;1#(9:,5 )} ,
where each ¥ (x;£%) is given by (1.2). The above problem can be viewed as a sample
average approximation of the two-stage SP (1.1) under a prescribed sample size S. All
the discussions in this section can be easily adapted to the case where the distribution
of € has finite support (but unequal probability mass for different £°). We will work
on the internal sampling scheme for continuously distributed £ in the next section.

4.1. The algorithmic framework. Our goal is to solve the nonconvex problem
(4.1) via a successive approximation scheme. For any £ € Z and z € X, the partial
Moreau envelope of the recourse function (1.2) associated with the bivariate function
(3.2) is

zeR™1

ex0() & minigum { B 556) + 5o 21 |

4.2 1

42 mivimum  f(z.9:€) + oo - 2]
= | zeX,ycRm2 2y

subject to  G(z,y;£) <0

We consider a double-loop algorithm where the outer loop updates the parameter
v in the partial Moreau envelope and the inner loop solves the nonconvex problem
minimize e x [¢(z) + Zf:l ey, (2;€°)/S] to stationarity for a fixed 5,. To solve
the latter nonconvex problem during the vth inner loop, we replace the Moreau-
regularized recourse function e, ¥(z;¢) with its upper approximation constructed
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at the latest iterate z,,, where i denotes the inner iterate index. For each s, let
(25, y5) be one of the optimal solutions of (4.2) at (z,£) = (2,,:,£*), which can be

computed by solving a convex optimization problem. Notice that z; ; = P, ¥(z, ;£%)
€ X. One may then derive from (3.6) the following upper approximating function of

6%1/1(36;55):

(4.3) L v(m;E%m,,) 2

T
% ||x||2 — Gy (fcu,i§£s) - (xi,i/'yu + Czsz,z‘) (z — fl/,i)’
v

where g’yy(xu,i;gs) £ ||xu,z||2/(2'711) - e"/yw(mu,i;gs) and cii € 82(_¢)($i7i7xu,i;£s)'
Due to Lemma 3.4, a particular way to choose ¢;; is to take an element from
o1(—f) (xf,vi,yf;yi;fs). The resulting master problem to generate the next first-stage
iterate x, ;41 is

s
. 1 —~
(4.4) minimize {so(fv) + 5 D En (@ :zru,i)} :
The inner iteration continues until the distance between two consecutive iterates z, ;
and z, 41 is sufficiently close. We summarize the procedure of the decomposition
algorithm below. When S =1, it reduces to the algorithm in [15, Algorithm 7.2.1] to
minimize an icc function (without decomposition).

Notice that each €, ¥(x;£%;x,,) is a strongly convex quadratic function in z.
Therefore, the master problem (4.4) is a strongly convex optimization problem with
n1 number of variables, which is usually easy to solve. In practical implementation,
solutions to the subproblem (4.2) and the master problem (4.4) may be calculated
inaccurately. For the sake of concise analysis, we have chosen not to include these
potential errors in our study.

4.2. Convergence analysis. This subsection is about the global convergence of
the sequence generated by Algorithm 1. We begin with several technical assumptions
that will be used in our convergence analysis. Since our focus of this section is to solve
problem (4.1) with fixed scenarios {¢!,...,£%}, one should interpret Assumptions
A-B as requirements on all realizations {¢,... &%}, The “almost surely” part will
be used in the next section where a generally distributed ¢ is considered.

Algorithm 1 A decomposition algorithm for the nonconvex two-stage SP (4.1)

Input: Initial point 2o € X, and two scalar sequences {7, },>04 0 and {€,},>0 0.

Outer loop: Set v =0.

1: Execute the inner loop with the initial point z,, and parameters -, and €, .

2: Set v < v+ 1 and repeat step 1 until a prescribed stopping criterion is satisfied.

Inner loop: Set i=0 and z, 0 =2x,.

1: Solve the subproblem (4.2) at (z,£)=(x,,i,£*) for all s to get solutions (z7 ;,v; ;)

2: Select ¢ ; € O (—f) (x5 4,5 :€%) C Oa(—1 ) (25 5,035 %) for each s.

3: Solve the master problem (4.4) to obtain x, ;1.

4: Set i <1+ 1 and repeat the above steps if ||z,,i+1 — 2,4|| > €,7,. Otherwise,
break the inner loop with z, 1 £ Ty itl-
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Assumption A. The minimization problem of y in defining @(Lz,f) in (3.2)
has an optimal solution for any (z,z) € X x X almost surely.

Assumption B. There exists a measurable function x; : Z — Ry such that
Eg[r1(£)] < oo and the following condition holds almost surely:

@(1‘1,2;5) _E(x%Z;g) Sl‘ﬁl(g) ||£U1 —.’L'QH V($1,$2,Z) eX x X xX.

Some remarks are in order. Assumption A guarantees that for any z € X, the op-
timal solution of (4.2) in terms of y exists. This assumption also implies the relatively
complete recourse of the original problem (1.1) that v (z;€) is finite for all feasible
x € X almost surely. Assumption B is a stochastic version of the Lipschitz condition
in Lemma 3.6.

For convenience, we denote

S S
(15)  Ts() @)+ Y vwe) and Cop ()2 0(@) + 5D e, v(5:6)
s=1 s=1

In the proposition below, we show that for any prescribed positive scalar ¢,, the vth
inner loop of Algorithm 1 terminates in finite steps.

PROPOSITION 4.1 (convergence of the inner loop for Algorithm 1). Suppose that
Assumptions A-B hold. Then the following statements hold for any vth inner loop.

