
Remote Identification Trajectory Coverage
in Urban Air Mobility Applications

Hejun Huang1,?, Billy Mazotti1,?, Joseph Kim2, Max Z. Li1,3,†
1Department of Aerospace Engineering

2Department of Robotics
3Department of Industrial and Operations Engineering

University of Michigan
Ann Arbor, MI, USA

{hejun, bmazotti, jthkim, maxzli}@umich.edu

Abstract—As Urban Air Mobility (UAM) and Advanced Air
Mobility (AAM) continue to mature, a safety-critical system that
will need to be implemented in tandem is Remote Identification
(Remote ID) for uncrewed aircraft systems (UAS). To ensure
successful and efficient deployment (e.g., maximal surveillance
of UAS trajectories), as well as to better understand secondary
impacts (e.g., consumer privacy risks in collecting real-time
UAS trajectory information), the coverage of broadcast-receive
Remote ID architectures needs to be characterized. Motivated
by this need, we examine theoretical and empirical trajectory
coverage of several common Remote ID technologies (e.g.,
Bluetooth, Wi-Fi) deployed for urban package delivery missions,
a commonly-cited use case for UAM and AAM. We derive
methods to explicitly compute expected coverage proportions
under idealized geometries, as well as conduct case studies with
realistic city geographies and UAS path planning algorithms.
An example of results include approximate magnitudes of
Remote ID receivers needed (approximately 500-5000 receivers
needed to achieve 50-95% coverage for Bluetooth Legacy, and
approximately 10-40 receivers needed for the same coverage
range for Wi-Fi NAN/Beacon, assuming a cruise altitude of
200 feet) to achieve specific trajectory coverage proportions
for San Francisco, California. Our analyses, combined with
complementary works related to Remote ID bandwidth and
deployment topologies, can help guide municipal authorities and
AAM stakeholders in future Remote ID system deployments and
upkeep.

Keywords—Urban Air Mobility (UAM); Advanced Air Mobil-
ity (AAM); Uncrewed Aircraft Systems (UAS); drones; Remote
Identification; receiver coverage

I. INTRODUCTION

Uncrewed aircraft systems (UAS), also referred to col-
loquially as drones, are anticipated to play a large role in
the future of aerial mobility. There is a diverse range of
UAS vehicle classes, corresponding to a wide array of use
cases and mission applications that previously were infeasible
(i.e., unserved) or underserved [1]. This expansion of the
air transportation system into new modalities and services
is encompassed within Advanced Air Mobility (AAM) [2]
– of particular interest is the subset of AAM focused on
urban applications: Urban Air Mobility (UAM) is generally
differentiated from other contexts such as Rural Air Mobility
(RAM) in terms of use cases and constraints. UAM use
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cases include last mile-type, potentially even vendor-to-door
package and food delivery services, passenger air taxi and
shuttle operations [3], as well as rapid transport of time-
sensitive goods such as donated organs and emergency medi-
cal equipment [4]. Constraints unique to UAM include colli-
sion risks with dense infrastructures, difficulties in forecasting
urban weather and environmental conditions, and acceptance
by large communities with different attitudes regarding and
perceptions of UAM [5].

Given the numerous safety and security concerns revolving
around UAS and AAM applications, several safety-critical
adjacent systems have been proposed [6]. One of these
systems – Remote Identification (Remote ID) in the US [7],
[8] and analogous counterparts internationally (e.g., [9]) –
has reached technical, legislative, and regulatory maturity.
Remote ID requires the broadcast of identifying information
(e.g., drone ID), real-time position and velocities, as well
as control station location from drone takeoff to shutdown
[7], [8]. Through data blocks retrieved via Remote ID, the
trajectory of a drone can be tracked in real time, in addition
to being subject to post hoc analysis. For brevity, we will
refer to all remote identification-type systems as Remote ID.

Remote ID was published to the US Federal Register in
2021, and enforcement of mandatory compliance is expected
prior to 2025 [7], [8]. Unsuccessful lawsuits challenging the
propriety of Remote ID [10] further demonstrate commit-
ments to and momentum for implementation: The deciding
factor in favor of Remote ID rests on its safety-critical nature;
this is best summarized through the following court opinion
striking down a challenge to Remote ID:

Drones are coming. Lots of them. They are fun
and useful. But their ability to pry, spy, crash,
and drop things poses real risks. Free-for-all drone
use threatens air traffic, people and things on
the ground, and even national security. [The US]
Congress recognizes as much. It passed a law in
2016 requiring the Federal Aviation Administration
(FAA) to “develop[] ... consensus standards for
remotely identifying operators and owners of un-
manned aircraft systems” and to “issue regulations
or guidance, as appropriate, based on any standards
developed.” [10]
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The successful initiation and maturation of UAM (and
AAM more broadly) will require safety-critical systems such
as Remote ID to be implemented effectively (e.g., reliability
in terms of drone tracking and reporting) and efficiently (e.g.,
without overbuilding required physical infrastructure such
as Remote ID receivers). Furthermore, unintended negative
externalities from such systems should be characterized in
the context of real-world operations, with resultant mitigation
strategies.

