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Abstract—Many image database systems utilize content-based
retrieval technology using perceptual hashing to facilitate image
comparison and retrieval. However, conventional hashing func-
tions generate different hash codes for the same image domain
even with minor changes, making accurate searches in the image
database impossible. To overcome these limitations, a method has
been devised to enable the search for images similar to queries
synthesizing visual feature information, including texture, shape,
and color of images. This paper proposes deephashing models
that incorporate both variational autoencoders and vision trans-
formers, capable of capturing semantic patterns and preserving
the semantic similarity between data points. To validate this
proposal, we conduct a comparative evaluation by comparing its
performance with widely-used supervised learning-based models.
The experimental analysis shows that the proposed approach
generates compressed and discriminative hash codes with fixed-
length binary representations that maintain semantic similarity
and enable the search even for similar images. When evaluating
the performance of our proposed model in comparison to the
other studies, noticeable improvements are observed across the
selected metrics in deephashing based on self-supervised learning.

Index Terms—deep learning, image retrieval, perceptual hash-
ing, self-supervised learning, attention layer

I. INTRODUCTION

To build a similar image retrieval system, it is essential
to fulfill the requirements of search accuracy and time-space
limitations for retrieval. Hash codes are a useful tool for
swiftly and effectively retrieving data, including images and
videos, and other forms of content. Perceptual hashing is a
technique that enables the comparison and identification of
similar images by learning distinctive features that represent
the perceptual characteristics of images [1]. This method has a
range of practical applications, including image identification,
image and video retrieval, and digital watermarking. However,
image manipulation presents a significant challenge for en-
suring multimedia authentication and security [2], [3]. Image
editing software facilitates operations like color correction,
object modification, and duplication, emphasizing the need for
a digital image protection system.

A conventional hashing method converts high-dimensional
input data into a low-dimensional hash code of fixed length.
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Deephashing is a technique that involves training a deep neural
network to learn a hash function capable of mapping high-
dimensional input data into a low-dimensional binary code.
However, the existing hashing function produces different
hash codes for the same image domain, even with minor
alterations like jpeg compression, making it impossible to
calculate the distance between query and image hash codes
to search for similar images in the database [4]. To overcome
these limitations, a new approach has been developed that can
search for images similar to queries by synthesizing visual
feature information, including texture, shape, and color of
images [5].

Supervised deephashing methods incorporate label in the
training data, allowing for the preservation of pairwise similar-
ity relationships between labeled data through the learning of
a mapping function from the input space to the hash space [6].
Conversely, self-supervised deephashing involves learning to
map hash codes from unlabeled data, with the aim of capturing
semantic patterns that reveal the structure of data and generate
simple binary codes that maintain similarities between data
points [6], [7]. Autoencoders are a common approach to self-
supervised deephashing, as they can reconstruct input data
from a compressed representation [8].

This paper proposes deephashing models with variational
autoencoder (VAE [9]) or vision transformer (ViT [10]).
Figure 1 depicts an image retrieval framework with deephash-
ing. An comprehensive evaluation is conducted to measure
their performance in comparison to established models based
on supervised learning. The key contributions are described
below:

o This study presents an architecture that effectively ex-
tracts visual features from images by enhancing CNNs
for deephashing through self-supervised learning.

o This study demonstrates that self-supervised learning of
VAE, VTE and ViT models enables unique key mapping,
generating hash codes without redefining the loss function
for hash vector modification.

o The proposed method can generate small and efficient
hash codes with a fixed and lower-dimensional hashing
vector that can be used to quickly retrieve similar data
points.

o The experimental analysis shows that the hash code
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Fig. 1: A deephashing framework for image retrieval.

generated by the proposed method can map the expres-
sions that preserve semantic similarity of input images,
and provides high generalization performance just by
changing the model structure.

This paper is organized as follows. Section II discusses
related work on deephashing technology. Section III proposes
various deephashing methods with detailed explanations for
detecting database images. Section IV discusses the experi-
mental results and Section V summarizes this work towards
future directions.

