Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 1529-1541
Marseille, 20-25 June 2022
© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

The VoxWorld Platform for Multimodal Embodied Agents

Nikhil Krishnaswamy*, William Pickard*, Brittany Cates*,
Nathaniel Blanchard*, and James Pustejovsky'
*Colorado State University "Brandeis University
Fort Collins, CO, USA Waltham, MA, USA
{nkrishna,william.pickard,brittany.cates, jamesp@brandeis.edu
nathaniel.blanchard } @colostate.edu

Abstract
We present a five-year retrospective on the development of the VoxWorld platform, first introduced as a multimodal platform for
modeling motion language, that has evolved into a platform for rapidly building and deploying embodied agents with contextual and
situational awareness, capable of interacting with humans in multiple modalities, and exploring their environments. In particular, we
discuss the evolution from the theoretical underpinnings of the VoxML modeling language to a platform that accommodates both
neural and symbolic inputs to build agents capable of multimodal interaction and hybrid reasoning. We focus on three distinct agent
implementations and the functionality needed to accommodate all of them: Diana, a virtual collaborative agent; Kirby, a mobile robot;

and BabyBAW, an agent who self-guides its own exploration of the world.

Keywords: multimodality, multimodal interaction, situated grounding, embodied agent, modeling platform, simulation

1. Introduction

Multimodal language understanding has been a topic
of intense interest in the natural language processing
community over at least the last half a decade. The
role that perception plays in human language under-
standing has long been clear to much of the commu-
nity and many efforts have attempted to build similar
functionality into computer systems (Pylyshyn, 1978;
Waltz, 1978; Rehm and Goecke, 2000; Rohlfing et
al., 2003; Pecher and Zwaan, 2005; Mooney, 2008;
Scherer et al., 2012; Krishnamurthy and Kollar, 2013;
Miller and Johnson-Laird, 2013). There has also been
interest in context-aware language understanding sys-
tems, and the role that situatedness and embodiment
play in such processes. This is an even harder prob-
lem than merging computer vision and NLP into a sin-
gle system, and perhaps because of this, interest has
remained high. In 2016, at the LREC conference,
we introduced a modeling language VoxML (Puste-
jovsky and Krishnaswamy, 2016), intended to capture
the semantics necessary to construct 3D visualizations
of concepts denoted by linguistic expressions; as well
as VoxSim, later that year at COLING 2016 (Krish-
naswamy and Pustejovsky, 2016), a software system
that generated such visualizations from the VoxML se-
mantics.

Interest in this approach has persisted through the com-
munity (Cohen, 2017; Quick and Morrison, 2017; Fis-
cheretal., 2018; Abrami et al., 2020; Bonn et al., 2020;
Henlein et al., 2020; Rodrigues et al., 2020; Tamari
et al., 2020; Kozierok et al., 2021; Richard-Bollans,
2021), and out of our initial goal to model visualized
and situated object and event semantics grew an addi-
tional line of research: creating intelligent agent behav-
iors capable of performing reasoning over such seman-
tics (Krishnaswamy et al., 2017; Narayana et al., 2018).
VoxML and VoxSim became the platform on which to

build such agent behaviors.

However, intelligent agents can have many forms and
many purposes. The process of developing such agents
in time made clear what constituted the key compo-
nents of a platform for rapidly developing multimodal
embodied agents, what was essential and what was ex-
traneous, and how to develop and sustain such a plat-
form for continued use. In this paper we present a ret-
rospective of the evolution of the VoxML/VoxSim plat-
form, now collectively known as VoxWorld, discuss
our sometimes surprising conclusions regarding the de-
velopment of VoxWorld as a distinct resource, and
demonstrate how we now facilitate development of new
interactive agents that synthesize our work with various
other contributions, representations, and pipelines from
the NLP/CL and AI communities.

Figure 1: 3 VoxWorld agents

2. Related Work

Earlier work in “agent architectures” detailed the ar-
rangement of conceptual components, e.g., facts, goals,
and plans, for particular types of intelligent control sys-
tem. A canonical example in NLP is TRIPS (Ferguson
et al., 1998). Other cognitive architectures for intelli-
gent agents include SOAR (Laird, 2019), ACT-R (An-
derson et al., 1997), and other Belief-Desire-Intention
(BDI) agents (Rao et al., 1995).

Explicit representation has largely fallen out of favor in

1529



modern Al, and earlier agent architectures have there-
fore adapted to integrate deep learning inputs. Brooks
(1991) presaged this move, but notably viewed the
shortcomings of symbolic Al as including its lack of
capturing either situatedness and embodiment with re-
gard to robotics; the robotics community has, in turn,
provided many treatments for robots that can plan and
reason about actions, language, and social behaviors
(Breazeal et al., 2004; Dzifcak et al., 2009; Tellex et al.,
2020), with platforms for robotic development (e.g.,
Thrun et al. (2000), Schermerhorn et al. (2006), Rusu
et al. (2008)).

Finally, along with the GPUs that facilitated the suc-
cesses of deep learning came sophisticated graphics
engines that allow developers, often with roots in the
video gaming community, to develop photo-realistic
simulators in which to develop and test intelligent
agents and their ability to learn. Much of this work
comes from the deep reinforcement learning commu-
nity, where simulated environments are used for nav-
igation, game-playing, and problem solving via deep
RL (Kempka et al., 2016; Kolve et al., 2017; Savva et
al., 2017; Juliani et al., 2018; Yan et al., 2018; Savva et
al., 2019). These environmental platforms are not de-
veloped specifically to focus on communication, under-
specification resolution, language grounding, or con-
cept acquisition, though they may be used for these.

One particular suite of work of note is the work done
by the EASE Collaborative Research Center at the Uni-
versity of Bremen. VoxWorld and the EASE ecosys-
tem are similar in some of the tasks that agents are be-
ing trained to do, e.g., moving objects around a vir-
tual environment to achieve certain goals (Kazhoyan
and Beetz, 2019). There are also compatibilities in in-
formation representation techniques, for example the
semantics of expressing locations, relationships of ob-
jects (Pomarlan and Bateman, 2020), and affordances
(BeBler et al., 2020). However, the EASE work is more
geared toward teaching robots to perform human tasks
than to receiving direction from a human on a coopera-
tive task. The EASE work on hand tracking and motion
interpretation (Ramirez-Amaro et al., 2019; Rosskamp
et al., 2020) is distinct from yet complementary with
VoxWorld’s use of gesture, gaze, etc., for communica-
tion.

