
A Free Online Textbook Introducing Computer Architecture
Topics

Tia Newhall
Swarthmore College
Swarthmore, PA, USA

newhall@cs.swarthmore.edu

Suzanne J. Matthews
US Military Academy
West Point, NY, USA

suzanne.matthews@westpoint.edu

Kevin C. Webb
Swarthmore College

Swarthmore, PA, USA
kwebb@cs.swarthmore.edu

ABSTRACT
This paper describes the computer architecture content in Dive into
Systems, our free, online textbook that introduces a broad range
of computer systems topics. Dive into Systems assumes only a CS1
background of the reader, and includes numerous examples and
illustrations to foster a reader’s understanding of its content. Our
textbook is designed to be used as a primary textbook for a range
of courses that introduce computer systems and computer archi-
tecture topics. It also serves as a supplementary text in upper-level
undergraduate and graduate level courses to provide background
material on computer architecture, systems, and parallel comput-
ing. In addition to presenting the details about our book’s coverage
of computer architecture topics, we also discuss the overarching
themes of our textbook and our motivations for writing a free on-
line textbook to introduce computer systems topics. Our book is
currently used by more than 45 institutions in a wide range of
courses, including undergraduate computer architecture courses.

CCS CONCEPTS
• Applied computing → Education; E-learning; • Computer
systems organization → Architectures.

KEYWORDS
computer architecture, textbook, CS education

ACM Reference Format:
Tia Newhall, Suzanne J. Matthews, and Kevin C. Webb. 2023. A Free Online
Textbook Introducing Computer Architecture Topics. In Workshop on Com-
puter Architecture Education (WCAE ’23), June 17–21, 2023, Orlando, FL, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3605507.3610627

1 INTRODUCTION
The expense of modern college textbooks is often a barrier to stu-
dent learning. According to the U.S. Bureau of Labor Statistics, the
average cost of a college textbook in 2023 is $107.30 [26]. A recent
survey of college students [15] indicated that nearly two-thirds of
students skipped buying or renting an assigned textbook or access
code (or both) due to the prohibitive costs. Another survey found

This work is licensed under a Creative Commons Attribution International
4.0 License.

WCAE ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0253-2/23/06.
https://doi.org/10.1145/3605507.3610627

that approximately one in four students opt not to purchase a re-
quired course material, and that students who skipped materials
were more likely to consider dropping out [16].

College faculty increasingly recognize that the costs of materials
represent a serious barrier to their students [22], and they have
accordingly begun adopting free materials [16]. These free materials
include open access resources and large, digital subscriptions that
are paid by the institution (“Inclusive Access programs”) so students
do not have to directly pay the cost. In one survey, 73% of students
reported that their instructors assigned at least one material that
was free (or not paid for by students) [16]. Faculty are also more
inclined to assign digital resources in the wake of the COVID-19
pandemic, which represented a seismic shift in the way professors
taught courses. As of this writing, fully in-person instruction has
not returned to pre-pandemic levels [22], with many faculty still
teaching in online-only or blended in-person/online modalities.

Thus, as computational thinking and programming increasingly
become desired skills, it is imperative that computer science fac-
ulty have access to high quality, online, open-access resources to
teach their students. However, much of the effort in producing free
online materials for teaching computer science concentrates on
introductory programming courses.

In this paper, we describe the content in Dive into Systems that
is relevant to modern computer architecture courses and how it
aligns to common computer architecture curricula standards, such
as CS2023 [2] and TCPP2020 [24]. We also reflect on our lessons
learned and future directions of the project. We hope that our
experience will inspire others to create open access resources for
teaching computer architecture concepts, thereby reducing a critical
barrier toward making computing resources accessible to all.

2 DIVE INTO SYSTEMS DEVELOPMENT
In 2018, we began the Dive into Systems project [12] in an effort
to create a free, high-quality, online textbook that covers intro-
ductory computer systems topics (including several chapters that
are extremely relevant to students taking introductory computer
architecture courses). We presently know of at least 45 institutions
that currently are using our textbook in their courses. Most are
using it in intermediate-level courses like computer organization
or computer systems. However, several are also using it in upper-
level courses, including six who are using Dive into Systems in their
computer architecture courses.

Throughout the development of Dive into Systems, we have
sought community help in evaluating its content and its use to
help us meet our goal of making it a useful and broadly applicable
resource. In the initial writing, we had multiple external editors
provide feedback on the content and presentation of each chapter.

mailto:newhall@cs.swarthmore.edu
mailto:suzanne.matthews@westpoint.edu
mailto:kwebb@cs.swarthmore.edu
https://doi.org/10.1145/3605507.3610627
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3605507.3610627

WCAE ’23, June 17–21, 2023, Orlando, FL, USA Tia Newhall, Suzanne J. Matthews, and Kevin C. Webb

These editors were volunteers, primarily faculty at other institu-
tions, who we recruited via our own professional networks and by
organizing ad hoc meetings at SIGCSE conferences. People were
eager to help, primarily because our book filled a coverage gap for
a broad range of systems topics at the introductory level. Many of
the reviewers were interested to adopt it in their own courses, but
they also cited that volunteering naturally matched the spirit of a
free online textbook. We ultimately received invaluable feedback
from reviewers, and this process greatly strengthened the book.

Once we had a beta version of the textbook completed, we ran an
early adopters program in the 2019-20 academic year. Adopters were
faculty using our textbook as a required textbook in their courses
who agreed to give a survey about the book to students in their
course and to take a similar instructor survey as part of participation
in this program. We received a SIGCSE Special Projects grant to
give faculty a very small stipend for participating. We recruited
participants through our book’s mailing list and through SIGCSE
and other mailings lists. Again, the feedback we received helped
us to strengthen the book’s content. Details of the early adopter
program are summarized in [13].

After releasing the online version, we recognized that a small
but vocal number of students prefer non-digital materials [13, 22].
We have since contracted with No Starch Press to produce a low-
cost print edition of the book [14] for the students who prefer it.
Reflecting on our decision to produce a print edition of the book, it
was important that we contracted with a reputable publisher that
committed to produce a low-cost print edition of Dive into Systems.
We also benefited from the copy-editing process of a computing
publisher, their printing and distribution process, and offloaded
challenges like preventing unauthorized translations and violations
of copyright. Additionally, having a book published with a well-
known publisher increases the esteem of the work in the eyes of
institutional tenure and promotion boards, which are accustomed
to the more traditional publishing models for textbooks.

