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Abstract

Amodal Instance Segmentation (AIS) aims to segment the region of both visible
and possible occluded parts of an object instance. While Mask R-CNN-based AIS ap-
proaches have shown promising results, they are unable to model high-level features
coherence due to the limited receptive field. The most recent transformer-based mod-
els show impressive performance on vision tasks, even better than Convolution Neu-
ral Networks (CNN). In this work, we present AISFormer, an AIS framework, with a
Transformer-based mask head. AISFormer explicitly models the complex coherence be-
tween occluder, visible, amodal, and invisible masks within an object’s regions of interest
by treating them as learnable queries. Specifically, AISFormer contains four modules:
(1) feature encoding: extract ROI and learn both short-range and long-range visual fea-
tures. (ii) mask transformer decoding: generate the occluder, visible, and amodal mask
query embeddings by a transformer decoder (iii) invisible mask embedding: model the
coherence between the amodal and visible masks, and (iv) mask predicting: estimate
output masks including occluder, visible, amodal and invisible. We conduct extensive
experiments and ablation studies on three challenging benchmarks i.e. KINS, D2SA,
and COCOA-cls to evaluate the effectiveness of AISFormer. The code is available at:
https://github.com/UARK-AICV/AISFormer

1 Introduction

Instance segmentation (IS) is a fundamental task in computer vision, which predicts each
object instance and its corresponding per-pixel segmentation mask. Modern IS approaches
[18, 25, 42, 45] are typically built on CNN and follow Mask R-CNN [19] paradigm with
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Figure 1: An explanation of different mask instances in Amodal Instance Segmentation
(AIS). Given a region of interest (ROI) extracted by an object detector, AIS aims to extract
both visible and invisible mask instances including occluder, visible, amodal, and invisible.
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Figure 2: A comparison between Instance Segmentation (IS) and Amodal Instance Segmen-
tation (AIS). Given an image with ROI (a), IS aims to extract the visible mask instance (b)
whereas AIS aims to extract both the visible mask and occluded parts (c).

Visible

two stages of first detecting bounding boxes, and then segmenting instance masks. Mask R-
CNN has been improved by various backbone architecture designs to obtain high accuracy
IS performance. Despite demonstrating impressive performance, those Mask R-CNN-based
approaches are limited when dealing with occlusion, in which a lot of segmentation errors
happen due to overlapping objects, especially among object instances belonging to the same
class [23]. The capability of perceiving/segmenting the entirety of an object instance re-
gardless of partial occlusion is known as amodal instance perception/segmentation (AILS). In
AIS, there are various mask instances taken into consideration including occluder, visible,
amodal, and invisible as shown in Fig.1.

A comparison between IS and AIS is given in Fig.2. While IS aims to segment the visible
region of the donut, as shown in the middle panel, AIS aims to extract both visible and
occluded regions of the donut as shown in the right panel of Fig.2. Humans are capable of
amodal perception, but computers are limited to modal perception [37], which has played an
important role in theoretical study and real-world applications. In the literature, various AIS
approaches [16, 23, 26, 32, 41] have been based on the IS pipeline of Mask R-CNN [19] and
attempted to predict the amodal mask of objects given the pooling region of interest (ROI)
feature. In such networks, the main contribution comes from segmentation head designs,
with attention paid to the amodal instance mask regression after obtaining the ROI. For
example, [16] performs AIS through an amodal branch and invisible mask loss, [32] reasons
invisible parts via a multi-task framework with Multi-Level Coding (MLC), [40] proposes
a cross-task attention based refinement strategy to refine the amodal mask and the visible
mask, [23] introduces a bilayer decoupling layer extract to occluder and infer occludee. The
Mask R-CNN-based AIS approaches have shown promising AIS results, however, they are
unable to model high-level or long-range features coherence due to the limited receptive
field. That means the complex relationship between ROIs has been not modeled in such
Mask R-CNN-based AIS approaches.