(a) CS o (Twi1) < Q-S v (@0,3) = |2vi = 241 [12/(20) for any i >0.

(b) imy st o0 |20, — Zu 41|l =0 and the stopping criterion ||z, 11 — Tui
s achievable in finite steps, i.e.,

i, 2min{i € Zy |||2pir1 — 2wl <y } < +o0.

In addition, we have

S
1 _
dist 0’ gz_;[alw(xf/,i,/?xlj,iu;gs)_a( '(/))(xuz,, xl/lu’g )+N ( uz,,)] <5u-

+ 0p(,i,11) + Nx (20,3, 11)

Proof. Consider the vth inner loop of Algorithm 1. We first show that the se-
quence {C S, (Z0,i) }i>0 is nonincreasing. Slnce the function e, 1 (e;&%; x, ;) defined
in (4.3) is quadratic, we have, by writing a3, & V., 1¥( ;&% 2, ) (Tyi11),

C&%(mv,i): xuz Ze'y,, xulvg xuz)
90331” Sze'yy le+17§ 'er)

@0,: — Tt

s
Z l“u,i — Ty it1) +

where the first equality is because ey, V(x0i58%20,:) = ey, (x,,:;€°). Since x,, ;41 is
the optimal solution of the master problem (4.4), one may obtain that

1
27

CQ \

s T
1 )
(bw- + — E a;, 1) (®pi — Tyit1) >0 for some b, ; € Op(Ty,i41)-
S s=1 ’ l
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The convexity of ¢ and the above inequalities imply that

S
~ 1 N 1
¢Sy (Tvi) > o(x,it1) + S Z evu¢(xu,i+1§fs§xu,i) + T%quz — Tyt ”2
4. 1
( 6) > xl/z+1 Ze% $VZ+17 )+RH£CVJ _xll,i+1||2

%me il
where the second inequality uses the fact that e, ¢ (x; €% %) > eqp(x; &%) for any z, Z,
and &°. We thus prove part (a). Using the compactness of X and Assumption B, one
may further derive from Lemma 3.6 that

S . 1S

i a0 2 [ inf o) + 5 30| inf vise) - Z o | > .

s=1

= (s (Twyit1) +

Hence, the sequence {( Sy (@1,5) bizo is bounded below, which further yields that
{Cs ~, (Tvi) }izo converges and ||z, ;41 — @,;|| converges to 0 as i — co. The latter
convergence indicates that the inner iterations terminate after finite steps.

To show the rest of the statement of this proposition, we first obtain from the
optimality condition of the master problem (4.4) at z, ;, 41 that

S
1 ~ s
0€o (Sﬁ(xwiu+1) +3g ;ewlff(xv,iﬁl;f ;xv,iu)> +Nx (2,4, 11)
S s
1 Lvyi,+1 — xl)7iy
4D =)+ g 3 (T ) N )

where the equation is due to the sum rule of the subdifferentials for convex functions
[45, Theorem 23.8]. From the optimality condition of the subproblem (4.2), we obtain

0€ (), i)+ (x5, —vi,) [w+Nx(z,,) Vs=1,...,5.

Taking the sum over (4.7) and the above inclusions from s=1,...,S5, we get
1N, — 13
0€ ¢ ; N (a7, 20,3,:6°) + |00(T0,i,41) — g ; i, + NX(xV,i;/+1)]

+ ($V7iu+1 Ty zy /'71/

uzy

I\Mto

S
Z 31¢ T, i,,7xu,iy§§s) - 82(_J)(xi,iyaxu,i,,;fs)] + a‘P(mu,ile)

OJ \

+($V,iy+1 Ly zy)/%/ +NX (zo z,,+1 ZN uzy
where the last inclusion is due to the definition of ¢4, Consequently, we derive

1, — -
dist | 0, 522 10000 w006 = Oa(=0) (w0, w003 €°) + N (3, )]
s=1

+00(2p,i, 1) + Nx (0, 41)
< qu-,iv"rl — Ty, ||/7v <ey,

where the last inequality is due to the stopping rule of the inner loop. 0
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We are now ready to present the global convergence of the sequence generated by
Theorem 4.2. We shall prove that every accumulation point Z of {z,},>¢ is a critical
point of problem (4.1) satisfying

S
(4.8) 0€dp(z Z 0 (2,7,6°) — 0a(—) (7, 7;€°)] + Nx (7).

CO\’—‘

It has been shown in Lemma 3.5 that under Assumptions A and B, we have dcv(x;€) C
O (z,;€) — O (—p)(w,2;€). Hence, the condition (4.8) is weaker than the Clarke
stationarity of problem (4.1) pertaining to 0 € 9p(Z) + Zle Ac(7;€5)/S + Nx ().
The term “critical point” is adapted from the result of the dc algorithm to solve
a dc problem minimize,ex [01(x) — 02(x)], where the accumulation point satisfies

0e 691(,@) — 692(33) +Nx($)

THEOREM 4.2 (subsequential convergence for Algorithm 1). Let Assumptions
A-B hold. Then any accumulation point of the sequence {:cl,}y>0 generated by Algo-
rithm 1 is a critical point of (4.1) satisfying (4.8). -

Proof. Let T be the limit of a convergent subsequence {;v,,ﬂ}u e where N is a
subset of Z. We first show that {xi,n }oen also converges to Z. By Proposition 4.1,

we know that z,;, — 7 as v(€ N) = oo. For each s =1,...,5 and v € N, we have,
by the definition of z} ; = P, ¥(v,,,;§%) € X,

—Hmjzy — Ty, H + 1nf f (2., ;E%)
< o2l = 2o |* 49 (@3, 000,:€)