3 CONTENT OVERVIEW
Dive into Systems introduces a broad range of computer organi-
zation, architecture, systems, and parallel computing topics. It as-
sumes only a CS1 background of the reader and is designed to be a
primary textbook for a range of intermediate-level undergraduate
courses that first introduce these topics. Thus, the set of topics we
cover, and the depth in which we cover them, is determined by
Dive into Systems’s target use being as a primary textbook that
first introduces these topics in undergraduate introductory systems
courses. It also can serve as an auxiliary textbook for providing
background material in a range of topics for upper-level undergrad-
uate or even graduate-level courses which may use other primary
textbooks such as those by Hennesy and Patterson [8, 18].

Because we want our textbook to be applicable to such a broad
range of courses and uses, we strive to limit chapter dependencies
as much as possible so that an instructor can mix and match content
to best fit the needs of their particular course. The book’s topic
coverage is guided by three main themes that unify the topics and
inform the topic coverage. These three themes are:

(1) How a computer system is designed to run programs. Our book
takes the reader through a vertical slice through a computer

Table 1: CS2023 Coverage

Knowledge Unit Book Chapters
AR/Digital Logic & Digital Systems 5
AR/Machine-Level Data Representation 4
AR/Assembly-Level Machine Org 2, 5, 7-9, 13, 14, 15
AR/Memory Hierarchy 11, 13
AR/Interfacing & Communication 11, 13
AR/Functional Organization 5
AR/Heterogeneous Architectures 11, 14, 15
OS/Memory Management 11, 13
PDC/Programs and Execution 14
SEP/History 5

system, explaining how a program expressed in a high-level
programming language is executed by the low-level circuitry
of the computer hardware, from translation to assembly,
binary representation, CPU and system architecture design,
and OS abstractions for running programs.

(2) How to evaluate systems costs associated with a program’s
performance. We focus on the memory hierarchy and CPU
caching, but also evaluate performance in the context of OS
abstractions, systems overheads, and parallel computing.

(3) How to leverage the power of parallel computers. We focus our
introduction to parallelism on multi-core architectures and
on shared memory parallelism, including detailed coverage
of programming with pthreads. We also include coverage of
other parallel architectures and programming models.

The primary coverage of computer architecture topics are in
Chapter 5 on computer architecture and in Chapter 11 on the mem-
ory hierarchy and CPU caching. We additionally cover some archi-
tecture and related topics in Chapter 4 on binary representation,
Chapter 13 on operating systems, Chapter 14 on shared memory
parallelism, and Chapter 15 on other types of parallel systems.

Our book’s coverage of computer architecture topics map to
recommendations made by several curricula published by CS pro-
fessional organizations. For example, the ACM/IEEE-CS Joint Task
Force on Computer Science Curricula recent 2023 report (CS2023) [2]
includes an Architecture and Organization (AR) knowledge area
with increased emphasis on parallelism. CS2023 separates their
topics into two key categories: CS core, the set of topics that every
computer science graduate must know; and KA core, the set of
topics that must be covered if the knowledge area is covered. In this
context, the AR knowledge area contains 9 hours of CS core topics
and 16 hours of AR KA core topics. CS2023 also suggests topics from
related knowledge areas to be included in an introductory computer
architecture course. Table 1 illustrates that Dive into Systems covers
78% of the AR knowledge area in CS2023, including all knowledge
units suggested for inclusion in an introductory architecture course.
Dive into Systems covers many other topics that CS2023 identifies as
valuable for an introductory architecture course, including topics
from the OS, PDC, and SEP knowledge areas.

The increased emphasis on parallel computing topics is partially
driven by a new requirement [1] by the Accreditation Board for
Engineering and Technology (ABET) that all undergraduate stu-
dents enrolled in accredited CS programs are exposed to PDC. The

A Free Online Textbook Introducing Computer Architecture Topics WCAE ’23, June 17–21, 2023, Orlando, FL, USA

Table 2: 2020 NSF IEEE/TCPP Computer Architecture Topics

TCPP Area (sub area): specific topics Book Chapters
Pervasive: concurrency, dependency, lo-
cality, asynchrony, performance

Ch. 5, 11, 13, 14

Arch (Underlying Mechanisms): caching,
atomicity, consistency, coherence, false
sharing, interrupts, process ID

Ch. 11, 13

Arch (Classes of Parallelism): Flynn’s
taxonomy, ILP, SIMD/Vector, MIMD,
multi-threading, heterogeneous, GPU,
pipelines, data / control hazards, buses,
snooping, shared memory, multi-core,
multi-threading

Ch. 5, 11, 13, 14, 15

Arch (Performance, Scaling, & Oth-
ers): bandwidth, cost of data move-
ment across memory hierarchies, float-
ing point repr

Ch. 4, 11, 13, 14

Table 3: CSTA Coverage

Standard Book Locations
Computing Systems(CSys)/Describe
how internal & external computing
devices function to form a system.

Ch.5, Ch. 11

Computing Systems/Model how com-
puter hardware and software work to-
gether as a system to accomplish tasks.

Ch. 5

Data and Analysis/Represent data using
multiple encoding schemes.

Ch. 4

CSys/Use appropriate terminology in
identifying and describing the function
of common physical components of com-
puting systems (hardware).

Ch. 0, Ch. 5, Ch. 11

CSys/Compare levels of abstraction and
interactions between application SW,
system SW, and hardware layers.

Ch. 4, Ch. 5, Ch. 13

Data Analysis (DA)/Evaluate tradeoffs
in how data are organized & stored.

Ch. 11

DA/Translate between different bit rep-
resentations of real-world phenomena,
like characters, numbers, images.

Ch. 4

CSys/Categorize the roles of operating
system software.

Ch. 13

CS2023 PDC knowledge area is influenced by the 2012 draft of the
NSF IEEE/TCPP Curriculum on Parallel and Distributed Comput-
ing [23], which identified over a hundred PDC topics that can be
covered in an undergraduate computing program (including Ar-
chitecture as one of its four main areas). Dive into Systems covers
many of the topics in the Architecture area of their curriculum, as
well several topics in their Pervasive PDC Concepts area. Table 2
lists a summary of Dive into Systems’s coverage of topics in TCPP’s
2020 revision of their curriculum (TCPP2020) [24]. Again, our text-
book is an introduction to these topics, so our coverage may not be
sufficiently deep to completely satisfy their recommendations for
coverage of all of these listed topics, but many are.