Recently, the DETR[6]-based approaches [12, 14, 20] have shown their advantage and
achieved on-par performances compared with CNN-based ones on object detection and in-
stance segmentation. Indeed, they model the long-range relationships between objects across
visual features by reformulating objects as learnable query embeddings and take advantage
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of the transformer attention mechanism. Inspired by that advantage, we propose AISFormer,
an AIS framework, with a Transformer-based mask head. Our AISFormer consists of four
modules: feature encoding, mask transformer decoder, invisible mask embedding, and seg-
mentation. In the first module, after obtaining the region of interest (ROI) feature from the
backbone and ROIAlign algorithm, CNN-based layers and a transformer encoder are applied
to learn both short-range and long-range features of the given ROI. The second module aims
to generate the occluder, visible and amodal mask query embeddings by a transformer de-
coder. The next module extracts invisible mask embeddings to model the coherence between
the amodal mask and visible mask. The last module, the segmentation module, estimates
the output masks including occluder, visible, amodal, and invisible. Our overall network is
shown in Fig.3. Our contribution can be summarized as follows:

* We propose AISFormer, an amodal instance segmentation framework, with a Transformer-
based mask head. Our AISFormer can explicitly model the complex coherence be-
tween occluder, visible, amodal, and invisible masks within an object’s regions of
interest by treating them as learnable queries. AISFormer also models the relationship
between these embeddings and the corresponding region of interest.

* We empirically validate the usefulness of our proposed method by showing that it
achieves superior performance to most of the current state-of-the-art methods bench-
marked on three amodal datasets, i.e., KINS [32], COCOA-cls [46], and D2SA [15].

2 Related Work

2.1 Instance Segmentation (IS)

The existing IS approaches can be summarized into two categories of two-stage and one-
stage. The former category, two-stage IS approaches, is divided into two groups: top-down
and bottom-up methods based on the priority of detection and segmentation. The top-down
two-stage approaches [5, 8, 10, 11] follow the pipeline of Mask R-CNN [19] by first detect-
ing bounding boxes and then performing segmentation in each Rol region. The bottom-up
two-stage approaches [3, 9, 30] first generate semantic segmentation and then group pix-
els through clustering or metric learning techniques. While the two-stage category has not
taken the correlation between detection and segmentation into consideration, the latter cat-
egory, single-stage, addresses this limitation with less time consumption [4]. There are two
common groups in the single-stage category i.e., anchor-based and anchor-free methods.
The anchor-based one-stage approaches [4, 10, 27] simultaneously generate a set of class-
agnostic candidate masks on the candidate region and extract instances from a semantic
branch. To cope with the drawback of anchor-based approaches that rely heavily on pre-
defined anchors sensitive to hyper-parameters, anchor-free one-stage approaches [7, 25, 43]
are proposed by eliminating anchor boxes and using corner/center points.

2.2 Amodal Instance Segmentation (AIS)

Unlike IS, which only focuses on visible regions, AIS predicts both the visible and amodal
masks of each object instance. One of the first works in AIS is proposed by Li et al. [26],
which relies on the directions of high heatmap values computed for each object to iteratively
enlarge the corresponding object modal bounding box. Generally, AIS can be categorized
into two groups of weakly supervised and fully supervised methods.

Fully supervised AIS: The majority of AIS approaches follow a fully supervised approach,
where the amodal annotation is required. The amodal annotation can come from human
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labeling [16, 32, 40] or synthetic occlusions [44]. Follmann et al. [16] propose ORCNN,
in which they have two main instances mask heads, amodal and inmodal. In addition, they
build another mask head on top of these two for invisible mask prediction. Based on OR-
CNN architecture, Qi ef al. [32] introduce ASN, where they propose the multi-level coding
module. The module aims to learn global information, thus obtaining better segmentation for
the invisible part. Different from ORCNN and ASN, VQ-VAE [21] replaces the fully convo-
lutional instance mask heads with variational autoencoders. Specifically, the input feature is
firstly classified into an intermediate shape code. Then, the shape code is reconstructed into
a complete object shape. Xiao et al. [41] also uses a pre-trained autoencoder to refine the
initial mask prediction from the amodal mask head. The pre-trained autoencoder encodes the
mask to a shape prior memory codebook and decodes it into a refined amodal mask. More
recently, BCNet[23] attempts to decouple the mixing features by extending another branch
that predicts the mask of occluders inside the bounding box of the occludee. Thus, the model
can be aware of occluders and more precisely predict the amodal mask.