A. Technical gap and research problem

Even though Remote ID broadcast standards have been
published (e.g., Bluetooth 4, Bluetooth 5, and Wi-Fi-based
[11]), to our knowledge there has not been a rigorous exami-
nation of how comprehensive Remote ID-type systems are for
monitoring drone operations, particularly in UAM use cases.
Motivated by the setting of UAM operations and focusing on
Remote ID systems, in this work we conduct an analysis of
Remote ID coverage in idealized settings and real-world case
studies. Specifically, we are interested in determining what
proportion of a given drone trajectory might be surveilled
by a Remote ID receiver: Given a (fixed) Remote ID receiver
with its coverage area, the trajectory of a drone flown entirely
within its coverage area is considered 100% covered, i.e., a
coverage proportion of 1.

In the idealized setting, we assume specific geometries for
the Remote ID coverage area, in addition to how drone trajec-
tories are generated: We derive analytical solutions to obtain
the expected coverage proportion, and compare with Monte
Carlo-based simulations to validate our solutions. We then
conduct more realistic simulation-based case studies given
geographic information of a major city, coverage properties
(e.g., Bluetooth range), and different drone trajectory path
planning techniques.

The results from our work can be used to inform how
Remote ID infrastructure could be optimally deployed within
an urban environment. It also provides a framework for
analyzing how important factors such as the radius of the
coverage area, Remote ID receiver distribution, and trajectory
path planning method impact the effectiveness of Remote ID
systems from the perspective of trajectory coverage. Finally,
having better coverage – as well as a better understanding
of how the extent of the coverage changes with respect
to aforementioned factors – are critical inputs needed to
mitigate negative externalities stemming from the Remote
ID system itself (e.g., consumer privacy risks [12]) or from
UAM operations (e.g., noise and visual nuisance [13], drone
intrusion concerns [14]).

B. Related literature

Within the US, the final ruling on Remote Identification
for uncrewed aircraft operating beyond visual line-of-sight
(BVLOS) has been published to the US Federal Register
[7], [8], with associated ASTM standards documented in
[11]. Additionally, research development, including large-
scale testing sites for the establishment of critical criteria such
as Minimum Operational Performance Standards (MOPS)
have been carried out [15].

Two operating modalities for Remote ID are broadcast-
based versus network-based. Broadcast-based Remote ID
utilizes individual ground receiver modules which receive
Remote ID broadcasts from active drones and UAS [16].
In addition to Bluetooth and Wi-Fi, long-range (LoRA) ra-
dio has also been explored for broadcast-based Remote ID
[17]. Our work focuses on the broadcast-based modality,
as network-based Remote ID operates in a fundamentally
different manner [18]. Our planar setup of ground station
receivers and broadcast drone trajectories align with previous
work in [19] and [17]; for [19], an analysis of Bluetooth
and Wi-Fi coverage in one hub-and-spoke network topology
was performed using simulations. Our work complements and
extends [19] via an analytical derivation of expected coverage
proportions, as well as realistic, random Remote ID receiver
placements within a realistic UAM operating geography.

Finally, we note that the classical coverage problem, e.g.,
k-cover constructions wherein every point in an area is
covered by at least k sensors, has been well-studied [20],
[21]. However, these setups do not consider the coverage
of a trajectory, and mobile UAS have only been factored
in as sensors themselves (e.g., [22]), but not as the object
of surveillance and coverage. More specifically, our setting
can be considered as a trajectory-centered extension of the
Boolean disc-type coverage set up; we refer interested readers
to [23] for an extensive survey of Boolean disc-type coverage.
Other related setups include the usage of fixed traffic sensors
(e.g., stationary traffic cameras) to perform tasks such as con-
gestion characterization, traffic flow estimation, and trajectory
reconstruction [24], [25].

II. CONTRIBUTIONS OF WORK

The contributions of our work in this paper are as follows:

1) We derive explicit formulas for expected coverage pro-
portions under idealized environment and coverage area
geometries. These expected coverage proportions depend
on the method through which UAS trajectories are gen-
erated, as well as the Remote ID receiver technology
under consideration. We validate these formulas through
Monte Carlo simulations, and analyze differences in cov-
erage proportions under different trajectory generation
assumptions.

2) We conduct a simulation-based case study centered on
San Francisco, California, where we examine the num-
ber of Remote ID receivers required to attain specific
trajectory coverage proportions (e.g., 50% versus 95%
coverage) at different UAS cruising altitudes (200 feet
versus 400 feet) and using different Remote ID receiver
technologies (Bluetooth Legacy, Bluetooth Long Range,
Wi-Fi NAN/Beacon).