II. RELATED WORKS

The deephashing has been studied through supervised and
unsupervised hashing techniques, depending on whether the
dataset includes labels or not. Venkateswara et al. [7] proposed
a supervised deephashing model that can extract semantic
hash codes for images. Their dataset consisted of labeled and
unlabeled images of various objects. The learning algorithm
employed the VGG-F [11] network as a backbone, with two
output layers configured to extract hash codes and labels.
Dubey et al. [12] designed a model for image retrieval, called
Vision Transformer (ViT) [13]-based hashing (VTS). They uti-
lized a pre-trained ViT architecture with ImageNet, fine-tuned
with a hashing head to extract hash values through pre-trained
weights. To evaluate the performance, they used standard
datasets such as CIFAR10, ImageNet, NUS-WIDE, and MS-
COCO, and mAP was used as the evaluation metric. Gattupalli
et al. [14] proposed a supervised learning-based deephashing
model that generates both tag information and hash codes by
passing image features extracted from AlexNet [15] through
two FCN layers.

Unsupervised deephashing is based on the distribution or
structure of the data to learn effective binary representation.
Hoe et al. [16] proposed a technique to enhance deephashing
performance by exploiting the cosine similarity between the
continuous neural network output and the quantized binary
hash codes. Liu et al. [17] proposed a deephashing model
using a convolutional neural network to generate binary codes
from images and optimized the codes using a loss function
that approximates the labeled data. En et al. [18] proposed
an unsupervised binary code learning algorithm based on a
Stacked Convolutional AutoEncoder that maps input images
into a low-dimensional space and generates sparse binary
codes through binary relaxation.

Deephashing generates binary codes from the col-
lected dataset as opposed to traditional hashing algorithms.

Autoencoder-based deephashing utilizes many advantages over
deephashing, such as non-linear mapping, dimensionality re-
duction, data reconstruction, end-to-end learning, and more.
The optimization algorithm is operated through a binary loss
function, fine-tuning it with transfer learning, and recon-
struction loss in a self-supervised manner. The hash code is
generated by hashing the output of the hash output layer or the
intermediate layer. The models were evaluated with CIFAR-
10, NUS-WIDE, ImageNet, and MS COCO datasets.

III. PROPOSED APPROACH

Each image of a dataset D = {x®|i = 1,2,... N}
was transformed into a grayscale image of size 128 x 128
and scaled to a value between [0, 1] with the minmax scalar.
The proposed deephashing model consists of an encoder and
decoder: M = (M., My). The encoder learns to map the
input x € D to a low-dimensional latent vector z (|z| < |x|)
while the decoder learns to generate the reconstructed input
x from the latent vector z: z = M.(x) and X = My(2).
For all x € D, a deephashing model proceeds with learning to
minimize the difference between x and X as much as possible.
The latent vector z is binarized to generate the hash code
h of x with threshold 6. The threshold vector € utilizes the
average of latent vectors from the training dataset. The hashing
function H(x(") provides the binary code h(*) = [hé.l)]d for
image x(*) of size d.

1 N 1 N
_ E (1) — E (4)
0= N 7\ = N 2 Me(x )

=1
b =H(x") = by, b, )
1 if 2" > 6;;
0 otherwise.

3
h{ =
Variational Autoencoder (VAE): As a generative model, VAE
can learn a compressed representation of the input data. In the
context of generating hash vectors, the VAE can be used to
learn a compressed representation of an input data point, such
as an image or a text document. To generate a hash vector
using a VAE, the encoder map an input image to a point in the
latent space, and then use a hash function to map that point to
a hash vector. The hash function maps the continuous-valued
point in the latent space to a binary vector, which serves as a
hash code for the input.
By using a VAE to generate hash vectors, we can learn
a compressed representation of the input data that captures
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Fig. 2: VAE-based deephashing model.

important features, while still producing binary hash codes
that are efficient to store and compare. Figure 2 illustrates a
VAE model used for deephashing. The activation value z of the
mean layer for the input image x is used to generate its hash
code h. Both the encoder and decoder consist of four fully
connected layers, the input image is flattened and the layer
size decreases by half for the potential layer and increases by
two for the output.

