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Abstract

This paper develops a model-based policy gradient algorithm for tracking dynamic targets using a
mobile agent equipped with an onboard sensor with limited field of view. The task is to obtain a
continuous control policy for the mobile agent to collect sensor measurements that reduce uncer-
tainty in the target states, measured by the target distribution entropy. We design a neural network
control policy with the agent SF(3) pose and the mean vector and information matrix of the joint
target distribution as inputs and attention layers to handle variable numbers of targets. We also
derive the gradient of the target entropy with respect to the network parameters explicitly, allowing
efficient model-based policy gradient optimization.
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Supplementary Material

Open-source implementation: github.com/ExistentialRobotics/RL_Active_Multi_Target_Tracking

1. Introduction

Active target tracking is a problem in which the trajectory of a sensing agent is planned to reduce
uncertainty in the state of a dynamic target of interest. This problem is motivated by several applica-
tions, including search and rescue (Kumar et al., 2004), security and surveillance (Grocholsky et al.,
20006), wildfire detection (Julian and Kochenderfer, 2019), and pursuit evasion (Chung et al., 2011).
Active information gathering in Simultaneous Localization and Mapping (SLAM) (Cadena et al.,
2016; Placed et al., 2023) is an example of active target tracking in which the target is the (static)
map of the environment. The challenge of the general active target tracking problem is inherent
in predicting the future target state, optimizing the sensing agent trajectory with a limited Field of
View (FoV), and taking into account the stochasticity of the target motion and sensor observations.

While the general active target tracking problem is posed as a stochastic optimal control problem
due to the probabilistic inference of the target states, some earlier works have reduced this complex-
ity. Under the assumption of linear Gaussian target motion and sensor observation models, active
target tracking with an information-theoretic cost results in a deterministic optimal control problem,
as shown in Le Ny and Pappas (2009). Atanasov et al. (2014) proposed a computationally efficient
non-myopic planning approach with a strong performance guarantee even under a long planning
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horizon. Schlotfeldt et al. (2019) developed a consistent heuristic for applying A* search to the
active information acquisition by deriving maximum upper bounds for the information measure. A
multi-agent multi-target formulation of active information acquisition and associated scalable algo-
rithms were studied by Atanasov et al. (2015); Schlotfeldt et al. (2018); Kantaros et al. (2019); Cai
et al. (2021). While those works consider planning over discrete control space, Koga et al. (2021)
proposed “iterative Covariance Regulation” (iCR), which optimizes the sensing trajectory over con-
tinuous SFE(3) space by deriving an analytical gradient of the cost with respect to the multi-step
control sequence. Extensions of the work to occlusion-aware planning and to active SLAM under
uncertain agent state was developed by Asgharivaskasi et al. (2022) and Koga et al. (2022), respec-
tively. However, all the aforementioned works compute control inputs for a given environment and
cannot be applied to a new environment without replanning.

Learning a control policy from training data obtained over several environments has been stud-
ied in the context of reinforcement learning (RL) (Sutton and Barto, 2018). RL methods employing
deep neural network representations of the policy and value functions have been developed for both
discrete control spaces (Mnih et al., 2015) applied to games and continuous control spaces (Lilli-
crap et al., 2015; Schulman et al., 2017) applied to robotics tasks. Learning a policy for active target
tracking was proposed by Jeong et al. (2019) using (Q-learning to maximize the mutual information
between the sensor data and the target states. Hsu et al. (2021) developed a multi-agent version of
Jeong et al. (2019) by incorporating an attention-block in the Q-network architecture. In addition,
Tang and Ha (2021) also leveraged an attention mechanism to achieve permutation-invariance in
multi-agent settings. Chen et al. (2020) focused on active landmark mapping using a graph neural
network representing the exploration policy, which is trained by Q-learning within a framework of
Expectation Maximization (Wang and Englot, 2020). Chaplot et al. (2020) proposed a modular and
hierarchical approach to obtain a local policy by imitation learning from analytical path planners
with a learned SLAM module and a global policy to maximize area coverage. Lodel et al. (2022)
applied PPO (Schulman et al., 2017) for learning an information-theoretic active mapping policy
to acquire reference viewpoints that maximize reward with local sensing of obstacles and the agent
position. Yang et al. (2023) proposed a continuous trajectory learning method for active perception
to localize multiple static landmarks, utilizing differentiable field of view for reward shaping and an
attention-based neural network architecture. Learning low-level continuous control (e.g., velocity
or torque) for SFE(3) agent kinematics using model-free RL methods is challenging because ob-
taining stable policy convergence requires a sufficiently large amount of experience, especially for
complicated tasks.