Lastly, we believe that Dive into Systems can also be used to teach
students core hardware and architecture concepts in middle and
high school. The Computer Science Teachers Association (CSTA)
maintains a list of key learning objectives for teaching K-12 com-
puter science. Dive into Systems covers several learning outcomes
listed in the CSTA K-12 Standards related to computer architec-
ture topics (e.g., the devices, hardware and storage subconcepts); a
mapping is shown in Table 3. As a result, we believe our book has
the potential to be a very useful resource for teaching beginning
architecture concepts to a broad population of students.

4 MAIN ARCHITECTURE CONTENT
The main chapter on computer architecture (Chapter 5) is presented
in the context of addressing the first main theme of our textbook:
how a computer runs a program. Specifically, we focus on how a
single core CPU architecture is designed to execute binary program
instructions on binary data. We begin our coverage with some
definitions including the CPU, Instruction Set Architecture, micro-
architecture, and some discussion of RISC and CISC instruction
set architectures (ISAs). We then provide a brief overview of the
history of modern architectures and introduce the Von Neumann
architecture to frame much of our later presentation of modern
CPU design. We then proceed to build a simple single core CPU
starting from basic logic gates. It includes an explanation of the
clock driven execution of an instructions through four execution
stages, showing how the bits of the instruction and data are used
in different stages of the architecture to execute the instruction.

We additionally touch on topics related to our second main theme
of systems costs and efficiency, specifically via CPU caching, the
memory hierarchy, pipelining, and parallel architectures including
multi-core, multi-threading, IPC, and other features of modern
CPUs. We also introduce parallel system designs beyond shared
memory, including accelerators (primarily GPU architectures).

4.1 History of Modern Architectures
We provide an overview of the history of computers, starting with a
brief discussion of pre-modern computer history, including work by
Charles Babbage and Ada Lovelace. We then focus on modern com-
puter history that led to today’s general-purpose, stored program
model of a computer. We discuss the origins that lead to Alan Tur-
ing’s Logical Computing Machine work and his work defining the
universal Turing machine. We discuss early electronic computers,
including Colossus, ENIAC, and the Z3. And we conclude with the
development of the Von Neumann Architecture. Throughout, we
highlight contributions by women, particularly focusing on their
important roles in developing programming and algorithms for
these early machines. To the best of our knowledge, we are the only
textbook that sheds light on this important (and often overlooked)
contribution of women in computer history.

4.2 Von Neumann Architecture
We introduce the Von Neumann Architecture as the model of mod-
ern architectures. Our coverage begins with the five main functional
units (processing, control, memory, input, and output) and their
role in executing stored program instructions. We introduce buses

WCAE ’23, June 17–21, 2023, Orlando, FL, USA Tia Newhall, Suzanne J. Matthews, and Kevin C. Webb

interconnecting the units and explain how they communicate pro-
gram instructions, data, and control signals between the units. We
then describe how the units collectively execute program instruc-
tions by describing the Fetch-Decode-Execute-Writeback cycle of
program execution. We also introduce how two special registers,
the program counter (PC) and the instruction register (IR), facilitate
this process. Later in this chapter, when we discuss clock driven pro-
gram execution and simple pipelining, we revisit these same four
phases of execution on our simple CPU. In addition to providing
important coverage of Von Neumann Architectures, by covering
this topic early, we foreshadow the design of the simple CPU that
we’ll be building in the remainder of the chapter.

4.3 Basic CPU Architecture
The focus of our main chapter on computer architecture is under-
standing how a single core CPU is designed to execute program
instructions. Throughout our presentation we reinforce the idea of
building up layers of abstraction as we construct a full CPU from
featureful component units that themselves abstract away details
of their low-level implementations. For example, we show how an
ALU is a building block of a CPU that is itself built from sub-circuits
combined together to create the higher-level ALU functionality. We
start our coverage at the lowest level, focusing on the process of
building a simple 1-bit circuit from basic logic gates starting with its
truth table. We also show how to extract a truth table from simple
1-bit circuit built from basic logic gates. The goal of this coverage
is to illustrate how, at the lowest layers, simple circuits can be con-
structed from simple truth tables describing the circuit. Then once
built, these circuits can be used as components for building higher
functionality, which in turn can be used as building blocks for even
higher functionality, and so on, ultimately creating a full CPU.

4.3.1 Logic Gates. This section marks the beginning of our main
CPU architecture coverage. It serves as an introduction to combi-
natorial circuits, and it sets up a strong emphasis on abstraction
throughout the remainder of the chapter. We begin by introducing
logic gates and their corresponding truth tables. We use the gates
AND, OR, and NOT as the set of basic building blocks of all circuits
since readers have seen these logical operators in a CS1 courses and
because this subset is easier to reason about (versus using NAND
or NOR as the minimal subset). We include as an aside how logical
gates are implemented by transistors. However, we do not cover
the details of how each logic gate is implemented with transistors,
but instead treat a logic gate as the smallest building block. After
explaining 1-bit versions of gates we show how to build multi-bit
versions by directing individual bits of a N-bit input through N
1-bit gates. In the context of describing minimal subsets of logic
gates, we additionally introduce NAND, NOR, and XOR gates and
their truth tables, showing how these gates can be created from
AND, OR, and NOT gates.

4.3.2 Circuits. We begin our coverage of digital circuits by dis-
cussing the role they play in implementing an ISA. We start by
detailing how to create simple circuits, introducing the notion of
abstraction that treats the simple circuit as a building block unit
with defined inputs and outputs, leaving its detailed implementa-
tion abstracted from its use. We organize our presentation in terms

of three different types of circuit, which also mirror parts of the Von
Neumann architecture: arithmetic and logic circuits; control cir-
cuits; and storage/memory circuits. Our coverage of circuits begins
with simple combinatorial circuits built from basic logic gates. We
defer introducing sequential circuits to our discussion of storage
circuits, which comes later.