Convolutional Variational Autoencoder (CVA): The per-
formance of convolutional neural network outperform fully
connected networks (FCN), particularly when feature extrac-
tion layers are utilized [11], [15]. CNN extracts features
from images by applying multiple convolutional filters. These
filters can extract localized features from the input image with
varying filter sizes. These localized features provide detailed
information on specific regions of the image, and the network
learns to synthesize these features into global features. On the
other hand, FCNs lose spatial information in the process of
flattening an image to one dimension. It is also configured
to perform pixel-by-pixel prediction, so it is not effective in
recognizing features of complex images [18].

CVAS is a deephashing model that replaces the encoder and
decoder of VAE with convolution layers. CVASE’s encoder
reduces a two-dimensional image to the vector in the latent
space. The convolution layer characterizes the information of
local area of pixels using several filters. It uses four layers to
learn complex patterns and expressions. Reconstruction of the
input from the latent vector is performed in the reverse order
of the encoder layer through upsampling. Figure 3 shows the
architecture of CVAE.
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Fig. 3: CVAE-based deephashing model.

Convolutional and Simple Attention Variational Autoen-
coder (CSVAE): SimAM [19] is a deep learning architecture
for attention-based CNN. The SimAM model combines atten-
tion mechanisms with simulated annealing, which is a heuristic
optimization algorithm for finding the global minimum of a
cost function. Attention mechanisms can enable the model to
selectively focus on different regions of an image.

CSVAE replaces the encoder of CVAE only for deephash-
ing. SimAM layers of the same size are inserted into the
second and third layers of the CVAE encoder. The structure of
the decoder does’t change. With the introduction of SimAM,
a hash code is generated that uses both the overall feature
and the partial feature formed by the convolution layer. The
hash vector thus formed was mapped to a more distinguishable
latent vector in the hash space.

Variational Transformer Encoder (VTE): Vision Trans-
former (ViT) is a popular deep learning architecture for image
classification tasks that uses self-attention mechanisms to
capture long-range dependencies between image patches [10].
While ViT was not specifically designed for generating hash
codes, it is possible to use the features learned by the model
to generate a hash code for an input image. Its binary vector is
acquired by thresholding. ViT uses a self-attention mechanism
to capture global information about the input image. This
feature is useful for handling larger image sizes where the
global-context is important for accurate image processing. The
output of ViT can be considered as the latent vector of the
input image.

Variational transformer encoder (VTE) is an extension of
ViT-based variational autoencoder (Figure 4). VTE enforces
to learn both global feature and local feature from an input
image. In addition, the latent vector converted considering the
global context can generate a reconstructed image very similar
to the input image while passing through the decoder.
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Fig. 4: VTE-based deephashing model.

Figure 5 are examples of images reconstructed from the
deephashing model. The comparison of the input and output
images is evaluated with the mean squared error: 8.680+£0.821
for VAE, 7.355 4+ 1.226 for CVAE, 6.750 £ 1.623 for CSVAE
and 6.664+1.698 for VTE. In MSE analysis, the reconstructed
output image is evaluated as similar to the input image in
the order of VTE, CSVAE, CVAE, and VAE. Therefore, a
deephashing model can be improved by the effect of the
convolutional layer and the attention layer.

IV. EXPERIMENTS

Data preparation: We populated an image database including
CIFAR-10, ImageNet, and NUS-WIDE to analyze the pro-
posed deephashing models. The CIFAR-10 dataset comprises
60,000 32x32 color images classified into 10 different cate-
gories, with each category containing 6,000 images. ImageNet
is a massive image recognition dataset containing over 1.4
million images across 1,000 class categories. Images have a
minimum size of 256 x256 pixels, and the classes are various
object categories, such as animals, plants, and household



Fig. 5: Examples of reconstructed images for the deephashing models.

