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ABSTRACT

What is the minimal mathematical model that can
generate the FO trajectories for a system of pitch
accents? In this work, we propose a nonlinear coupled
dynamical systems theory of American English pitch
accents with a single basic parameter. As that
parameter increases, FO profiles for different pitch
accents are generated. The terms in the differential
equation are based on a novel dynamical analysis of
a large database of FO productions in terms of
measurements of FO peak, peak velocity, and the time
to achieve peak velocity. We describe the basic
dynamical properties of pitch accents in our database
and argue for the proposed model as the simplest one
that realizes all the major dynamic FO properties of
the pitch accent system. We argue that the proposed
model describes both abstract phonological and
concrete phonetic aspects of the system.

Keywords: Intonation; Pitch Accents; Dynamical
Systems; Fitzhugh-Nagumo Differential Equation.

1. INTRODUCTION

What are the basic scales or dimensions on which the
pitch accents of a language could be contrasted?
Current level-based theories of prominence contrast
pitch accents in terms of the symbols: L, H, and *,
indicating static, relative FO target values (low, high),
and their temporal alignment with a phonological
landmark [1,2]. An algorithm translates from the
symbolic expressions to F0 trajectories. Yet there is a
long research line arguing for the inherent temporal
gradience and fundamental variability in the
expressions of F0O-based prominence [3,4,5,6],
emphasizing that it is the FO configuration, not just
target values, that are used for pitch-based
prominence [3,7]. And polynomial coefficients have
been wused successfully to describe those
configurations [8,9,10].

Another approach is the use of dynamical systems
theory to predict FO trajectories by solving a
differential equation that expresses the relation
between FO and its derivative(s) at every moment in
time [11]. Differential equations are valuable since
they bridge the abstract and concrete. The relation
between the value of a function and its derivatives is
abstract as it holds invariantly (or within stochastic
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limits) even as the value of the function and its
derivative change, but it can also explain concrete
details of the shape of the function. Thus, differential
equation descriptions can be seen as a bridge between
abstract level-based descriptions, and more concrete
configuration-based descriptions. Moreover, the
differential equation has parameters that can be used
as a scale for contrast. The greatest hope for a
dynamical account of pitch accents is that they
potentially allow for observed properties of the
phenomenon to emerge, rather than be stipulated
symbolically or verbally. This is why we believe that
a proposal for an underlying differential equation for
a pitch system is worthwhile. For general discussions
of differential equation-based approaches to
phonology and phonetics, the reader can consult
[12,13]. In the original dynamical work on FO shape
[11], a linear differential equation was used. In the
present work, we propose a new nonlinear dynamical
system of differential equations with a single
parameter and show that the variation in shape of
pitch contours in Mainstream American English
(MAE) requires this additional complexity. Nonlinear
differential equations have also recently been used
[14,15] to describe the processes of tonal selection, as
an application of intentional dynamics to accent and
meaning [16].

Our goal is to show, through novel quantitative
analysis of FO dynamics in a large database of MAE
intonation, that the minimal model required to
account for the dynamical properties is a cubic
nonlinear system representing the interaction of FO-
raising and FO-lowering forces. The specific system
we propose is an instance of the Fitzhugh-Nagumo
equation, one of the most fundamental equations in
mathematical neuroscience [17]. However, we
modify these equations in a novel way, to represent
discrete, as opposed to rhythmic movement [18]. We
will show that this system for describing pitch accents
combines phonetics and phonology in a highly
organic way, contributing to the solution of the
problem of how phonetics and phonology combine in
the description of intonation [19].

