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AbstractÐThis paper presents the design of a novel optimal
spectrum auction mechanism that enables the Primary User (PU)
of a channel to intelligently ‘oversell’ it to a carefully chosen set of
unlicensed Secondary Users (SUs) while collecting suitable pay-
ments from them. The paper shows that, under inherent uncer-
tainties associated with communication processes, our proposed
overselling methodology leads to the enhancement of important
performance criteria, such as the PU’s utility and spectrum
utilization, beyond what is permitted by traditional approaches
to Dynamic Spectrum Sharing (DSS). Analytical characterization
of important properties sustained by our mechanism, such as
conditions under which spectrum overselling becomes optimal,
have been presented and computationally efficient techniques
to implement the proposed methodology have been described.
Numerous simulation results have been presented to provide
important insights.

Index TermsÐDynamic Spectrum Sharing, Spectrum Over-
selling, Auction Design

I. INTRODUCTION

Spectrum sharing is a vital technology for solving the

spectrum scarcity problem and supporting the demands of next

generation applications in 5G networks and beyond [1]. In

support of such a technology, Primary Users (PUs), who hold

long-term licenses of a spectrum range, can allow spectrum

that is unused by them, referred to as spectrum holes, to be

accessed by unlicensed Secondary Users (SUs) via Dynamic

spectrum sharing (DSS) techniques [2]. To enable such a

paradigm, for example, the works in [3]±[8] investigate the

design of market structures that can support DSS, [9] employs

game theory [10] to study and characterize spectrum sharing

strategies, and [11] investigates signal processing aspects as-

sociated with DSS.

While allowing SUs to use unused spectrum belonging to

PUs (i.e., spectrum holes) can improve spectrum utilization,

the degree of enhancements achieved depend on communi-

cation characteristics of SUs. What if an SU that has been

permitted to use a PU’s channel, does not eventually need

to transmit as planned? Such events, which are inherently

hard to predict, can lead to under-exploitation of spectrum

holes and greatly sacrifice spectrum utilization± a problem

which has remained grossly underexplored. E.g., past work

on designing spectrum auctions for allocating PU’s spectrum

to SUs in a market environment (e.g., [3]±[8]) has overlooked

performance degradations that can occur when SUs that have

been allocated spectrum may not subsequently have their

This work was supported by the U.S. National Science Foundation (NSF)
under Award Number CCF-2302197 and by the University of Cincinnati (UC).

planned communication needs. While [12], [13] have touched

upon the above question, it should be noted that the issue,

however, largely remains unaddressed to date with a lack of

rigorous analytical models for the problem. We seek to fill this

void in this paper.

In particular, to alleviate the above problem, which stems

from uncertainties associated with the communication charac-

teristics of SUs, we propose to intelligently oversell a PU’s

channel to multiple SUs in a region such that the chances of

having an SU which eventually needs to transmit data using

the channel is enhanced. As we show, among other advantages,

this enables the improvement of spectrum utilization beyond

what is permitted by traditional approaches to DSS. To enable

such a paradigm in a market environment, in this paper, we

build on the field of mechanism design [10], [14] to present

the design of an auction mechanism that would allow a PU

to ‘optimally’ oversell its spectrum to SUs for maximizing its

revenue. To the best of our knowledge, design of such a mech-

anism has remained unexplored by past work. Specifically, the

main contributions of the paper are as follows:

• We present the design of a novel spectrum auction mech-

anism that would enable a PU to optimize its revenue by

intelligently overselling its channel to a carefully chosen

set of SUs in a region (based on their communication

characteristics and bidding behaviors) and subsequently

collecting suitable payments from them. Our mechanism,

which has been analytically characterized, enforces desir-

able properties such as truthfulness of bidding behaviors.

• We analytically characterize important properties of the

outcome sustained by our auction mechanism, including

characterization of conditions under which the PU’s chan-

nel should be oversold.

• We present computationally efficient techniques to imple-

ment our designed auction mechanism.

