
Opacity-enforcing active perception and control

against eavesdropping attacks �

Sumukha Udupa , Hazhar Rahmani , and Jie Fu

University of Florida, Gainesville FL 32611, USA
{sudupa, h.rahmani, fujie}@ufl.edu

Abstract. In this paper, we consider opacity-enforcing planning with
temporally-extended goals in partially observable stochastic environment.
We consider a probabilistic environment modeled as partially observable
Markov decision process (POMDP) in which the observation function is
actively controlled as the agent decides which sensors to query at each
decision step. The agent’s objective is to achieve a temporal objective,
expressed using linear temporal logic for finite traces (LTLf ), while mak-
ing achieving its goal opaque to a passive observer who can access the
sensor readings of a subset of sensors that are unsecured. Opacity, as a
security property, means that when from the observer’s perspective, the
execution that satisfied the temporal goal is observational-equivalent to
an execution that does not satisfy the temporal goal. When both secured
and unsecured sensors are available upon query, the agent must be se-
lective in its sensor query to prevent information leaking to the observer
and to ensure task completion. We propose an algorithm that synthesizes
a strategy that decides jointly the control actions and sensor queries to
guarantee that the temporal goal is achieved and made opaque with
probability 1. Our approach is based on planning with augmented belief
state space. Further, we show how to employ properties in the temporal
logic formula to reduce the size of the planning state space and improve
scalability. We show the applicability of our algorithm on a case study
with robotic planning in a stochastic gridworld with partial observations.

Keywords: Game theory · Opacity · Markov decision processes · Eaves-
dropping Attacks.

1 Introduction

Opacity is a security property, specified for a system interacting with a passive
observer (also called an attacker). By enforcing opacity, the goal is to make the
attacker, who knows the system model and observes the system execution, con-
fused about if a secret state has been reached or a secret behavior has been real-
ized. The notion of opacity was first introduced by Mazaré [13] for cryptographic
protocols. Since then, variants of opacity have been studied for di↵erent classes

� This work was supported in part by ARL W911NF-22-2-0233, ARO W911NF-22-1-
0034, and NSF #2144113.

https://orcid.org/0000-0002-7462-9843
https://orcid.org/0000-0002-6342-2273
https://orcid.org/0000-0002-4470-2827


2 Udupa et al.

of systems including Petri nets[4], labeled transitions systems [3], finite state au-
tomata [15], probabilistic finite automata [18], hidden Markov models [10], and
Markov decision processes (MDPs) [1]. Depending on the nature of the secret
to be made opaque, there are di↵erent variants of opacity, including state-based,
which requires the secret behavior of the system (i.e., the membership of its
current state to the set) to remain opaque (uncertain) until the system enters a
non-secret state; language-based, which aims to hide a set of secret executions;
and “model-based”, which wants to prevents the observer to find out the true
model of the system among several potential models known to the observer.

In this work, we investigate language-based opacity in stochastic systems with
asymmetric, incomplete information to the planning agent and the eavesdrop-
ping attacker. To motivate the problem formulation, consider a scenario where
an autonomous robot, denoted Player 1 (P1), is entrusted with the confidential
task of delivering vital medical supplies to remote camp sites. The robot must
retrieve these supplies from a base station and navigate through a probabilistic
environment characterized by slippery conditions and the absence of GPS sig-
nals. P1 employs a sensor network to monitor its own location. However, this
sensor network includes certain vulnerable sensors that leak information to an
adversarial observer. The planning question is how can the robot ensure the
success of its mission, while ensuring its opacity to the observer? That is, the
observer cannot tell if the task is achieved or not from the observations. This
problem is interesting because instead of considering a passive observer/attacker
has a stationary observation function, the robot can strategically select sensor
queries and thus control the amount of information leaked to the attacker with
access to only unsecured sensors.

Our approach and contributions: We propose to investigate a joint ac-

tive perception and control framework for the planning agent (P1) to decide
if the opacity and mission success can be both achieved given di↵erent initial
states of the stochastic system and initial observations for both P1 and the pas-
sive observer (P2). Our contributions involve incorporating 2-beliefs system to
capture P1’s knowledge about the current state and P1’s knowledge about P2’s
knowledge about the current state. Reasoning with this 2-beliefs system, we de-
velop an algorithm that computes a strategy for P1 that actively selects which
sensor to query and which control action to exercise to ensure satisfaction of the
mission objective and opacity constraint simultaneously. However, maintaining
and updating the 2-belief system requires exponential memory due to the sub-
set construction. To address the issue of scalability, we introduce a method to
determine when to stop tracking P2’s belief, while ensuring the correctness in
the computed strategy. Finally, we demonstrate the correctness of our method
on robot motion planning in a stochastic gridworld environment with partial
observations provided by range sensors and location sensors.

Related Work: Opacity-enforcing control has been extensively studied in
the context of discrete event systems (DESs). Previous work in the supervi-
sory control framework focuses on enforcing opacity in deterministic systems by
modeling the control system as a deterministic finite state automaton in the



Opacity-enforcing active perception and control 3

presence of a passive observer [14,15,23]. Di↵erent approaches have been pro-
posed to synthesize opacity [5,21,22] or to verify if a system is opaque [16,11,20].
To synthesize opacity in deterministic systems, Saboori et al. [17] synthesizes
supervisor that restricts certain system behaviors to ensure opacity. Cassez et

al.[5] propose the use of dynamic masks that filter out unobservable events and
verify the opaqueness of a secret by reducing the opacity enforcement problem to
a 2-player safety game. Xie et al. [22] design non-deterministic supervisors (con-
troller) so that the observer, knowing the nondeterministic supervisor, cannot
determine if a secret is satisfied or not. Besides masking and nondeterministic
control design, [9,21] investigate how to edit the observations to ensure opacity
using a non-deterministic edit function.

Game-theoretic approach for opacity enforcement has also been proposed.
Maubert et al. [12] introduce the game with opacity condition, in which one
player with perfect observation aims to enforce current-state opacity against an-
other player with imperfect observation during their two-player interactions.
They reduce the opacity-guarantee game to a safety game and the opacity-
violating game to a reachability game, for which existing solution can be used
to solve players’ strategies. Hélouët et al.[8] present a framework for enforcing
opacity against di↵erent types of attackers with di↵erent information about the
input and the observations. The existing approaches for opacity-enforcement in
deterministic systems or games are not applicable for stochastic systems with
partial observations to both the system and the observer.

For opacity in stochastic DESs, Saboori and Hadjicostis [18] propose three
probabilistic variants of current state opacity and develop opacity verification
algorithms for systems modeled as probabilistic finite automata. Keroglou and
Hadjicostis [10] investigate model-based opacity where the user wants to conceal
a true system modeled by a hidden Markov model among several potential hidden
Markov models from an intruder. Bérard et al. [1] extend language-based opacity
for !-regular properties on MDPs. They assume a static observation function
and present several decidability results. In contrast, we focus on synthesizing an
opacity-enforcing strategy for an agent operating in a stochastic environment
and utilizing active sensor queries of secured and unsecured sensors.

2 Preliminaries and Problem Formulation

Notations. Given a finite set X, D(X) denotes the set of all probability distri-
butions over X. For a probability distribution d ∈ D(X), Supp(d), the support
of d, is the set of elements in X with non-zero probabilities under d.

We model the interaction between an agent, Player 1/P1, and the environ-
ment as a Partially Observable Markov Decision Process (POMDP). The agent
actively queries sensors in the environment to obtain task-relevant information.