2. DATA AND METHODS

The pitch accent model we propose is based on data
from 130 MAE speakers, aggregated from several
imitative speech production experiments [29,30]. In
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each experiment, on a given trial, participants heard
two model utterances that exemplified a particular
tune. FO in the model utterances was resynthesized
based on straight-line approximations from [1]. The
participant produced the heard tune on a metrically
and syntactically similar sentence (e.g., heard: “He
answered Jeremy”, “Her name is Marilyn”;
produced: “They honored Melanie”). Here we focus
on FO of the final trisyllabic stress-initial word, which
bears the nuclear (phrase-final) pitch accent. Data
from 70 speakers producing MAE H*, L+H* and
L*+H in all intonational boundary contexts (H-H%,
H-L%, L-H%, L-L%) is used, with 48 repetitions per
speaker, per accent. Data for L* is taken from two
different experiments in which 60 speakers each
produced 72 repetitions of L* (and other accents)
across all four boundary contexts. FO was extracted
from the nuclear word and time-normalized to 30
samples.

A differential equation describes the functional
relation at every moment of time between the
function’s value, e.g., and the value of its derivatives

., dx . d’x
(e.g., velocity ™ and maybe acceleration W)' To

determine a differential equation, dynamical
properties of the data are examined, and the simplest
differential equation accounting for those properties
is proposed. The equation can then be solved and
predicted solutions can be assessed for their fit to the
data. In the study of speech dynamics, the peak
velocity (PV) and the time at which peak velocity is
reached (TTPV) are of paramount importance in the
attempt to induce a differential equation [20,12,21],
and they will be two of the measurements we present
as clues, along with the error-corrected extremum
(max/min) FO during the pitch accents. Though TTPV
is not frequently used as a measure in intonation
modeling, it serves to quantify the amount of delay in
pitch with respect to some supralaryngeal event like a
stressed vowel. Indeed, the notion of delay is one of
the earliest innovations of the Autosegmental-
Metrical approach to tone, in Goldsmith’s
introduction of the star diacritic * to signify alignment
of tonal to non-tonal tiers [23].

3. EMPIRICAL RESULTS

The top panel of Figure 1 shows mean curves of each
pitch accent over the entire data, a qualitative view of
the FO trajectories (a) and FO velocity (b) for the
initial 2/3 of the entire nuclear tune interval (to
exclude most of the final region that implements the
boundary-marking tones). Theses panels show the
extrema of the pitch accents and where they are
reached. FO trajectories are normalized to start at the
same value. The trajectories show that these data are
highly representative of observations made
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throughout the last few decades about the pitch
accents of MAE: the rises rise to different extents and
show different alignments with the stressed syllable.
Note that H* reaches a lower FO peak than the bitonal
accents. Since this paper is about the dynamics of FO,
it is also important to view the FO velocity curves (b),
which shows the expected earlier rise of L+H* vs.
L*+H [2], for instance, by a later achievement of peak
velocity for the latter.
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Figure 1: a) Mean FO trajectories. b) Mean FO velocity. ¢)
Peak F0, d) Peak velocity, e) Time to peak velocity by
pitch accent type.

We do not aim in this paper to provide a statistical
determination of the phonetic properties of the AM
pitch accent labels. Our goal, rather, is to glean from
these dynamical measurements clues as to the relation
between FO and its derivatives. We use the effect size
metric Cohen’s d, which is a measure of the
difference in means between two distributions,
normalized by pooled standard-deviation [22], to
assess the difference between accents in their
dynamical FO measures. To judge magnitude of
effect, Cohen [22] argued that a .5 difference is a
medium effect, and a .8 difference is large. Within the
rises, for Peak FO, there is a medium effect for H* vs.
L+H* (d =-0.58), a large effect for H* vs. L*+H (d =
-.77), but there is no effect for L+H* vs. L*+H. For
PV, there is a medium effect for H* vs. L+H* (d = -
0.50), a large effect for H* vs. L*+H (d = -.81), but
there is no effect for L+H* vs. L*+H. For TTPV,
there is no effect for H* vs. L+H*, a medium effect
for H* vs. L*+H (d = -.55), and a medium effect for
L+H* vs. L*+H (d = -.53). L* is distinct from the
rises with a large effect for Peak FO and PV.
Considering all three rising accents, we observe
significant overlap in the distributions for each FO
measure, resulting in mostly medium effect sizes,
signalling a gradient scale of dynamic variation. But
despite this variation, the Cohen’s d above shows a
pattern among the MAE rising pitch accents: the



ICPhS

4. Speech Prosody

higher FO goes, the faster it rises, and the later it
rises. This will be our first clue to the underlying
dynamic. Of course, it’s possible to have a model in
which Peak FO, PV, and TTPV are independently
controlled, but the variation we see in Figure 1 points
to joint control of these dynamical measures. Since a
dynamical model captures the relation between FO
and its derivatives, it should be able to capture at least
some aspects of this covariation, with as few
parameters as possible.