• Numerous simulation results have been presented that

provide important insights, including demonstration of

the benefits that our mechanism brings for the PU’s utility

and spectrum utilization.

II. FORMULATION OF THE AUCTION DESIGN PROBLEM

Consider a PU which conducts an auction to sell an unused

channel that it owns to a set of SUs (denoted as {1, · · · , N})
by soliciting bids from them. Based on the bidding behavior of

the SUs and the uncertainties associated with their communi-

cation characteristics, consider the PU to select a set of SUs to



(over) sell the channel to and determine the payments that they

should make in return. Specifically, to formulate the problem,

suppose that the true valuation that SU i, i ∈ {1, · · · , N}, has

for the channel is vi ∈ [ai, bi]. To model the PU’s uncertainty

regarding SU i’s true valuation, consider it to be a random

variable with fi : [ai, bi] → R+ being its probability density

function (pdf) and Fi : [ai, bi] → [0, 1] being its cumulative

distribution function (cdf). Further, to model uncertainties

regarding SUs’ communication characteristics, suppose that

SU i that has been allocated the channel, eventually needs

to transmit on the channel with a probability qi. Such un-

certainties can arise from inherent randomness in SUs’ traffic

patterns and even from uncertainties regarding their presence

at the intended location and time for attempting transmission.

To enhance spectrum utilization and optimize the PU’s

utility under such communication uncertainties of the SUs, in

this paper, we design an optimal spectrum auction mechanism

that will allow the PU to judiciously oversell the channel to

more than one SU (knowing that, as long as one of the SUs

which have been assigned the channel transmits, the channel

would be used properly). Formally, denoting the vector of

bids that the PU receives as v = (v1, · · · , vN ), our auction

mechanism can be described by the following two functions:

• SU selection function, p(v) =
(

p1(v), · · · , pN (v)
)

,

where pi(v) is the probability that the PU assigns the

channel to SU i, and

• Payment function, x(v) =
(

x1(v), · · · , xN (v)
)

, where

xi(v) is the payment that SU i makes to the PU.

The goal of our auction design problem is to design the

functions p(v) and x(v) such that they allow the PU to opti-

mally oversell its channel to maximize the expected utility that

it gets from the auction while satisfying certain constraints.

Next, we describe the expected utilities of the PU (seller)

and the SUs (buyers/bidders) from our auction mechanism and

then formulate the auction design problem.

A. Expected utilities of the PU and SUs

The expected utility of the PU (U0(p,x)) from the auction

mechanism can be defined as

U0(p,x) =

∫

V

N
∑

i=1

xi(v)f(v)dv (1)

where V = [a1, b1] × · · · × [aN , bN ] denotes the set of all

possible combinations of SUs’ valuations, f(v) =
∏N

i=1 fi(vi)
is the joint density function on V for the vector of valuations

v = (v1, · · · , vN ), and dv = dv1 · · · dvN . Further, the

expected utility that SU i, i ∈ {1, · · · , N}, gets from the

auction from bidding its true valuation vi ∈ [ai, bi] is

Ui(p,x, vi) =

∫

V
−i

(

vi pi(v)qig−i(v)−xi(v)
)

f−i(v−i)dv−i (2)

where V−i = [a1, b1] × · · · × [ai−1, bi−1] × [ai+1, bi+1] ×
· · · × [aN , bN ] denotes the set of all possible combina-

tions of SUs’ valuations other than SU i, f−i(v−i) =
∏

j∈{1,··· ,N},j ̸=i fj(vj) is the joint density function on V−i for

the vector of valuations v−i = (v1, · · · , vi−1, vi+1, · · · , vN ),
dv−i = dv1 · · · dvi−1dvi+1 · · · dvN , and qi, as defined earlier,

is the probability of SU i that has been allocated the channel

eventually needing to transmit using it. In (2),

g−i(v) =
N
∏

j=1,j ̸=i

(1− pj(v) qj) (3)

is the probability of all SUs, without consideration of SU i, not

transmitting on the channel for a given p. Moreover, given that

the true valuation of SU i is vi ∈ [ai, bi], the expected utility

that the SU gets from bidding a falsified valuation wi ∈ [ai, bi]
while hoping to make an undue profit is

Ũi(p,x, wi) =

∫

V
−i

(

vi pi(v−i, wi) qi g−i(v−i, wi)

− xi(v−i, wi)
)

f−i(v−i) dv−i

(4)

where (v−i, wi) = (v1, · · · , vi−1, wi, vi+1, · · · , vN ).