Arithmetic/Logic Circuits. We motivate this section by introduc-
ing the ALU part of the processor and describing how individual
arithmetic/logic circuits make up the components of an ALU. We
start with 1-bit versions of simple circuits built from AND, OR,
and NOT gates, and we use these to build up more complicated
functionality. Specifically, we discuss the following algorithm for
creating a 1-bit circuit:

(1) Create a truth table for the circuit: determine the number of
inputs and outputs, enumerate all possible input permuta-
tions, and determine the output for each one.

(2) Using the truth table, derive expressions for each row with a 1
output using combinations of AND, OR, NOT. At this step the
resulting logical expressions may be simplified with the goal
of reducing the number of gates, possibly by adding NAND,
NOR, XOR gates in place of combinations of AND, OR, and
NOT (we do not present formal methods for minimizing
circuit design, but illustrate some examples of simplification).

(3) Translate the logical expressions into combinations of logic
gates to create the resulting circuit.

We then demonstrate this algorithm by applying it to create a 1-
bit equality circuit (𝐴𝐴 == 𝐵𝐵). We also discuss how single bit versions
of NAND, NOR and XOR circuits could be similarly constructed
from AND, OR, and NOT gates by applying this algorithm.

Next, we apply the same process to create a 1-bit adder circuit
(𝐴𝐴+𝐵𝐵) with two outputs (𝑠𝑠𝑠𝑠𝑠𝑠, and 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜). Seeing this process applied
to create an arithmetic circuit is often not obvious to students.

Finally, we demonstrate the construction of an N-bit ripple adder
circuit, motivating the need for an additional input (𝐶𝐶𝑖𝑖𝑖𝑖) to each
1-bit adder circuit building block. We describe building a 4-bit ripple
carry adder circuit from 1-bit adder building blocks. This example
illustrates how two 4-bit binary data input values, combined with
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 and 𝐶𝐶𝑖𝑖𝑖𝑖 , propagate through a sequence of 1-bit adder circuits
to produce the correct 𝑠𝑠𝑠𝑠𝑠𝑠 and 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 outputs for the multi-bit adder.
We then abstract the 4-bit adder circuit with three inputs (4-bit
𝐴𝐴, 4-bit 𝐵𝐵, 1-bit 𝐶𝐶𝑖𝑖𝑖𝑖), and two outputs (4-bit 𝑆𝑆𝑆𝑆𝑆𝑆 and 1-bit 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜).
Finally, we show how this multi-bit adder circuit can be used as a
building block in combination with a bit-flipper circuit to implement
a subtraction circuit (this links the reader back to the relationship
between binary addition and subtraction covered in chapter 4).

Control Circuits. Our coverage of control circuits starts with some
examples of the types of actions control circuits may perform. We
focus in detail on building multiplexor circuits, starting with a 1-bit
two-way multiplexer, applying our circuit building algorithm to
construct its truth table based on three inputs (𝐴𝐴, 𝐵𝐵, and 𝑆𝑆, the
selection bit). We illustrate how the resulting circuit works by trac-
ing through it with different example inputs. Next, we abstract the
1-bit two-way MUX circuit into a building block from which we
build a 4-bit, two-way MUX. We also present how to build a 1-bit,
four-way MUX with four 1-bit data input and one 2-bit select input,
and trace through some example inputs on the resulting circuit to

A Free Online Textbook Introducing Computer Architecture Topics WCAE ’23, June 17–21, 2023, Orlando, FL, USA

illustrate its output, and we discuss the number of selection bits
needed for an N-way multiplexer. We also briefly cover demulti-
plexer and decoder circuits as other control circuits, showing their
circuit diagrams and truth tables that define their functionality.

Storage Circuits. Our first sequential circuit is presented in the
context of our discussion of storage circuits as part of the CPU
architecture. We briefly introduce SRAM versus DRAM as differ-
ent memory that the reader may know from our coverage of the
memory hierarchy in Chapter 11. We discuss that a memory circuit
needs a feedback loop to store a consistent value and that it needs
functionality to change the value stored in the circuit (to write a
new value). We focus our coverage on a single type of memory
circuit to reinforce understanding how it works rather than cov-
ering many different ones. We choose the R-S latch, and then use
it to build a gated-D latch. Much of the coverage in this section is
devoted to illustrating how the R-S latch works, stepping through
multiple examples of how its inputs determine its outputs, and how
its inputs are set when the latch stably and continuously stores a
value. We also show how its inputs are set to enable writing either
a 0 or 1 value into the latch, showing how the written value prop-
agates through the circuit to become the new stably stored value.
We then build a gated D latch from the R-S latch, demonstrating
how it ensures that R and S input values are never both 0, and how
enabling the write-enable (𝑊𝑊) input to the circuit triggers writing
to the latch. Finally, our abstraction of a 1-bit gated D latch circuit
is used as a building block to create a 32- bit CPU register, that we
abstract as a storage circuit with one 32-bit data input, one 1-bit 𝑊𝑊
input, and one 32-bit data output.

At this point, we have demonstrated multi-bit circuits for arith-
metic/logic, control, and storage functionality, and are ready to use
them to build a full simple CPU circuit.

4.3.3 Building a CPU and Instruction Execution. We begin this
section reviewing the functional components of the Von Neumann
architecture. We then create an ALU circuit combining N-bit control
and arithmetic/logic circuits. We show how a MUX circuit inside
the ALU uses the opcode bits of an instruction to choose which of
the ALU’s arithmetic/logic sub-circuits ultimately determines the
ALU’s output. We also illustrate how the instruction bits encode the
two data inputs to the ALU and the destination of the result, give an
example instruction with two immediate operand values, and show
how the operands are fed as input to the ALU. We also introduce
ALU condition code outputs, and discuss examples how these may
be used to execute conditional instructions, like if statements, with
some examples. Finally, we abstract the ALU as a circuit with two
32-bit data inputs, one multi-bit select input, one 32-bit data output,
and several 1-bit condition code outputs.

We next create a register file circuit from eight 32-bit register
circuits, a demultiplexer circuit that chooses which register’s WE
is set (if any), and two multiplexer circuits, each of which chooses
a register’s output as the output for one of the two data outputs
from the register file. The resulting circuit has eight 32-bit registers,
a 32-bit data input, a 1-bit write enabled input, 3 multi-bit select
inputs: one to the DMUX to select which register to write to (if the
WE input is also set); and two to 2 MUX circuits that select which
registers to read from for the two data output of the register file.