Definition 1 (POMDP with active perception). The stochastic system
with partial observations is a tuple

M = (S,A,P,⌦,� = �1 ∪ �2,O, s0,!0,!
+

0 ,AP,L)



4 Udupa et al.

in which (1) S is a finite set of states; (2) A is the set of P1’s control actions that
change the state in S; (3) P ∶ S ×A→ D(S) is a probability transition function
such that for each s, s′ ∈ S and a ∈ A, P(s, a, s′) is the probability of reaching s′

given action a taken at state s; (4) ⌦ ⊆ 2S is the set of all observations; (5) � =
{�0,�1,�,�N} is a set of indexed sensors, partitioned into secured sensors �1

and unsecured sensors �2; (6) O ∶ S × 2� → ⌦ is the observation function such

that for a state s ∈ S and a sensor subset X ⊆ � , O(s,X) ∈ ⌦ is the set of states

whose sensor readings for sensor set X are the same as the readings given state

s (we call O(s,X) the set of observation-equivalent states to s based on sensor

information in X); (7) s0 ∈ S is the initial state; (8) !0 and !+0 are respectively

the initial observations of P1 and P2, where s0 ∈ !0 ∩!+0 and !0 ⊆ !+0 ; (9) AP is

a set of atomic propositions; and (10) L ∶ S → 2AP
is the labeling function that

maps a state s ∈ S to a set L(s) of atomic propositions evaluated to true at s.

The following regularity assumption is made on the observation function.

Assumption 1 Let X1,X2 ⊆ � be two sets of sensors. If X1 ⊆X2, then for any

state s ∈ S, O(s,X2) ⊆ O(s,X1).

That is, the more sensor readings the less uncertainty about the current state.
A perception action is a subset of sensors being queried. A joint control and

perception action of P1, or a control-perception action for short, is a tuple (a,X)
including a control action a ∈ A and a perception action X ⊆ � . In the following,
by a P1’s action, we mean a control-perception action, from A1 = A × 2� .

We consider an eavesdropping attacker, Player 2/P2, who accesses the infor-
mation from the unsecured sensors queried by P1.

Definition 2 (Observations of an eavesdropping attacker P2). For any

state s ∈ S, for any perception action X ⊆ � performed by P1 when the system

entered s, P2’s observation is O(s,X∩�2) where X∩�2 is the subset of unsecured

sensors in the queried sensor set X. In addition, P2 does not observe the control

actions taken by P1.

Remark 1. We assume that a sensor will emit signal only if it is queried by P1
and P2 can only obtain information from the unsecured sensors queried by P1.
However, this assumption can be easily lifted for the case where there is a subset
Z of sensors that always emit signals and P2 can access the subset of unsecured
sensors in Z at all times. In this case, we only need to include these sensors Z
into each perception action of P1.

Game Play. The game play in M is constructed as follows. The game starts
from the initial state s0, P1 gets the observation !0, and P2 receives observation
!+0 . Based on !0, P1 takes an action (a0,X0) ∈ A1. The system then moves to a
state s1, drawn randomly based onP(s0, a0, ⋅). P1 receives observation O(s1,X0)
and P2 receives observation O(s1,X0∩�2). At each step, P1 can either decide to
terminate the game play or take a control-perception action and move to the next
state. Assuming that the game play will be eventually terminated, the resulting
play is a finite sequence of state-action pairs ⇢ = s0(a0,X0)s1(a1,X1)s2 . . . sn



Opacity-enforcing active perception and control 5

such that P(si, ai, si+1) > 0 for all integers 0 ≤ i < n. The labeling of this play is
L(⇢) = L(s0)L(s1) . . . L(sn). The set of finite plays inM is denoted by Plays(M).

The finite play generates a sequence of observations for both players. For P1,
given that P1 knows his own action decisions, we have

O1(⇢) = !0(a0,X0)!1(a1,X1) . . .!n,

where !0 is the initial observation and for i ≥ 1, !i is the observation of state
si given the sensor query Xi−1, i.e., !i = O(si,Xi−1). For P2, as P1’s control
actions are invisible,

O2(⇢) = !+0 (X0 ∩ �2)!+1 (X1 ∩ �2) . . . (Xn−1 ∩ �2)!+n,

where !+0 is the initial P2’s observation and for i ≥ 1, !+i is P2’s observation of
state si given the sensor query Xi−1 ∩ �2, i.e., !

+

i = O(si,Xi−1 ∩ �2). Two plays
⇢1,⇢2 ∈ Plays(M) are observation-equivalent to player i i↵ Oi(⇢1) = Oi(⇢2).
Given a play ⇢ ∈ Plays(M), we denote by [⇢]1 (resp. [⇢]2) the set of plays that
are observation-equivalent to ⇢ from P1’s perception (resp. P2’s perception). The
set of all sequences of observations P1 (resp. P2) can observe for the plays of M
is denoted Obs1(M) (Obs2(M)). The inverse of observation function for player
i is the function O−1i ∶ Obsi(M) → 2Plays(M) such that for each ⌘ ∈ Obsi(M),
O−1i (⌘) = {⇢ ∈ Plays(M) � Oi(⇢) = ⌘}. The following property is easy to prove:

Proposition 1. For every play ⇢ ∈ Plays(M) and for each player i,
⇢ ∈ O−1i (Oi(⇢)).

Objective in temporal logic: P1 has a temporal objective ' specified in
Linear Temporal Logic over Finite Traces (LTLf ). The syntax of LTLf formulas
is given as follows.

Definition 3 (LTLf [7]). Let AP be a set of atomic propositions. An (LTLf )

formula over AP is defined inductively as follows:

' ∶= p � ¬' � '1 ∧'2 � '1 ∨'2 ��' � '1U'2 � 3' � 2',

where p ∈ AP ; ¬, ∧ and ∨ are the Boolean operators negation, conjunction and

disjunction, respectively; and � , U , 3 and 2 denote the temporal modal oper-

ators for next, until, eventually and always respectively.

The operator �' specifies that formula ' holds at the next time instant,
while the operator '1U'2 denotes that there exists a future time instant at
which '2 holds, and that '1 holds at all time instants up to and including that
future instant. That is, the system must satisfy '1 continuously until a time
instant in future at which '2 holds. The temporal operator 3' specifies that '
holds at some instant in the future and the operator 2' specifies that ' holds
at all time instants from the current instant.

For any LTLf formula ' over AP , a set of words Words(') ⊆ (2AP )∗ that
satisfy the formula is associated. A finite word w ∈ (2AP )∗ satisfies ', denoted
by w � ', i↵ w belongs to Words('). See [7] for detailed semantics of LTLf .

To illustrate our definitions, we introduce a running example.



6 Udupa et al.

Example 1. (Part I) Consider the POMDP in Fig.1. To reduce visual clutter,
only the transitions with non-zero probabilities are drawn and the exact proba-
bilities of those transitions are omitted. The POMDP has 5 states, s1 through s5,
and the sensor set � consists of sensors, A,B,C and D, which cover {s2, s3}, {s3},
{s4, s5} and {s2, s3, s4}, respectively (shown by the dotted shapes in the figure).
All the sensors are Boolean sensors. A Boolean sensor returns True when the cur-
rent state is covered by the sensor and False otherwise. This sensor set is divided
into the secured sensors �1 = {B} and the unsecured sensors �2 = {A,C,D}. P1’s
task is to eventually reach state s5, which is expressed using the LTLf formula
' = 3 s5. An example of the observations obtained by P1 and P2 is as follows.
P1 starts from state s1 and takes a control-perception action (a,{A,B}), and
reaches state s2 probabilistically. P1 obtains the observations based on both the
sensors and thus O1(s2,{A,B}) = {s2}, while P2 obtains the observations only
based on the unsecured sensors O2(s2,{A,B} ∩ �2) = O2(s2,{A}) = {s2, s3}.

s1start

s2

s3

s4

s5

a, b

a, b

a

b

b

a

a, b

Fig. 1: An illustrative running example, POMDP with active perception M . The
dashed region represents the sensors: red(A), blue(B), green(C) and violet(D).

P1’s Strategy. In the POMDP with active perception M , P1 has to simul-
taneously either determine a control-perception action or terminate the game.
A finite-memory, randomised strategy for P1 is a function ⇡ ∶ Plays(M) →
D(A1∪{�}) where �means P1 terminates the play. Because P1 has partial obser-
vations, P1 can only use observation-based strategy ⇡ ∶ Obs1(M)→ D(A1∪{�})
that maps an observation of a play to an action. P1 maintains for each time step
k, the observation sequence ⌘k = w0(a0,X0)w1 . . .wk it has perceived up to time
step k, and then, it feeds ⌘k to ⇡ to choose an action. A policy ⇡ induces a prob-
ability distribution Pr⇡ over Plays(M). Let ⇧ be the set of all finite-memory,
randomized, observation-based strategies for P1.