3) We provide an outline for a hybrid approach combining
both the idealized analysis and realistic geographies.
Additionally, we point out future directions for studying
Remote ID deployment strategies in terms of broadcast-
receiver architectures and coverage.



III. METHODS AND DATA

We present an idealized analysis of the Remote ID coverage
problem in Section III-A, and derive expressions for expected
coverage proportions given assumptions on the environment
geometry and origin-destination (OD) pair generation. We
then describe the setup and data used in our urban area
simulation-based case studies in Section III-B.

A. Idealized analysis

The setup for our idealized analysis of the Remote ID
coverage problem is as follows: We define the coverage area
of the Remote ID receiver to be a disk Dc with radius
rc > 0 centered at (x0, y0) in R2. We define the environment
containing possible OD pairs to be a circle Be with radius
re ≥ rc > 0, and we assume that the environment is centered
at the same coordinate (x0, y0) as DC . Future extensions of
this analysis could generalize the centers of Dc and Be such
that they do not coincide.

Figure 1. (a) Remote ID receiver coverage area Dc within environment Be,
with points of interest annotated; (b) Fixing point A with α = 0.

To generate an OD pair, we select two points A,B ∈ Be
in the environment at random (to be formalized later in this
section). Note that A and B lie on the circle Be, and can
be described by the coordinates (re cos(α), re sin(α)) and
(re cos(β), re sin(β)), respectively, for some angles α, β ∈
[0, 2π]. We can describe the midpoint M of the straight-line
drone trajectory between OD pairs A and B, which may or
may not lie in Dc, by the coordinates

(
re(cos(α) + cos(β))

2
,
re(sin(α) + sin(β))

2

)
. (1)

Now, if M lies in the coverage area Dc \ ∂Dc, we note that
the straight-line trajectory intersects the boundary ∂Dc of the
coverage area at two locations D and C. In this case, we
denote by L and Lp the portions of the straight-line trajectory
outside and inside Dc, respectively, and ` as the distance
between the midpoint and (x0, y0) (i.e., the length of the line
segment OM in panel (a) of Figure 1). We have the following
proposition:

Proposition 1 (Coverage proportion). Let P ∈ (0, 1] be the
coverage proportion. If the straight-line trajectory intersects
the boundary ∂Dc of the coverage area in two locations, we
have that

P =
Lp
L

=

√
r2c − `2
r2e − `2

. (2)

Proof. Following notation in Figure 1(a), the ratio Lp/L is
the same as the ratio of the lengths of line segments MD and
MB since M is the midpoint. This latter ratio is the same as
the ratio of the areas of triangles ∆OMD and ∆OMB as the
two triangles share the same height `. The expression in (2)
follows after noting that the areas of ∆OMD and ∆OMB are
`
√
r2c − `2/2 and `

√
r2e − `2/2, respectively. �

We now return to the key word of random when selecting
OD pairs to generate the straight-line trajectory for which we
are interested in the coverage proportion P . Given the reliance
of Proposition 1 on the midpoint M , we expect that, if we
were to sample random straight-line trajectories, the distribu-
tion of M in the coverage area will be important. However,
generating this trajectory – which is precisely a chord of Be
– is ambiguous: This is known as the Bertrand paradox [26].
For the purposes of our Remote ID coverage analysis, we are
interested in two cases: (i) Uniformly distributed endpoints,
and (ii) uniformly distributed midpoints.

1) Case (i): Uniformly distributed endpoints: This case
hinges on the following assumption:

Assumption 1. When randomly selecting a straight-line
trajectory (chord), we proceed by selecting endpoints that are
uniformly distributed along Be.
Recall from above our endpoints A,B with coordinates
(re cos(α), re sin(α)) and (re cos(β), re sin(β)), respectively.
Under Assumption 1, we note that this is equivalently to
selecting angles α, β uniformly, i.e., α and β are drawn
identically and independently from Unif[0, 2π]. By symmetry,
we note that we could set one of the angles to be fixed
arbitrarily (see Figure 1(b) for intuition); without loss of
generality, we set α = 0. The coordinates for midpoint M
can now be rewritten as (re(1 + cos(β))/2, re sin(β)/2).

In Figure 1(b) we visualize (via green-colored trajectories
with yellow-colored portions covered by the Remote ID
receiver) the intuition that the straight-line trajectory will only
have a non-zero coverage proportion for certain ranges of β.
However, since β is a random variable, the squared distance `2

from the midpoint M to (x0, y0) is a derived random variable,
since

`2 =

(
re(1 + cos(β))

2

)2

+

(
re sin(β)

2

)2

=
r2e(1 + cos(β))

2
.