Finally, we put these circuits together with control circuitry and
buses to create a simple CPU circuit with an ALU, register file,

and two special purpose registers, the IR and PC. We focus on the
opcode bits of the instruction stored in the IR and illustrate how
they determine the output of the ALU, stressing how the values flow

through all ALU sub-circuits, but the control circuitry determines
the output values. We also show how the data output from the
register file can be one of several inputs to the ALU, and how the
ALU output can be one of several input sources to the register file.
With our simple CPU circuit, we are able to discuss how it is

used to execute program instructions. We start by looking at a
generic binary instruction dividing its bits into opcode, two source,
and one destination bits, and we use an example instruction that
encodes registers in the source and destination bits to illustrate
how instruction operand values are read from, and operation result

values are written to, specific registers in the register.
We then revisit the 4 stages of instruction execution based on

the Von Neumann model (Fetch, Decode, Execute, and WriteBack),
and step through each illustrating it on the CPU circuit. We begin

with showing how the PC value is used to read the bits of the next
instruction from memory into the IR register in the Fetch stage. We

then demonstrate how the bits of the instruction in the IR register
are used during the Decode phase to select the outputs from the
register file to be input into the ALU. Next, we show how the opcode
bits in the IR are used to select the ALU output during the Execute

phase. And finally, we show how the destination bits in the IR
are used to select the register to write the ALU output to in the
WriteBack phase. For simplicity, we do not add a fifth Memory stage
of execution, and instead just focus on example instructions with all

register operands to illustrate how the CPU executes instructions.
With CPU circuitry in hand, we introduce clock circuits and

explain how they drive values through circuits, discussing clock
edges and propagation delay from initial input change to when a
stable output value can be read. We discuss the details of the CPU’s
clock-driven execution of instructions, introducing the measure of

cycles per instruction (CPI) in the context of our simple CPU taking
4 cycles to execute an instruction, one for each stage. We finish this
section with a figure of a modern digital computer, showing the
parts of the CPU we built in relation to other main parts including

cache memory, RAM, I/O devices, and the buses connecting them.
At this point we have achieved the main focus of our introduction

to computer architecture: understanding how the CPU architecture
is designed to execute program instructions.

4.4 Pipelining
After covering the details of a simple single-core CPU, and explain-
ing how it is designed to execute program instructions in four
stages, we introduce pipelining in the context of making the CPU
faster. This is our first coverage of parallel execution by overlap-
ping the execution of multiple instructions, each executing in a
different stage of execution and each using a different parts of the
CPU circuit in each stage.

Additionally, we cover some advanced pipelining issues in a
separate section. Here we use a 5-stage execution model, adding a
Memory stage to our simple 4-stage model. We discuss data and
control hazards that are due both to CISC instructions that use

WCAE ’23, June 17–21, 2023, Orlando, FL, USA Tia Newhall, Suzanne J. Matthews, and Kevin C. Webb

different numbers of stages and dependencies among instructions in
the pipeline. We talk about pipeline bubbles, techniques for getting
operand data early, and briefly introduce speculative execution.
Our coverage of advanced pipelining issues is not exhaustive, but it
introduces the challenges of pipelining in the context of executing
a sequence of program instructions.

4.5 Parallel Architectures
Our main chapter on computer architecture (Chapter 5) concludes
with a section about the design of today’s processors, focusing on
support for parallel execution beyond pipelining. We introduce
Moore’s Law and the power wall in the context of motivating many
of today’s processor designs. Additionally, in Chapter 15 we intro-
duce accelerators, focusing on GPU architectures. We also cover
parallel performance metrics at the end of our chapter on shared
memory parallel computing (Chapter 14).

At the end of our main architecture chapter, we present features
of modern processor design starting with ILP, including vector
processors, superscalar, and VLIW designs that follow from our
coverage of pipelining. We then discuss issues with these designs
and the power wall that led to the development of architectures
that require explicit parallel programming in order to make a pro-
gram to run faster. We focus in detail on multi-core architectures
throughout our textbook and use them as the architecture for mo-
tivating our coverage of parallelism and parallel computing. We
finish the chapter with a discussion of some examples of current
architectures that incorporate many of these features, including a
discussion of hardware multi-threading.

The last chapter of our text book (Chapter 15) is a “looking
ahead" overview of some other types of parallel systems and paral-
lel programming beyond our book’s main focus of shared memory
parallelism. We introduce Flynn’s Taxonomy and categorize some
of the systems we discuss in this chapter as SIMD or MIMD exam-
ples. The main architecture-specific part of this chapter introduces
heterogeneous computing using accelerators like FPGAs, cell pro-
cessors, and GPUs. We present some details of the architecture
of a generic GPU processor consisting of multiple SM units, each
with several SP cores, their own register file, cache memory, and a
thread warp scheduler, and a larger GPU memory shared by all SM
units. We also introduce CUDA for GPGPU programming, showing
some example CUDA programs and explaining how they run on
the GPU architecture. Our coverage in this chapter is meant only
as an introduction to these other models, with more detailed and
in-depth coverage of parallel architectures and programming left
for more advanced textbooks on these specific topics.

We also cover some parallel architecture issues in a section on
cache coherency protocols for multi-core (and SMP) systems in
our chapter on the memory hierarchy (11.6). We first revisit the
multi-core processor design using an example with private L1 and
shared L2 on-chip caches, which we use to motivate coherency
issues. We introduce the cache coherency problem, and coherency
protocols as a solution, and step through the details of a simple
coherency protocol (MSI), demonstrating how cache block meta
data are updated on read and write accesses and how they are
used to trigger coherency actions. We briefly discuss implementing
these protocols, introducing snooping. In our chapter on shared

memory parallelism, we revisit cache coherency in more depth
(14.5), focusing on false sharing and some techniques to avoid it.

Finally, our coverage of parallel computing (Chapter 14) revis-
its multi-core architecture and introduces OS threads to motivate
shared memory parallel systems. This chapter also includes a sec-
tion on performance measures, including Amdahl’s law, speed-up,
efficiency, Gustafson-Barsis Law, and scalability.