B. Auction Design as an Optimization Problem

The task of designing our spectrum auction mechanism can

be formulated as the following optimization problem:

max
p,x

U0(p,x)

subject to:

Ui(p,x, vi) ≥ 0, ∀i ∈ {1, · · · , N} (5a)

Ui(p,x, vi) ≥ Ũi(p,x, wi), ∀i, ∀vi, wi ∈ [ai, bi] (5b)

0 ≤ pi(v) ≤ 1, ∀i ∈ {1, · · · , N} (5c)

The above three constraints are explained below:

• Individual-Rationality (IR) constraint (5a) justifies the

participation of SUs in the auction by ensuring that their

expected utilities are non-negative.

• Incentive-Compatibility (IC) constraint (5b) disincen-

tivizes SUs from lying about their valuations of the

channel during bidding by ensuring that honest reporting

of valuations form a Nash Equilibrium (NE).

• Selection Parameter constraint (5c) ensures that the prob-

ability with which an SU is selected for being assigned

the channel follows proper probabilistic definitions. Note

that there is no constraint that restricts the channel to be

allocated to at most one SU to allow overselling.

Next, we analyze the above auction design problem.

III. ANALYSIS OF THE AUCTION DESIGN PROBLEM

For a given bid vi, let us define the probability of SU i,
i ∈ {1, · · · , N}, successfully transmitting on the channel,

which would require SU i to be assigned the channel and

to eventually transmit using it while other SUs do not, as

Qi(p, vi) =

∫

V
−i

[pi(v−i, vi)qig−i(v−i, vi)]f−i(v−i)dv−i (6)

Using (6), we first present a simplified characterization of (5b).

LEMMA 1: The IC constraint in (5b) holds if and only if

the following two conditions hold ∀i ∈ {1, · · · , N}:

if vi ≥ wi, then Qi(p, vi) ≥ Qi(p, wi) (7a)
∫ vi

ai

Qi(p, wi)dwi = Ui(p,x, vi)− Ui(p,x, ai) (7b)

Proof: Consider vi, wi ∈ [ai, bi] with vi ≥ wi, i ∈
{1, · · · , N}. Now, if vi is SU i’s true valuation for the channel

while it bids the falsified valuation wi, the expected utility that



the SU gets can be expressed using (2), (4) and (6) as

Ũi(p,x, wi) = Ui(p,x, wi) + (vi − wi)Qi(p, wi) (8)

To ensure that SU i does not have an incentive to bid such a

falsified valuation wi, imposing the IC constraint (5b) we get

Ui(p,x, vi) ≥ Ui(p,x, wi) + (vi − wi)Qi(p, wi) (9)

Similarly, considering wi to be the true valuation of SU i for

the channel and vi to be a falsified valuation that the SU bids,

the IC constraint implies that

Ui(p,x, wi) ≥ Ui(p,x, vi) + (wi − vi)Qi(p, vi) (10)

From (9) and (10), we get

(vi − wi)Qi(p, wi) ≤ Ui(p,x, vi)− Ui(p,x, wi) ≤

(vi − wi)Qi(p, vi)
(11)

Note that (7a) is clearly implied by (11). Further, letting vi =
wi + δ, the above inequality can be rewritten as:
δ Qi(p, wi) ≤ Ui(p,x, wi+δ)−Ui(p,x, wi) ≤ δ Qi(p, wi+δ)

(12)
Clearly, (12) implies that Qi(p, wi) is Riemann-integrable,

from which (7b) follows.