In VoxWorld, we provide a common architecture that is
compatible with both explicit logical and implicit sub-
symbolic representations, making it a robust platform
for situated, embodied, neurosymbolic Al. VoxWorld is
unique compared to other game engine-based environ-
ments for the following reason: while in other environ-
ments, the constraints on and results of object interac-
tions are often coded into the system ad hoc as needed
for a particular scenario, VoxWorld runs on a rigorous
composition of object, event, relation, attribute, and
function semantics at runtime, where the results of ac-
tions in the world flow naturally from the semantics of
objects over which they are enacted, enabling general-

izable situated reasoning.

To our knowledge, VoxWorld is the first platform to
bring the above areas together, with a core yet exten-
sible architecture driven by VoxML, in a 3D simulated
world that enables multimodal interaction with, and ob-
servation of, agents in real or virtual environments.

3. What Makes an Agent?

Discussion of agents necessarily raises the question:
what makes any given system an agent? Before the
emergence of Al, many in philosophy held the view
that action is to be explained in terms of the inten-
tionality associated with an act. The concepts of
“agency” and “agent” were mostly used to refer to
the “exercise of the capacity to perform intentional ac-
tions” (Anscombe, 1957; Davidson, 1963). In psychol-
ogy, agency entails intentionality (Dennett, 1987) and
it cannot be meaningfully argued that computational
“agents” as currently known have intentionality.
“Agents” in Al avoid this criticism by eschewing di-
rect comparisons to human intelligence. There is little
argument in the Al community about whether intelli-
gent agents display “real” intelligence or not. They
are simply systems that “can be viewed as perceiving
[its] environment through sensors and acting upon that
environment through actuators” (Russell and Norvig,
2002).

These actuators can be articulators like limbs, as in
robots, or simply routines that effect change upon the
world, as in an automated thermostat or flight-booking
system. Personal digital assistants are perhaps the most
common intelligent agents in use; Siri, Alexa, etc., live
in our pockets or our offices, where they retrieve infor-
mation or execute specific tasks on command.

Agents can also, in the context of virtual environments,
exist entirely in simulation, where the only world they
directly affect is one of data structures and pixels. Vir-
tual worlds may be one of the most interesting and
fruitful places to study agent behaviors, because it is
much simpler in a virtual world to create an agent that
is situated. A necessary condition on an situated agent
is that it have an epistemic point of view associated
with it, from which it can observe the world, and this
has been an object of previous study (Pustejovsky and
Krishnaswamy, 2019). Once the epistemic condition
is imposed, the rendering of the virtual world from
that point of view becomes a mode of presentation of
the agent’s understanding of the situation as encoded
within the virtual environment. Thus the rendering
serves as a rough analogue for human perception, by
allowing an observer to perceive what the agent does.
Shared perception is a critical component of human
communication (Kuhl, 1998; Pustejovsky and Krish-
naswamy, 2020). When co-situated in a space together,
humans make some tacit assumptions about what the
other people are aware of and how they may behave,
but part of those behaviors may require the agent to not
only have a point of view as above, but also an embod-
iment. Alexa cannot see what you are pointing at, and

1530



neither can she point herself. Thus embodied agents
add new dimensions to human/agent interactions com-
pared to voice- or text-only conversational agents (Al-
louch et al., 2021).

To act or manipulate within their world (real or virtual),
agents must be equipped with the appropriate output,
such as actuators or inverse kinematic solvers to move
their joints, and text-to-speech engines, for which there
are many available solutions. If an agent can interact
with the world, allowing humans to interact with it re-
quires the inverse functionality; it must be able to do
things like recognize and interpret inputs in multiple
modalities like gesture, speech, gaze, and action, and
solving these problems has driven the development of
VoxWorld as a platform.

In Sec. 4 of this paper, we provide an overview of the
VoxWorld platform and detail the core components that
we have developed to facilitate creation of agents that
act in the world and interact with people. In Sec. 5,
we describe 3 specific agent implementations (Fig. 1):
Diana, a virtual collaborative agent; Kirby, a mobile
robot; and BabyBAW, an agent who self-guides its own
exploration of the world, and discuss specific consider-
ations for each that informed the development of Vox-
World. We conclude with making VoxWorld available
as a public resource.

4. VoxWorld Platform Overview

At the core of VoxWorld are the VoxML modeling lan-
guage and its real-time interpreter, VoxSim. VoxSim
is built on the Unity game engine making it a clear
companion to other Unity-based frameworks (e.g., Ju-
liani et al. (2018), see Sec. 5.3). VoxML models
contextual and common-sense information about ob-
jects and events that is otherwise difficult to capture
in unimodal corpora, e.g., balls roll because they are
round. VoxML is particularly apt for capturing infor-
mation about habitats (Pustejovsky, 2013) and affor-
dances (Gibson, 1977). Fig. 2 shows the affordance
structure for a [[BLOCK]] voxeme, or the visual instan-
tiation of a block object. In implementation, VoxML
is saved in XML format in a directory accessible to a
VoxWorld-based agent implementation.

[ block
(A = H[Q] — [PUt(wyyvon([l]))] ]
support([1],y)
As = f[?]df [51;]7“)a8p(93, (1]
AFFORD_STR = As — Ho[z} j {lift(x, )]
hold(z, {1])
A4 = Hpz) — [ungrasp(z, [1])]
release(x, [1])

Figure 2: VoxML affordance substructure for a
[[BLOCK]] voxeme. The reentrancy index [1] refers to
another attribute of the block, here its semantic “head”
or physical extent. [2] refers to a habitat constraint.

Krishnaswamy (2017) presents the realization of
events in simulation as composed primitives, e.g.,
[[MOVE]], [[TURN-TO]], [[TURN-ABOUT-AXIS]],

[[GRASP]], [[HOLD]], [[UNGRASP]], and [[RELEASE]].
Because these event programs are necessarily un-
derspecified (i.e., “move to where?”), the complete
operationalization of an event relies on parameters that
are inferred from the composition of the arguments
with the program (see Sec. 4.1).