:e’wa(xV,iy;gs) S T *xu,iy”2 +E(ia*xu,iy;£s)'

2y,

The above inequality yields that

Hx’/lu x’/ll’ X
x

\/ ||a:—xm|2+2%( (&, 20,:%) — mfmx,xy,iu;@)

xeX
<Nz =z, |l + 1/ 27 k1(E)R(X) —0asv(eN)— oo,

where R(X) denotes the diameter of the compact set X, and the last inequality
follows from the uniform Lipschitz continuity of (e, z;£) on X in Assumption B.
Since k1(£%) < oo for each s and 7, | 0, we derive that

S Hj - xl’,iu || + \/QP)/V (d’(@xv,iu;fs) - infl/}(xaxu,iu;fs)>

5., — 2| <=5, = 2vi || + 20, — 2] —0as v(€N) = o0

Vi

Hence, we have obtained the convergence of {xs to T for all s. Using the

ence, we have . . i Fyen
triangle inequality of the distance function, we have that
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dist (O

< dist

S
Z — 02(—9) (7,7:8%)] + 90(7) + Nx (7) )

O) \

[8@(%3%,%,@;55) - 82(_@)@;2'”@1/,@;58) +Nf(‘ri,iy)]
+ 680(1'1/,iu+1) + Wy
(1)

(| ot . oo || oS ame |)
(i

D (Nx(z,,),{0}) +D (00 (2y,i,41), Op(Z)) +dist (w,, Nx(Z)),
(ii) (iv) (v)

I\Mm

1
0, 4

~ _

+
Nl
M)
S

@
Il
a

+

| =
M

@
I
—

where w, can be any element in NX(xv,i,,+1)- By Proposition 4.1, there is a se-
quence {w, },>o with w, € Nx(z,,,+1) such that (i) converges to 0. Since for all s,
limy(en)—oo 255, = & € X Cint(X), we thus obtain N (x5 ; ) = {0} for sufficiently
large v and any s. Then (iii) — 0 as v(€ N) — oo. Next we show that the terms
(ii), (iv), and (v) converge to 0. It is known that the following terms are osc: 011,

92(—1) (see Lemma 3.5(a)), Op, and Nx(Z) [49, Propositions 6.6 and 8.7]. Based on
[49, Proposition 5.12], we only need to prove that for each s, the sequences

(49) {04,204, o) 200> 109(Tu,i,41) Fuen)sve and {wy }o(en)>u,

are uniformly bounded for sufficiently large vy. Indeed, Lemma 3.5(b) implies that
for v € N sufficiently large and any s, the first sequence in (4.9) is uniformly bounded.
The uniform boundedness of the second sequence in (4.9) is a direct consequence of
[45, Theorem 24.7] since ¢ is real-valued and convex, and z,,;,+1 — Z. Last, {w, },>0
must be bounded because (i) converges to 0 and all sequences in (i) except w, have
proven to be uniformly bounded. Henceforth, we have proved that any accumulation
point Z is a critical point of (4.1) satisfying (4.8). 0

In the following, we establish the convergence to a stronger type of stationarity
under additional assumptions. Suppose that f(e,e;£%) and G(e, e;£%) are continuously
differentiable for all £°. At x = Z, we say ¢° is an optimal solution of the convex second-
stage problem with £ = £° and \° being the corresponding multiplier if the following
Karush-Kuhn—Tucker (KKT) condition is satisfied:

¢
(410)  0€V,f(Z,7%8) + Y ANVyg;(2,5%:¢°) and A € Nye (G(7,7°:€°)).
j=1
We use Y (z,£%) and M(Z,£°) to denote the set of all optimal solutions and multipliers

satisfying the above condition, respectively. When M (Z,£°) is nonempty, one may
write the critical cone of the second-stage problem at §° € Y(Z,£°) as

Vv, f(Z,5°€°) ' d=0, }
Vy9;(2,5%€%) Td € T—(9;(T,4:€)), j=1,...,¢ [’
where Tp(z) denotes the tangent cone of a closed convex set D. In the following, we

show that if the second-stage solutions {7°}5_; are unique at the accumulation point
Z for each s, then Z in fact satisfies a stronger condition.

a2 facr
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COROLLARY 4.3 (convergence to a directional stationary point). Let T be an
accumulation point of the sequence {xl,}y>0 generated by Algorithm 1. In addition to
the assumptions in Theorem 4.2, if the conditions

(a) the feasible set {y e R™ | G(z,y;£%) <0} is bounded, uniformly for x € X;

(b) f(e,0;&%) and G(e, ;&%) are twice continuously differentiable;

(c) the set of multipliers M(Z,£%) is nonempty and there exists §° € Y (Z,&°)

satisfying the second order sufficient condition that for all d € Cz(5*®,£%)\{0},

sup  d' Vi, | F(E 56+ Y Mg (@556 | d>0,
AEM (7°,£7) ;

are satisfied for each s, then T is a directional stationary point of problem (4.1),

i.e.,

n

o (7 d) + %Zw(z;d) >0 VdeTx().

s=1

Proof. We first prove that dx(—v)(Z, Z;£*) is a singleton under given assumptions.
By condition (a) and the convexity of (—f)(e,z), we can apply the Danskin theorem
[11, Theorem 2.1] to get

Oa(=0)(7,:6°) = conv { = V. f(7,:6) [y € YV (5:6%) }.