Now, we show that (7a) and (7b) imply the IC constraint.

Using (7b), and noting that vi ≥ wi, we get

Ui(p,x, vi) = Ui(p,x, wi) +

∫ vi

wi

Qi(p, ri)dri

As ri ≥ wi, using (7a), the above expression implies that

Ui(p,x, vi) ≥ Ui(p,x, wi) +

∫ vi

wi

Qi(p, wi)dri

which reduces to the IC constraint in (9). Similarly, consider-

ing vi < wi in the above analysis implies the IC constraint in

(10), proving the ‘only if’ part and concluding the proof.

Using Lemma 1, we can simplify the optimization problem

in (5) to the form given in the following theorem.

THEOREM 1: For (p,x) to represent an optimal auction

mechanism, p should be such that it maximizes
∫

V

N
∑

i=1

((

vi −
1− Fi(vi)

fi(vi)

)

pi(v) qi g−i(v)

)

f(v) dv (13)

subject to constraint (5c), and the payment made by SU i,
i ∈ {1, · · · , N}, should follow

xi(v) = pi(v)qivig−i(v)−

∫ vi

ai

[pi(v−i, wi)qi g−i(v−i, wi)]dwi

(14)
Proof: The PU’s expected utility (1) can be re-written as:

U0(p,x) =

∫

V

N
∑

i=1

[xi(v)− vi pi(v) qi g−i(v)]f(v) dv

+

∫

V

N
∑

i=1

[vi pi(v) qi g−i(v)]f(v) dv

= −

N
∑

i=1

∫ bi

ai

Ui(p,x, vi)fi(vi) dvi

+

N
∑

i=1

∫

V

[vi pi(v) qi g−i(v)]f(v) dv
(

using (2)
)

(15)

Now, using (7b), we have

∫ bi

ai

Ui(p,x, vi)fi(vi) dvi =

∫ bi

ai

Ui(p,x, ai)fi(vi) dvi

+

∫ bi

ai

∫ vi

ai

Qi(p, wi) fi(vi) dwi dvi

= Ui(p,x, ai) +

∫ bi

ai

∫ bi

wi

fi(vi)Qi(p, wi) dvi dwi

= Ui(p,x, ai) +

∫

V

(

1− Fi(vi)
)

pi(v) qi g−i(v)f−i(v−i) dv

(16)
Substituting (16) into (15), we get:

U0(p,x) =

∫

V

N
∑

i=1

[(

vi −
1− Fi(vi)

fi(vi)

)

pi(v) qi g−i(v)

]

. f(v) dv−

N
∑

i=1

Ui(p,x, ai) (17)

In (17), x only appears in the last term of the PU’s utility. Now,

from (7b), it can be noted that for SU i, i ∈ {1, · · · , N}, if

Ui(p,x, ai) ≥ 0, we have Ui(p,x, vi) ≥ 0, ∀vi ∈ [ai, bi],
which leads to the satisfaction of the IR constraint (5a). Thus,

the best possible value of the last term of (17) can be obtained,

which is zero since the PU seeks to maximize its utility, as well

as the IR constraint can be satisfied, by having Ui(p,x, ai) =
0, ∀i ∈ {1, · · · , N}, which implies, using (7b) that

Ui(p,x, vi)−

∫ vi

ai

Qi(p, wi)dwi = 0 (18)

Substituting (2) and (6) into (18), we get (14) with the PU’s

utility thereby becoming (13). This proves the theorem.

A. Characteristics of the Auction Outcome

First, for i ∈ {1, · · · , N}, let us define

θi(vi) = vi −
1− Fi(vi)

fi(vi)
(19)

Further, for a vector of bids v received from N SUs, define

ξ(N) =

N
∑

i=1

θi(vi) pi(v) qi g−i(v) (20)

Now, it should be noted that the PU’s expected utility in (13) is

maximized if p(v) is such that it maximizes (20) for all v ∈ V
(subject to constraint (5c)). Next, in Lemma 2, we present an

important characteristic of p(v) that maximizes (20).