Definition 4 (Qualitative opacity). An LTLf formula ' is opaque to P2

with respect to a play ⇢ ∈ Plays(M) if and only if 1. L(⇢) � '; and 2. there exists

at least one observation-equivalent play ⇢′ ∈ [⇢]2 such that L(⇢′) �� '.

In words, P2 cannot tell from its observation if the formula is satisfied or not.

Definition 5 (Opacity-enforcing winning play). Given a secret ', a play

⇢ ∈ Plays(M) is winning if L(⇢) � '. The set of winning plays is denoted WPlays.



Opacity-enforcing active perception and control 7

A winning play ⇢ is opaque-enforcing winning if ' is opaque to P2 with respect

to ⇢. The set of opacity-enforcing winning plays is denoted OWPlays.

Definition 6 (Opacity-enforcing winning strategy). Given a prefix ⇢ ∈
Plays(M), a strategy ⇡ ∈ ⇧ is said to be a winning strategy for P1 if P1 can

ensure to satisfy ' with probability one, that is, Pr⇡({⇢′�⇢ ⋅ ⇢′ ∈ WPlays)} = 1.
A strategy ⇡ is said to be opacity-enforcing winning strategy for P1 if P1 can

enforce an opacity-enforcing winning play starting from ⇢ with probability one,

that is, Pr⇡({⇢′�⇢ ⋅ ⇢′ ∈ OWPlays}) = 1.

Problem 1. Given a POMDP with active perception M in Def.1 and P1’s spec-
ification ', given that P2 receives all sensor readings from insecured sensors,
compute, if exists, an opacity-enforcing winning strategy for P1.

3 Main Result: Opacity-Enforcing Winning with 2-beliefs

In this section, we present a solution to Problem 1. We first make use of the
fact that an LTLf formula can be represented as a deterministic finite au-
tomaton to construct a product POMDP that augments the original POMDP
states with task-relevant information. We use this product POMDP to formulate
the opacity-enforcing planning problem and present solutions to compute P1’s
opacity-enforcing winning strategy using joint active perception and control.

As a first step, we encode the LTLf formula into a finite-state automaton.

Definition 7 (Deterministic Finite Automaton (DFA)). A DFA is a tuple

A = (Q,⌃, �, ◆, F ) with a finite set of states Q, a finite alphabet ⌃, a transition

function � ∶ Q ×⌃ → Q, an initial state ◆, and a set of accepting states F ⊆ Q.

We assume the transition function is complete. That is, for any (q,�) ∈ Q ×⌃,
�(q,�) is defined. 1 The extended transition function � ∶ Q ×⌃∗ → Q is defined
in the usual manner, i.e. , for each state q ∈ Q and word w0w1 . . .wn ∈ ⌃∗,
�(q,w0w1 . . .wn) = �(�(q,w0),w1 . . .wn). Word w = w0w1 . . .wn ∈ ⌃∗ is accepted
by A if and only if �(◆, w) ∈ F . The language of A, denoted L(A), consists of
all those words accepted by A, i.e. , L(A) = {w ∈ ⌃∗ � �(◆, w) ∈ F}.

The algorithm uses the idea of De Giacomo and Vardi [7] to convert the
LTLf formula ' into a DFA A with ⌃ = 2AP such that Words(') = L(A). From
now on, we assume ⌃ = 2AP . In the next step, we construct a product POMDP
from the POMDP M and the DFA A to determine whether P1 can enforce an
opacity-enforcing winning play from the initial state s0.

Definition 8 (Product POMDP). The product POMDP between the POMDP

with active perception M = (S,A,P,⌦,� = �1∪�2,O, s0,!
0
1 ,AP,L) and the DFA

A = (Q,⌃, �, ◆, F ) is a tuple

M = (S ×Q,A,�, T, (s0, q0), Z,O,B0
1 ,B

0
2 , S × F )

1 Any incomplete transition function can be made complete by adding a sink state
and redirecting all the missing transitions to it.



8 Udupa et al.

in which (1) S ×Q is the set of states; (2) A is the set of control actions; (3) �
is the set of sensors; (4) T ∶ (S ×Q) ×A → D(S ×Q) is the transition function

s.t. for states (s, q) and (s′, q′) and action a, T ((s, q), a, (s′, q′)) = P(s, a, s′) if
�(q,L(s′)) = q′. Otherwise, T ((s, q), a, (s′, q′)) = 0; (5) (s0, q0) is the initial state
where q0 = �(◆, L(s0)); (6) Z ⊆ 2(S×Q) is the set of observations; (7) O ∶ (S×Q)×
2� → Z is the observation function s.t. for a state (s, q) ∈ S×Q and sensor subset

X ⊆ � , O((s, q),X) = O(s,X) ×Q; (8) B0
1 = {(s, q) � s ∈ !0, q = �(q0, L(s))} is

the initial observation for P1; (9) B0
2 = {(s, q) � s ∈ !+0 , q = �(q0, L(s))} is the

initial observation for P2; and (10) S × F is the set of goal states.

A finite play � = (s0, q0)(a0,X0)(s1, q1)(a1,X1) . . . (sn, qn) in M, by the
construction of the product POMDP, can be projected into a single finite play
⇢ = s0(a0,X0)s1(a1,X1) . . . sn in M . The projection of plays in M to plays in
M is a bijection due to the deterministic transitions in the DFA.

By construction, the play ⇢ satisfies the specification ' i↵ there exists an
integer 0 ≤ i ≤ n such that (si, qi) ∈ S × F .

The observation function in this product game is used to update both P1’s
belief and P2’s belief. Let X be a sensor query performed by P1 and (s, q) ∈ S×Q
be the state the product gameM enters. P1’s belief about the current state is
updated using O((s, q),X) and P2’s belief is updated using O((s, q),X ∩ �2).
For this product game, function PostM ∶ (S × Q) × A → 2S×Q maps a state
(s, q) ∈ S × Q and an action a ∈ A to the set of possible reachable states as
PostM((s, q), a) = {(s′, q′) ∈ S × Q � T ((s, q), a, (s′, q′)) > 0}. We extend this
function for domains 2(S×Q) ×A and 2(S×Q) × 2A such that for each B ⊆ S ×Q,
a ∈ A, and Y ⊆ A, PostM(B,a) = �

(s,q)∈B
PostM((s, q), a) and PostM(B,Y ) =

�
a∈Y

PostM(B,a). Given a state (s, q) ∈ S × Q, we use M[(s, q)] to denote a

product POMDP obtained fromM by letting (s, q) to be the initial state.

3.1 Computing an opacity-enforcing strategy

From the product POMDP M, we formulate a one-player stochastic game to
model the interaction of P1 and the environment, along with P2’s observation.

Definition 9 (POMDP augmented with 2-beliefs). Given the product

POMDP M = (S × Q,A,�, T, (s0, q0), Z,O,B0
1 ,B

0
2 , S × F ), the POMDP aug-

mented with 2-beliefs is a tuple

G = �V,A1, v0, VF ,��,

where (1) V = {((s, q),B1,B2) � s ∈ S, q ∈ Q,B1 ⊆ (S×Q),B2 ⊆ (S×Q)} is the set

of states, where B1 and B2 are beliefs of P1 and P2, respectively; (2) A1 = A×2�
is the set of control-perception actions that can be taken by P1, as given in M;

(3) v0 = ((s0, q0),B0
1 ,B

0
2) is the initial state; (4) VF = {((sF , qF ),BF

1 ,BF
2 ) ∈ V �

(sF , qF ) ∈ (S × F ),BF
1 ⊆ (S × F ),BF

2 ∩ (S × F ) ≠ �,BF
2 ∩ S × (Q � F ) ≠ �} are

the set of goal states (P1 aims to reach one of such a goal state); and (5) � ∶
V ×A1 → D(V ) is the probabilistic transition function such that all states in VF



Opacity-enforcing active perception and control 9

are sink states, and for each state v = ((s, q),B1,B2) ∈ VF , action (a,X) ∈ A1,

and state v′ = ((s′, q′),B
′
1,B

′
2)) ∈ V , �(v, (a,X), v′) = T ((s, q), a, (s′, q′)) if

B
′
1 = PostM(B1, a)∩O((s′, q′),X), B

′
2 = PostM(B2,A)∩O((s′, q′),X ∩�2), and

q′ = �(q,L(s′)), and otherwise, �(v, (a,X), v′) = 0.