Since the second order sufficient condition of the second-stage problem holds at Z for
any £°, we have that Y (z;£®) is a singleton [49, Example 13.25], which further implies
that 9a2(—v)(Z,7;£%) is a singleton. The desired directional stationarity of Z then
follows from [15, Proposition 6.1.11]. 0

Theorem 4.2 and Corollary 4.3 pertain to the subsequential convergence of the
iterative sequence generated by Algorithm 1. In the following, we show that the
full sequence of the objective values along the iterations converges if the sequence of
the Moreau parameters {7, },>0 is summable. This result particularly indicates that
although the sequence {z,},>¢ may have multiple accumulation points, the objective
values at the accumulation points are the same. To proceed, we remind the readers
of the definition of (g in (4.5).

THEOREM 4.4 (convergence of objective values for Algorithm 1). Suppose that
Assumptions A-B hold. Let {x,},>0 be the sequence generated by Algorithm 1 under
the additional condition that Yoo v, < oo. Then lim, o (g(z,) = (5(Z), where T is
any accumulation point of the iterative sequence {x,},>0.

Proof. One may derive that
Cslavan) = Cslan) = [Cs(@usn) = Sy (@) |
+ {ZS,'YV (.’EV+1) - ZS,’YV (:L‘V)i| + |:ZS,"/V (SC,,) - ZS(xu) )

where the first and last terms on the right side are gaps between the partial Moreau
envelopes (s, and original functions (g at x,4; and z,, respectively. By Lemma
3.6 and Assumption B, we may obtain that

(4.11)

(412) Cs(mip1) = Comy (T0r1) Z%m )2/2 and g, (2,) — Cg(x,) <O0.

Recall that x,1 =2,;,+1 and £, =x,. Then the second term on the right side of
(4.11) can be bounded above based on Proposition 4.1(a) that
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Z Hml/ i+1 — CUVZ”

Substituting (4.12) and (4.13) into the inequality (4‘11), we have

138

5 ZmW] -
s=1

Since the sequence {(g(,)},>0 must be bounded below due to Assumption A and
Yoo T Zle k1(£%)? /S < 0o, one may easily obtain the convergence of {(g(z,)},>0
that is a so-called quasi-Fejér monotone sequence; see, e.g., [13, Lemma 3.1]. For any
convergent subsequence {x,41}yen and its limit Z, by the continuity of ¢ (z;£*) on
X for each s, we have (g(7,41) — C5(Z) as v(€ N) — co. Therefore, the full sequence
{Cs(z,)}u>0 converges to (¢(Z) for any accumulation point Z. d

(4.13) s (Tog1) = Csim (@) S—

l/

Cs($u+1) - Cs(l’u) <-

— x>+ =

5. A sampling-based decomposition algorithm. In this section, we consider
a generally distributed random vector 5 with a known distribution. Instead of the
approach in the previous section that deals with a fixed batch of samples throughout
the algorithm, we incorporate the sampling strategy into the outer loop to progres-
sively enlarge the problem size. In general, there are two ways to do the sampling
for solving SPs. One is to use the sample average approximation to select a subset
of data before the execution of the numerical algorithm [53, 54, 30]. The other is to
adopt a sequential sampling technique [28, 29, 38, 50] where scenarios are gradually
added along the iterations. Our method falls into the latter category.

We rely on the law of large numbers (LLN) for convex subdifferentials to establish
the almost sure convergence of {z,},>0 generated by Algorithm 2. To facilitate this
tool, the Lipschitz continuity of the original function is needed. We have already
assumed in Assumption B that (e, z;¢) is Lipschitz continuous relative to X for
z € X almost surely. In the following, we further assume that 1 (z,e;&) is Lipschitz
continuous relative to X for any = € X almost surely. We remind readers that based
on Lemma 3.5, for any fixed £, this Lipschitz continuity automatically holds relative
to int(X).

Assumption C. There exists a measurable function k2 : & — R, such that
Eg[k2(€)] < oo and the following inequality holds almost surely:

G(@,2136) — Y@, 22:)| S w2 (€) |l — 2] V(z,21,22) € X x X x X.

Algorithm 2 A sampling-based decomposition algorithm for the SP (1.1)

Input: Initial point zo € X, two positive scalar sequences {7, },>04 0, {e,},>010,

and a sequence of incremental sample size {S, },>0.

Outer loop: Set S_; =0 and v =0. -

1: Generate independent and identically distributed samples {55"*1+A}i":_1$”’1
from the distribution of f that are independent of previous samples.

2: Execute the inner 1oop of Algorithm 1 with the initial point x,, samples
{¢5}% {55} LU ¢ 1+A}S ~5'and parameters v, and €,,.

3: Set v e v+1 and repeat step 1 untll a prescrlbed stopping criterion is satisfied.
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For any r > 0, we denote

P zO)E ) o v 29,

z,z€B(Z,r)

and similarly for 05 (—1). We have the following result on the LLN for the sub-
differentials of icc functions, which is a consequence of the LLN for random set-
valued mappings [1]. In fact, the result can be viewed as a pointwise version of [55,
Theorem 2].

LEMMA 5.1. Suppose that Assumptions A—C hold. For any fized x € X and any

r>1' >0 such that B(z,r) Cint(X), the following limit holds almost surely:

. 1 A 07 Pz, €°) } Eg {6{@(%33;5)}
im D[ o> | 4 P _
e\ 5 [— 5 (-0 wwe)] R [03 (<), ;)]

=0,

where the expectation of a random set-valued mapping EE[A(:U;@] is defined as the set
of Eé[a(x;g)] for all measurable selections a(x;€) € A(x;€).