Weakly supervised AIS (WAIS): [31, 44] consider this problem under weak supervision
where they attempt to generate amodal mask ground-truths from datasets using the available
visible ground truths. The reason is that human annotators sometimes could not provide re-
liable ground truth on amodal masks. The procedure of [31, 44] on WAIS can be described
as follows. First, data augmentation is applied to generate occlusion on top of objects in the
dataset. Then, a UNet model [34] is trained as a segmenter. The input of the UNet is the
available visible mask ground truth of the object. However, with the occlusion augmentation
added to the object, the visible ground truth is treated as the amodal ground truth. In the
second training stage, the amodal segmentations outputs from the trained UNet in the first
phase are taken as a pseudo-ground truth for learning a standard instance segmenter — Mask
R-CNN [24]. In the inference phase, Mask R-CNN trained on the generated amodal ground
truth is expected to yield the correct AIS. Another approach in WAIS uses object bounding
boxes as inputs [35, 36], where shape priors and probabilistic models are applied to classify
visible, invisible, and background parts within the bounding box.

Our ASIFormer belongs to the first group of fully supervised learning, in which visible,
amodal, and occluder masks are represented by queries in a unified manner.

2.3 Query-based Image Segmentation

Inspired by DETR [6], query-based IS methods [12, 14, 20] have achieved impressive IS
performance by treating segmentation as a set prediction problem. In these methods, queries
are used to represent the objects and jointly learn multiple tasks of classification, detection,
and segmentation. In [12], each query represents one object with multiple representations
of class, location, and mask. For the IS branch, the mask encoding vectors are learnt by the
compression coding (DCT [2], PCA [1], Sparse Coding [13]) of raw spatial masks. Instead
of high-dimensional masks, ISTR [20] predicts low-dimensional mask embeddings and is
trained by a set loss based on bipartite matching. Meanwhile, QuerylInst [14] addresses IS
problem by using parallel dynamic mask heads [22]. In Querylnst, queries are shared be-
tween tasks of detection and segmentation in each stage via dynamic convolutions. Unlike
the previous works which process on regular dense tensors, Mask Tranfiner [24] first de-
composes and represents an image region as a hierarchical quadtree. Then, all points on
the quadtree are transformed into a query sequence to predict labels. By doing that, Mask
Tranfiner only processes detected error-prone tree nodes, which are mostly along object
boundaries or in high-frequency regions, and self-corrects their errors in parallel. Similar to
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Figure 3: The overall flowchart of our proposed AISFormer. AISFormer consists of four
modules corresponding to (i) feature encoding: after obtaining the region of interest (ROI)
feature from the backbone By and ROIAlign algorithm ¢, CNN-based layers and a trans-
former encoder are applied to learn both short-range and long-range features of the given
ROI.(i1) mask transformer decoding DB: generate the occluder, visible, and amodal mask
query embeddings by a transformer decoder (iii) invisible mask embedding Zy to model the
coherence between the amodal and visible masks by computing the invisible mask embed-
ding, and (iv) segmentation to estimate output masks including occluder (M,), visible (M,),
amodal (M, )and invisible (M;).

[12, 14, 20], our proposed AISFormer is inspired by DETR. Indeed, our learnable queries
represent visible, amodal, and occluder masks. Our transformer-based approach aims to
model the coherence between them.

3 Methods

We propose an approach, termed AISFormer, to efficiently tackle AIS. The overall archi-
tecture of AISFormer is illustrated in Fig 3. Our AISFormer consists of four modules
corresponding to (i) feature encoding: in this first module, after obtaining the region of
interest (ROI) feature from the backbone By and ROIAlign algorithm ¢, CNN-based lay-
ers and a transformer encoder are applied to learn both short-range and long-range features
of the given ROL (ii) mask transformer decoding Dg: generate the occluder, visible, and
amodal mask query embeddings by a transformer decoder (iii) invisible mask embedding Zy
to model the coherence between the amodal and visible masks by computing the invisible
mask embedding, and (iv) segmentation to estimate output masks including occluder, visible,
amodal and invisible.

Generally, given an image I, AIS aims to predict the amodal mask M, and visible mask
M, within ROIs. To better model the mask coherence between amodal mask M, and visible
mask M,,, our AISFormer estimates other relevant masks such as occluder mask M, and
invisible mask M;. In such relationships, the amodal mask M, consists of the visible part
M,, and the invisible mask M;, which is a part of occluder mask M,,.