Another observation from Figure 1 is that, as has
been remarked in the literature, L*+H is often
“scooped”, falling before it rises. This is crucial to a
dynamical model, because for the same value of FO
the system can output a negative velocity (for the
falling part of the scooped rise) or a positive velocity
(for the rising part). This means that for the dynamic
model of pitch accents, velocity is not a single-valued
function of Fy, and instead requires two variables,
each with its own differential equation, not just one
[17]. Another alternative is to use acceleration as part
of the model, however, we have found that the
resulting model does not capture MAE pitch accent
shapes without having several controllable
parameters. As will be seen for the proposed pitch
accent model, these two variables can be interpreted
as the level of excitation of the forces for raising and
lowering pitch, respectively.

To summarize, the dynamical clues are: 1) rise
later-rise more; 2) the dynamical system needs to
have at least two interacting differential equations.

4. DIFFERENTIAL EQUATION MODEL

We first motivate the proposed differential equation
to account for the dynamical properties apparent from
Figure 1, and then offer a brief interpretation for how
it operates in the phonetic and phonological systems.
Instead of presenting the entire differential equation
directly, we will build it bit by bit from the simplest
interesting differential equation, so that the properties
gained from each term are clear. The hierarchy of
differential equations have polynomial functions on
the right-hand side: starting from the simplest linear
polynomial and ending with a cubic polynomial.
While it’s possible to consider more complex, non-
polynomial functions, our focus on polynomials is
justified by Taylor’s Theorem showing that any
function can be approximated with a polynomial of
arbitrary degree. Also, we consider only 1-parameter
differential equations and models with velocity, but
no acceleration, as we seek a minimally complex
model with the fewest number of controllable
parameters.
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Figure 2: A hierarchy of 1-paramater differential
equations. k is swept from a low number (red) to a high
number (blue).

Figure 2 shows the solutions of several differential
equations with a single parameter &, with trajectories
generated with different values of &k within the

specified range. In (2a) the slope function % (where

x represents Fo) is linear and positively related to the
value FO, which yields exponential growth with the
rate of growth set by the parameter k. The FO
trajectories generated by different k& values with this
model are like those of rising pitch accents, but unlike
empirical FO trajectories, these trajectories rise
without bound, so the model fails. In (2b) k is
negative and a constant is added, which yields
bounded growth and generates earlier and later rise
patterns, as seen for the different rising accents in the
empirical data. But in this model velocity peaks at
time 0, where curves are steepest, contrary to the
empirical data (Figure 1), so the model fails. For a
quadratic polynomial as in (2c), as x approaches 1, x
and x*balance (become equal in value), which means
their difference becomes 0, at which point the
trajectory flattens at an equilibrium value. Here it’s
possible to reach equilibrium with peak velocities at
time points later than 0, as in the empirical FO rises.
However, note that the trajectories generated from
this model exhibit the pattern “rise-later, rise-less”
(trajectories where the rise starts later, rise to a lower
FO peak value), the opposite to the empirical pattern
for rises, so this model also fails. The trajectories
above 0 are for an initial small positive x. If x starts
as a small negative, however, which we show below
0, there is an exponential fall. For a cubic polynomial
(d), there is balance of the linear and cubic terms at
two equilibria 1 and -1, so there can be stable
(bounded) rises and falls as observed in the empirical
trajectories. In this model we see the germ of the tonal
constructs Low (L) and High (H), emergent here as
stable FO goals at -1 and 1. As already noted, to get to
the Low equilibrium requires a negative initial
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condition. Also, this model, like that in (2¢),
generates the pattern of “rise-later rise-less”, opposite
to the empirical pattern, so again, the model fails.
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Figure 3: Cubic Models with broken L/H symmetry (a)
and, in addition, (b) to an Activator/Inhibitor dynamic.