LEMMA 2: There always exists an SU selection strategy

p(v) =
(

p1(v), · · · , pN (v)
)

whose pi is Boolean ∀i ∈
{1, · · · , N} that dominates any probabilistic solution of (20).

Proof: The partial derivative of (20) w.r.t. pi yields

∂ξ(N)

∂pi
= θi(vi) qi g−i(v)− qi

N
∑

j=1,j ̸=i

θj(vj) pj(v) qj g−i,−j(v)

(21)
where g−i,−j(v) =

∏N
k=1,k ̸=i,j(1 − pk(v) qk) is the prob-

ability of all SUs, other than i and j, not transmitting on

the channel. Clearly, (21) is independent of pi. This implies

that, for any given p−i = (p1, · · · , pi−1, pi+1, · · · , pN ), (20)

varies linearly w.r.t. pi. Thus, for p to optimize (20), for any

i ∈ {1, · · · , N}, we must have pi = 0 (if ∂ξ(N)

∂pi
< 0) or pi = 1

(if ∂ξ(N)

∂pi
> 0) or that any pi ∈ [0, 1] is optimal (if ∂ξ(N)

∂pi
= 0).

This proves the lemma.



Case Optimal (pi, pj) Optimality Condition

(i) (1, 1) qi ≤ ηi(v); ∀i ∈ {1, 2}
(ii) (0, 1) 0 ≤ qi ≤ 1, qj ≥ ηj(v); i, j ∈ {1, 2}, i ̸= j

(iii)
(

1, ∗
)

qi = ηi(v), qj ≤ ηj(v); i, j ∈ {1, 2}, i ̸= j

TABLE I
OPTIMAL SU SELECTION

Next, considering two participating SUs, we analyze how

their communication uncertainties (qis) impact the channel

allocation strategy of our auction mechanism.

LEMMA 3: In the presence of two participating SUs, our

auction mechanism deterministically oversells the channel,

i.e., the optimal solution to (20) is
(

p1(v), p2(v)
)

= (1, 1),
when we have qi ≤ ηi(v), ∀i ∈ {1, 2}, such that

ηi(v) =
θj(vj)

θi(vi) + θj(vj)
, (22)

where j ∈ {1, 2}, j ̸= i, and θi(vi) follows (19).

Proof: For N = 2, (20) becomes:

ξ(2) = θ1(v1) p1 q1
(

1−p2 q2
)

+θ2(v2) p2 q2
(

1−p1 q1
)

(23)

In (23), clearly, if θi(vi) is negative, i ∈ {1, 2}, it is optimal

to assign the corresponding pi as zero. Therefore, to explore

the criteria for having pi > 0 as the optimal solution, we focus

on θi(vi) ≥ 0. Now, for i, j ∈ {1, 2}, i ̸= j, for pi = 1 to

optimize (23), clearly, we must have ∂ξ(2)

∂pi
≥ 0, which yields

θi(vi) qi (1− pj qj)− θj(vj) pj qj qi ≥ 0, which simplifies to

qj ≤ ηj/pj , where ηj is defined in (22). Thus, we can conclude

that the optimal solution of (23) corresponds to
(

p1, p2
)

=
(1, 1) when qi ≤ ηi ∀i ∈ {1, 2}. This proves the lemma.

While Lemma 3 characterizes the condition for (p1, p2) =
(1, 1) to be the optimal solution of (20), Table I, considering

N = 2, exhaustively lists p that optimizes (20) under qi
satisfying varying conditions, i ∈ {1, 2}, with θi(vi) ≥ 0
(since, otherwise, the solution is clearly easy to obtain). Since

Case (i) in the table was addressed in Lemma 3, we prove the

optimality conditions corresponding to the other cases below:

• Case (ii): For (pi, pj) = (0, 1) to be optimal, i, j ∈ {1, 2},

i ̸= j, using (23), we must have ∂ξ(2)

∂pi
≤ 0 and ∂ξ(2)

∂pj
≥ 0,

which implies qj ≥ ηj/pj and qi ≤ ηi/pi, respectively.