3.1 Feature Encoding

Given an image I, we first adopt a pre-trained image recognition network B, (e.g. ResNet
[19], RegNet[33]) to extract the spatial visual features, where ¢ is backbone network weights.
After backbone feature extraction, we apply ROIAlign algorithm ¢ to obtain ROIs corre-
sponding to the bounding boxes in the image F,,; = ¢(By (1)), where F,,; € REAr>Wr o
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represent F,,,; in higher resolution without increasing computational cost, we apply a decon-
volution layer with a stride of 2 into the spatial domain. As a result, the feature maps are
upsampled, i.e., F,,; € RE*Hn>Wn whereas H,, = 2 x H, and W,, = 2 x W,. The higher-
resolution feature maps F,,; is passed through a 1 x 1 stride 1 convolutional layer and then
flattened from the spatial dimensions into one dimension and obtain H,W, embeddings with
the dimension of C. The flattened feature maps with their positional encodings [38] are fed
into the mask transformer encoder £y to extract long-range dependency across spatial do-
mains, where « is transformer encoder network weights. The mask transformer encoder is
designed as a self-attention model and described in Fig.4(a). The output of this module is
denoted as F, and computed as:

F, = Eq(Flatten(F,,;)); where F,; = ¢(By (1)) (1)

3.2 Mask transformer decoding

Inspired by DETR[6], our mask transformer decoder transforms 3 learnable mask query-
embeddings Q,,Q,, Q,, corresponding to occluder, visible and amodal masks, respectively.
This mask transformer decoder Dg is designed as in the Fig.4 (b) which combines both
self-attention (A, ) and cross-attention(Ac,). The self-attention takes three learnable
mask query-embeddings Q = [Q,, Q,, Q.| € RE*3 as input to model the correlation between
queries. Meanwhile, the cross attention takes the output from the self-attention model Ay,
encoding feature F, (i.e. the output of the mask transformer encoder) and their positional
encodings as input to learn the coherence between individual query and feature maps F,.
The mask transformer decoding Dg is described as follows.

Q= Dﬁ (QaFe) = Across (Fea (-Aself(Q) D Q)) (2

3.3 Invisible mask embedding

Our observation is that there are correlations between the visible mask and amodal mask
as given in Fig.1. Specifically, the amodal mask is considered as the union of the visible
mask (i.e modal mask) and the invisible mask (i.e. occluded parts). In order to model that
relationship, we propose an invisible mask embedding module Zgy, which takes visible and
amodal mask query instances (i.e. Q,,Q,) from the previous module Dy into consideration.
The mask instances Q,,Q,) are concatenated into a long vector in R2C. The invisible mask
embedding module Zy 1s designed as in Fig.4(c) with an MLP consisting of hidden layers.
The output I; € R€ is computed as follows:

I; = MLP([Qy;Qd)) 3)
3.4 Mask predicting

The mask prediction module aims to predict four relevant mask instances as defined in AIS,
1.e. occluder (M,), visible (M,), amodal (M,), and invisible (IM;) masks. In this module,
we first compute per-pixel ROI embeddings &,,; € RC*Hn*Wn  Indeed, &,,; represents the
features of each pixel in the set of output masks M = [M,,M,,,M,,M;]. We define the per-
pixel ROI embeddings as in the following equation.

Eroi = Unflatten (Flatten(F,,;) ® F,) @
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Figure 4: Illustration network architecture of AISFormer. (a): mask transformer encoder £,
is designed as one block of self-attention, (b): mask transformer decoder Dy is designed as
a combination of one block of self-attention (Ay;r) and one block of cross-attention (Acoss)
and (c): invisible embedding Zy is designed as an MLP with two hidden layers.

We then apply a dot product (®) on mask query embeddings Q = [Q,,Q,,Q,], invisible
mask embedding I; and per-pixel ROI embeddings &,,; to obtain the output masks M as in
Eq.5. Our AISFormer is designed as an end-to-end framework and trained using the cross-
entropy loss.

[MO;M\/:MaaMi] - groi 03¢ [QmeQa;Ii] (5)
4 Experiments

4.1 Datasets, Metrics and Implementation Details

Datasets: We benchmark our AISFormer and conduct the comparison with other SOTA
methods on three amodal segmentation datasets, namely KINS [32], COCOA-cls [46], and
D2SA [15]. KINS is a large-scale traffic dataset with modal and amodal annotation masks
of instances and is created based on the KITTI dataset [17]. Our AISFormer is trained on the
training split with 7,474 images (95,311 instances) and tested on the testing split with 7,517
images (92,492 instances). D2SA is built based on the D2S(Densely Segmented Supermar-
ket) [15] dataset with 60 categories of instances related to supermarket items. There are
2,000 training images and 3,600 testing images. The annotations are generated by overlap-
ping objects on others. COCOA-cls is created based on COCO dataset [28]. In COCOA-cls,
there are 2,476 training images and 1,223 testing images. It also contains 80 instance classes
about common objects in context.