Each state ((s, q),B1,B2) of this product game indicates a situation where
the true state of the system is (s, q), P1’s belief about the current state is B1, and

P2’s belief about the current state is B2. Each transition ((s, q),B1,B2)
(a,X)
���→

((s′, q′),B
′
1,B

′
2) corresponds to a situation where P1 selects an action (a,X) ∈

A1, after which, the game stochastically transitions from the true state (s, q) to
the new true state (s′, q′). Then, with the sensor query, P1 observesO((s′, q′),X)
and thus updates its belief from B1 to B

′
1 by considering the possible states in

which it can be given the taken action a and eliminating the states that are
inconsistent with the observation. Likewise, P2 observes O((s′, q′),X ∩ �2) and
updates P2’s belief from B2 to B

′
2 based on the information from unsecured

sensors. If a state in VF is reached, P1 chooses to terminate the play.
The following example shows the construction as described in Def. 9.

Example 2. (Part II) In Example 1, the secret task for P1 is ' = 3 s5. The DFA
corresponding to ' is shown in the Fig. 2a. Fig. 2b shows the product POMDP
of this DFA and the POMDP in Example 1. From this product POMDP, the
POMDP augmented with 2-beliefs G is constructed. Fig. 2c shows a partial con-
struction of G. In this figure, B0

1 = {(s1,0)}, B0
2 = {(s1,0), (s2,0), (s3,0), (s4,0),

(s5,1)}, B4
1 = {(s5,1)} and B4

2 = {(s4,0), (s5,1)}. To see how the belief is up-
dated, consider state ((s3,0),{(s3,0)},{(s2,0), (s3,0)}), at which P1 knows the
exact current state and P2 is uncertain if the current state is s2 or s3. If P1 takes
action a and query sensor set {C,D}, state (s5,1) is reached with probability
one. The sensor C returns 1 and sensor D returns 0. In this case, P2, who has
access to both C and D, will know that (s5,1) is reached. On the other hand, if
P1 takes action a and queries B and C, at state s5, B outputs 0 and C outputs
1. P1 will know that s5 is reached. P2, with only sensor C’s information, cannot
distinguish if state (s5,1) or (s4,0) is reached. The opacity is enforced and the
play is winning for P1. The goal state in this figure has a self-loop for all actions.
This is because all states in VF are absorbing.

The opacity-enforcing winning strategy computation relies on the proof that
in the presence of the eavesdropping attacker and partial observations, either
player is sure that one of the states in its belief is the true state.

We now also show that the belief of P2 always includes the belief of P1.

Lemma 1. For any state ((s, q),B1,B2) ∈ V reachable from the initial state v0,
B1 ⊆ B2.

Proof. By induction on the lengths of the plays in the product game. For the
initial state v0 = ((s0, q0),B0

1 ,B
0
2), by the construction of B0

1 and B0
2 in Def. 8

and the assumption that w0 ⊆ w+0 in Def. 1, we have B0
1 ⊆ B0

2 .
Consider a play with length k in G such that vk = ((sk, qk),Bk

1 ,B
k
2 ) is

the last state of the play. By induction hypothesis, Bk
1 ⊆ Bk

2 . For any state



10 Udupa et al.

0start 1

¬s5
s5

True

(a)

(s1,0)start

(s2,0)

(s3,0)

(s4,0)

(s5,1)

a, b

a, b

a

b

b

a

a, b

(b)

((s1,0),B0
1 ,B

0
2)start

((s3,0),{(s3,0)},{(s2,0), (s3,0)})

((s5,1),{(s5,1)},{(s5,1)})

((s5,1),B4
1 ,B

4
2)

(a,{A,B})

(a,{D,C})1

(a,{B,C})

(c)

Fig. 2: (a) DFA for the temporal goal ' = 3 s5. (b) Product POMDP M. (c)
A fragment of POMDP with 2-beliefs G, constructed fromM.

vk+1 = ((sk+1, qk+1),Bk+1
1 ,Bk+1

2 ) reached by an action (a,X) ∈ A1 from vk, it
holds that Bk+1

1 = PostM(Bk
1 , a)∩O((sk+1, qk+1),X) and Bk+1

2 = PostM(Bk
2 ,A)∩

O((sk+1, qk+1),X∩�s). Since Bk
1 ⊆ Bk

2 and a ⊆ A, PostM(Bk
1 , a) ⊆ PostM(Bk

2 ,A).
Also, given (X ∩ �2) ⊆X, it holds that O((sk+1, qk+1),X) ⊆ O((sk+1, qk+1),X ∩
�2). Hence, Bk+1

1 ⊆ Bk+1
2 . ��

Lemma 2. For any state ((s, q),B1,B2) ∈ V that is reachable from the initial

state v0, it holds that (s, q) ∈ B1 and (s, q) ∈ B2.

Proof. We first show that (s, q) ∈ B1 using induction on the lengths of the plays
of G. For the initial state v0 = ((s0, q0),B0

1 ,B
0
2), by construction of belief from the

initial observation, (s0, q0) ∈ B0
1 . Consider a play with length k in G such that vk =

((sk, qk),Bk
1 ,B

k
2 ) is the k-th state reached by a sequence of P1’s actions. Assume

(sk, qk) ∈ Bk
1 . For any state vk+1 = ((sk+1, qk+1),Bk+1

1 ,Bk+1
2 ) reached from vk by

an action (a,X) ∈ A1, taken by P1, it holds that T ((sk, qk), a, (sk+1, qk+1)) > 0,
Bk+1

1 = PostM(Bk
1 , a) ∩O((sk+1, qk+1),X). Because (sk, qk) ∈ Bk

1 , by construc-
tion we have (sk+1, qk+1) ∈ PostM(Bk

1 , a). Also, because sk+1 ∈ O(sk+1,X),
(sk+1, qk+1) ∈ O((sk+1, qk+1),X). Thus, (sk+1, qk+1) ∈ Bk+1

1 .
This proof combined with the result of Lemma 1 proves (s, q) ∈ B2. ��

Lemma 3. Let ⇢G = ((s0, q0),B0
1 ,B

0
2)(a0,X0)((s1, q1),B1

1 ,B
1
2) . . . ((sn, qn),Bn

1 ,
Bn

2 ) be a play of G. For each (s′n, q′n) ∈ Bn
2 , there exists a play ⇢M = (s′0, q′0)(a′0,

X ′0)(s′1, q′1)(a′1,X ′1) . . . (s′n, q′n) of M such that for each 0 ≤ i < n, (s′i, q′i) ∈ Bi
2

and X ′i =Xi ∩ �2.

Proof. Proof by induction on k = n,n−1, . . . ,0. For k = n, ⇢n
G
= ((sn, qn),Bn

1 ,B
n
2 ).