(3)

Denote by PUDE the coverage proportion under Assumption
1. We observe that PUDE is also a derived random variable,
as it is a function of `2 from Proposition 1. Let E [PUDE]
be the expected coverage proportion under Assumption 1, we
have that

Proposition 2 (Case (i) expected coverage proportion). De-
fine the constant (deterministic) ratio ρ = rc/re. We have
that



E [PUDE] =
1

2π

∫ π+2 arcsin(ρ)

π−2 arcsin(ρ)

√
r2c − r2eγ(b)

r2e − r2eγ(b)
db, (4)

with γ(b) = 1+cos(b)
2 .

Proof. We omit the full proof for brevity, and give a sketch of
the proof: As shown in Figure 1(b), the expectation of P can
be derived from the expectation of the angles governing the
uniformly distributed endpoints. The upper and lower limits
of (4) denote the interval of β where coverage occurs. �

2) Case (ii): Uniformly distributed midpoints: Similar to
case (i), we begin by stating the following assumption:

Assumption 2. When randomly selecting a straight-line
trajectory (chord), we proceed by selecting its midpoint such
that it is uniformly distributed in Dc.
We note that, excluding the case of a circle’s diameter,
choosing the midpoint fixes a unique chord, i.e., straight-
line trajectory. We can exclude the case where the midpoint
falls precisely at (x0, y0) ∈ Dc as this happens with zero
probability (measure zero). Denote by ` the distance of the
randomly chosen midpoint to (x0, y0). We note that ` is a
random variable taking values in [0, re], and can write down
its cumulative density function F`(`?) explicitly:

F`(`
?) = Pr (` ≤ `?) =


π(`?)2

πr2e
, `? ∈ [0, re],

0, otherwise.
(5)

Accordingly, the probability density function f`(`?) is

f`(`
?) =

d

d`?
F`(`

?) =


2`?

r2e
, `? ∈ [0, re],

0, otherwise.
(6)

Denote by PUDM the coverage proportion under Assump-
tion 2. We observe that PUDM is a derived random variable as
it is a function of ` from Proposition 1. Let E [PUDM] be the
expected coverage proportion under Assumption 2, we have
that

Proposition 3 (Case (ii) expected coverage proportion). We
have that

E [PUDM] =

∫ rc

0

2l

r2e

√
r2c − l2
r2e − l2

dl, (7)

with rc ∈ (0, re).

Proof. We omit the full proof for brevity, and give a sketch of
the proof: Since PUDM is a function of the random variable
l?, its expectation can be obtained directly from the definition
for the expectation of a continuous random variable. �

The difference between the two expected coverage pro-
portions in (4) and (7) is due to the difference in terms of
midpoint distributions within the coverage area Dc. Under the
assumption of uniformly distributed endpoints (Assumption
1), the resultant midpoint distribution is denser closer to

Figure 2. Midpoint distribution within Dc for (a) Case (i) with uniformly
distributed endpoints; (b) Case (ii) with uniformly distributed midpoints.

(x0, y0). By comparison, the midpoint distribution by defini-
tion under Assumption 2 is uniformly distributed in Dc. We
plot and confirm this graphically in Figure 2 with Re = 1
and Rc = 0.5. Evaluating (4) and (7) numerically with
Re = 1 and Rc = 0.5 gives E [PUDE] ≈ 0.134 or 13.4%
and E [PUDM] ≈ 0.088 or 8.8%.

To summarize, we examined the Remote ID coverage
problem under specific geometric assumptions of the coverage
area and environment, given a Remote ID receiver with
coverage radius rc. We showed how differences in random
trajectory generation can give rise to two different expected
coverage proportions E [PUDE] and E [PUDM]. Without using
large-scale simulations, Remote ID location planning could be
approximated as scaled-up versions of the idealized setup, and
an estimation of expected coverage proportions made based
off of, e.g., (7). In Section IV we verify our expressions for
E [PUDE] and E [PUDM] via Monte Carlo simulations, and
also examine the difference ∆E[P ] = E [PUDE]− E [PUDM]
in expected coverage proportions under Assumption 1 versus
Assumption 2.

B. Urban area simulations

To simulate how choices in Remote ID receiver technolo-
gies, geographies, customer and vendor distributions, as well
as path planning algorithms may affect overall trajectory cov-
erage in real-world UAM settings, we use publicly available
data sets for San Francisco, California, US. Additionally, for
future studies, we prepared customer and vendor data sets for
New York City and Los Angeles as well: We chose these
cities based on their popularity in recent literature examining
various UAM applications such as drone package delivery
operations [27]–[30]. In addition, these major population
centers within the US have different densities of potential
customers, vendors, and building structures (e.g., building
heights), creating an ideal environment for our urban area
simulations.