Utilizing a known or predicted state transition model in learning algorithms can significantly
reduce the required amount of samples and computation relative to model-free RL methods. Levine
and Koltun (2013) developed a guided policy search that optimizes the system trajectory associated
with the model by Differential Dynamic Programming (DDP) to achieve direct policy learning in
control. Several variants and extensions of guided policy search were proposed by Levine and
Abbeel (2014) for policy learning with unknown dynamics and by Levine et al. (2016) to obtain an
end-to-end policy from visual sensing to robot action. Luo et al. (2019) incorporated a force and
torque model into RL to enable high-precision robot manipulation tasks. A recent comprehensive
review of the model-based RL was presented by Janner et al. (2019).

Contributions: The contributions of the paper are summarized as follows.
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* We develop a novel model-based policy gradient algorithm for tracking multiple dynamic
targets over continuous SF(3) trajectories. A differentiable field-of-view (FoV) formulation
is incorporated to enable offline learning for sensor models with limited FoV.

* We design a neural network policy architecture with an attention block to handle multiple
targets and with padding and masking to enable learning over a varying number of targets
during training.

2. Problem Statement

Consider an agent with pose T, € SE(3) C R¥* attime t), € R, where {t;}X_, for some K € N
is an increasing sequence. The definition of pose and its discrete-time kinematic model are:

R X A
Tk |, Thir = Thexp (Th0g), (D
03><1 1

Tk = |:
where x;, € R3 is position, R, € SO(3) C R3*3 is orientation, 7, := t,1 — tx > 0 is the
sampling-time interval, and u; = [v,;r7 w;]T € RY is a control input, consisting of linear velocity
v), € R? and angular velocity w;, € R3. The hat operator (A) : RS — se(3) maps vectors in RS to
the Lie algebra se(3) associated with the SF(3) Lie group (Barfoot, 2017).

We consider a finite number of moving targets y, = | ,(Cl), e ,y,(cnl)], where y,(c] ) € R™ for
j € {1,...,n;} denotes the n,-dimensional state of j-th target at time & and n; is the total number
of targets. We assume that each target has homogeneous dynamics governed by a linear Gaussian
process:

Vi = v+ pE) i) o

where A : R™*™ and B : R™>*™v are the system matrices, é,(f ) € R™ is a known target input,
and ng] ) N (0, W) is a stochastic process noise assumed to be Gaussian with zero mean and
covariance Wy, € R™v*"y,

The agent is equipped with an onboard sensor for tracking the target states. Let F C R3
represent the FoV of the sensor within the agent’s body frame. The set of target indices within the

FoV is:
IHT Ay DY) = {j € {10} [a (7.0 € F 3

where ¢ : R™ — R3 transforms the target state to the 3-D coordinate of the target’s location, and
q: SE(3) x R? — R3 returns the agent-body-frame coordinates of ¢ € R3 given by

a(T,¢) =QT ¢, 4)

where the projection matrix @ and the homogeneous coordinates ¢ are defined as:

Q=[1Is 03X1]6R3X4,C:[§]6R4. (5)
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. j ()
Then, a sensor measurement is denoted by z;, = [{z,(j )} € R=IZ=(Tdyi" Dl where

20

JETF Ty 9]
€ R™= is an observation of j-th target with model:

27 = HyD 4,y ~ N(0,V), ©6)

forall j € Zr(Ty, {y,(cj)}), where the matrix H € R™*™ is the sensor matrix and V' € R™*"= is
the sensing noise covariance.