By the statement assumption, (s′n, q′n) ∈ Bn
2 , and clearly ⇢n

M
= (s′n, q′n) is a play

ofM[(s′n, q′n)]. Therefore, the statement holds for the induction’s base case.
For the induction hypothesis, assume given the play

⇢k
G
= ((sk, qk),Bk

1 ,B
k
2 )(ak,Xk)((sk+1, qk+1),Bk+1

1 ,Bk+1
2 ) . . . ((sn, qn),Bn

1 ,B
n
2 )



Opacity-enforcing active perception and control 11

of G, there exists a sequence

⇢k
M
= (s′k, q′k)(a′k,Xk ∩ �2)(s′k+1, q′k+1)(a′k+1,Xk+1 ∩ �2) . . . ((s′n, q′n))

where (s′i, q′i) ∈ Bi
2 for each k ≤ i ≤ n, is a play ofM. Now, consider the play

⇢k−1
G
= ((sk−1, qk−1),Bk−1

1 ,Bk−1
2 )(ak−1,Xk−1) . . . ((sn, qn),Bn

1 ,B
n
2 )

of G. Given ⇢k−1
G

is a play in G, G has a transition from ((sk−1, qk−1),Bk−1
1 ,Bk−1

2 )
to ((sk, qk),Bk

1 ,B
k
2 ) with action (ak−1,Xk−1). By the construction of G’s tran-

sition function, this implies that Bk
2 = PostM(Bk−1

2 ,A) ∩O((sk, qk),Xk−1 ∩ �2),
which means (1) Bk

2 ⊆ PostM(Bk−1
2 ,A), and (2) Bk

2 ⊆ O((sk, qk),Xk−1 ∩ �2).
Given (1) and that (s′k, q′k) ∈ Bk

2 , it holds that there exists (s′k−1, q′k−1) ∈ Bk−1
2 and

a′k−1 ∈ A such that (s′k, q′k) ∈ PostM((s′k−1, q′k−1), a′k−1), which implies that inM,
there exists a transition with action a′k−1 from state (s′k−1, q′k−1) to state (s′k, q′k),
and by (2), it holds that (s′k, q′k) ∈ O((sk, qk),Xk−1 ∩ �2). These two combined
imply that ⇢k−1

M
= (s′k−1, q′k−1)(a′k−1,Xk−1 ∩�2)(s′k, q′k)(a′k,Xk ∩�2) . . . ((s′n, q′n))

is a play ofM and for each k ≤ i ≤ n, (s′k, q′k) ∈ Bk
2 . ��

The above properties are important to construct an opacity-enforcing strat-
egy to satisfy the given specification. Even in situations where P1 may only
have a belief such that it is a subset of (S ×F ) and P1 does not perfectly know
the current true state, P1 knows that the specification has been satisfied from
Lemma 2. Also, with Lemma 1, we know that for P1 to enforce opacity, it is
not su�cient to reach a state such that only P1’s belief is a subset of (S × F )
as it means that P2’s belief always encompasses P1’s belief and hence, P1 must
ensure that P2’s belief has at least one additional state that is not in (S × F ).

In the above constructed POMDP augmented with 2-beliefs, P1 is tasked with
reaching the goal states in VF with probability one. We show that reaching these
goal states with probability one would ensure that P1 would satisfy the given
specification while ensuring opacity in the POMDP M .

Definition 10 (Belief-Based Winning Strategy/Region).

A strategy ⇡ ∶ V → D(A1) in the POMDP with 2-beliefs G is winning at

state v0 for P1 if by starting from v0 and following ⇡, P1 ensures to reach a

state ((s, q),B1,B2) where B1 ⊆ S × F with probability 1. Strategy ⇡ is opacity-
enforcing winning at a state v0 if by starting from v0 and following ⇡, P1

guarantees to reach a goal state VF with probability 1. It is well known that

belief-based strategies are su�cient to win almost-surely the reachability game

for P1 [2] and thus, a strategy ⇡ ∶ V → D(A1) is belief-based if for every

pair of states ((s, q),B1,B2), ((s′, q′),B1,B2) ∈ V , it holds ⇡((s, q),B1,B2) =
⇡((s′, q′),B1,B2). A set of states from which P1 has a belief-based winning strat-

egy is called P1’s winning region, denoted as Win(G). P1’s opacity-enforcing
winning region, denoted OWin(G), consists of those states from which P1 has an

opacity-enforcing winning strategy.

Theorem 1. A belief-based winning strategy ⇡ in the POMDP augmented with

2-beliefs G is also winning in the POMDP with active perception M and enforces

opacity and winning with respect to its temporal objective '.



12 Udupa et al.

Proof. Let ⇢o = ((s0, q0),B0
1 ,B

0
2)(a0,X0)((s1, q1),B1

1 ,B
1
2) . . . ((sn, qn),Bn

1 ,B
n
2 )

be a play generated by ⇡ over G. This play is projected onto play ⇢M = s0(a0,X0)
s1 . . . sn onM . Because ⇡ is a winning strategy, ((sn, qn),Bn

1 ,B
n
2 ) ∈ VF , implying

qn ∈ F and Bn
1 ⊆ (S × F ). This means that L(s0s1�sn) � ', which means that

⇢M � ' and the play ⇢M is winning for P1. Because this ⇢o is selected arbitrarily,
then this means ⇡ is a winning strategy for M . Also, given that Bn

1 ⊆ (S×F ), P1
knows that being in any one of the states in its belief, it satisfies the specification.

For P2’s belief, it holds that Bn
2 ∩ (S × (Q � F )) ≠ �. That is, there exists a

state (s′, q′) ∈ Bn
2 such that q′ ≠ F . For each such a state (s′, q′), by Lemma 3,

there exists a play ⇢−
M
= (s′0, q′0)(a′0,X ′0)(s′1, q′1) . . . (s′n, q′n) of M where X ′i =

Xi ∩ �2 for all 0 ≤ i < n. This implies that �−M = s′0s
′

1 . . . s
′

n is a run of M and
L(�−M) �� '. Given Proposition 1, P2 believes that run �+M = s0s1 . . . sn has a
non-zero probability to have been executed. Therefore, because P2 believes any
of the two runs �+M = s0s1 . . . sn and �−M of M where L(�+M) � ' and L(�−M) �� '
could have been executed, ⇡ is opacity-enforcing. ��

We introduce Alg. 1 to compute a belief-based winning strategy for P1. The
algorithm initializes a set Y0 = V and iteratively computes Yk+1 from Yk for k ≥ 0.
At each iteration k, Alg. 1 computes the set of states from which it can reach a
state in VF with a positive probability while ensuring to stay within the set Yk

with probability 1. The algorithm uses the following function

Allow(v, Y ) = {(a,X) ∈ A1 � PostG(v, (a,X)) ⊆ Y },∀v ∈ V,Y ⊆ V

where PostG(v, (a,X)) = {v′ ∈ V � �(v, (a,X), v′) > 0} is the set of states reach-
able from state v by playing action (a,X). By definition, by playing an action
from the allowed set Allow(v, Y ), P1 can be sure to stay within state set Y . Let
for a state v = ((s, q),B1,B2) ∈ V , [v]∼ denote the set of belief-equivalent states
with v such that [v]∼ = {((s′q′),B

′
1,B

′
2) ∈ V � B

′
1 = B1,B

′
2 = B2}. Then, let

Allow([v]∼, Y ) = �
v′∈[v]∼

Allow(v′, Y ).

Thus, we have that an action is allowed for P1 to play at a state v if and only
if that action is allowed for P1 at all of its belief-equivalent states v′.

Next, we define the following progress function given a set of states Y ⊆ V
and a set R ⊆ Y ,

Prog(R,Y ) = {v ∈ Y � ∃(a,X) ∈ Allow([v]∼, Y ),PostG(v, (a,X)) ∩ R ≠ �}.

The progress function yields a set of states from which P1 has at least one
allowed action to reach R in the next state.

In the inner loop of Alg. 1 (Lines 4-7), we fix the Yk and iteratively update
Ri until a fixed point is reached. Intuitively, the fixed point is a set of states from
which P1 can ensure to reach VF with probability ≥ 0 and stay within Yk with
probability 1. Then, we set this fixed point in the inner loop as Yk+1 and continue
with the computation until the fixed point is reached at the outer loop Yn+1 = Yn

for some n ≥ 0. The belief-based winning region for P1 is OWin(G) = Yn.



Opacity-enforcing active perception and control 13

We next show that OWin(G) obtained using Alg. 1 is, in fact, the opacity-
enforcing almost-sure winning region for P1 and at every state in OWin(G), P1
has an opacity-enforcing strategy to reach R with probability one.