Figure (3a) shows the result of breaking the
symmetry between the high equilibrium at 1 and the
low equilibrium at -1 of Figure (2d) by adding a small
constant .501. All the curves in (3a) rise from the
same baseline -0.5 and the constant 0.501 is chosen
to be just large enough to release the system from the
initial inhibited value. As k varies, both the L and H
equilibria are stable. Lower k (red) is H*-like, rising
early to a low extent, and as £ rises (orange), we get
to intermediate L+H*-like, then L*+H trajectories,
before L* for the highest k. Therefore, a key dynamic
property of the data in Figure 1 emerges from adding
that constant .501. However, the differential equation
in (3a). has a major problem: rises can only rise, there
is no ability to fall then rise, as we see in many
scooped L*+H.

Our proposed model is in Figure (3b). As
discussed below, we interpret A as FO. This model,
with the help of the interacting variable I, is also able
to generate L*+H scooped rises. There are two
variables, an Activator A, and an Inhibitor I. The A
equation is the same as in (3a), except that now A’s
change also depends on the value of the second
variable, I. The negative sign on I signifies that I
inhibits A. I depends on A, but positively due to the

positive coefficient of the A term in the function for

d . . :
d—i. As the value of A increases (an FO rise), it

increases I, which in turn inhibits A. This Activator-
Inhibitor dynamic is fundamental to mathematical
biology in general [24] and theoretical neuroscience
in particular [25, 26]. The specific instantiation we
developed in (3b) is a version of the Fitzhugh-
Nagumo equation [17] that we modified via the
equation for I so it will not generate
oscillatory/rhythmic trajectories, but instead generate
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trajectories that achieve one of two discrete
equilibria, corresponding to the H/L tone targets of
the MAE pitch accent system. Note how variation in
a single parameter k, as it is gradiently swept,
generates rises with properties as we observe, as well
as falls. Even small effects like the earlier fall for L*
vs. the rises is captured. We can therefore say that
from the variation of one parameter emerges a set of
correlated dynamical properties. Note however, that
the intonation system of MAE does not need to use
every value of k. Categories of pitch accents can
emerge from the selection of certain £ values (or
regions in k space) as the conventional signalling
values of the language. Other dialects of English, or
different languages, could divide the #A-scale
differently.

We can also interpret A to represent the level of
motor factors leading to a rise in FO (e.g.,
Cricothyroid muscle) and I to be the level of
activation of motor factors leading to a lowering of
FO (e.g., Thyroarytenoid muscle). The coupled
system of differential equations represents the
internal structure of the motor system interaction
through activation and inhibition, as we know
muscular systems to be organized since Sherrington’s
work [27]. We propose that the motor system is
phonologically parameterized by £, and that values of
k are specified at least in part by the prominence
setting system. Examination of other languages could
also reveal the need for different constants in the
equation, or even more or fewer terms in the equation,
while remaining in the Activator-Inhibitor
framework. Therefore, the model is a non-dualistic
model where cognition and the motor system interact
directly in a language-dependent way.

5. CONCLUSION

We have proposed a coupled nonlinear system of
differential equations representing the motor-system
governing pitch control, with one phonological
parameter whose variation leads to phonetic FO
trajectories representing pitch accents. It’s possible
that exposure to a dialect of a language leads to a few
regions of the scale being more prominent than
others, resulting in dialectal variation of the pitch
accent system within a language [22]. Finally, though
the system we have proposed represents the same
motor system that all humans possess, there can be
phonologically induced differences in the terms and
parameters of the interaction, while maintaining the
A/l interaction, leading to different systems of pitch
variation in different languages.
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