Our task is to develop a control policy for the agent to minimize uncertainty about the multiple
targets using information acquired from the onboard sensor. We consider minimizing the differential
entropy 1 H(y x|zo.x, To: i) of the terminal target state y - given a sequence of sensor observations
zo.x and the agent trajectory Tp.x. Since each target state is independent of all other target states
due to the independent motion model in (2), the problem is equivalent to

ny
min > H(y?|z0.50, Tox))- (7
j=1
Under the Gaussian target state obeying (2) with the linear Gaussian sensor model (6), the problem
(7) is equivalent to

max Z log det ( (])) 3

7j=1

where YI((j ) is the terminal information matrix of the posterior distribution of target state y%). More
precisely, we denote the prior and posterior distributions of the target state given a history of mea-
surements as:

Yy 2o 1 ~ NP, (P, yPlzos ~ Nl (v, 1), )

forall j € {1,...,n;} and k € {1,..., K}. The mean and covariance (or information) matrix are
updated based on the Kalman Filter, which is given by the following prediction and update steps
(Atanasov et al., 2014) (here we omit the superscripts (4) to ease the notation but the variables are
for each j-th target):

Prediction (forall j € {1,...,m}): pr+1 = Apy, + BE,, (10)
Pey1 = (AY,PAT + W) (11)
Update (for j € Zr(Tj 1, {y,(ﬁl}): M1 = Pht1 + Ky 1(Zey1 — HPry1), 12)
Yit1 =P + H'V'H, (13)

K = PN H G (Hea P HE A+ Vi)™ (14)

However, since the update step is performed only for targets within FoV, which is known only
after obtaining the sensing with limited FoV, the implementation above is not possible in the offline
planning stage. To enable planning before measurements are obtained, following Koga et al. (2021),

1. The differential entropy of a continuous random variable Y with probability density function p is defined as H(Y") :=
— [ p(y) log p(y)dy.
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we introduce a differentiable FoV formulation to relax the index condition and enable gradient
computation. Moreover, during training, we suppose that the sensor noise is negligible to enable
offline non-myopic planning without acquiring measurements, thereby leading to identical prior and
posterior means. We then design the control policy uy, = mg(s;) as a deep neural network, where
s, is the input of the network. Since the differentiable FoV renders the posterior information matrix
at next time step dependent on the prior mean and information matrix of the target state, the input
of the network is designed to include them. Finally, we consider the following problem for policy
optimization.

Problem Given a prior Gaussian distribution for moving target y() ~ A (p(()] ), (Péj 1) with
mean u,[()j ) ¢ R™ and information matrix Yb(j ) ¢ SZ%X% forall j € {1,...,n;}, optimize the pa-

nl}

rameters @ € R"» of a control policy uy, = 7g(si) where sy, = [log (T%)" , {p/,(cj_s)_17 Vech(P/,gr)l)}j:1

by solve the following policy optimization problem:

n;
()
o ; log det(Y"), (15)
subject to

Tk+1 = Tk eXp(TTl'g(Sk)) (16)

o), — apf) + e )

P = (AW AT + W), (18)

Yk(i)l = P]Ei)l + M(Tk+1> PI(CJ+)1)7 (19)

M(T,p) = (1 - @(d(a(T,p"), 7)) H V7'H, 20)

forall j € {1,...,m}and k € {0,..., K — 1}, where (20) is derived in Koga et al. (2021),
® is a probit function (Bishop, 2006), defined by the Gaussian CDF ® : R — [0,1], ®(x) =
% [1 + erf (i — 2)}, and d is a signed distance function associated with the FoV F defined

V2K
below.

Definition 1 The signed distance function d : R?> — R associated with a set F C R3 is:

d(q,]:) — {_mlnq*ea}'Hq_q H? l‘f q € f’ (21)

ming-eor g — q*||, if aq¢ F,

where OF is the boundary of F.

3. Model-Based RL over Continuous S £/(3) Trajectory

We approach the problem in the previous section by the following steps. First, we derive the gradient
of the cumulative reward with respect to the policy parameters analytically by utilizing the SE(3)
pose kinematics and the mean and information update, similarly to iCR (Koga et al., 2021). Then,
we design a neural network architecture to handle multiple targets and to enable learning over a
varying number of targets.
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3.1. Analytical Policy Gradient

The following proposition provides an update rule for the policy function parameters @ using the
gradient of the reward function in (15) with respect to 6.