A noteworthy remark about the preceding lemma is that we can interchange the
partial subdifferential and expectation in the right-hand side of the distance, i.e.,

Eg [(‘%a(x,x;é)] =01 K¢ [@(m,x,é)} Ve X.

This is because a convex function is Clarke regular at « if it is finite-valued in a
neighborhood of z, and the Clarke regularity ensures the interchangeability of the
subdifferential and the expectation [12, Proposition 2.3.6 and Theorem 2.7.2]. Below
is the main theorem of this section on the almost surely subsequential convergence of
the iterative sequence generated by Algorithm 2.

THEOREM 5.2 (subsequential convergence of Algorithm 2). Suppose that As-
sumptions A—C hold and k1(§) in Assumption B is essentially bounded, i.e., inf {t |
P(k1(€) >t) =0} < +oo. Let {z,},>0 be the sequence generated by Algorithm 2 and

Z be any accumulation point. For any r >0 such that B(Z,r) Cint(X), the following
inclusion holds almost surely:

0€ dp(z) + 0] B |92, :8)| — 05 B [(—)(@,2:8) | + Nix(2).
In addition, if the set-valued mapping 81 Eg[1) (e, ;&) -, Eel (=) (e, o;&)] is contin-
uous at (Z,T), then almost surely

0€ () + 1 Bg | 5(2,7:8)| — 0B [(~)(@,7:8)| + Nx (@),
i.e., every accumulation point T is a critical point of problem (1.1) almost surely.

Proof. Consider any subsequence {z,11},cn that converges to Z. Using similar
derivations as in the proof of Theorem 4.2, one can obtain the almost sure convergence

of {z,;, }ven to T and the following inequalities for each v € N and s=1,...,5,:
o3, =2l <lleds, = wvi, | + v, — 2|

<2|wp, — ] + /27 51 (€) R(X).
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Notice that ~, | 0 and /11(5“" ) is almost surely bounded by a constant independent of
s. Thus, for any given r’ > 0, the ball B(Z,r’) almost surely contains z,;, and the
proximal points {ch,Z , for all v € N sufficiently large. Consequently,

N(x),; ,20,36%) C O P(z,2;¢°)  almost surely for all v € N sufficiently large.

We then obtain from Lemma 5.1 that, for any 7 > 0 such that B(z,7) C int(X), the
following limit holds almost surely:

(5.1)

o7 Eg W(fc,fc;f)}

- ;Eg[< Dad] )

S —
. 1 K| (as, x,,,;€%) ]
lim D[ — Vily ) b
v ; {— Do (=) (@) 4, 00,1 €%)]

Thus, the following estimation follows almost surely:

dist (o dp(z) + O E [@(f,z;g)} — 03 B¢ [(%)(f,f;é)} +Nx(f))

1 S

<dist | 0 ?Z [al @(mi,i,ﬂxui,ﬁgs) - 82(—@)(1’?,’%,1',)’”;58)+Nf($i,iv)]
>~ ) v i
+ a@(l'll,iu-l—l) + Wy

i & l:alw Vi) xuzyag ) :| a{Eé [E(f’f’é)} ~
S, IRl _a;Eg[(—J)(fc,f;g)]
(i)
1 &
+to D ( ) {0}) + D (9p(2yi,41), 0p(2) ) + dist (wy, Nx (2)),

i (iv') )
(iii’)

where w, can be any element in Nx(z,,,+1). By Proposition 4.1 (with sample size
S, instead of S), there is a sequence {w,},>0 with w, € Nx(z,,, +1) such that
(i') converges to 0. As shown in (5.1), we have (ii') — 0. The term (iii’) — 0
because {z}; Sv. C B(z,r) C int(X) holds almost surely for sufficiently large v.
The convergence of the last two terms (iv’) and (v/) to 0 can be derived based on
similar arguments to their counterparts in the proof of Theorem 4.2. Finally, if the
set-valued mapping 0y ]Eg[@(om;g)] — 0y ]Eg[(—@)(om;f)] is continuous at (Z,Z), one
may adopt similar arguments as in the proof of [55, Theorem 3] to derive the almost
sure convergence to a critical point. 0

One can further derive an analogous result of Corollary 4.3 for the sequence
generated by Algorithm 2 by strengthening the conditions (a), (b), and (c) in the
former corollary to almost any £ € Z so that QQIEE[(—@)(E:,E:;E)] is a singleton. We
omit the details here for brevity. The last result of this section is the almost sure
convergence of the objective values of {ZSV () }v>0 under proper assumptions on the
sample sizes S, and Moreau parameters -,. To proceed, we first present a lemma on

the convergence rate of the sample average approximation in expectation. This result
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is obtained by using the Rademacher average of the random function w(x;é), which
has its source in [17, Corollary 3.2]; see also [15, Theorem 10.1.5].

LEMMA 5.3. Let X be a compact set in R" and §~ : Q= Z CR™ be a random
vector defined on a probability space (Q, F,P). Let : X x E— R be a Carathéodory
function. Suppose that 1 is uniformly bounded on X X = and Lipschitz continuous in x
with modulus independent of €. Let {€°}5_, be independent and identically distributed
random vectors following the distribution 0f§ Then there exists a constant C' such
that for any n € (0,1/2), we have

s JE—
Z (x;€%) [ﬂ}(a:f)}H ¢ ;;277 V.S >0.