VoxSim provides a mechanism to do this composition
in real time, and accommodates symbolic and logical
methods such as qualitative calculi (e.g., Allen (1983),
Randell et al. (1992), Gatsoulis et al. (2016)), or ma-
chine learning for automated inference (e.g., Brockman
et al. (2016), Raffin et al. (2019)). Such 3rd-party re-
sources are easily integrated via TCP sockets, REST
connections, or direct integration through Unity plug-
ins. Fig. 3 shows the high-level architecture of Vox-
World, absent any specific agent implementation.

3rd-party
NLP/NLU

VoxML/GL
Object

l

Multimodal

Event ] %’"“'a“m Qualitative
Habitat rammar N
o (MSG) Reasoning

Figure 3: VoxWorld Platform Architecture
The agent then becomes an executor of events, which
can involve manipulating objects, moving about the
world, or even participating in dialogue. Event execu-
tion is handled by the event manager, which composes,
interprets, grounds, directs, and monitors events frame
by frame, testing for completion and satisfaction.

4.1. Action and Event Composition

The composition of events is driven by the semantics
of VoxML. VoxML was designed to capture event se-
mantics in a form that can be realized as a minimal
model in a dynamic logic (Pustejovsky and Moszkow-
icz, 2011) while also providing space to draw more
specific information from the environment itself where
necessary a la Brooks (1991). This section details how
the theoretical foundations of VoxML were translated
into a robust working system that accommodates arbi-
trary events given a well-formed representation, and the
evolution of event compositionality in implementation
from our initial efforts in Krishnaswamy and Puste-
jovsky (2016) to the present.

Initially in VoxSim, all input was required to
be typed English in the imperative mood, which
was part-of-speech tagged, dependency-parsed,
and transformed into a simple predicate-logic for-
mat denoting an action and its arguments, e.g.,
put(the(black(block)), on(the(white(block)))).

This format still forms the core of VoxSim processing,
but where previously, each individual predicate in
the parsed input had to be operationalized directly
in C# for execution in Unity, event composition has
since evolved to function directly from the VoxML
semantics, which breaks down complex predicates into
compositions of the aforementioned primitives. In the
process, VoxML specifications of events have been

1531



Add arg to

context

START v

processing
arguments?

Get active
agent from
event
manager

START
No—=| processing
subevents

processing
subevents?

Send to
<_ —_ Rl
manager

If next arg
is supporting
surface

If next arg
is location

If next arg
is physobj

Use relation, Get
destination,
constraints
togetX, Y, Z
coordinates

Extract
object by
name

supporting

surface of
theme
object

Figure 4: Flow of control when composing a program.

changed from strongly-typed feature structures to more
of a duck-typed language like Python, wrapped in an
attribute-value matrix (AVM)-like data structure. This
makes development in VoxWorld more tractable for
NLP researchers, who are likely to be more familiar
with Python than C#.

Composing events, and interpreting and grounding
predicates more generally, makes extensive use of re-
flection, a process that allows managed code to read its
own metadata, and therefore find assemblies and exe-
cute methods by invoking them by name rather than as
declared variables. Reflection also allows us to, rather
than invoking a specific hard-coded name, invoke other
methods that handle the interpretation of events us-
ing both VoxML semantics and the current state of the
world, that in turn invoke handler methods that ground
objects, attributes, relations, and functions to the cur-
rent context. Fig. 4 shows a high-level diagram of the
flow of control when composing an event program from
VoxML semantics, including where information is in-
corporated from the world.

For example, a [[PUT]] voxeme may have the following
subevent structure, with arguments x, the agent, y, the
object, and z, the destination, and conditional operators
while and i f (Fig. 5):

put

grasp(z,y)
while(hold(z, y) A —at(y, z))

— move(x, y, z, PQ), [loc(y), z,y])
Es = if(at(y, z) — ungrasp(z,y)

es|
V)
[

Figure 5: Subevent structure of [[PUT]].

E invokes the [[MOVE]] primitive such that agent x
executes an instruction to move y to z. P() is a pointer
to an optional function. The semantics of [[MOVE]] in
simulation assumes this to be a path planner, that takes
the subsequent array (the location of y, the destination,
and y itself) as additional arguments. If no planner is
specified, the object is moved directly in a straight line
without regard for obstacles. VoxSim comes with an
A* path planner available for use, but developers may
supply their own through a C# class or any other end-
points that can supply a FIFO or indexable data struc-
ture of 3D waypoints.

4.2. Reasoning about Results and States

For an agent to reason about the world it inhabits, it
must be able to track relations and changes of state that
come to exist as the result of acting upon the environ-
ment. For instance, if “put the black block on the white
block™ is parsed and executed according to the process
outlined in Sec. 4.1, the result of the event changes the
state of the environment such that white block supports
black block. This change of state is recorded in the af-
fordances of [[BLOCK]] (see Fig. 2).

VoxWorld comes with a basic level of compositional
spatial reasoning capabilities, based on various qualita-
tive reasoning calculi (e.g., Randell et al. (1992), Bal-
biani et al. (1998), Moratz et al. (2002)), and through
the external endpoint connections, additional reason-
ing or inference clients can be integrated. These may
be either symbolic or machine learning-driven, and the
output of any reasoner may be interpreted in terms of
VoxML semantics as in Fig. 6.

in_front
CLASS = confi
VALUE = RCC8.EC

| A1 = x:physobj
ARGS = [Az = y:physobj
CONSTR = Z(z) > Z(y)

TYPE =

Figure 6: Type structure of [[IN_.FRONT]].

When building embodied agents that can both query
and interpret relational predicates, relations in situated
environments pose a unique problem. Formally, rela-
tions are first-order functions over multiple arguments
that return a boolean, e.g., [is white block in front
of black block?] — {TRUE, FALSE}. In affordance
and relation composition, VoxWorld treats relations
with multiple arguments as a testable proposition like
this, but in a situated context with linguistic ground-
ing, relations also have another interpretation as loca-
tions or regions, exemplified by the nested predicate
in_front(the(x))). In this case, we treat the relational
predicate as demanding interpretation as a causal result
of satisfying the propositional equivalent, and return an
element R € R? denoted by a configurational relation,
therefore in_front(x) becomes I N (z, R), which can
be left as a testable proposition for any to-be-specified

1532



object x. Force dynamic relations like [[SUPPORT]]
likewise trigger operations in the Unity physics engine.
Using the same VoxML semantics for both types of re-
lational computations allows a VoxWorld agent to eas-
ily perform both execution (“put the white block in
front of the black block™) and recognition (“where is
the black block?”).