For the simulation environment, we set the origin and des-
tination pair (OD pair) for one-way UAS flights to be located
at the geolocations of real-world stores and residents. We
assume that Remote ID receivers can be deployed on top of
buildings, and that the centers of city building footprints serve
as possible geolocations for these receivers. We retrieve the
geolocation data sets used for this study from OpenStreetMap
[31]. Specific geolocation data are organized by MyGeoData



[32], [33] into themed data sets. We chose to represent
customer locations using MyGeoData’s “Residential Land
Use” theme; this theme provides general areas within a city
that are predominantly occupied by single houses, grouped
dwellings, apartments, flats, and units. We used MyGeoData’s
“Shopping Centers and Department Stores” themed data set,
which provides building footprints and geolocation points of
general stores, department stores, malls, supermarkets, and
kiosks. Lastly, we chose MyGeoData’s “Buildings” theme
which provided the footprints and heights of individual and
connected buildings. These building footprints and associ-
ated heights represent obstacles that must be avoided by
the planned path of a drone. Additionally, these building
footprints from the Building-theme data set serve as potential
Remote ID receiver sites.

TABLE I
SUMMARY OF REMOTE ID RECEIVER TECHNOLOGIES

Case Study Group Radius Technology
R250 250 m Bluetooth Legacy [34]
R1000 1 km Bluetooth Long Range [34]
R2000 2 km Wi-Fi NAN, Wi-Fi Beacon [34]

Not Studied Several km’s LoRa [17]

For the urban case study experiments, we select between
different coverage radii depending on the Remote ID receiver
technology. This is equivalent to setting the rc parameter in
the idealized analysis. Future work will involve the rigorous
approximation of real-world geographies via the idealized
analysis, e.g., exploring set partitioning of a city into simpler
environments. In addition to varying the coverage radius of
a given Remote ID receiver, we also vary the following for
our experiments:

• Path planning method. We compare between two path
planning approaches commonly used in UAS traffic man-
agement research. The first is simple straight-line path
planning (SLPP) between the origin and the destination
(used in, e.g., [35]). We also explore rapidly exploring
random trees (RRT*) as a path planning algorithm [36],
which have been used in the context of UAM in, e.g.,
[37].

• Cruise altitude. We explore two different cruising alti-
tude for UAS, at 200 feet and at 400 feet.

• Coverage proportion. This parameter is equivalent to
P, PUDE, and PUDM defined in the idealized analysis.
For example, an average coverage proportion of 50%
indicates that, on average, 50% of a given trajectory
(with a fixed path planning algorithm) was covered by a
Remote ID receiver.

Additionally, we can explore different city geographies, given
the appropriate base maps (e.g., customer and vendor dis-
tributions). We note that the altitudes we use are below
current altitude maximums [38]; however, at further, lower
altitudes, computation time becomes more significant, as more
buildings and obstacles must be considered.

IV. IDEALIZED ANALYSIS RESULTS

We first verify our expressions for the expected cover-
age proportions under Assumptions 1 and 2 using Monte

Carlo simulations, where we randomly sample straight-line
trajectories with OD pairs lying in the environment Be. We
then examine the numerical differences between the expected
coverage proportions under Assumption 1 versus 2.

A. Monte Carlo-based verification

For the Monte Carlo setup, we first fix the radius of
the environment re ∈ {0.1, 1, 1.5, 2, 2.5}. For each fixed
environment radius re, we sample 10, 000 random straight-
line trajectories per rc coverage area radius, where rc ∈
{kre/5}k=5

k=1. The sampling method for Case (i) utilizes uni-
formly distributed endpoints, whereas for Case (ii) we use
uniformly distributed midpoints. We compute the empirical
mean of the coverage proportions across 10, 000 trials, as well
as the standard deviation, and plot them in Figure 3, overlaid
with the direct evaluations of (4) and (7). We observe a good
match between our analytical expressions for the expected
coverage proportions and the Monte Carlo results.

(a) Case (i)

(b) Case (ii)

Figure 3. Comparisons between analytical expressions for the expected
coverage proportions and Monte Carlo simulations, given re and rc, across
10, 000 trials.

B. Numerical differences in expected coverage proportions

Recall previously the discussion regarding the differences
between Case (i) and (ii) in terms of the midpoint distributions
within Dc. However, as rc varies between 0 and re, it is
not clear what is the numerical difference between Case (i)
and (ii). We would like to better understand when, e.g., the
expected coverage proportion for Case (i) is greater than Case
(ii), for the same re and rc values. We first note that this
difference does not appear to depend on re – hence, we fix



re = 1, and vary ρ = rc/re ∈ [0, 1]. We plot the difference
∆E[P ] = E [PUDE]− E [PUDM] versus ρ in Figure 4.

Figure 4. Numerical difference between the expected coverage proportion
from Case (i) versus Case (ii), plotted against ρ = rc/re.