We make a remark about the above lemma. For an icc function ¢(x;&) as-
sociated with the lifted counterpart v (z,z;&), the uniform Lipschitz continuity of
Y(e;€) holds on X when (e, z;¢) is uniformly Lipschitz continuous over (z,&) €
X x Z and ¢(z, e;€) is uniformly Lipschitz continuous over (x,£) € X x Z. Indeed,
one can deduce this uniform Lipschitz continuity from Assumptions B and C with
supgcz [max(k1(§), k2(€))] < oo, which also implies the essential boundedness of #; (€)
assumed in Theorem 5.2. We are now ready to present the almost surely sequential

convergence of the objective values generated by the internal sampling scheme.

THEOREM 5.4 (sequential convergence of objective values for Algorithm 2). Sup-
pose that assumptions in Theorem 5.2 and conditions for 1 in Lemma 5.3 hold. Let
{zv}u>0 be the sequence generated by Algorithm 2. Assume that the parameter of the
partial Moreau envelope v, and the sample size S, satisfy

Z'y,,<oo, ZSVH 5 <00 for some ne (0,1/2).

Then lim, o Cg, () = ((Z) almost surely, where T is any accumulation point of the
iterative sequence {x, },>0.

Proof. We first prove the almost sure convergence of {(g (z,)},>0. We have

ZSVH (Tyq1) — ZS,, (z)

= [Zsuﬂ(%ﬂ) —Zs,, ($u+1)} + [Zsu (Tyy1) — ESV,% ($u+1)}

(5.2) AR, 2R,
| S @0i1) = Cs, (@) + | S (@0) = Cs, ()]
2R3 2Ry

Using results of (4.12) and (4.13), we obtain

S, 2

e

v

iy
D lvitr =il and  R,4<0.

Y i=0
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Next we compute R, ; that is the error of the sample augmentation. It holds that

1 S, Sut1 1 S,
R,1= S Zd’ Tyg1;€ Z lﬁ Tyq1;€ - §Z¢ Tyq1;€
v+1 s=1 s=S,+1 Vos=1
S Sy Sv+1
- ( ) S Gl S (@it
Sv+1 s=1 Sutr Su+1
S, Suy1
S, ) 1
= -1 | (zv+1;€°) (zv+1;€
Let F, £ o(€,£2,...,6%) be a filtration, i.e., an increasing sequence of o-fields

generated by samples used in outer iterations. Obviously z,; is adapted to F, and
{55}6”31 41 are independent of F,. Therefore, by taking conditional expectation of
R, given F,, we obtain

E[Ru,l |}—u] = < S - 1> [Sl,, iﬂ’(%ﬂ;fs) —Eg {w(%ﬂ;@” ,

SV+1

where {55};9;1 and é are independent and identically distributed. Based on the estima-
tions of the terms R, 1, R, 2, R, 3, and R, 4, we have, by taking conditional expectation
of (5.2) given F,,

E[Cs, . (@) |1 5| = s, (@)

(5.3) <S,,+1—Sl, | S - . | S v R (E9)?
ST §;¢(xu+1,f ) — 5[1/1(%“,5)] +Siyzlf

In order to show the almost sure convergence of {C, (,)},>0, we need to verify that
the right side of the preceding inequality is summable over v almost surely and the
sequence {(g (2,)},>0 is bounded below almost surely. We have

Elf} <S“> Zw Toiri€) - g[w(xy+1;é)}|]

V+1

v=1
l/+1 1 s ~
= Z S—Zwmﬂ;& >—Eg[w(xu+1;s>]H
l/+1 L
1 &
< u+1 s -
Z SR | sup | ;wx 1€%) — Eg [w(w:9)] H
L) CV1—
< V+1 3.
Z St (S i I oo, for some n € (0,1/2), by Lemma 5.3
Hence, we derive that
Z( v+l — : ) Zq/} (xy41;€°) — E¢ {1/}(35,,“;5)} < oo almost surely.
-1 S+
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Since {7, },>0 is assumed to be summable, we can obtain

Sy 9 ) E- c\2
ryy K (65) B ’YV E [Kl(f) i|

s=1 v=0

[E(eg) £

v=0

Consequently, > > | Z Y Y K(€9)%/(25,) < oo almost surely. We have thus proved
that the right side of (5.3) is summable over v almost surely. Next, we show that
{¢s, (#v)}v>0 is bounded below almost surely. To see this, note that

sup‘(s ’<sup s, (@) = C(x)] + sup [¢(2)],
zeX

where the first term converges to 0 almost surely by the uniform LLN (cf. [54, Theorem
9.60]) and the second one is bounded due to the continuity of ¢(z) = ¢ (z) +Eg[¢(2; )]
on the compact set X. Therefore, there exists a constant M such that ZSV (x,) is
bounded below by M almost surely for any v. Applying the Robbins—Siegmund non-
negative almost supermartingale convergence lemma (cf. [44, Theorem 1]), we have
S 3o 1z — usl|?/(29,) < 0o almost surely and the sequence {(g (2.,)}u>0
converges almost surely. Finally, let Z be the limit of a convergent subsequence
{z,}ven. Using the uniform convergence of ZSV to ¢ and the continuity of ¢ on
the compact set X, it follows from [54, Proposition 5.1] that ZS,, (z,) converges to
¢(z) almost surely as v(€ N) — oco. This argument, together with the convergence of
the full sequence {Cg (z,)},>0, completes the proof of this theorem. d

6. Numerical experiments. In this section, we present numerical results for
a power system planning problem with the recourse function in (1.4) and a linear
first-stage objective in terms of z = ({z;}iez,{Tg}geg). The overall deterministic
equivalent formulation to minimize the total cost is given by