TABLE I: Evaluation of the proposed deephashing models

Method CIFAR10@10000 ImageNet@10000 NusWide @10000
16b 32b 64b 128b 16b 32b 64b 128b 16b 32b 64b 128b
f1 0.624 | 0.647 | 0.662 | 0.647 | 0.543 | 0.532 | 0.662 | 0.647 | 0.537 | 0.555 | 0.564 | 0.583
VAE precision | 0.607 | 0.647 | 0.663 | 0.647 | 0.512 | 0.534 | 0.663 | 0.647 | 0.538 | 0.555 | 0.565 | 0.584
recall 0.608 | 0.648 | 0.664 | 0.648 | 0.527 | 0.515 | 0.664 | 0.648 | 0.536 | 0.554 | 0.563 | 0.587
mAP 0410 | 0455 | 0475 | 0.456 | 0.319 | 0.394 | 0475 | 0.456 | 0.348 | 0.356 | 0.407 | 0.425
f1 0.895 | 0.980 | 0979 | 0.978 | 0.850 | 0.835 | 0.836 | 0.837 | 0.869 | 0.873 | 0.873 | 0.873
CVAE precision | 0.896 | 0.976 [ 0979 | 0.978 | 0.832 | 0.819 | 0.820 [ 0.822 | 0.844 | 0.867 | 0.864 | 0.879
recall 0.894 | 0981 | 0978 | 0978 | 0.894 | 0.870 | 0.870 | 0.872 | 0.884 | 0.890 | 0.884 | 0.869
mAP 0.812 | 0.962 | 0.960 | 0.959 | 0.807 | 0.819 | 0.820 | 0.822 | 0.810 | 0.821 | 0.822 | 0.815
f1 0.888 | 0.970 | 0.979 | 0977 | 0.854 | 0.832 | 0.824 | 0.833 | 0.869 | 0.873 | 0.880 | 0.882
VTE precision | 0.890 | 0.954 | 0979 | 0.976 | 0.846 | 0.814 | 0.814 | 0.819 | 0.844 | 0.867 | 0.881 | 0.881
recall 0.874 | 0.979 | 0980 | 0.979 | 0.897 | 0.872 | 0.830 | 0.861 | 0.884 | 0.890 | 0.878 | 0.883
mAP 0.826 | 0.953 | 0.959 | 0.959 | 0.810 | 0.816 | 0.820 | 0.818 | 0.809 | 0.813 | 0.823 | 0.823
f1 0.925 | 0.979 | 0981 | 0.982 | 0.851 | 0.840 | 0.842 | 0.843 | 0.870 | 0.872 | 0.871 | 0.873
CSVAE precision | 0924 | 0.974 [ 0980 | 0.981 | 0.833 | 0.821 | 0.820 [ 0.821 | 0.845 | 0.866 | 0.865 | 0.880
recall 0.874 | 0.926 | 0.983 [ 0982 | 0.870 | 0.859 | 0.868 | 0.868 | 0.885 | 0.889 | 0.886 | 0.862
mAP 0.842 | 0.966 | 0.969 | 0.970 | 0.784 | 0.820 | 0.821 | 0.822 | 0.809 | 0.821 | 0.824 | 0.824

items. The NUS-WIDE dataset is a well-known benchmark
dataset for image retrieval and tagging, consisting of 269,648
images of various sizes. Each image has class information
that selects one or more tags from a vocabulary of 81. The
tags encompass a broad range of concepts, including objects,
scenes, and human activities.

A total of 20,000 training and 10,000 evaluation images
are generated by uniform random sampling for each dataset.
The evaluation dataset is divided into 5,000 images from the
search database and 5,000 images from the query. The search
database stores the original images, binary hash codes ex-
tracted from the hashing model, and labels. Search calculates
the Hamming distance between the hash code generated from

the query image and the hash code from the search database,
and returns the image with the shortest distance.

The performance evaluations are precision, recall, fl-score,
and mAP of query image labels and search image labels.
Precision is the proportion of relevant images out of all
images retrieved and evaluates whether the retrieved image
has the same label as the query. Recall is the percentage
of relevant images retrieved out of all images in the data
set. The fl-score is the harmonic average of precision and
recall and provides a single score that balances both measures.
mAP is a metric that considers the precision and recall of a
retrieval system across different thresholds. This provides a
single value that represents an overall measure of the model’s



TABLE II: Hash collision ratio.