We note that interestingly the expected coverage proportion
for Case (i) is larger for a portion of ρ values, then the
expected coverage proportion for Case (ii) becomes larger
past approximately ρ = 0.79 (recalling that re is fixed at 1).
We observe two points where the difference between the two
cases is maximized, first at approximately ρ = 0.5 (i.e., the
environment radius is twice as big as the coverage radius),
and when ρ ≈ 0.97 (i.e., when the coverage area is almost
as large as the environment). At the first extremum (ρ ≈
0.5), generating straight-line trajectories assuming uniformly
distributed endpoints produce larger coverage proportions in
expectation. At the second extremum (ρ ≈ 0.97), generation
via uniformly distributed midpoints produces larger expected
coverage proportions. At the trivial cases when ρ = 0 (no
coverage area) and ρ = 1 (coverage area matches the envi-
ronment), the difference ∆E[P ] between the two expressions
is 0, as expected.

V. URBAN AREA SIMULATION-BASED CASE STUDIES

A. Data set description

After obtaining labeled geolocation data sets of buildings,
vendors, and customers via MyGeoData and OpenStreetMap,
we simplified the layouts of the San Francisco occupancy
maps, origin points, and destination points to enable path
planning simulations. Expanding on the discussion in Section
III-B, MyGeoData breaks down OpenStreetMap data into pre-
defined themes (e.g., airports, banks, cafes), and extracts all
theme-associated data from a pre-defined region of interest
(ROI). For our case study, we choose the MyGeoData themes
of residential land use, shopping centers and department
stores, and buildings in order to simulate the customers,
vendors, and buildings in San Francisco.

The residential data sets highlight land containing residen-
tial dwellings, providing polygon geolocation coordinates for
these areas. Customer locations are determined by randomly
selecting the necessary number of geolocation coordinates
within all 2D regions labeled as residential land to serve as
possible drone destination locations. The data sets containing
shopping centers and department stores feature land and hub
centers associated with individual stores and supermarkets.
These data sets provide analogous polygon and point geolo-
cation coordinates for these commercial locations. One vendor

location is assigned to each point and polygon to represent
possible drone origin locations. Finally, the building data
sets provide geolocation coordinates for the footprints of all
buildings within the pre-defined ROI. The buildings serve as
obstacles for the path planning algorithms when constructing
the trajectory for an OD pair consisting of customers and
vendors. We provide visualizations of the building occupancy
at different altitudes in Figure 5.

(a)

(b)

Figure 5. Building occupancy maps for (a) San Francisco at 0 feet altitude
and (b) San Francisco at 200 feet altitude. Building occupancy at additional
altitudes (i.e., 400 feet) used in the experiment is not shown for brevity.

We visualize the geographies of customers and vendors for
each city in Figure 6. As can be seen in Figure 6, vendor
and customer sites located outside of a given city’s ROI
boundaries are disregarded in the simulation. This is to adhere
to city-specific customer population densities, as well as to
ensure that UAS origins and destinations remain within the
pre-defined ROI. We retain all buildings and potential Remote
ID receiver locations within a convex polygon encompassing
the city; we do this to ensure accurate representation of
obstacles and potential coverage centers across all possible
trajectories. Finally, in terms of case study environmental
statistics, we note that San Francisco has a population per km2



of approximately 7,200 persons [39]. Within San Francisco,
there are 0.5 store sites per km2, with approximately 555
buildings per km2 [31], [32].

Figure 6. Locations of customers and vendors for San Francisco.

B. Case study results

Prior to discussing the case study results, we provide
visualizations of the case study setup in Figure 7. Using
data related to vendors and customers, we randomly select
OD pairs for path planning. We also generate a random
distribution of Remote ID receivers within the ROI. The cov-
erage radius rc depends on the selected Remote ID receiver
technology (e.g., Bluetooth, Wi-Fi), and coverage areas are
visualized as red circles in Figure 7. The coverage proportion
of a single trajectory is given by the length of covered (i.e.,
detected, the red-colored portions of the trajectories in Figure
7) trajectories divided by the total length of the trajectory. We
continue sampling until we achieve convergence in terms of
the average coverage proportion per scenario. Recall that a
scenario denotes a fixed altitude, a fixed Remote ID receiver
technology, and iterating through a number of receivers
(for SLPP). For RRT*, due to its computational intensity
compared to SLPP, the number of receivers is informed by
the analogous scenario under SLPP. In addition, we only
perform 1 trial of 200 randomly sampled trajectories for
RRT*; this is because we observe good convergence in terms
of the coverage proportion, and it reduces the computation
time required for conducting simulations involving RRT*.
Finally, we also examine the differences in average coverage
proportions between the two path planning methods.

We list results for SLPP in Table II. We present the number
of Remote ID receivers needed to achieve three different
desired coverage proportions, selecting between three differ-
ent Remote ID receiver technologies (Bluetooth Legacy –
R250; Bluetooth Long Range – R1000; Wi-Fi NAN/Beacon –
R2000). Note that for SLPP, we do not factor in the altitude as
we are interested only in the straight-line path for an OD pair
– this is not the case for RRT*. We observe that the required

number of Remote ID receivers can vary drastically across
different broadcast technologies, although the convergence in
terms of average coverage proportions is good compared to
the desired average coverage proportion.