4.6 Memory Hierarchy and Caching
Our book has a full chapter (Chapter 11) that introduces storage
devices, the memory hierarchy, and caching. It begins by describing
the memory hierarchy and the trade-offs between storage density,

cost, and access time. Next, it characterizes storage devices in more
detail based on their performance properties (e.g., capacity, latency,
transfer rate, etc.). For each device, we classify it as primary or
secondary storage and describe how it connects to the rest of the
system. We also briefly discuss the mechanics of hard disk drives
and the latency implications of spinning platters and moving arms.

Next, we cover the concept of locality (both temporal and spatial)
in general terms using real-world examples. We then show C code
examples and highlight instances of locality in the code’s memory
access patterns, with a focus on how taking advantage of locality
can help to improve program performance. These examples moti-
vate the general principles of caching with a scenario of a student
storing books on her desk, a shelf down the hall, and a library.

We then dive into the details of CPU caches, starting with basic
terminology (hit, miss, cache block, metadata, etc.). Following that,
we begin analyzing how memory addresses map to locations in the
cache via the index bits. We then describe how to identify which
address’s data is stored in a cache line by verifying the tag bits.
Finally, we illustrate how the remaining offset bits identify a specific
byte within the resulting cache data block.

Armed with address division information, we explain direct-
mapped caches with an extensive example, followed by distinguish-
ing between write-through and write-back policies for write op-
erations. After exploring direct-mapped caches, we introduce set
associativity and the necessary metadata to keep track of replace-
ment policy decisions (i.e., LRU bits). We round out the section with
another full example on a two-way set associative cache.

Having characterized caches, we demonstrate Valgrind’s tool
for evaluating cache performance in a real program, cachegrind.
Specifically, we contrast the cache hit and miss rates when accessing
a two-dimensional array in row-major vs. column-major order.
Finally, we wrap up the chapter by characterizing cache coherency
behavior on multi-core processors (described above in Section 4.5:
Parallel Architectures).

5 OTHER RELATED CONTENT
5.1 Binary
An early chapter of the book (Chapter 4) covers data representation
using binary and hexadecimal numbers. Starting with unsigned
integers, it describes how to convert from one format to another.
We then introduce signed integers, focusing primarily on two’s
complement and relating those representations to C’s type system.

Next we illustrate how to perform arithmetic, including addi-
tion, subtraction, multiplication, division, and bitwise operations

A Free Online Textbook Introducing Computer Architecture Topics WCAE ’23, June 17–21, 2023, Orlando, FL, USA

on binary integers. Throughout, we discuss the ways in which arith-
metic operations might cause overflows, including the implications
of overflows how to detect them. Finally, we briefly present byte
ordering and representations for real numbers (both fixed- and
floating-point) at the end of the chapter.

5.2 Assembly
Dive into Systems also exposes readers to three real-word instruc-
tion set architectures across three chapters: 32-bit x86 (IA32), 64-bit
x86 (x64), and ARM version 8A (AArch64). We deliberately chose
ISAs that students had easy access to (either through laptops, desk-
tops, or single board computers), in keeping with our philosophy of
teaching students about their own computers. Each chapter follows
a similar structure, covering registers, addressing modes, and vari-
ous instructions for loading and storing data, accessing memory,
implementing conditional control, stack management, and function
calls. The high consistency across the chapters enables instructors
to choose a single chapter to teach a specific ISA, or adopt multiple
chapters to compare and contrast multiple ISAs.

5.3 Parallel Computing
The primary focus of our two parallel computing chapters is to
describe how programmers can leverage the power of parallel archi-
tectures. Due to the ubiquity of multicore systems, we devote the
first chapter to shared memory programming, with an emphasis on
POSIX threads. This chapter first compares and contrasts how pro-
cesses and threads run on single-core vs multi-core systems (with
implications for program speedup) before moving on to thread
creation, race conditions, synchronization constructs, condition
variables, deadlocks, cache coherency and false sharing, and per-
formance topics like speedup, efficiency, scalability, and Amdahl’s
and Gustafson-Barsis laws. We close the chapter with a discussion
of OpenMP, explaining how a compiler uses pragmas to allow pro-
grammers to incrementally add parallelism to their programs, while
providing a layer of abstraction to the programming process.

The last chapter of the book, in addition to discussing various
parallel architectures, presents an overview of the languages and
libraries typically used to program them. The scalar multiplication
example (which we first presented to the reader in our shared
memory chapter), is reintroduced in this chapter, and we use it to
illustrate how to parallelize scalar multiplication in both CUDA
and MPI. Lastly, we discuss the architectural differences between
supercomputers and data centers, discuss the three pillars of cloud
computing, and briefly discuss the MapReduce paradigm. We close
the chapter with a discussion of some emerging architectures, such
as Internet of Things and the rise of domain-specific architectures
(like the TPU). We point interested readers to the Turing Award
lecture [9] by Hennessy and Patterson for a broader view of the
future of computer architecture.

5.4 C Programming
C is used as the high-level programming language for code ex-
amples used throughout our book to illustrate topics and to show
implementations of functionality. We introduce C programming
assuming the reader has a CS1 background in some other language
and cover almost all of the C language over two main chapters.

In a third chapter, we cover debugging with GDB and Valgrind.
Currently, we have two versions of our first chapter on C where
we compare some basic C language syntax to syntax in a language
the reader may already know (one for Python programmers and
the other for Java programmers). Either version of the chapter is
presented in a way that is understandable to a reader who does
not know the specific comparison language; the language examples
that help illustrated C’s similarity to the language they know are
just less useful in this case. Our second C chapter provides complete
and in-depth coverage of the C programming language. Through-
out our coverage we stress the parts of program memory, scope,
and type, and we describe our many of our C code examples with
illustrations of their execution effects on stack and heap memory.