Collision Ratio(%)
Method CIFARI0@10000 ImageNet@10000 NusWide @10000
16b 32b 64b [ 128b | 16b | 32b 64b | 128b | 16b 32b 64b | 128b
VAE 034 | 032 | 029 | 0.27 039 | 0.37 | 033 | 0.33 036 | 029 | 0.26 | 0.30
CVAE 028 | 023 | 021 | 0.21 024 | 0.16 | 0.14 | 0.13 0.26 | 0.18 | 0.18 | 0.15
VTE 024 | 023 | 021 | 0.21 022 | 0.15 | 0.13 | 0.11 023 | 020 | 0.18 | 0.15
CSVAE | 023 | 023 | 021 | 0.21 022 | 023 | 0.15 | 0.13 0.13 | 022 | 0.19 | 0.16

TABLE III: Comparison of the proposed model and studied models.

Method CIFAR10@10000 ImageNet@10000 Nus-Wide@10000
16b 32b 64b 16b 32b 64b 16b 32b 64b
DHN [20] 0.693 0.645 0.588 0.311 0.472 0.573 - 0.748 -
HashNet [21] 0.748 0.778 0.626 0.506 0.631 0.684 0.662 0.699 0.716
DPN [22] 0.774 0.803 0.812 0.608 0.691 0.727 0.810 0.822 0.839
TransH [23] 0.908 0911 0.917 0.820 0.832 0.833 0.726 0.739 0.749
Our work 0.842 | 0.966 | 0.969 | 0.784 | 0.820 | 0.821 | 0.809 | 0.821 | 0.824
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Fig. 6: mAP comparison of CVAE, DPN and HashNet.

performance in detecting objects across different categories.
Alternatively, when mapping arbitrary-size inputs to fixed-size
outputs, conflicts may arise due to the inherent characteristics
of the model and its learning method. The hash collision rate
is:

No. of collided hashes

Collision rate = -
No. of test images

x 100.0

Experimental results: Table I is the search performance
result for CIFAR-10, ImageNet and NUS-WIDE. The eval-
uation metrics are calculated by label comparison between
the searched image and the query image through Hamming

distance in 16-bit, 32-bit, 64-bit, and 128-bit hash spaces.
Except for the VAE model, the evaluation indicators of other
models are excellent. It is analyzed that the introduction of
the convolution layer and the attention layer helped to learn
the deephashing model. It shows the highest score at 64 hash
bits, so a latent vector size of the evaluation dataset is 4 bytes.

The hash collision rate of the deephashing model was
compared (Table II). On the 10,000 ImageNet test dataset,
the VTE model had 0.11% hash collisions at a hash size of
128 bits, resulting in hash collisions for 1 test image. The hash
collision rate of the VAE model was 0.260.37 across the three
datasets, showing a higher collision rate. At the same hash



size, the hash collision rate of the other models excluding the
VTE model was similar.

Comparison with other studies: We compare and evaluate
the search performance of hash codes extracted using previ-
ously studied deephashing models. Table III is the mAP com-
parison between the VTE model, which showed the highest
performance among the proposed models, and the supervised
deephashing models that have been studied previously. Fig-
ure 6 compares the mAP graph of CVAE, DPN and HashNet.
The performance of the proposed deephashing model is rela-
tively high, and it is analyzed that a simple model modification
can yield distinguishable hash vectors. TransH [23] showed
the highest performance among the comparison models, and
is compared with the performance of the proposed model. The
result shows that VTE is very competitive to TransH even
though VTE is a VAE model with ViT and CNN modules.

V. CONCLUSION

In this study, we proposed deephashing models using atten-
tion, transformer, and CNN modules for an image retrieval sys-
tem. These deephashing models can produce hash codes that
can maintain semantic similarity of input images to overcome
the limitation of conventional hash methods that often produce
different hash codes for a single image domain, even with
minor changes. The proposed model performs unsupervised
variation inference learning and self-supervised learning to
output the same input image. Through comparative experi-
ments, we achieved competitive performance with supervised
learning-based models on the CIFAR-10, ImageNet, and NUS-
WIDE datasets. The proposed deephashing methods can gen-
erate compact and efficient hash codes with low-dimensional
hashing vectors that can lead to better search performance.
Consequently, deephashing will enhance an image retrieval
system by generating binary hash that represent visual features
of images, enabling fast and efficient searches within large
image databases.
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