S
rzniggivrilize Zci r; + ch Tg+ Z Zpsg Ty Z Z(%‘s —Tjs) Yijs

(6o cuys , €T 9€G s=1 \geg i€T jeT
subject to Z c; T + Z cg g < B (budget constraint), Z zg=1,
(6.1) i€T 9€G 9€G
Z Yijs <x;, 1€Z,s=1,...,8 (capacity constraints),
jeTJ
Zyijs =djs, je€J,s=1,...,58 (demand constraints).
i€T

In our experiments, we set |Z| = |G| =5 and |J| = 8. The box constraints of x and
ys are [8,15]°x[0,1]% and [0,2]°*® for each s =1,...,S. The unit costs in the first-stage
{ci}iez U {cg}geg are independently generated from a uniform distribution on [0, 2].
For each scenario, {¢s}icz,{mjs}jes, and {d;s};cs are generated from truncated
normal distributions A'(1,22) on [2,3],[4,5], and [1,4], respectively. To construct a
set of probabilities US_; {ps,}4eg satisfying Zle psg = 1, we first randomly generate
S % |G| values from uniform distributions on [0, 1], and then group every S value and
normalize them such that the sum of values in each group is 1. All the experiments
are conducted in MATLAB 2021a on a desktop (Intel Core i7-10700 CPU at 2.90 GHz
processors and 16 GB of RAM).
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6.1. Fixed scenarios. Since the test example with fixed scenarios is in fact a
large-scale nonconvex quadratic problem, it can also be directly solved by off-the-
shelf nonlinear programming solvers. We compare the performance of our proposed
decomposition algorithm based on the partial Moreau envelope (DPME) with the
interior-point-based solvers Knitro [9] and IPOPT [58], both of which run with linear
solver MUMPS 5.4.1. The absolute and relative feasibility and optimality errors are
computed according to the termination criteria of Knitro.!

The quantities KKT,,s and KKT,. are defined as the maximum of absolute and
relative feasibility and optimality errors, respectively. The initial points are chosen
to be the same for all algorithms. Although this may not necessarily force all algo-
rithms to converge to the same objective values, we do observe such a phenomenon
in the experiments. Further implementation details of these algorithms are provided
below.

Knitro (version 13.0.0). The “knitro_gp” function is called in our numerical
experiments to solve nonconvex quadratic programs from the MATLAB environment.
We have set “hessopt =0” to compute the exact Hessian in the interior point method
instead of using the (L)BFGS approximations, as we have observed that the former
choice is faster for all the problems tested here. We have directly set “convex=0" to
declare our problems are nonconvex so that the solver does not need to spend time
on checking the convexity of the problems. In order to fairly compare the KKT errors
at the computed solutions by different methods, we have disabled problem scaling
and presolve options by setting “scale=0" and “presolve =0.” We report the results
based on three different settings:

1. Knitro-direct: Set “algorithm = 1” so that the direct solver is used to solve
linear equations. For the termination options, the KKT relative and absolute
tolerances are set to be 10~% and 1072, respectively, i.e., “feastol = opttol =
10~%" and “feastol_abs = opttol_abs = 1072.”

2. Knitro-CG-1: Set “algorithm = 2” so that the KKT system is solved using
a projected conjugate gradient method. Stopping criteria are the same as
above.

3. Knitro-CG-2: All are the same as Knitro-CG-1 except that the KKT relative
and absolute tolerances are set to be 1076 and 1073, respectively.

IPOPT (version 3.14.4). Due to different scaling strategies and reformulations,
the termination criteria of Knitro and IPOPT are not directly comparable. We set
“ipopt.tol = 5 x 1072” in our experiments as we find the computed solutions based
on this tolerance are about the same quality in terms of KKT,s and KKT, as those
provided by Knitro. We also set “ipopt.hessian_constant = ‘yes’ to use exact Hessian
in the interior point method, and we have not adopted the (L)BFGS method for the
same reason as mentioned above.

DPME. Each master problem for the first stage and the subproblem of the sec-
ond stage are convex quadratic programs, which we have called Gurobi to solve. In
the same way as Knitro, we compute the relative and absolute feasibility errors (de-
noted as feas,q; and feas,s, respectively) and optimality errors (denoted as optye
and optaps, respectively). Let the overall objective value at the vth outer loop be
obj,. We terminate the algorithm if (6.2a) holds, and either (6.2b) or (6.2c) is
true.

IKnitro user guide: https://www.artelys.com/docs/knitro/2_userGuide/termination.html.
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(6.2a) feasyel < 1074, feasaps < 1072,

(62b) ODPtrel < 10_4a OPtabs < 10_27
bj,_1 — obj, _

(6.2¢) [oby—1 = obiy| _ -3,

max{1,|obj,_1]|} ~

Table 2 and Figure 3 summarize the performance of different algorithms when
the number of scenarios S varies from 1,000 to 110,000 over 50 independent replica-
tions (the sizes of the deterministic equivalent problems are listed in Table 1). For
each algorithm, we report the mean and the standard deviation of the total iteration
numbers, the absolute and relative KKT errors, objective values, and the wall-clock
time. One may find that for small-sized problems (such as when S < 10,000), the
interior point method that is implemented by either Knitro or IPOPT can solve the
problem faster than our DPME, which may be due to two reasons: one is that the
gain of the decomposition cannot compensate for the overhead of the communication
between the master problem and the subproblems; the other is that we have not used
the second order information as in the interior point method. However, for the cases
where S is large (such as when S > 30,000), DPME is the fastest method and scales
linearly in terms of S, which shows the power of the decomposition.