Now, substituting pi = 0 into the latter condition, we get

qi ≤ ∞ (i.e., 0 ≤ qi ≤ 1), and substituting pj = 1 into

the former condition, we get qj ≥ ηj .

• Case (iii): For (pi, pj) = (1, ∗) to be optimal, i, j ∈
{1, 2}, i ̸= j, where ∗ denotes any value of pj ∈ [0, 1],

we must have ∂ξ(2)

∂pi
≥ 0 and ∂ξ(2)

∂pj
= 0, which implies

qj ≤ ηj/pj and qi = ηi/pi, respectively. Now, substitut-

ing pi = 1 into the latter condition, we get qi = ηi, and

since the former condition, whose R.H.S. varies from ηj
to ∞ (as pj varies from 1 to 0), must hold for any value

of pj ∈ [0, 1], we must clearly have qj ≤ ηj .

Fig. 1 presents numerical results to corroborate Lemma 2 and

Lemma 3. For the figure, we considered two SUs, numbered

1 and 2, which bid v1 = 15 and v2 = 30 for the channel with

q1 = 0.7 and q2 = 0.2. The valuations of the two SUs were

considered to be uniformly distributed over [a1, b1] = [0, 20]
and [a2, b2] = [0, 30]. As can be seen from the figure, the

PU’s utility (20) increases linearly with both p1 and p2. This

Fig. 1. PU’s utility (U0) vs. SU selection probabilities (p1 and p2).

corroborates the ideology of the proof of Lemma 2. Further,

under the above parameters, using (19) and (22), it can be

shown that η1 = 0.75 and η2 = 0.25. Accordingly, since

q1 ≤ η1 and q2 ≤ η2, as can be seen from the figure, the PU’s

utility is maximized when (p1, p2) = (1, 1) (i.e., when the

channel is sold to both the SUs). This corroborates Lemma 3.

B. Determination of the Auction Outcome

Given the presence of N SUs in general, and their advertised

bids v, we now describe how to optimize (20) for finding the

SU(s) that the channel should be (over) sold to and how to

compute their payments using (14).

1)Optimal selection of SUs: It should be noted that (20) is

non-convex in nature since its leading principal minors, viz.

D1 = ∂2ξ(N)

∂p2
i

= 0 and D2 = −
(

∂2ξ(N)

∂pi∂pj

)2

< 0, which implies

that the function is neither concave nor convex [15]. In such a

scenario, noting that both our maximization objective (20) and

constraint (5c) are polynomials, we can employ a semidefinite

solver like SeDuMi [16] (to reduce our non-convex problem

to solving a sequence of finite convex linear matrix inequality

(LMI) problems) along with the MATLAB software Glop-

tipoly 3 [17]. To corroborate the solution obtained via such an

approach, we employed Gloptipoly 3 to optimize (20) subject

to (5c) under the parameters that were used for Fig. 1. The

solution yielded by the optimization process corresponded to

(p1, p2) = (1, 1), which tallies with the optimal solution.

2)Determination of SUs’ payments: The payment that an

SU should make can be found using (14). First, as can be

noted, an SU that is not assigned the channel, does not make

any payment. This is due to the fact that for advertised bid

vi ∈ [ai, bi] of SU i, if pi(vi,v−i) = 0, we have that: a) the

first term of (14) is 0; and b) the second term of (14) is also

0 (over bids in [ai, vi]) since its integrand, which is clearly

non-negative, is a monotonically increasing (non-decreasing)

function of the bid of SU i as follows from (7a). Next, to

find the payment of SU i that is assigned the channel, we first

present a characteristic of the integrand in (14) in the following

lemma (which can be exploited to compute the integral).