Algorithm 1 Belief-Based Opacity-Enforcing ASW Region

Inputs: POMDP augmented with 2-belief G.
Outputs: P1’s opacity-enforcing ASW region, OWin(G).
1: k ← 0; Yk ← V
2: repeat

3: i← 0; Ri ← VF

4: repeat

5: Ri+1 ← Ri ∪ Prog(Ri, Yk)
6: i← i + 1
7: until Ri+1 = Ri

8: Yk+1 ← Ri; k ← k + 1
9: until Yk+1 = Yk

10: return OWin(G)← Yk.

Lemma 4. OWin(G) computed by Alg. 1 is opacity-enforcing winning for P1.

Proof is in the appendix. From the obtained OWin(G), P1’s opacity-enforcing
belief-based strategy can be defined as function ⇡∗1 ∶ OWin(G)→ 2A1 such that

⇡∗1(v) = {(a,X) ∈ A1 � (a,X) ∈ Allow([v]∼,OWin(G))}. (1)

Thus, at each state v ∈ OWin(G), P1 has to play an action in ⇡∗1(v). Also,
by the construction of Allow(⋅), for every states v = ((s, q),B1,B2) and v′ =
((s′, q′),B

′
1,B

′
2), if B1 = B

′
1 and B2 = B

′
2, then ⇡∗1(v) = ⇡∗1(v′).

Theorem 2. By playing the strategy ⇡∗1 defined in Eq. 1, P1 ensures that the

game eventually reaches VF .

The proof for the theorem is provided in the appendix.
Complexity Analysis: The algorithm first encodes the secret goal ' into

a DFA. This step takes a doubly-exponential time in the size of ' in the worst
case [19,6]. However, for commonly seen LTLf formulas in robotic planning and
AI applications, this translation is tractable. The POMDP augmented with 2-
beliefs has O(�S��Q�2�S��Q�2�S��Q�) reachable states in the worst case. Each non-goal
state v = ((s, q),B1,B2) has O(�S�) transitions with non-zero probabilities for
each action (a,X) ∈ A × 2� in the worst case. Accordingly, using appropriate
data structures, mainly hash tables, it takes O(�A��S��Q�22�S��Q�+�S�) to construct
the POMDP augmented with 2-beliefs. Computing an opacity-enforcing winning
strategy for G takes a quadratic time to the size of G in the worst case. Therefore,
the final running time of our algorithm is O(�A�2�S�2�Q�22(4�S��Q�+2�S�)).

Example 3. (Part III) We show how to use Alg. 1 to obtain the opacity-enforcing
winning region for the fragment of the opacity-enforcing game in Fig. 2c. From



14 Udupa et al.

Fig. 2c, we have, v1 = {((s1,0),B0
1 ,B

0
2)}, v2 = {((s3,0),{(s3,0)},{(s2,0), (s3,0)

})}, v3 = {((s5,1),{(s5,1)},{(s5,1)})} and v4 = {((s5,1),{(s5,1)},{(s4,0),
(s5,1)})}.

We start with Y0 = {v1, v2, v3, v4} where v1 is the initial state in Fig. 2c, and
v4 is the final state.

Moving on to the inner loop, we initialize the set R0 as {v4} since it is the only
final state in the fragment under consideration. Next, we compute Prog(R0, Y0),
which yields {v2, v4}. Subsequently, R1 is updated as {v2, v4}, and we compute
Prog(R1, Y0), resulting in {v1, v2, v4}. This set represents the fixed point for this
iteration. Consequently, we update Y1 as {v1, v2, v4}, which is the fixed point for
the outer loop and the opacity-enforcing winning region.

3.2 When To Stop Tracking P2’s Beliefs?

In the construction of the POMDP augmented with 2-beliefs presented in Def. 9,
we face the issue of exponential growth of the state space. To mitigate the
issue, we use the minimal DFA accepting '. This reduces the state space ofM
and G. Additionally, in certain situations, we can stop tracking P2’s belief by
leveraging certain properties in the specification automaton and P1’s winning
region computed from the product POMDP without opacity constraints.

First, we introduce some notions.
Given a DFA I, we define the subautomata for each state q ∈ Q as follows:

Definition 11. Given a DFA I = (Q,⌃, �, ◆, F ), for any q ∈ Q,

– good su�xes Lq is the language of the DFA Iq = (Q,⌃, �, q, F ).
– bad su�xes Lq is the language of the DFA Iq = (Q,⌃, �, q,Q � F ).

Given two languages L1 and L2, represented by DFAs I1 = (Q1,⌃, �1, ◆1, F1)
and I2 = (Q2,⌃, �2, ◆2, F2), checking if L1 ⊆ L2 is equivalent to see whether
L1 ∩ L2 = �, which can be achieved by checking whether the language of the
product DFA I1×I2 = (Q1×Q2,⌃, �, (◆1, ◆2), F1×(Q�F2)) where �((q1, q2),�) =
(�1(q1,�), �2(q2,�)) for each (q1, q2) ∈ Q1 ×Q2 and � ∈ ⌃, is empty or not.

Next, we solve P1’s belief-based winning strategy without enforcing opacity
to the observer. In this case, we need not to keep track of P2’s belief.

Definition 12 (Product POMDP augmented with P1’s belief). Given

the product POMDPM = (S×Q,A,�, T, (s0, q0), Z,O,B0
1 ,B

0
2 , S×F ), the product

POMDP augmented with P1’s belief is a tuple

H = �H,A1,HF ,T , h0�

in which 1. H = {((s, q),B1) � s ∈ S, q ∈ Q,B1 ⊆ (S × Q)} is the set of states,

where B1 is P1’s beleif; 2. A1 is the set of control-perception actions that can be

taken by P1, as given in M; 3. h0 = ((s0, q0),B0
1) is the initial state, where B0

1

is the initial belief as in M; 4. HF = {((sF , qF ),BF
1 ) � (sF , qF ) ∈ (S × F ),BF

1 ⊆
(S ×F )} is the set of final states, which ensure P1 satisfies the objective '; and
5. T ∶ H ×A1 → D(H) is the probabilistic transition function. First, all states



Opacity-enforcing active perception and control 15

in HF are sink states. For a state h ∈ H � HF , for each action (a,X) ∈ A1

and state h′ = ((s′, q′),B
′
1)) ∈ H, T (h, (a,X), h′) = T ((s, q), a, (s′, q′)) if B

′
1 =

PostM(B1, a) ∩O((s′, q′),X), and otherwise, T (h, (a,X), h′) = 0.
P1’s belief-based winning strategy in H can be solved using a slight modifi-

cation of Alg. 1: Let

Allow(h,Y ) = {(a,X) ∈ A1 � PostH(h, (a,X)) ⊆ Y },∀h ∈H,Y ⊆H.

and Allow([h]∼, Y ) = �
h′∈[h]∼

Allow(h′, Y ). where [((s, q),B1))]∼ = {((s′q′),B
′
1) ∈

H � B
′
1 = B1}.

The progress function is defined as

Prog(R,Y ) = {h ∈ Y � ∃(a,X) ∈ Allow([h]∼, Y ),PostH(h, (a,X)) ∩R ≠ �}.

We have that Yk is initialized to H and Ri is initialized to HF . Intuitively,
these modification allows P1 to compute belief-based winning strategy only con-
sidering his own belief.

Thus, without constructing the POMDP with two-beliefs G, we can obtain
Win(G) = {((s, q),B1,B2) ∈ V � ((s, q),B1) ∈ Win(H)} that includes a set of
states P1 can enforce a winning play (with/without opacity to P2).

Remark 2. OWin(G) ⊆Win(G).
The following Lemma is crucial: It enables us to determine if an opacity-

enforcing winning strategy exists without enumerating all beliefs that can be
reached in the POMDP augmented with 2-beliefs G.
Lemma 5. For any state v = ((s, q),B1,B2) ∈ V where v ∈ Win(G), if there

exists p ∈ Q s.t. (s, p) ∈ B2 and Lq ⊆ Lp, then v ∈ OWin(G).
Proof. Given that v ∈Win(G), P1 can enforce a play ⇢ = s0(a0,X0)s1(a1,X1) . . .
sn where s0 = s such that �(q,L(⇢)) ∈ F . As a result, L(⇢) ∈ Lq is a good su�x
for the language L(A) given the state q.