Proposition 1 The gradient-ascent update for solving active exploration (15)—(19) with differen-
tiable field of view (20) is given by

: . . 87“779
(i+1) _ p() (ORI
0+ = o) 1O (22)
where fy(i) e Ry foralli e {1,...,ny} is a step size, and the gradient is given by
o _ itr Cramua) 23)
000~ K K
j=
where
Q(] i) . 8Y(J) c R Xy A(Z) - 9T}, c R4x4 (24)
' aa( ) ’ TIO
are obtained via:
AV =0, QU =0, vie{l,....n,}, Vie{l,... )} (25)
Ql(cjji _ (AT + Yk(j)A_IWk)_IQ,E:j7i)(A + WkA_TY(j))_l
od _ _
+ <<I>’(d(q, ]:))8> . CQT,hLllA,gle ka](CJ)rlHTV 'H, (26)
q q= (Tk+1ypk+1)
(i) (i) oL, Omo(sk) . Oexp(mpt)
Ay = Ay exp(mima(sy)) + Tr jz; 20 i aa0) u:ﬂe(Sk)7 27

where ey, ,, € R" is a n-dimensional unit vector whose m-th element is 1 and all others are 0.

Proof Taking the gradient of the reward (15) directly leads to (23) by defining Q,(j ) as (24), which
is the perturbation of the information matrix with respect to the policy parameter. Then, the update
equation (26) is derived by taking the gradient of both sides in (19) and in (18). The same can be
performed for the SE(3) pose state to derive (27) from the gradient of (16). Note that the prior
mean is not affected by the control policy due to the update equation (17) and, hence, we do not
need to define the perturbation of the prior mean. |

3.2. Network Architecture

In order to generalize training and testing to varying number of targets, we utilize a padding and
masking scheme that allows tracking an arbitrary number of targets (up to a defined maximum

n;"®*) while keeping the network architecture unchanged. We consider a fixed-length input vec-
tor with n;"* x n, elements for both the target state and target information, where only the first
ng X ny elements contain non-zero values. Additionally, a binary Mask vector contains instruction
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Figure 1: Deep neural network architecture used for the parameterized policy mg(sx). The input
sk contains the current agent pose in log representation log (Tk)v as well as zero-padded
predicted target states {p,(gjll}?’: , and target information {P,Sr)1 };”: 1- The Mask vector
indicates which elements of the padded target input contains relevant values, allowing
to remove the influence of zero-padding in the final output. For each input, the network

computes continuous controls u, = [v;,w;]T.

about which elements of the subsequent computations should be ignored to cancel out the effect of
padding values in the output of the network. Fig. 1 illustrates the policy network architecture using
the padding and masking scheme, where similarly to Yang et al. (2023) we employ an attention
mechanism (Long et al., 2020) so that the agent takes into account the relationship between its cur-
rent pose state and the moving target states in order to prioritize observing uncertain targets. The
fully-connected layers AP_FC and LI_FC alongside the ReLU nonlinearities compute embeddings
for the agent pose and target information, denoted as Emb, and Emb; respectively. The Masked
Attention block blends information from the agent, targets, and the masking as follows:

Emb,Emb,
Masked Attention(Emb,, Emb;, Mask) = softmax <(1 + log (Mask)) ® (rnamb)) , (28)

where the operator © denotes to element-wise vector multiplication and « is a network hyper-
parameter. As (28) shows, the components affected by padding can be nullified via the element-wise
multiplication since the softmax operator eliminates the influence of the components corresponding
to the zero elements of Mask in the subsequent matrix multiplication with Emb;. Therefore, for any
input vector s with an arbitrary choice of targets, the policy network 7g(s;) computes continuous

T o, TIT
controls uy = [v ,w, ] .

4. Experiments

In this section, we examine the performance of both our proposed model-based RL and a bench-
mark model-free RL for active target tracking. We provide simulation results to visualize the track-
ing trajectories and quantitative comparison results of the reward value to demonstrate the robust
performance of our model-based RL method.
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4.1. Experiment Settings

In the evaluation, we consider 2-D target tracking using a ground vehicle governed by SFE(2)
differential-drive kinematics and 2-D target positions as the target states (n, = 2). As in practice,
we control only the agent’s forward and angular speeds within a limited range for linear velocity
vy € [0,4] m/s and angular velocity w € [—7/3,7/3] rad/s. The agent is equipped with a sensor
detecting the relative position from the agent to the targets within a triangular FoV with depth of
2 m and angular range of 27 /3 rad/s. When the targets are inside the agent’s FoV, their estimated
position is updated based on (12).

We set the matrices in the target model as A = [ and B = I. Regarding the known input
&€ € R?, we tested two cases:

1) Unbiased motion: The known input £ is sampled from a uniform distribution as § ~
Uniform[—¢, €], i.e., the mean velocities are 0 and hence the target motion is unbiased. The tar-
gets move within small areas based on their current position at every episode.