This also makes changing the frame of reference sim-
ple: the inequality in the CONSTR of Fig. 6 just needs
to be flipped to accommodate the opposite perspective.
This can been done by directly mutating the encod-
ing in the VoxML library, or though symbolic or ma-
chine learning methods triggered at runtime through di-
alogue, for example, if a human directs an agent to “put
the white block in front of the black block” followed by
“no, on the other side.” Thereafter the agent can use the
frame of reference adopted by its human partner.

4.3. Blackboard Architecture and PDA

Managing the inputs and dialogue state for even a uni-
modal agent is no trivial task. In speech alone, humans
may jump back and forth across established context;
managing multimodal inputs is an order of magnitude
more complex as each modality may prompt a differ-
ent kind of state update simultaneously. A particular
point of user frustration with interactive agents comes
when the agent falls into a rigid turn-taking pattern, and
does not permit interruption or redirection (Kozierok
et al., 2021). Human communication is asynchronous;
we use multiple modalities in conjunction, and keep
track of interlocutors’ states while continuing the inter-
action. Therefore robust interactive agents should also
have some of this capacity.

To illustrate, consider the following scenario (see
Fig. 8). The agent should be able to take initiative to
act upon partial information (e.g., “put the yellow block
there,” followed by pointing), and so it may start by
picking up a yellow block in the environment and mov-
ing it in the direction of deixis even if the destination
is not certain. At any point, though, the human partner
may change their mind or decide that the agent needs
to be corrected (e.g., “no, on the white one”).

There is no doubt that a person would be able to fol-
low these instructions, and an interactive agent should
support the same. Therefore in the process of develop-
ing various interactive agents and their respective dia-
logues, we incorporated two relatively old but powerful
ideas from early Al

The first is a blackboard. Proposed in the 1970s for the
Hearsay NLU system (Erman et al., 1980), blackboard
architectures facilitate asynchronous updates from ar-
bitrary knowledge sources that are managed by a con-
trol shell. Our blackboard was originally developed
specifically for the Diana agent (Sec. 5.1) but has now
been incorporated into VoxWorld directly as a con-
venient general-purpose data structure for managing
third-party inputs. Itis a strongly-typed key-value store
in a modified singleton pattern where the control shell

allows member functions of subclasses of the black-
board’s ModuleBase class to subscribe to any or all
keys on the blackboard and execute upon changes to
the associated values (Strout, 2020). Fig. 7 shows the
blackboard integration with knowledge sources used by
the Diana agent (Sec. 5.1). Similar endpoints are used
for the Kirby agent. The "Event and Dialogue Manage-
ment” box connects to the rest of VoxSim (the purple
box) via the event manager. Orange boxes denote agent
outputs. Red boxes denote custom recognizers. Green
boxes denote 3rd-party recognizers.

Pointing/lterative
Gesture
Perception

AN
._,{

Motor Control and
Speech Qutput

Engagement and
Attention

N\

Emotion

Event and Generation

Dialogue
Management

!

Language Processing

Blackboard

Emotion
Recognition

Object/Spatial Reasoning Hand/Mation

Planning Perception

Speech

Temporal Semantics
Recognition

Figure 7: Blackboard integration with endpoints for the
Diana agent.

The second is a variant on a pushdown automaton
(PDA), used for higher-level dialogue management.
The states are coarse-grained states in the dialogue
(e.g., is the agent engaged with a human?, is the agent
answering a question?, is the agent learning something
new?, etc.), and the transition relation between states
may be dictated by a custom-defined stack symbol class
as suits the developer’s needs, or may even exploit the
entire blackboard for use as a stack symbol. Since the
size of the stack symbol may be arbitrarily large, we
write the transition relation in turns of satisfiable predi-
cates. Therefore, an arbitrary condition may be defined
in the transition relation, and a stack symbol that satis-
fies that condition may be used to trigger the associated
state transition. In doing so, we exploit a continuation-
passing style semantics (Van Eijck and Unger, 2010)
to facilitate the asynchronous exchange of information
across the blackboard while maintaining the separation
of different high-level dialogue states (i.e., the agent
must note and store various pieces of information be-
fore switching states).! When the PDA enters a new
state, an equivalently-named function is executed if one
exists. Any change that is to be effected on the agent’s
world can be written into these functions. More details
on this portion of the architecture can be found in Kr-
ishnaswamy and Pustejovsky (2019b).

VoxWorld developers can instantiate new blackboard
keys by simply writing a new arbitrary string key and

'This functional design pattern is not compatible with
web builds (Sec. 5.1.2).

1533



value type to the blackboard and then subscribing func-
tions to changes on that key. They can also create cus-
tom PDAs by typing the contents of their stack symbol
and then adding states and transition relations to their
PDA class. Functions that are called upon changes to
the blackboard or PDA can thereafter access the agent
and the world to drive interaction.

5. Agent Implementations

In this section we detail 3 specific agents that use the
VoxWorld platform, accompanying agent architectures,
and underlying semantics. These agents all have dif-
ferent capabilities and use cases, and demonstrate how
VoxWorld can use the same framework to create di-
verse agents. We enumerate key lessons learned in the
development of each agent type that shaped the devel-
opment of VoxWorld as a platform.

5.1. Diana

Diana (Krishnaswamy et al., 2017; Narayana et al.,
2018; McNeely-White et al., 2019; Krishnaswamy et
al., 2020a; Krishnaswamy et al., 2020b) is an inter-
active multimodal agent intended to develop and test
peer-to-peer human-computer communication. With
multiple modalities even a simple use case like Blocks
World presents a challenge of extracting and integrat-
ing meaning from each modality. These are the chal-
lenges that VoxSim, and later VoxWorld, was explic-
itly designed to address. Advancing the state of the art
in peer-to-peer human-computer communication nec-
essarily entailed a deep study of how humans conduct
the same task. Therefore, the set of gestures that Di-
ana interprets were derived from EGGNOG, a dataset
of human-human interactions in a shared Blocks World
construction task (Wang et al., 2017).