LEMMA 4: Considering optimal solutions of (20), the in-

tegrand in (14), viz. pi(v−i, wi) qi g−i(v−i, wi), is a mono-

tonically increasing step function of SU i’s bid wi.

Proof: As follows from (7a), the integrand in (14) is

a monotonically increasing function of bid wi of SU i,
i ∈ {1, · · · , N}. Further, as follows from Lemma 2, a Boolean



pi, ∀i ∈ {1, · · · , N}, always exists that would maximize (20)

while satisfying (5c), making the integrand in (14) behave as

a step function w.r.t. wi. Putting the above two characteristics

together, the lemma follows.

Next, in Algorithm 1, we exploit Lemma 4 to compute the

payment of SU i, i ∈ {1, · · · , N}, that is assigned the channel.

Specifically, Algorithm 1 takes as inputs the advertised bids

v = (v1, · · · , vN ) and the index i of an SU whose payment

needs to be computed. In Step 1, the algorithm initializes

the payment xi(v) to the first term of (14). In steps 3-

16, leveraging the characteristic presented in Lemma 4, the

algorithm employs a variation of the bisection method [15] to

iteratively identify points of discontinuities of (14)’s integrand

over [ai, vi] (steps 4-13), and then progressively computes the

area under the integrand function between consecutive points

of discontinuities (to compute the integration over consecutive

discontinuity points) while gradually, following the nature of

(14), subtracting the found areas from the previous value of

xi(v) (steps 14 and 17). Since the integration in (14) ranges

over [ai, vi], the while loop in steps 3-16 iterates until the

integrand in (14) assumes its value evaluated at SU’s bid ai.

Algorithm 1 Computation of SU i’s payment

Require: v = (v1, · · · , vN ); index i of the SU whose

payment needs to be computed.

1: xi(v)← pi(v) qi vi g−i(v)
2: w ← vi
3: while pi(v−i, w) g−i(v−i, w) ̸= pi(v−i, ai) g−i(v−i, ai)

do

4: l← ai
5: r ← w
6: while r − l > ϵ do

7: m← l+r
2

8: if pi(v−i,m) g−i(v−i,m) < pi(v−i, w) g−i(v−i, w)
then

9: l← m
10: else

11: r ← m
12: end if

13: end while

14: xi(v)← xi(v)− (w − l) pi(v−i, w) qi g−i(v−i, w)
15: w ← l − ϵ
16: end while

17: xi(v)← xi(v)− (w − ai) pi(v−i, w) qi g−i(v−i, w)

IV. SIMULATION RESULTS

In this section, we provide simulation results to gain in-

sights into our developed auction mechanism and show its

performance advantages. In Fig. 2, we study the performance

and characteristics of our developed auction mechanism with

varying number of SUs (N ). Specifically, in Fig. 2(a), Fig.

2(b), and Fig. 2(c), we show how the utility that the PU

acquires, how the percentage of solutions where the channel is

oversold (to more than one SU), and how spectrum utilization

scales, respectively, with N . For the figures, we considered the

bids of all SUs to be uniformly distributed over [0, 20] with
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Fig. 2. Performance analysis with varying no. of SUs (N )

q = q1 = q2 = · · · = qN . We have performed 100k iterations

over randomly generated bids to get the presented results.

Note that in Fig. 2(a) and 2(c), ‘with overselling’ refers

to the operating point obtained from our auction mechanism

in Theorem 1 while ‘without overselling’ corresponds to the

solution of (5) with the constraint
∑N

i=1 pi(v) ≤ 1 added

(to ensure that the channel is sold to at most one SU). It

can be shown that in the latter case, for a given v, since

g−i(v) = 1 when SU i is assigned the channel, the optimal

solution of (20) corresponds to, if max
i∈{1,··· ,N}

θi(vi) ≥ 0,

deterministically assigning the channel to SU j such that

j = argmax
i∈{1,··· ,N}

θi(vi)qi, and to not allocate the channel to any

SU otherwise, where θi(·) follows (19). In such a scenario, the

payment of winning SU j can be found from (14) using the

approach described in Section III-B2 with g−j(·) = 1. Also,

under the considered simulation parameters, at q = 0.5, note

that our mechanism dictates that the channel should not be

oversold, and accordingly, the ‘with overselling’ and ‘without



Fig. 3. Utility of the PU (U0) vs. communication uncertainties of the SUs

overselling’ solutions coincide in Figs. 2(a) and 2(c).