Results for RRT* are listed in Table III. Recall that for
RRT*, we fix the number of Remote ID receivers used to
achieve a specific average coverage proportion for SLPP, and
evaluate the converged average coverage proportion when
using RRT* as the path planning algorithm. We note some
interesting differences, such as in the case between 200
versus 400 feet for the nominally 50% coverage scenario:
Even though SLPP achieved approximately 50% coverage,
using RRT* results in a higher coverage proportion at higher
altitudes. We also note particularly drastic cases of higher
coverage under RRT* for larger radii, as compared to SLPP.

Finally, we briefly remark on observed convergences be-
tween SLPP and RRT*. In Figure 8, we plot 200 randomly
sampled trajectories for two scenarios: R2000 (i.e., Wi-Fi
NAN/Beacon) at 75% desired coverage proportion, 200 feet
cruising altitude in panel (a), and R250 (i.e., Bluetooth
Legacy) at 95% desired coverage proportion, 400 feet cruising
altitude in panel (b). We observe that even after only 200 ran-
domly generated trajectories, the running average of coverage
proportions appear to stabilize. We note that in Figure 8(a),
this was for one trial (out of 20) for SLPP – the average across
all trials is what is reported in Table II as 75.5%.

C. Hybrid analysis outline

Recall from the idealized analysis that, assuming specific
geometries for the environment Be and coverage area Dc,
along with how trajectories between origins and destinations
are generated, we can explicitly compute the expected cover-
age proportion. Given the computational intensity discussed
previously in this section with respect to simulating individual
trajectories, particularly if more sophisticated path planning
algorithms are assumed to be used, a reasonable “hybrid”
approach may be to use geographic partitioning, approxima-
tions, and repeated applications of, e.g., (4) or (7). Using
Figure 9 as a visual guide, the outline for this hybrid approach
is as follows:

1) Select a desired re for each individual Be to be used in
packing the ROI. This selected re should be greater than
or equal to rc (fixed based on the Remote ID receiver
technology of interest).

2) Using a packing heuristic (e.g., [40]), pack the ROI with
K numbers of environments B1e , . . . ,BKe each with its
own coverage area D1

c , . . . ,DKc . Note that Bie and Dic
are centered at

(
xi0, y

i
0

)
for i = 1, . . . ,K .

3) Given a trajectory from an origin to a destination,
decompose the trajectory into

⋃
i τi where each τi is

associated with a specific environment (and coverage
area) {Bie,Dic}.

4) Compute the average coverage proportion expected per
trajectory segment τi analytically via (4) or (7), and
report the final coverage proportions averaged across all
possible trajectories in the ROI, along with approxima-
tion errors ε as not all portions of the trajectory may be
covered by an environment B1e , . . . ,BKe .



(a) (b)

Figure 7. Sample OD drone paths at 200 feet cruising altitude, with 2 km radius Remote ID receivers overlaid, for San Francisco with (a) SLPP and (b)
RRT*.

TABLE II
NUMBER OF REMOTE ID RECEIVERS NEEDED TO ACHIEVE COVERAGE PROPORTIONS [%] FOR SLPP, 20 TRIALS OF 1,000 TRAJECTORIES EACH

Number of Remote ID Receivers Convergence Values [%]
50% 75% 95% 50% 75% 95%

R250 525 1300 5000 51.5 76.5 94.3
R1000 30 65 160 51.6 74.8 94.7
R2000 8 15 35 53.7 75.5 93.4

TABLE III
CONVERGED COVERAGE PROPORTIONS [%] FOR RRT* AFTER 200 RANDOMLY SAMPLED TRAJECTORIES, GIVEN (FIXED) NUMBER OF REMOTE ID

RECEIVERS REQUIRED FOR 50%, 75%, AND 95% COVERAGE UNDER SLPP

Convergence Values [%]
R250 R1000 R2000

Altitude [ft.] 50% 75% 95% 50% 75% 95% 50% 75% 95%
200 54.7 75.4 94.1 48.3 71.3 92.5 71.9 82.1 91.3
400 49.1 71.1 93.2 61.2 79.3 96.7 71.2 80.0 98.4

This approach of partitioning the trajectories per environment
aligns most closely with the case of uniformly distributed
endpoints, assuming that OD pairs are randomly generated
with no consideration of Bie boundaries. Future analysis will
be needed to determine exactly how the random process
of OD generation maps to randomly sampled points on Bie
boundaries. Additionally, an open question is how overlapping
environments (as is shown in Figure 9) will impact Remote
ID receiver coverage estimations.