Given that Lq ⊆ Lp, L(⇢) ∈ Lp. Let p = ((s0, q0),B0
1 ,B

0
2)(a0,X0) . . .

((sn, qn),Bn
1 ,B

n
2 ) be in G, the play corresponding to the play ⇢. That is, the

projection of p onto S is ⇢. Let pn = �(p,L(⇢)). It holds that (sn, pn) ∈ Bn
2 by

the construction of P2’s belief. Because L(⇢) ⊆ Lp, then pn ∈ Q � F . Further
since Bn

1 ⊆ Bn
2 and Bn

1 ⊆ S ×F , then Bn
2 ∩ (S × (Q � F )) ≠ � and Bn

2 ∩S ×F ≠ �.
The play ⇢ is opaque and winning for P1. ��
Definition 13 (Augmented POMDPs with Trimmed 2-Beliefs). Given

the product POMDPM and the winning region of P1 without opacity constraint

Win(G), the Augmented POMDPs with Trimmed 2-Beliefs is a tuple

G′ = �W ∶=Win(G) ∪Win(H),A1,WF ∶= VF ∪Win(H),�′, v0�
where W is the set of states; A1 and v0 are from Def. 9; WF is the set of goals

states and is the union of VF (the goal states of G, as in Def. 9) and Win(H);
and �′ is the probabilistic transition function s.t. all the goal states in WF are

sink states, and for each non-goal state w = ((s, q),B1,B2) ∈Win(G) �WF ,



16 Udupa et al.

– if there exists (s, p) ∈ B2 such that Lq ⊆ Lp, �
′(w, ((s, q),B1)) = 1. That is,

with probability one, P1 reaches a state in Win(H) and stop tracking P2’s

belief.

– otherwise, for each action (a,X) ∈ A1, �′(w, (a,X), ((s′, q′),B′1,B′2)) =
T ((s, q), a, (s′, q′)), where B

′
1 = PostM(B1, a) ∩O((s′, q′),X) and B

′
2 =

PostM(B2,A) ∩O((s′, q′),X ∩ �2).

We now solve the above augmented POMDPs with trimmed 2-beliefs using
Alg. 1. P1 follows the policy computed from G′ until a state ((s, q),B1) ∈Win(H)
or a goal state VF is reached. If a state ((s, q),B1) ∈ Win(H) is reached, then
P1 transitions to the winning policy of the game H and adhere to it.

4 Experimental validation

In this section, we demonstrate the use of the developed opacity-enforcing plan-
ning for P1, an autonomous robot tasked with delivering medicine in a GPS
denied environment. Fig. 3a shows the environment setup. The robot is tasked
with first reaching the base station, A in the gridworld, to pick up essential sup-
plies and then delivering the critical supplies to one of the critical zones B and
C. This task is specified by the LTLf formula ' = ¬(B ∨ C)U (A ∧3 (B ∨ C)).
The robot is expected to keep this task opaque from the adversarial observer.

(a) (b)

01start

2

3

¬A ∧ ¬B ∧ ¬C

(¬A ∧B) ∨ (¬A ∧C)

A ∧ ¬B ∧ ¬C

True

B ∨C

True

(A ∧B) ∨ (A ∧C)

(c)

Fig. 3: (a) Autonomous robot in an adversarial environment. (b) The stochas-
ticity in the environment when robot chooses to traverse N. (c) Specification
DFA for ' = ¬(B ∨ C)U (A ∧ (B ∨ C)).

The environment is monitored by the sensors {S0, S1, S2, S3, S2, S5} as shown
in the Fig. 3a. The sensors S0,S1,S2 and S3 respectively cover the rows 0, 1, 2 and
3, and the sensors S4 and S5 cover the columns 1 and 3 respectively. Only S4 is



Opacity-enforcing active perception and control 17

a secured sensor. Sensors S0 and S2 are precision range sensors and each returns
the the exact position of the robot if the robot is in a cell in the range of the
sensor and returns False otherwise. The other sensors are Boolean range sensors
and each returns True if the robot is in a cell that is covered by the sensor
and returns False if not. The robot has partial observations of its position,
obtained from the deployed sensor network. The eavesdropping adversary has
partial observation of the robot’s position from unsecured sensors. Due to limited
communication constraint, for any belief B and any control action in A, the set
of perception actions for the robot to select along with the control action includes
querying any two sensors that cover at least one of the possible next states, i.e. ,
states in PostM(B,A). The robot traverses through the environment with four
possible actions {N,S,E,W}. When the robot performs an action, its actuators
guarantee that it reaches the intended cell with a probability p, make the robot
to stay in the same cell with a probability (1−p)�2, and transit the robot to the
cell that is 90 degrees (clockwise) apart from the intended cell with a probability
(1 − p)�2 as shown in the Fig. 3b. The gridworld environment is surrounded by
bouncy walls. If the agent takes an action and hits a wall, it remains in the
original cell. The cells 4, 12, and 15 are the unsafe zones for the robot. In a
unsafe zone is reached, the robot gets stuck.

(a)

((2,1),{(2,1)},{(2,1)})start ((3,2),{(3,2)},{(3,2)})

((7,2),{(7,2)},{(7,2)})((6,2),{(6,2)},{(6,2)})

((10,2),{(10,2)},{(10,2)})

((14,0),{(14,0)},{(14,0), (6,2)})

((14,0),{(14,0)},{(14,0)})

E,{S0, S4}
W,{S0, S5}

W,{S1, S5}
W,{S1, S4}

N,{S2, S5}

1

N,{S2, S3}

1

(b)

Fig. 4: (a) The results of experimentation for every initial state in the gridworld.
(b) Fragment of opacity-enforcing and not enforcing run starting from cell 2.

Fig. 3c shows the DFA encoding the temporal formula '. This DFA has a non-
accepting sink state state 3, and an accepting goal state 0. Fig. 4 shows results
obtained from solving the opacity-enforcing winning strategy for the robot. Each
green dot represents an initial state from which the robot has a opacity-enforcing
winning strategy. Each red dot represent a state that has no winning strategy.

We discuss our results for the case where P1’s initial position is cell 0 and
both P1 and P2 are aware of this. Fig. 4b shows a fragment of a run in the mod-



18 Udupa et al.

ified opacity-enforcing game for the above example. In the shown fragment, we
have an opacity-enforcing winning run and a run that does not enforce opacity
when the robot starts from the cell 0 and has reached the cell 2. Here, we encode
a state as ((s, q),B1,B2) where (s, q) represents the robot’s true state with s
being the cell number and q the automata state, B1 is the robot’s belief of its
position and B2 is the observer’s belief of the robots position. From Fig. 4b, we
observe that the sensor query of the robot a↵ects the enforcement of opacity at
state ((10,2),{(10,2)},{(10,2)}). From state ((10,2),{(10,2)},{(10,2)}), for
the robot to reach the critical zone C it can take action N along with one per-
ception action, i.e. , a query of a pair of sensors selected from {S2, S5}, {S2, S3},
{S2, S4} or {S2, S1} since any of these possible perception actions will enable the
robot know it’s true next state. Querying {S2, S3} or {S2, S1} does not enforce
opacity as they provide the observer with enough information to ensure that the
robot is precisely in the critical zone C.

To assess the e↵ectiveness of the opacity-enforcing policy, we conducted em-
pirical evaluations through statistical analysis. We performed 50,000 iterations
of the simulation in the gridworld setup, starting from the initial state ((0,1),
{(0,1)},{(0,1)}), for which the robot has an opacity-enforcing winning strategy.
We let the robot to randomly select actions from the winning strategy computed
from Win(H). We observed the robot achieved task satisfaction in all iterations
while enforcing opacity in 47.07% of the iterations. In the remaining 52.93% of it-
erations, the robot successfully satisfied the task specification but did not enforce
opacity. If the robot uses the strategy computed from Win(G), with probability
1, the robot not only satisfies the task specification but also enforces opacity.