5.5 Operating Systems
Our chapter introducing operating systems (Chapter 13) focuses on
the OS’s role in running programs (theme 1 of our textbook), and
on how the OS is designed to efficiently manage system hardware
and software resources (theme 2 of our textbook). It also briefly
presents a first introduction to parallel computing topics (theme
3 of our textbook). We primarily focus on what the OS is in terms
of its role in implementing the computer system, and on the main
abstractions it implements for running programs on the computer,
namely processes and virtual memory. In our coverage of the pro-
cess abstraction we introduce concurrency and asynchrony via
signals and signal handling. We present in detail some features of
implementing and supporting the process abstraction, including
process IDs, process state, fork-exec, wait, kill, address spaces, and
multiprogramming. Our presentation of virtual memory revisits
the meaning of addresses, distinguishing between virtual addresses
from program binary instructions to the physical addresses used
to address RAM. We describe in detail a single-level page table
implementation of paged virtual memory that includes coverage of
address translation hardware and the TLB. We also present some
coverage of IPC (including signals, message passing, and shared
memory), and we introduce the thread abstraction in the context of
explicit parallel computing for multi-core architectures. Through-
out our coverage of the OS, we discuss where efficient implemen-
tation of its functionality and abstractions require some hardware
support, including hardware support for interrupts and user/kernel
mode, and for supporting parts of virtual memory address mapping
and some IPC functionality.

6 RELATED WORK
The CS education community recognizes many high-quality tra-
ditional textbooks that cover computer architecture topics [6, 20,
21, 25, 28], however their cost and availability may be prohibitive
to many students [27]. There are not many free, online, complete
textbooks for teaching computer architecture. Tarnoff’s Computer
Organization Design Fundamentals [7] covers digital logic, the mem-
ory hierarchy, processor architecture and some assembly fundamen-
tals. Computer Science from the Bottom Up [10] presents computer
systems concepts from digital logic and operating system funda-
mentals up to the application level, and contains many topics of
interest in a computer architecture course. However, some of the
coverage remains rather general and/or incomplete. The operating

WCAE ’23, June 17–21, 2023, Orlando, FL, USA Tia Newhall, Suzanne J. Matthews, and Kevin C. Webb

systems text Operating Systems: Three Easy Pieces [5] contains sev-
eral topics of interest to computer architecture courses. We also
note that The Elements of Computer Systems (Nand2Tetris), while
not fully free, does freely share the first six chapters online [17],
including a chapter on computer architecture.

Several high-quality computer architecture teaching resources
consist of smaller modules that are freely available online. The
Elements of Logic [11] is a free online guide for logic design and
Verilog coding. The Teaching Undergrads Collaborative and Hetero-
geneous Computing (ToUCH) [19] project contains modules that
introduce heterogeneous computing, CPU architecture (ARM), the
memory hierarchy (emphasis on GPUs), and programming to take
advantage of multiple cores. The CSinParallel [3] and LearnPDC [4]
projects contain many modules related to parallel computing. In
the context of architecture, they cover heterogeneous computing,
GPU architecture, and programming for multi-core systems.

7 DISCUSSION AND ONGOING WORK
While the first edition of Dive into Systems was officially released
in 2022, the book project remains in active development. One of
the advantages of creating an online textbook is that it is easy to
make updates and corrections fairly rapidly. Thus far, our book has
been strengthened by the level of community involvement in the

project, and we plan to continue a community-oriented approach.
For our next major addition, we have an NSF grant that supports

the development of interactive exercises and visualization content
for our book. In this process, we are working with numerous fac-
ulty to create free, interactive exercises that will allow students to
validate their knowledge of important concepts in the browser. Our

grant includes stipends that pay external collaborators to develop
exercises for each chapter. We have recruited exercise develop-
ers from various presentations and SIGCSE conference associated

events, as well as posting to community mailing lists. Recently, we
ran an Affiliated Event at SIGCSE’23 to brainstorm ideas and to
recruit more participants. Consistent with our early adopter experi-
ence, we have found participants eager to help (some regardless of
a stipend) a textbook project that they want to adopt in their own
classes, and one that is committed to remaining freely available
online. We also think faculty appreciate being able to contribute to

a project that benefits the community at large. At present, we are generating exercises for the C and Assembly

new to computer architecture, we hope that Dive into Systems will
spark their interest in computer systems and architecture, and
hopefully help inspire the next generation of computer architects.

REFERENCES
[1] ABET Computing Accreditation Commission. 2018. CRITERIA FOR ACCRED-

ITING COMPUTING PROGRAMS. https://www.abet.org/wp-content/uploads/
2018/02/C001-18-19-CAC-Criteria-Version-2.0-updated-02-12-18.pdf.

[2] ACM/IEEE-CS Joint Task Force. 2023. Computer Science Curricula 2023.
https://csed.acm.org/wp-content/uploads/2023/03/Version-Beta-v2.pdf.

[3] Joel Adams, Richard Brown, Suzanne Matthews, and Libby Shoop. 2013. CSin-
Parallel. https://csinparallel.org/.

[4] Joel Adams, Richard Brown, Suzanne Matthews, and Libby Shoop. 2021. Learn-
PDC. https://www.learnpdc.org/.

[5] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. 2020. Operating
Systems: Three Easy Pieces. pages.cs.wisc.edu/~remzi/OSTEP.

[6] David Patterson and John Hennessy. 2013. Computer Organization and Design
(5th ARM Edition). Morgan Kaufmann.

[7] David Tarnoff. 2007. Computer Organization and Design Fundamentals. lulu.com.
432 pages. Available at: https://faculty.etsu.edu/tarnoff/138292/.

[8] John L. Hennessy and David A. Patterson. 2019. Computer Architecture A Quanti-
tative Approach, Sixth Edition. Morgan Kaufmann Publishers.

[9] John L. Hennessy and David A. Patterson. 2019. A New Golden Age for Computer
Architecture. Commun. ACM 62, 2 (jan 2019), 48–60. https://doi.org/10.1145/
3282307

[10] Ian Wienand. 2020. Computer Science from the Bottom Up. https://www.
bottomupcs.com/.

[11] Shing Kong. 2001. The Elements of Logic Design, (Revised by Milo Martin, 2006).
https://acg.cis.upenn.edu/milom/elements-of-logic-design-style/.

[12] Suzanne J. Matthews, Tia Newhall, and Kevin C. Webb. 2020. Dive into Systems.
https://diveintosystems.org/.

[13] Suzanne J. Matthews, Tia Newhall, and Kevin C. Webb. 2021. Dive into Systems:
A Free, Online Textbook for Introducing Computer Systems. In Proceedings of the
52nd ACM Technical Symposium on Computer Science Education (Virtual Event,
USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY, USA,
1110–1116. https://doi.org/10.1145/3408877.3432514

[14] Suzanne J. Matthews, Tia Newhall, and Kevin C. Webb. 2022. Dive into Systems:
A Gentle Introduction to Computer Systems. No Starch Press.