Figure 8: Diana reaches for a block to demonstrate an
interpretation of the person’s deixis.

Diana provided the first use case of an agent that could
not be isolated to the Unity environment; an agent de-
signed to interpret gesture and speech must have ac-
cess to those inputs. The gestures of Diana’s human in-
terlocutor are recognized via custom deep CNNs over
depth video. Speech recognition is currently handled
using Google Cloud ASR. Outputs from these end-
points are posted to the blackboard for processing, fa-
cilitating integration of diverse multimodal inputs such
as new gesture or speech engines.

One key lesson learned during the development of Di-
ana was that it is not simply enough to give an agent

access to multimodal sensor data; it must know how to
react to those inputs even with incomplete information.
For example, if the human indicates an object but not
what to do with it, if Diana receives that information,
she must react in a way that demonstrates that receipt.
If she does not react, the system has no explicit way
of moving the interaction forward. Fig. 8 shows this,
where the human points to a the purple block, and Di-
ana demonstrates her understanding by reaching for the
purple block in turn.?

Diana has been used for studying referring expres-
sions (Krishnaswamy and Pustejovsky, 2019a; Krish-
naswamy and Pustejovsky, 2020), human-computer in-
teraction (Pustejovsky and Krishnaswamy, 2021b; Kr-
ishnaswamy and Pustejovsky, 2021), and object affor-
dances (Pustejovsky and Krishnaswamy, 2021a).

5.1.1. Diana Evaluation

Diana was evaluated in the summer of 2021 with the
aim of assessing whether naive users could interact
with her to build specific block structures without prior
instruction. We assessed our evaluation based on task
completion rate and user satisfaction according to the
System Usability Scale (SUS), a common HCI metric
(Brooke, 1996; Bangor et al., 2008).

Thirty subjects, evenly divided between men and
women, aged 18-57 (u = 27,0 = 11.8) participated
in the evaluation. Users were asked to collaborate with
Diana to build a variety of block structures with a 10-
minute time limit.

Diana achieved a high task completion rate of 90%.
Out of 240 total trials, only 24 could not be completed
within the time limit. According to the SUS, 68 is con-
sidered “average” and 80 or above is considered “excel-
lent.” Diana achieved a mean SUS of 74.3 (¢ = 8.2),
with scores ranging from 67.5-90. Only four scores
with a 67.5 missed the “average” mark of 68 and eight
SUS scores (27% of the total) received scores above 80.
Qualitative feedback from participants was also posi-
tive and highlighted the multimodal aspect of the inter-
action, e.g., “the combination of speech and gesture at
the same time was useful and unique.”

5.1.2. Diana in a Web Browser

The fully-featured Diana system relies on some spe-
cialized hardware, such as Kinect cameras, but the un-
derlying interactive mechanisms can be used indepen-
dently of these. We subsequently took the Diana sys-
tem and deployed a version that can run natively in a
web browser, using the mouse for deixis and the Web-
Speech API (Adorf, 2013) for speech recognition. By
simply switching out the endpoints, we keep the core
interaction between Diana and the human intact. The
same control processing shown in Fig. 4 and the same
underlying VoxML semantics drive the dialogue.

The web-deployable version of Diana uses Unity’s We-
bGL build functionality. As such, the VoxWorld plat-

2A video of Diana can be viewed here.

1534


https://www.embodiedhci.net

Figure 9: [L] Main: Kirby’s view of virtually-rendered environment; left inset: omniscient view; bottom left:
Gazebo simulator; top right: human instructing Kirby. [R] Main: Omniscient view of Kirby’s virtual environment
with Kirby avatar centered; left inset (top): Kirby’s rendered perspective; left inset (bottom): Kirby’s camera view.

form needed to be made maximally compatible with
the restrictions of WebGL. This involved 3 key modifi-
cations:

1. Web builds restrict access to external files and di-
rectory trees. The solution is to compile all re-
quired VoxML encoding files and directories di-
rectly into the final binary as Unity resources.

2. No just-in-time (JIT) code is allowed by WebGL,
so the functional PDA architecture, which en-
codes stack symbol states in the transition rela-
tion as satisfiable predicates, cannot be accommo-
dated, and so must be deactivated for web builds.
The blackboard architecture, which is compiled
ahead-of-time (AoT), can still be used, so all be-
haviors need to be written using the blackboard.

3. Certain 3rd-party dependencies which VoxWorld
initially incorporated are not compatible with We-
bGL (e.g., Google ASR), therefore, removing 3rd-
party dependencies from the core VoxWorld plat-
form and leaving their inclusion to the discretion
of individual agent developers is key (see Sec. 7)

5.2. Kirby

An embodied agent in a purely virtual world can di-
rectly access parameters of the world, such as exact
locations of objects. Therefore the real challenge for
embodied agent behaviors comes when they must be
enacted in the real world where inference is noisier.
Krajovic et al. (2020) presented a prototype of a mo-
bile robotic agent built on the VoxWorld platform. This
agent, Kirby, uses the same gesture and speech recog-
nition components as Diana, but exists not only in a
virtual world, but as a real mobile robot (specifically a
modified GoPiGo3 outfitted with a LIDAR) using the
common Robot Operating System (ROS).

Kirby functions as an agent that can navigate through
locations where the human is not physically present
or cannot go. As Kirby navigates its environment, it
builds up a coherent model of obstacles in the environ-
ment using the LIDAR data, and of items in the en-
vironment using object or fiducial detection from its
onboard camera. The human can point and gesture to
guide Kirby (e.g., beckoning for Kirby to move toward
the human), along with speech (e.g., “go there”, “go to
the green one”, etc.), and can use gestures to change

camera views (through swiping) or rotate the camera
in three dimensions (through iterative directional ges-
tures). Fig. 9 depicts Kirby’s interface. We use a Re-
dis store connected via VoxSim’s socket connections to
exchange messages with the ROS client running on the
robot, and the blackboard manages speech and gesture
inputs while the PDA manages dialogue state.