2) Biased motion: The absolute mean of the uniform distribution is set to larger than 0, i.e., the
targets have a base linear velocity heading to the same direction with small randomness at each time
step. With this setting, the targets do not move too far from other targets during tracking.

We trained the neural network policy only from the biased target motion, because the mean of
the uniform distribution is also sampled from the uniform distribution with zero mean, which in-
cludes the case of unbiased motion. Besides, the same hyper-parameters, environment settings, and
network architecture were applied for model-free and model-based training. Specifically, regard-
ing the environment, the smoothing factor «, the magnitude of the Gaussian sensor noise o, and
the magnitude of the Gaussian motion noise oy were set with values of 0.4, 0.2, and 0.05, respec-
tively. Besides, the time horizon and the targets’ initialization position boundaries were set to the
same constants dependent on the number of targets which is varied between [3, 8] at each episode
during training. For the policy network, the fully-connected layers AP_FC;, AP_FC»y, LI FC1,
LI FCo, Out_FCy, and Out_FCs have 32, 32, 64, 32, 64 and 2 units, respectively. We choose a
hyper-parameter @ = 4 throughout our experiments. For the model-free reinforcement learning
baseline, we apply PPO (Schulman et al., 2017) for training, while the model-based policy was di-
rectly trained using gradient ascent over a batch of the last 20 episodes of an epoch, without a replay
buffer.

Table 1: Comparison of the proposed model-based RL with the model-free RL. The table shows
the average and standard derivation for normalized rewards.

. 3 Targets 5 Targets 7 Targets
Method Target Motion Model Episodic Reward Episodic Reward Episodic Reward
Modelfree R Unbiased Motion 457 +213 3.65 + 1.54 1.94 + 1.70
odetjree Biased Motion 423 +1.77 3.27 4+ 1.30 2.01 + 1.67
Unbiased Motion 6.71 + 1.47 6.56 + 0.55 5.41 + 0.85
Model-based RL Biased Motion 6.87 + 1.21 5.96 + 0.96 4.92 + 1.07
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Figure 2: Sensing agent trajectories for target tracking. Two methods are compared in three sce-
narios with 3, 5, and 7 targets. The blue squares represent the moving targets. The green
and red curves show the sensing trajectories generated by model-free and model-based
trained networks. The grey triangles illustrate the agents’ forward triangular field of view.

4.2, Comparison Results and Analysis

As shown in Fig. 2, we compare the trajectories generated by model-free and model-based trained
networks in three scenarios of 3, 5, and 7 targets. In each scenario, the targets’ initial position
and velocity and the agent’s initial pose are identical for fair comparisons. We can clearly see that
the network trained with the model-based algorithm is capable of controlling the agent in a better
manner for target tracking, while the network trained with the model-free algorithm renders the
agent prone to move in a small area.

Quantitative comparisons are shown in Table 1. The metric of the episodic reward is computed
based on (15). We normalized the value by dividing by the number of targets at the end of each
episode. We chose three random seeds 0, 10, and 100 for both algorithms and tested all the models
with two target motions in each scenario. With each setting in one scenario, both methods were
tested for 30 runs. According to Table 1, model-based RL has an overall better performance in terms
of the larger episodic reward with smaller variance for both unbiased and biased target motion. It
is also observed that the average reward is inversely proportional to the number of targets for both
methods. We conjecture that when the number of targets increases while the size of the map is also
larger, efficient planning for target tracking becomes more challenging accordingly.
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5. Conclusion

This paper proposed a model-based reinforcement learning algorithm for tracking multiple dynamic
targets using a mobile agent with limited FoV. The prior and posterior mean and information matrix
of each target state were obtained by Kalman filtering. We derived an analytical gradient of the target
entropy cost function with respect to the parameters of the control policy network by introducing a
differentiable FoV and using perturbation of the SE(3) state and the information matrix to obtain a
continuous control policy. We observed that our model-based RL algorithm achieves better multi-
target tracking in a simulated environment than a model-free RL algorithm based on proximal policy
optimization. In future research, we will consider learning the policy for an unknown number of
targets, in the presence of obstacles in the environment, and for target tracking by a team of agents
with limited communication.
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