[15] Cailyn Nagle and Kaitlyn Vitez. 2020. Fixing the Broken Textbook Market (2 ed.).
U.S. PIRG Education Fund. https://pirg.org/wp-content/uploads/2022/07/Fixing-
the-Broken-Textbook-Market_June-2020_v2-5.pdf.

[16] National Association of College Stores. 2022. NACS Student Watch Report:
Course Materials Spending Dropped. https://www.nacs.org/nacs-student-watch-
report-course-materials-spending-dropped.

[17] Noam Nisan and Shimon Schocken. 2008. The Elements of Computing Systems:
Building a Modern Computer from First Principles. MIT Press. https://www.
nand2tetris.org/course

[18] David A. Patterson and John L. Hennessy. 2009. Computer Organization and De-
sign: The Hardware/Software Interface, 4th Edition. Morgan Kaufmann Publishers.

[19] Apan Qasem, David Bunde, and Phil Schielke. 2019. ToUCH:
Teaching Undergrads Collaborative and Heterogeneous Computing.
https://github.com/TeachingUndergradsCHC/modules.

[20] Randal Bryant and David O’Hallaron. 2015. Computer Systems: A Programmer’s
Perspective (3rd Edition). Pearson.

[21] Sarah L. Harris and David Harris. 2021. Digital Design and Computer Architecture,

chapters. Next year, we will begin generating exercises for Binary
RISC-V Edition. Morgan Kaufmann.

[22] Julia E. Seaman and Jeff Seaman. 2023. Turning Point for Digital Curricula:

and the Memory Hierarchy, with more computer architecture and
parallel computing exercises to appear in the coming years. We
strongly believe that having faculty input from educators from a
wide swathe of institutions has helped improve the clarity of the
examples and ensured that the book helps as diverse a student body
as possible.

While creating Dive into Systems was (and continues to be) a
large undertaking, we believe it is ultimately good and necessary to
produce free online resources. With textbook costs simply adding
additional weight on top of the already heavy cost of a college
education, we believe that open access textbooks will be critical to
making a computing education attainable for all, especially those
from communities with limited resources. Faculty have found Dive
into Systems to be a useful addition to their courses. For students

Educational Resources in U.S. Higher Education, 2022. Bay View Analytics. https:
//www.bayviewanalytics.com/reports/turningpointdigitalcurricula.pdf.

[23] The NSF/IEEE-TCPP Curriculum Working Group. 2012. NSF/IEEE-TCPP Cur-
riculum Initiative on Parallel and Distributed Computing - Core Topics for Un-
dergraduates. http://www.cs.gsu.edu/~tcpp/curriculum/.

[24] The NSF/IEEE-TCPP Curriculum Working Group. 2020. NSF/IEEE-TCPP Cur-
riculum Initiative on Parallel and Distributed Computing - Core Topics for Un-
dergraduates (Version 2.0 Beta). http://www.cs.gsu.edu/~tcpp/curriculum/.

[25] Umakishore Ramachandran and William Leahy. 2010. Computer Systems: An
Integrated Approach to Architecture and Operating Systems. Pearson.

[26] United States Bureau of Labor Statistics. 2023. College tuition and fees up 4.7 per-
cent since February 2020. TED: Th Economics Daily, https://www.bls.gov/opub/
ted/2023/college-tuition-and-fees-up-4-7-percent-since-february-2020.htm.

[27] Will Jarvis. 2019. A Textbook Giant Is Going ’Digital First.’ That Might Not Be
Good for Affordability. The Chronicle of Higher Education (July 2019).

[28] Yale Patt and Sanjay Patel. 2019. Introduction to Computing Systems (3rd Edition).
McGraw-Hill.

https://www.abet.org/wp-content/uploads/2018/02/C001-18-19-CAC-Criteria-Version-2.0-updated-02-12-18.pdf
https://www.abet.org/wp-content/uploads/2018/02/C001-18-19-CAC-Criteria-Version-2.0-updated-02-12-18.pdf
http://www.learnpdc.org/
https://faculty.etsu.edu/tarnoff/138292/
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://www.bottomupcs.com/
https://www.bottomupcs.com/
https://acg.cis.upenn.edu/milom/elements-of-logic-design-style/
https://diveintosystems.org/
https://doi.org/10.1145/3408877.3432514
https://pirg.org/wp-content/uploads/2022/07/Fixing-the-Broken-Textbook-Market_June-2020_v2-5.pdf
https://pirg.org/wp-content/uploads/2022/07/Fixing-the-Broken-Textbook-Market_June-2020_v2-5.pdf
https://www.nacs.org/nacs-student-watch-report-course-materials-spending-dropped
https://www.nacs.org/nacs-student-watch-report-course-materials-spending-dropped
https://www.nand2tetris.org/course
https://www.nand2tetris.org/course
https://www.bayviewanalytics.com/reports/turningpointdigitalcurricula.pdf
https://www.bayviewanalytics.com/reports/turningpointdigitalcurricula.pdf
http://www.cs.gsu.edu/%7Etcpp/curriculum/
http://www.cs.gsu.edu/%7Etcpp/curriculum/
https://www.bls.gov/opub/ted/2023/college-tuition-and-fees-up-4-7-percent-since-february-2020.htm
https://www.bls.gov/opub/ted/2023/college-tuition-and-fees-up-4-7-percent-since-february-2020.htm

	ABSTRACT
	CCS CONCEPTS
	KEYWORDS
	1 INTRODUCTION
	3 CONTENT OVERVIEW
	Table 1: CS2023 Coverage
	Table 2: 2020 NSF IEEE/TCPP Computer Architecture Topics

	4 MAIN ARCHITECTURE CONTENT
	4.1 History of Modern Architectures
	4.2 Von Neumann Architecture
	4.3 Basic CPU Architecture
	4.4 Pipelining
	4.5 Parallel Architectures
	4.6 Memory Hierarchy and Caching

	5 OTHER RELATED CONTENT
	5.1 Binary
	5.2 Assembly
	5.3 Parallel Computing
	5.4 C Programming
	5.5 Operating Systems

	6 RELATED WORK
	7 DISCUSSION AND ONGOING WORK
	REFERENCES