One key lesson learned in building Kirby was the ease
with which Diana’s blackboard architecture can be
used to manage inputs, as demonstrated by the reuse
of Diana’s gesture set in the Kirby use case. This
prompted the integration of the blackboard architec-
ture, initially created for Diana, into VoxWorld directly.
An evaluation of Kirby was planned but had to be can-
celed due to the COVID-19 global pandemic and an
inability to hold trials with in-person subjects.

5.3. BabyBAW

Diana and Kirby are deterministic agents. Their behav-
iors, while customizable, are programmed for known
use cases. A known set of inputs will lead to a known
set of outputs or actions. However, 3D environments
and embodied simulation are also very useful for explo-
ration and learning through interaction with the world.
This is a common area of research in reinforcement
learning (Aluru et al., 2015; Kolve et al., 2017; Savva et
al., 2017; Juliani et al., 2019) and developmental psy-
chology (Battaglia et al., 2013; Ullman et al., 2017).

BabyBAW is an agent that learns through interaction
with the environment. It can be initialized with dif-
ferent levels of underlying knowledge (e.g., knowledge
of gravity, different object properties, or different ac-
tions), and given tasks to test what it can accomplish.
It uses neural networks, symbolic reasoning, and em-
bodied simulation for their respective strengths (“Best
of All Worlds”) to approximate certain aspects of infant
and child learning (Hartshorne and Pustejovsky, 2021).
Learning from exploration and interaction is an obvious
problem for reinforcement learning (RL). To develop a
VoxWorld agent for RL, we focused on integrating two
common, well-developed RL platforms: Unity ML-
Agents (Juliani et al., 2018) and OpenAl Gym (Brock-
man et al., 2016). The goal here was to make building
environments and tasks for BabyBAW and testing mul-
tiple environmental and architectural configurations as

1535



simple and rapid as possible. BabyBAW agent behav-
iors interface directly with the Unity ML-Agents API
and the VoxWorld event management, relational rea-
soning, and interactive architecture components.

Our current experiments in BabyBAW are based on ex-
plorations of infant intuition about objects and support
relations from developmental psychology. At slightly
more than 6 months old, most infants appear able to
intuit than an object will not fall if supported from the
bottom on over 50% of its lower surface (Baillargeon
et al., 1992; Dan et al., 2000; Huettel and Needham,
2000; Spelke and Kinzler, 2007). Therefore, an RL
algorithm should be able to solve for a policy that re-
sembles this intuition in a stacking task.

Due to the popularity of OpenAl Gym and increas-
ing adoption of Unity ML-Agents, successful Vox-
World integration with these tools allows the use in turn
of other packages that are compatible with them. In
the current work, we use the Stable-Baselines3 pack-
age (Raffin et al., 2019), a set of reliable implemen-
tations of RL algorithms written in PyTorch. For a
continuous action space, we use a DDPG or TD3 al-
gorithm (Lillicrap et al., 2016; Fujimoto et al., 2018)
and explore training an agent to stack objects in a 3D
world (Fig. 10). We evaluate BabyBAW in this task in
Sec. 5.3.1

Figure 10: Unsuccessful stacking (left and middle) and
successful stacking (right) during training.

Learning to stack is, of course, not a novel task in the
RL community (cf. Lerer et al. (2016), Li et al. (2017),
Li et al. (2020), Hundt et al. (2020), just to name a
few), and our intention is not to propose new RL algo-
rithms but rather to present a novel platform that can
exploit what is already available to rapidly model and
test cognitive theories, as discussed next.

5.3.1. BabyBAW Evaluation

We evaluated BabyBAW in VoxWorld to test its ability
to learn a stacking task, given the ability to extract mea-
surements of certain concepts from the environment.
We evaluate two agents: one trained with the mech-
anism to measure height and center of gravity, and a
baseline without those capabilities.

Our initial evaluation uses a 2D action that corresponds
to a location in 3D space calculated relative to the sur-
face of the destination block. The optimal solution
places the theme object exactly centered atop the des-
tination block and the agent must solve for an action
that corresponds to that event in VoxWorld. To increase
the problem complexity, we can make the action space
(when rescaled in the 3D environment) arbitrarily large

so that the optimal solution lies in a very small section
of the rescaled action space, and can perturb the ac-
tion space through VoxWorld so that the optimal solu-
tion may not lie in the exact center of the action space.
Each action (attempt to stack) is one timestep and a
max of 10 timesteps are allowed per episode. The agent
receives a negative reward for missing the destination
block entirely, a small positive reward for touching the
destination block with the theme block even if it falls
off, and a large positive reward for stacking success-
fully, with a 10% decay on each additional attempt.

800 1 — Accurate policy
—— Imprecise policy
—— Perturbed policy

600

400

Mean reward

200

[ 250 500 750 1000 1250 1500 1750 2000
Timesteps

Figure 11: Episode mean reward vs. training time.

Fig. 11 shows the training reward plots for three Baby-
BAW stacking policies. The observation space is de-
fined by the height of the stack and center of gravity of
the stack relative to that of the bottom object. The blue
plot (the accurate policy is well-optimized), while the
red plot (the imprecise policy) is less so. In the green
plot, where the reward starts climbing around timestep
350, the action space was perturbed so the optimal pol-
icy is far from the center of the action space, to test the
algorithm’s ability to generalize. Max reward is 1000,
and policies were trained for 2000 timesteps.

0 10 20 30 40 50 60 70
1200 — L L A n

——= Raw Reward
=== Mean reward

1000
800 ; ; N ; H \

600 4

Reward

400

Episodes

Figure 12: Reward vs. evaluation episodes for Baby-
BAW and baseline. Episodes terminate upon success-
ful stacking, so more episodes elapse in the 100 testing
timesteps using the trained model than the baseline.

When BabyBAW is given the mechanism to extract
veridical knowledge of height and center of gravity
from the environment, it can rapidly solve a stacking
task in real time (~15 mins.), without even speeding
up rendering. Fig. 12 shows the reward and cumulative
mean reward per episode for a trained model (solid red
and green lines) vs. the baseline trained without the
height and center of gravity information (dashed blue

1536



and orange lines). A mean reward close to 1000 means
BabyBAW frequently stacked the blocks on the first try.
Ongoing BabyBAW work involves learning about ob-
ject properties from differences in their behavior (e.g.,
what happens when BabyBAW tries to stack a sphere
on top of a cube?), and correlating those differences in
behavior to novel object classes and linguistic labels.