Next, we see how the trimming technique reduces computation. The construc-
tion of G resulted in a total of 135,334 states, and with the use of the modified
construction of the game, i.e. on constructing the game G′ with the trimming
of the beliefs results in a total of 51,763. This significant reduction of the state
space aids in faster computation of the almost-sure winning region/strategy.

The experiments were executed on an Intel (R) Core (TM) i7 CPU @ 3.2GHz.

5 Conclusion and Future Work

In this work, we formulated and solved the problem of synthesizing a joint control
and active perception for an agent in a stochastic environment to satisfy a secret
temporal goal while enforcing opacity against a passive observer with partial
observations. Building on the modeling and solution approaches, several future
directions can be considered: First, a quantitative variant of opacity-enforcing
planning remains to be investigated. For example, from the set of states at which
P1 does not have a winning and opacity-enforcing strategy, is it possible to com-
pute a strategy that ensures winning with probability ≥ p and opacity with
probability ≥ ✏? This would enable a more nuanced understanding of opacity
enforcement and the development of strategies that account for varying degrees
of opacity and task performance. Second, opacity-enforcement can be considered
for the agent and the observer with di↵erent capabilities in control and percep-



Opacity-enforcing active perception and control 19

tion. In this work, the information to the observer is a subset of the agent’s
information. This assumption is no longer valid if the observer has a di↵erent in-
formation channel that is uncontrollable and inaccessible by the agent. It would
be interesting to know which subsets of opacity-enforcing games are decidable.

A Proof for Lemma 4

Proof. Let N be the index where YN = YN+1. To prove YN = OWin(G), we prove
the following: 1. OWin(G) ⊆ Yj for all 0 < j ≤ N , using induction. Since Y0 = V ,
we have that OWin(G) ⊆ Y0. Assume that OWin(G) ⊆ Yi for some i > 0. Then,
Yi+1 includes any state that has a strategy to reach VF with positive probability
while staying within Yi. Thus, for any state in Yi�Yi+1, P1 cannot stay within Yi

with probability one. However, P1 has a strategy to ensure that the game stays
within OWin(G) and thereby Yi, given OWin(G) ⊆ Yi. As Yi+1 only removes the
states that cannot ensure to stay within OWin(G), we have that OWin(G) ⊆ Yi+1.

2. YN � OWin(G) = �, by contradiction. Assume that there exists a state
v ∈ YN � OWin(G). Then, by construction, for any v ∈ Rk ∪ Prog(Rk, YN), P1
has a strategy to reach VF with positive probability in finitely many steps. Let
ET be the event that “starting from a state in YN , a run reaches a state in VF

within T steps” and let � > 0 be the minimal probability for an event ET to
occur for any state v ∈ YN . Then, the probability of not reaching a state in VF in
infinitely many steps can be upper bounded by lim

k→∞
(1 − �)k = 0. Therefore, for

any v ∈ YN , P1 has a strategy to ensure a state in VF is reached with probability
one. This contradicts the assumption v ∉ OWin(G). Thus, YN = OWin(G). ��

B Proof for Theorem 2

Proof. Consider the level sets R0, . . . ,RN obtained using Alg. 1 with input
OWin(G). Let 0 < k ≤K be a level and v ∈ Rk be a state. Suppose there exists an
action (a,X) ∈ ⇡∗1(v) s.t. PostG(v, (a,X)) ∈ Rk−1. Since the probability of taking
action (a,X) is non-zero, the level strictly decreases with a positive probability.
Moreover, for any action in ⇡∗1(v) and its probabilistic outcomes, the game re-
mains within OWin(G) with probability 1. Let En denote the event of “Reaching
Rk−1 from a state in Rk in n steps”. It follows lim

n→∞
P (En) = 1. By repeating for

levels k =K, . . . ,1, we conclude R0 = VF is reached with probability 1. ��

References

1. B. Bérard, K. Chatterjee, and N. Sznajder. Probabilistic opacity for markov deci-
sion processes. Information Processing Letters, 115(1):52–59, 2015.

2. N. Bertrand, B. Genest, and H. Gimbert. Qualitative determinacy and decidability
of stochastic games with signals. Journal of the ACM (JACM), 64(5):1–48, 2017.

3. J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. Ryan. Opacity generalised to
transition systems. International Journal of Information Security, 7:421–435, 2008.



20 Udupa et al.

4. J. W. Bryans, M. Koutny, and P. Y. Ryan. Modelling opacity using petri nets.
Electronic Notes in Theoretical Computer Science, 121:101–115, 2005.

5. F. Cassez, J. Dubreil, and H. Marchand. Synthesis of opaque systems with static
and dynamic masks. Formal Methods in System Design, 40:88–115, 2012.

6. G. De Giacomo and M. Favorito. Compositional approach to translate ltlf/ldlf into
deterministic finite automata. In Proceedings of the International Conference on

Automated Planning and Scheduling, volume 31, pages 122–130, 2021.
7. G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic

on finite traces. In Proceedings of the Twenty-Third international joint conference

on Artificial Intelligence, pages 854–860. ACM, 2013.
8. L. Hélouët, H. Marchand, and L. Ricker. Opacity with powerful attackers. IFAC-

PapersOnLine, 51(7):464–471, 2018.
9. Y. Ji, X. Yin, and S. Lafortune. Opacity enforcement using nondeterministic pub-

licly known edit functions. IEEE Transactions on Automatic Control, 64(10):4369–
4376, 2019.

10. C. Keroglou and C. N. Hadjicostis. Probabilistic system opacity in discrete event
systems. Discrete Event Dynamic Systems, 28:289–314, 2018.

11. F. Lin. Opacity of discrete event systems and its applications. Automatica,
47(3):496–503, 2011.

12. B. Maubert, S. Pinchinat, and L. Bozzelli. Opacity issues in games with imperfect
information. arXiv preprint arXiv:1106.1233, 2011.

13. L. Mazaré. Using unification for opacity properties. Proceedings of the 4th IFIP

WG1, 7:165–176, 2004.
14. A. Saboori. Verification and enforcement of state-based notions of opacity in dis-

crete event systems. University of Illinois at Urbana-Champaign, 2010.
15. A. Saboori and C. N. Hadjicostis. Notions of security and opacity in discrete event

systems. In IEEE Conference on Decision and Control, pages 5056–5061, 2007.
16. A. Saboori and C. N. Hadjicostis. Verification of initial-state opacity in security

applications of des. In 9th International Workshop on Discrete Event Systems,
pages 328–333. IEEE, 2008.

17. A. Saboori and C. N. Hadjicostis. Opacity-enforcing supervisory strategies via state
estimator constructions. IEEE Transactions on Automatic Control, 57(5):1155–
1165, 2012.

18. A. Saboori and C. N. Hadjicostis. Current-state opacity formulations in proba-
bilistic finite automata. IEEE Transactions on Automatic Control, 59(1):120–133,
2014.

19. P. Wolper. Constructing Automata from Temporal Logic Formulas: A Tutorial.
In G. Goos, J. Hartmanis, J. van Leeuwen, E. Brinksma, H. Hermanns, and J.-P.
Katoen, editors, Lectures on Formal Methods and PerformanceAnalysis, volume
2090, pages 261–277. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

20. Y.-C. Wu and S. Lafortune. Comparative analysis of related notions of opacity
in centralized and coordinated architectures. Discrete Event Dynamic Systems,
23(3):307–339, 2013.

21. Y.-C. Wu and S. Lafortune. Synthesis of insertion functions for enforcement of
opacity security properties. Automatica, 50(5):1336–1348, 2014.

22. Y. Xie, X. Yin, and S. Li. Opacity enforcing supervisory control using nondeter-
ministic supervisors. IEEE Transactions on Automatic Control, 67(12):6567–6582,
2021.

23. Y. Zhou, Z. Chen, and Z. Liu. Verification and enforcement of current-state opacity
based on a state space approach. European Journal of Control, 71:100795, 2023.


	Opacity-enforcing active perception and control against eavesdropping attacks 