As can be seen from Fig. 2(a), for any given N , under values

of q that allow the channel to be oversold (which are q = 0.1
and q = 0.3 in the figure), the PU’s utility ‘with overselling’ is

greater than that obtained ‘without overselling’. Again, as can

be seen from Fig. 2(c), under the aforementioned values of

q, spectrum utilization, measured by the percentage of times

the channel was used to communicate successfully (out of

the 100k runs), in the ‘with overselling’ case is greater than

that obtained ‘without overselling’. These observations clearly

show the performance advantages of our proposed approach.

Further, as can be seen from Fig. 2(a), under the aforemen-

tioned values of q that allow the channel to be oversold, the

PU’s utility ‘with overselling’ increases at a faster rate with

N than the rate at which it increases ‘without overselling’.

This is because, with increasing N , while increase in the

PU’s utility ‘without overselling’ can only be attributed to

the enhanced ability to find an SU which is willing to make

a higher payment for the channel, in the ‘with overselling’

case, not only does the PU’s utility benefit from the above

advantage as N increases, but also from the ability to oversell

the channel to more SUs. This latter trend is corroborated by

Fig. 2(b), which shows that the percentage of solutions (out

of the 100k runs) in which the channel is oversold (to more

than one SU) increases with N (under values of q that allow

the channel to be oversold). Implications of the observation

made from Fig. 2(b) can also be noted in Fig. 2(c) which

shows that spectrum utilization, under values of q that allow

the channel to be oversold, increases with N (while spectrum

utilization ‘without overselling’, as expected, barring a small

initial increase, relatively remains constant as N varies).

In Fig. 3, we study the impact that communication un-

certainties of SUs (qis) have on the PU’s utility and the

overselling dynamics of our auction mechanism. For the figure,

we consider 2 SUs, which bid (v1, v2) = (14, 18), which

were chosen uniformly from the ranges [a1, b1] = [10, 20] and

[a2, b2] = [10, 30], respectively. As can be seen, the PU’s util-

ity monotonically increases as q1 and q2 increase since, as fol-

lows from (14), the payment made by winning SU i increases

with qi. Further, as noted in the figure, our auction mechanism

oversells the channel
(

i.e., chooses (p1, p2) = (1, 1)
)

when

0 ≤ q1 ≤ 0.428 and 0 ≤ q2 ≤ 0.571. It can be noted that this

tallies with Lemma 3, which also prescribes that the channel

be sold to both SUs when q1 ≤
θ2(v2=18)

θ2(v1=14)+θ2(v2=18) =
6

8+6 =

0.428 and q2 ≤
θ1(v1=14)

θ2(v1=14)+θ2(v2=18) = 8
8+6 = 0.571, which

corroborate the lemma.

V. CONCLUSION

This paper presented the design of a novel spectrum auction

mechanism that allows a PU to intelligently oversell its chan-

nel to a set of SUs in a region based on their advertised bids

and their communication characteristics. As has been shown,

under inherent uncertainties associated with communication

processes, our designed overselling methodology can enhance

the PU’s revenue and the associated spectrum utilization

beyond what is permitted by schemes where overselling in

not permitted. Conditions under which spectrum overselling

is optimal have been analytically characterized and computa-

tionally efficient techniques to implement our mechanism have

been described. Numerous simulation results, which provide

important insights, have been presented. In the future, we

plan to build on our current results to explore double auction

formats for overselling spectrum.
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