6. Timeline of Selected Publications

This section provides a brief list of selected prior
VoxWorld-related publications.

* LREC 2016: (Pustejovsky and Krishnaswamy,
2016). First publication of the VoxML modeling
language.

* COLING 2016: (Krishnaswamy and Pustejovsky,
2016). First demonstration of the VoxSim soft-
ware.

* IWCS 2017: (Krishnaswamy et al., 2017). First
publication of the Diana agent.

* IntelliSys 2018: (Narayana et al., 2018). Diana
agent with integrated gesture and speech.

e IEEE HCC 2019: (McNeely-White et al., 2019).
“Modern” Diana agent with blackboard architec-
ture.

* AAAI 2020: (Krishnaswamy et al., 2020b). Pub-
lic demo of the Diana agent.

* RoboDial 2020: (Krajovic et al., 2020). First pub-
lication of the Kirby agent.

e CogSci 2022: (Krishnaswamy and Ghaffari,
2022). BabyBAW agent used for novel concept
detection.

7. Conclusion

Interaction takes many forms. VoxWorld is intended
to accommodate as many as possible with an extensi-
ble, event-centric language semantics and straightfor-
ward pipeline. In this paper we detailed how VoxWorld
evolved from the theoretical VoxML framework into
a distinct platform targeted to developers of embod-
ied reasoning agents, and discussed key lessons learned
through the development of different agent types. One
final takeaway is the importance of keeping VoxWorld
independent of 3rd-party packages, thus allowing de-
velopers to use their preferred methods for things like
animation, speech recognition or text-to-speech. We
have refactored the VoxWorld API to allow develop-
ers to incorporate their own endpoints as universally
as possible, with a combination of C# interface classes
and event handlers, allowing us to make stable builds
of VoxWorld available as a single Unity package.

The bleeding edge version of the source code is at
https://github.com/VoxML/VoxSim, and we
have created a sample project with a simple interaction

to let interested researchers get started quickly at
https://github.com/VoxML/VoxWorld-Qs.
Online documentation is under construction at
https://www.voxicon.net/api/.

8. Acknowledgements

Special thanks to Dr. Jaime Ruiz (University of
Florida) for conducting the Diana evaluation. Thanks
to Sadaf Ghaffari for providing Figure 11. We would
also like to thank the reviewers for their helpful com-
ments. This work was supported in part by the U.S. De-
fense Advanced Research Projects Agency (DARPA)
and the Army Research Office (ARO) under contract
WOI11NF-15-C-0238 at Brandeis University and con-
tract WO11NF-15-1-0459 at Colorado State University,
and by the National Science Foundation (NSF) un-
der grant numbers CNS 2033932 and DRL 2019805
to Brandeis University and DRL 1559731 to Colorado
State University. The views expressed are those of the
authors and do not reflect the official policy or position
of the U.S. Government. All errors and mistakes are,
of course, the responsibilities of the authors.

9. Bibliographical References

Abrami, G., Henlein, A., Kett, A., and Mehler, A.
(2020). Text2scenevr: Generating hypertexts with
vannotator as a pre-processing step for text2scene
systems. In Proceedings of the 31st ACM Confer-
ence on Hypertext and Social Media, pages 177-
186.

Adorf, J. (2013). Web speech api. KTH Royal Institute
of Technology.

Allen, J. F. (1983). Maintaining knowledge about
temporal intervals. Communications of the ACM,
26(11):832-843.

Allouch, M., Azaria, A., and Azoulay, R. (2021). Con-
versational agents: Goals, technologies, vision and
challenges. Sensors, 21(24):8448.

Aluru, K. C., Tellex, S., Oberlin, J., and MacGlashan,
J. (2015). Minecraft as an experimental world for ai
in robotics. In 2015 aaai fall symposium series.

Anderson, J. R., Matessa, M., and Lebiere, C. (1997).
Act-r: A theory of higher level cognition and its rela-
tion to visual attention. Human—Computer Interac-
tion, 12(4):439-462.

Anscombe, G. E. M. (1957). Intention. Oxford: Basil
Blackwell.

Baillargeon, R., Needham, A., and DeVos, J. (1992).
The development of young infants’ intuitions about
support. Early development and parenting, 1(2):69—
78.

Balbiani, P.,, Condotta, J.-F., and Del Cerro, L. F.
(1998). A model for reasoning about bidimensional
temporal relations. In PRINCIPLES OF KNOWL-
EDGE REPRESENTATION AND REASONING-
INTERNATIONAL CONFERENCE-, pages 124-
130. Citeseer.

1537


https://github.com/VoxML/VoxSim
https://github.com/VoxML/VoxWorld-QS
https://www.voxicon.net/api/

Bangor, A., Kortum, P. T., and Miller, J. T. (2008).
An empirical evaluation of the system usability
scale. Intl. Journal of Human—Computer Interac-
tion, 24(6):574-594.

Battaglia, P. W., Hamrick, J. B., and Tenenbaum,
J. B. (2013). Simulation as an engine of physical
scene understanding. Proceedings of the National
Academy of Sciences, 110(45):18327-18332.

BeBler, D., Porzel, R., Pomarlan, M., Beetz, M.,
Malaka, R., and Bateman, J. (2020). A formal
model of affordances for flexible robotic task exe-
cution. In ECAI 2020, pages 2425-2432. IOS Press.

Bonn, J., Palmer, M., Cai, J., and Wright-Bettner, K.
(2020). Spatial amr: Expanded spatial annotation in
the context of a grounded minecraft corpus. In Pro-
ceedings of the 12th Conference on Language Re-
sources and Evaluation (LREC 2020),.

Breazeal, C., Brooks, A., Gray, J., Hoffman, G., Kidd,
C., Lee, H., Lieberman, J., Lockerd, A., and Mu-
landa, D. (2004). Humanoid robots as coopera-
tive partners for people. Int. Journal of Humanoid
Robots, 1(2):1-34.

Brockman, G., Cheung, V., Pettersson, L., Schneider,
J., Schulman, J., Tang, J., and Zaremba, W. (2016).
Openai gym. arXiv preprint arXiv:1606.01540.