Metrics: In order to conduct the evaluation of AISFormer and comparison with other ex-
isting approaches, we adopt mean average precision (AP) and mean average recall (AR),
commonly used evaluation metrics in AIS tasks.

Implementation Details: We implement our AISFormer based on Detectron2 [39], a Pytorch-
based detection framework. For the KINS dataset, we use an SGD optimizer with a learning
rate of 0.0025 and a batch size of 1 on 48000 iterations. For D2SA datasets, we also train
with an SGD optimizer but with a learning rate of 0.005 and a batch size of 2 on 70000
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Table 1: Performance comparison on KINS dataset. { indicates our reproduced results. On
each backbone, the best scores are in bold and the second best scores are in underlines.

Sup. | Backbone | Model Venue | Shape Prior | AP APsy AP;s AR
Weakl ResNet-50 PCNet [44] CVPR20 X 29.1 51.8 29.6 183
Y| ResNet-50 ABSU [31] ICCV‘21 v 293 521 297 184
ResNet-50 VQVAE [21] IEEE TMI ‘20 v 30.3 - - -
ResNet-50 VRSP-Net [41] AAAI21 v 32.1 554 333 209
ResNet-50 Mask R-CNN [19] ICCV*‘17 X 30,0 545 30.1 194
ResNet-50 ORCNN [16] WACV‘19 X 30,6 542 313 19.7
ResNet-50 ASN [32] CVPR‘19 X 32.2 - - -
Fully ResNet-50 AISFormer - X 33.8 578 353 211
ResNet-101 | Mask R-CNN [19]" ICCV*‘17 X 302 543 304 195
ResNet-101 BCNet [23] CVPR21 X 28.9 — — —
ResNet-101 BCNet [23] * CVPR21 X 326 572 354 21.5
ResNet-101 AISFormer - X 346 582 36.7 219
RegNet APSNet [29] CVPR22 X 35.6 - - -
RegNet AlISFormer - X 35.6 599 37.0 225

iterations. For COCOA-cls, since it has a smaller amount of training images, we train it on
10000 iterations with the learning rate of 0.0005 and a batch size of 2. The experiments have
been conducted using an Intel(R) Core(TM) 19-10980XE 3.00GHz CPU and a Quadro RTX
8000 GPU.

4.2 Performance Comparison

Table 1 compares our AISFormer with SOTA AIS methods on the KINS dataset. AIS-
Former obtains steady improvement on distinct backbones (i.e. ResNet-50, ResNet-101, and
RegNet). In particular, in comparison with the existing methods evaluated on KINS using
ResNet-50 as the backbones, our method outperforms both SOTA methods with shape prior
(e.g., VQVAE [21] by 3.5%AP and VRSP-Net [41] by 1.7%AP ) and without using shape
priors (e.g., Mask R-CNN [19] by 3.8%AP and ASN [32] by 1.6%AP), respectively. In ad-
dition, our method outperforms previous methods using ResNet-101 as the backbone by a
large margin from 2% —4.4%AP and has a comparable result with the current SOTA APSNet
[29], using RegNet [33] as the backbone.

We also compare our model with all existing SOTA methods on the D2SA and COCOA -
cls datasets, using ResNet-50 as the backbone as shown in Table 2. Compare with other exist-
ing shape-free approaches, our AISFormer achieves the SOTA performance on both datasets
with a large margin. Specifically, compared with the second best i.e. BCNet [23], our AIS-
Former gains 2.39%AP and 1.74%AR on D2SA and 2.13%AP and 1.6%AR on COCOA-cls.
Notably, our AISFormer outperforms shape prior VRSP-Net [41] on the COCOA-cls dataset
while obtaining high performance and comparable results with VRSP-Net [41] on the D2SA
dataset. Our observation and hypothesis on the D2SA dataset are that the majority of objects
in D2SA are supermarket items and their shapes are standardized and unvarying (e.g. items
are in the shape of a rectangle or tube). Thus, with standardized shape objects, the shape prior
approach i.e. VRSP-Net [41] outperforms other shape-free approaches; however, it does not
work well on other datasets which contain more variety of shapes. Generally, AIS perfor-
mance on the D2SA dataset is higher than KINS and COCOA-cls datasets, which contain
more variety of objects and shapes.
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Table 2: Performance comparison on the D2SA and COCOA-cls datasets with ResNet-50 as
the backbone. T indicates our reproduced results. In the category of without shape prior, the
best scores are in bold and the second best scores are in underlines.