VI. CONCLUDING REMARKS

Remote ID standards for UAM and AAM applications are
safety-critical, and required for procedures such as counter-
UAS operations, UAS traffic management (UTM), and low-
altitude airspace management. In this work, we address the
problem of trajectory coverage by Remote ID receivers in
urban settings: Specifically, we assume a broadcast-receive
architecture for Remote ID, and conduct (1) an idealized
analysis of expected coverage proportions, as well as (2) a
simulation-based case study with realistic urban geographies
and path planning techniques. Under simplified geometries,
we derived explicit equations for the expected coverage

proportion, given the coverage radius of a Remote ID receiver.
For the urban case studies, we explored the number of Remote
ID receivers needed to achieve specific average coverage pro-
portions in San Francisco. In designing the San Francisco case
study, we considered different path planning assumptions,
vendor and customer densities, Remote ID receiver distribu-
tions and broadcast technologies, as well as cruise altitude.
The results and models from our idealized and simulation-
based urban case study can be used by municipal authorities
and AAM stakeholders for guidance when implementing
future Remote ID systems for UAM and AAM applications.

A. Limitations and future work

For our idealized analysis, we assumed specific geometries
and overlaps between the coverage area and the environment.
Furthermore, for both the idealized analysis and the urban
case study, we made simplifying assumptions regarding drone
dynamics as well as the reception capabilities of the Remote
ID receiver (e.g., [19] focuses on communication bandwidth
in Remote ID setups). Readily-available extensions include
performing the coverage characterization using different city
geographies, such as New York City and Los Angeles (see



Slpp
RRT*

<latexit sha1_base64="QaSO8Nml4ksLr+h3zJG2c/gcvIM=">AAACOXicbVDLSsNAFJ3UV62vqks3wSKISEnqQpdFNy5r7QuaUCbTSTt0kgwzN2IJ+S03/oU7wY0LRdz6A07bCNp64cLhnPs8nuBMgWU9G7ml5ZXVtfx6YWNza3unuLvXUlEsCW2SiEey42FFOQtpExhw2hGS4sDjtO2NriZ6+45KxaKwAWNB3QAPQuYzgkFTvWItcaZDunLguYlVtqZxugBSB+g9KJLcciHSguMU6vXGjIuFnk8kE5CcpGmvWPrpMReBnYESyqLWKz45/YjEAQ2BcKxU17YEuAmWwAinelWsqMBkhAe0q2GIA6rcZHp0ah5ppm/6kdQZgjllf3ckOFBqHHi6MsAwVPPahPxP68bgX7gJC0UMNCSzRX7MTYjMiY1mn0lKgI81wPp3fatJhlhiAtqMgjbBnn95EbQqZfusXLmplKqXmR15dIAO0TGy0TmqomtUQ01E0AN6QW/o3Xg0Xo0P43NWmjOynn30J4yvbzTaqlY=</latexit>

Slpp
RRT*

<latexit sha1_base64="QaSO8Nml4ksLr+h3zJG2c/gcvIM=">AAACOXicbVDLSsNAFJ3UV62vqks3wSKISEnqQpdFNy5r7QuaUCbTSTt0kgwzN2IJ+S03/oU7wY0LRdz6A07bCNp64cLhnPs8nuBMgWU9G7ml5ZXVtfx6YWNza3unuLvXUlEsCW2SiEey42FFOQtpExhw2hGS4sDjtO2NriZ6+45KxaKwAWNB3QAPQuYzgkFTvWItcaZDunLguYlVtqZxugBSB+g9KJLcciHSguMU6vXGjIuFnk8kE5CcpGmvWPrpMReBnYESyqLWKz45/YjEAQ2BcKxU17YEuAmWwAinelWsqMBkhAe0q2GIA6rcZHp0ah5ppm/6kdQZgjllf3ckOFBqHHi6MsAwVPPahPxP68bgX7gJC0UMNCSzRX7MTYjMiY1mn0lKgI81wPp3fatJhlhiAtqMgjbBnn95EbQqZfusXLmplKqXmR15dIAO0TGy0TmqomtUQ01E0AN6QW/o3Xg0Xo0P43NWmjOynn30J4yvbzTaqlY=</latexit>

(a)

(b)

Figure 8. Running average of coverage proportions for SLPP and RRT*

across 200 sequential, independently sampled trajectories, under (a) R2000
at 75% desired coverage proportion, 200 feet cruising altitude; (b) R250 at
95% desired coverage proportion, 400 feet cruising altitude. Note that y-axis
limits are identical for ease of comparison.
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Figure 9. Notional overview figure of integrating the idealized coverage
analysis from Section III-A with real-world geographies.

Figure 10). Future work includes relaxing assumptions that
leads to generalizing our idealized analysis (e.g., not requiring
the Remote ID receiver to be centered at the environment’s
center), incorporating random dropout and communication
errors, along with field testing to validate our results using
real drones and physical Remote ID setups.
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VII. APPENDIX
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Figure 10. Locations of customers and vendors for (a) New York City and
(b) Los Angeles.
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