6.2. Sampling-based decomposition. We test the sampling-based DPME
proposed in Algorithm 2 for the same test problem with the total number of scenarios
S =40,000. Instead of using all scenarios at each iteration, we gradually add them to
reduce the computational cost especially at the early stage. In our experiments, the
sample size S, is taken as nv for different values of 7. In order to understand how

—=— Knitro-direct

1600 - —e— Knitro-CG-1
—a— Knitro-CG-2

1400 —+— IPOPT

1200 | DPME

1000

800 |-

600 |

Time (in seconds)

400 |-

200 |-

s L L L L L |
0 20000 40000 60000 80000 100000 120000
S

F1c. 3. Performance of all algorithms with different numbers of scenarios S over 50 indepen-
dent replications. Shaded areas: the tubes between 25% and 75% quantiles of the running time. Solid
lines: means of the running time.

TABLE 1
Dimensions of test problems. “Rows” stands for the number of constraints; “Columns” stands
for the number of variables.

Problem sizes

S Rows Columns
1,000 13,000 40,010
5,000 65,000 200,010
10,000 130,000 400,010
30,000 390,000 1,200,010
80,000 1,040,000 3,200,010

110,000 1,430,000 4,400,010
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TABLE 3
The performance of the sampling-based DPME. In the table, “c” is the standard deviation of
the normal distribution from which we generate the data; “n” represents the linear growth rate of
sample size such that the number of scenarios used in vth outer iteration S, =nv; “-” in the column

of m stands for the benchmark of DPME wusing full scenarios.

Iterations

o n outer | total KKT s KKT,q Objective values Time (s)
100 2(0)]9(12)  6.7-2 (14-1) 583 (1.2-2) 28.4047 28 (31)

05 400 2(0) |8 (10) 232 (5.52)  2.0-3 (4.8-3) 28.3349 38 (48)
800 20079  1.22(412)  1.0-3(3.6-3) 28.3176 40 (41)

1600 1(0)]6(8)  6.7-3(232) 584 (2.03) 28.3113 34 (37)

3200 1(0)]6(8)  1.23(343) 1.0-4 (3.04) 28.3002 32 (37)

- 1(0)]6(8)  1.1-3(3.4-3)  9.9-5 (2.9-4) 28.3001 41 (47)

200 2(0) |8 (10)  4.62 (7.0.2)  2.83 (4.2-3) 23.2485 33 (37)

1 800 2(0) | 8(10)  2.1-2 (5.4-2)  1.3-3 (3.3-3) 23.1989 42 (45)
1600 20006 (8)  1.32(3.7-2) 7.84 (2.3-3) 23.1871 34 (35)

3200 2(0)]6(8)  81-3(2.82)  4.8-4 (1.7-3) 23.1778 36 (40)

6400 1(0)]6(8)  1.7-3(3.2:3)  9.9-5 (1.9-4) 23.1648 35 (40)

- 1(0)]5(6)  1.33(283) 7.85 (1.64) 23.1644 38 (37)

400 2 (0) |14 (13) 822 (1.3-1)  3.1-3 (4.9-3) 13.5780 69 (58)

2 1600 2 (0) |11 (11)  4.0-2 (6.1-2)  1.5-3 (2.3-3) 13.5039 58 (53)
3200  2(0) |11 (13)  2.8-2 (4.82)  1.1-3 (1.8-3) 13.4851 63 (65)

6400 2 (0) |11 (12)  2.3-2 (3.42)  8.5-4 (1.3-3) 13.4685 64 (65)

12800 2 (0) |10 (11)  1.4-2 (2.0-2)  5.4-4 (7.5-4) 13.4515 65 (69)

- 2(0) |10 (12)  1.4-2 (1.9-2)  5.1-4 (7.4-4) 13.4494 69 (73)

the growth rate 1 depends on the distributions of the random scenarios, we generate
{qis}iez. {Tjs}jes, and {d;s};jes from truncated normal distributions N(1,0%) on
[2,13],[3,10], and [1,4] with o € {0.5,1,2}, and vary the values of 7.

The stopping criteria for the sampling-based DPME are the same as the ones for
fixed scenarios, where we check the violation of the KKT system for the deterministic
equivalent problem formulated using all scenarios S = 40,000. However, unlike the case
for fixed scenarios, we do not have all the second-stage solutions {y,}5_; to compute
the KKT residual since some samples may not have been used yet. To resolve this
issue, we compute all {ys}5_; at every vth outer iteration, and then estimate the
multipliers corresponding to the first-stage budget and box constraints by minimizing
the current KKT residual.

In Table 3, we summarize the performance of Algorithm 2 for different combina-
tions of (o,n), where we also provide the results obtained from Algorithm 1 without
sampling for benchmarks. It can be observed from the table that problems with larger
variability may need a faster growth rate of the batch size to retain the same level
of solution quality. If the growth rate is properly chosen, the sampling-based DPME
can outperform the fixed-scenario version in the computational time with comparable
solution qualities.

7. Conclusion. Compared with the extensive research on the algorithms for
convex (especially linear) two-stage SPs, efficient computational algorithms for solving
continuous nonconvex two-stage SPs have been much less explored. In this paper, we
have made a first attempt in developing the decomposition scheme for a special class
of latter problems. The key of the proposed algorithm is the derivation of successive
strongly convex approximations of the nonconvex recourse functions. We hope the
work done in the paper will stimulate researchers’ interests in a broader paradigm of
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two-stage SPs that goes beyond the classical convex settings. There are a lot of open
questions that deserve future investigations, such as how to combine the stochastic
dual dynamic programming approach with the tools developed in the current paper
to solve nonconvex multistage SPs, as well as how to design rigorous stopping criteria
for the general nonconvex SPs with continuous distributions.
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