D2SA COCOA-cls

Model Venue Shape Prior AP APy, AP AR AP APy, AP AR
VRSP-Net [41] AAAI21 v 70.27 85.11 75.81 69.17 | 3541 56.03 38.67 37.11
Mask R-CNN [19] | ICCV‘17 X 63.57 83.85 68.02 65.18 | 28.03 53.68 2536 29.83
ORCNN [16] WACV*‘19 X 64.22 8355 69.12 65.25 | 28.03 53.68 2536 29.83
ASN [32] CVPR‘19 X 63.94 8435 69.57 65.20 | 35.33 58.82 37.10 35.50
BCNet [23] CVPR21 X 65.97 8423 7274 66.90 | 35.14 58.84 36.65 35.80
AISFormer - X 68.36 85.08 74.58 68.64 | 37.27 59.69 40.70 37.40

4.3 Ablations

We further investigate the effectiveness of our proposed AISFormer. We conduct six experi-
ments as shown in Table 3 as follows:

e Exp #1: AISFormer with only one amodal mask query embeddings (i.e. Q = [Q,]).

e Exp #2: AISFormer with amodal mask query and occluder query embeddings (i.e. Q =
[Q4,Q,)). By adding occluder query embedding, the performance improves 2.35% AP on
D2SA and 1.9% AP on KINS. This shows the effectiveness of occluder query embedding.

e Exp #3: AISFormer with amodal mask query and visible query embeddings (i.e. Q =
[Q4,Q,]). By adding visible query embedding, the performance improves 1.82% AP on
D2SA and 1.69% AP on KINS. This shows the effectiveness of visible query embedding.

¢ Exp #4: AISFormer with amodal mask query, visible query embeddings (i.e. Q = [Q,, Q,]),
and invisible query embedding. This shows the effectiveness of invisible mask embedding,
which helps to gain 1.08% AP on D2SA and 0.23% AP on KINS.

e Exp #5: Both amodal mask query, visible query and occluder embeddings (i.e. Q =
[Qo,Q4,Q,]) are used and it obtains better performance on each individual embedding. This
shows the effectiveness of learnable query embeddings.

e Exp #6: This is our proposed network architecture, AISFormer, which obtains the best
performance. This shows the effectiveness of both learnable query embeddings and invisible
mask embedding when combining them into an end-to-end framework.

We further visualize the attention maps of learnable queries as in Fig.5. More qualitative
results are included in the supplementary.

Table 3: Effectiveness of occluder mask embeddings (Exps. #1 vs. #2, #3 vs. #5), visible
mask embeddings (Exps. #1 vs. #3, #2 vs. #5), and invisible mask embeddings (Exps. #3
v.s.#4, #5 v.s.#6) with ResNet-50 as the backbone on the D2SA and KINS datasets.

Exp. | Amodal | Occluder | Visible | Invisible 1 PD2‘Si Py | A PKIFISL‘ P
#1 v X X X 64.66 | 81.30 | 31.01 | 54.28
#2 v v X X 67.01 | 83.92 | 3291 | 55.39
#3 v X v X 66.48 | 83.01 | 32.70 | 55.16
#4 v X v v 67.56 | 84.72 | 32.93 | 5545
#5 v v v X 68.17 | 84.63 | 33.21 | 56.20
#6 v v v v 68.36 | 85.06 | 33.78 | 57.80
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Figure 5: Attention visualization of query embeddings. (a): Input image with four ROIs. (b),
(c), (d), (e): attention feature maps of queries in each ROI. For each ROI, from left-right:
ROI, occluder query embedding, visible query embedding, and amodal query embedding.

Conclusion

We have proposed AISFormer, an AIS framework, with Transformer-based mask heads. The
proposed is designed as an end-to-end framework with four modules: feature encoding, mask
transformer decoding, invisible mask embedding, and mask predicting. Our AISFormer can
explicitly model the complex coherence between occluder, visible, amodal, and invisible
mask instances within ROI by treating them as learnable queries. Results and ablation study
on three benchmarks, namely KINS, D2SA, and COCOA-cls, show the effectiveness of our
proposed learnable queries and indicate that our AISFormer obtains the SOTA AIS perfor-
mance compared to the existing methods. Our future research will integrate the shape prior
into AISFormer as well as investigate AISFormer on other modalities such as time-lapse,
and videos.
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