Brooke, J. (1996). Sus-a quick and dirty usability
scale. Usability evaluation in industry, 189(194):4—
7.

Brooks, R. A. (1991). Intelligence without representa-
tion. Artificial intelligence, 47(1-3):139-159.

Cohen, P. (2017). Context in communication. In 2017
AAAI Spring Symposium Series.

Dan, N., Omori, T., and Tomiyasu, Y. (2000). De-
velopment of infants’ intuitions about support rela-
tions: Sensitivity to stability. Developmental Sci-
ence, 3(2):171-180.

Davidson, D. (1963). Actions, reasons, and causes.
The journal of philosophy, 60(23):685-700.

Dennett, D. C. (1987). The intentional stance. MIT
press.

Dzifcak, J., Scheutz, M., Baral, C., and Schermerhorn,
P. (2009). What to do and how to do it: Translat-
ing natural language directives into temporal and dy-
namic logic representation for goal management and
action execution. In 2009 IEEE International Con-
ference on Robotics and Automation, pages 4163—
4168. IEEE.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and
Reddy, D. R. (1980). The hearsay-ii speech-
understanding system: Integrating knowledge to
resolve uncertainty. ACM Computing Surveys
(CSUR), 12(2):213-253.

Ferguson, G., Allen, J. F, et al. (1998). Trips: An
integrated intelligent problem-solving assistant. In
Aaai/laai, pages 567-572.

Fischer, L., Hasler, S., Deigmoller, J., Schniirer, T.,
Redert, M., Pluntke, U., Nagel, K., Senzel, C,,
Ploennigs, J., Richter, A., et al. (2018). Which tool

to use? grounded reasoning in everyday environ-
ments with assistant robots. In CogRob@ KR, pages
3-10.

Fujimoto, S., Hoof, H., and Meger, D. (2018). Ad-
dressing function approximation error in actor-critic
methods. In International Conference on Machine
Learning, pages 1587-1596. PMLR.

Gatsoulis, Y., Alomari, M., Burbridge, C., Dondrup,
C., Duckworth, P., Lightbody, P., Hanheide, M.,
Hawes, N., Hogg, D., Cohn, A., et al. (2016). Qsr-
lib: a software library for online acquisition of qual-
itative spatial relations from video.

Gibson, J. J. (1977). The theory of affordances. Hill-
dale, USA, 1(2):67-82.

Hartshorne, J. and Pustejovsky, J. (2021). A play-
ground and proposal for growing an artificial general
intelligence. Technical report, Waltham, MA.

Henlein, A., Abrami, G., Kett, A., and Mehler, A.
(2020). Transfer of isospace into a 3d environment
for annotations and applications. In 16th Joint ACL-
ISO Workshop on Interoperable Semantic Annota-
tion PROCEEDINGS, pages 32-35.

Huettel, S. A. and Needham, A. (2000). Effects of bal-
ance relations between objects on infant’s object seg-
regation. Developmental Science, 3(4):415-427.

Hundt, A., Killeen, B., Greene, N., Wu, H., Kwon, H.,
Paxton, C., and Hager, G. D. (2020). “good robot!”:
Efficient reinforcement learning for multi-step visual
tasks with sim to real transfer. IEEE Robotics and
Automation Letters, 5(4):6724-6731.

Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper,
J., Elion, C., Goy, C., Gao, Y., Henry, H., Mattar, M.,
et al. (2018). Unity: A general platform for intelli-
gent agents. arXiv preprint arXiv:1809.02627.

Juliani, A., Khalifa, A., Berges, V.-P., Harper, J., Teng,
E., Henry, H., Crespi, A., Togelius, J., and Lange, D.
(2019). Obstacle tower: A generalization challenge
in vision, control, and planning. arXiv preprint
arXiv:1902.01378.

Kazhoyan, G. and Beetz, M. (2019). Executing un-
derspecified actions in real world based on online
projection. In 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS),
pages 5156-5163. IEEE.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and
Jaskowski, W. (2016). Vizdoom: A doom-based ai
research platform for visual reinforcement learning.
In 2016 IEEE Conference on Computational Intelli-
gence and Games (CIG), pages 1-8. IEEE.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E.,
Weihs, L., Herrasti, A., Gordon, D., Zhu, Y., Gupta,
A., and Farhadi, A. (2017). Ai2-thor: An inter-
active 3d environment for visual ai. arXiv preprint
arXiv:1712.05474.

Kozierok, R., Aberdeen, J., Clark, C., Garay, C., Good-
man, B., Korves, T., Hirschman, L., McDermott,
P. L., and Peterson, M. W. (2021). Hallmarks of
human-machine collaboration: A framework for as-

1538



sessment in the darpa communicating with comput-
ers program. arXiv preprint arXiv:2102.04958.

Krajovic, K., Krishnaswamy, N., Dimick, N. ],
Salas, R. P, and Pustejovsky, J. (2020). Situ-
ated multimodal control of a mobile robot: Naviga-
tion through a virtual environment. arXiv preprint
arXiv:2007.09053.

Krishnamurthy, J. and Kollar, T. (2013). Jointly learn-
ing to parse and perceive: Connecting natural lan-
guage to the physical world. Transactions of the As-
sociation for Computational Linguistics, 1:193-206.

Krishnaswamy, N. and Ghaffari, S. (2022). Ex-
ploiting embodied simulation to detect novel ob-
ject classes through interaction. arXiv preprint
arXiv:2204.08107.

Krishnaswamy, N. and Pustejovsky, J. (2016).
Voxsim: A visual platform for modeling motion
language. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: System Demonstrations, pages 54-58.

Krishnaswamy, N. and Pustejovsky, J. (2019a). Gen-
erating a novel dataset of multimodal referring ex-
pressions. In Proceedings of the 13th International
Conference on Computational Semantics-Short Pa-
pers, pages 44-51.

Krishnaswamy, N. and Pustejovsky, J. (2019b). Mul-
timodal continuation-style architectures for human-
robot interaction. arXiv preprint arXiv:1909.08161.

Krishnaswamy, N. and Pustejovsky, J. (2020). A for-
mal analysis of multimodal referring strategies under
common ground. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
5919-5927.

Krishnaswamy, N. and Pustejovsky, J. (2021). The
role of embodiment and simulation in evaluating hci:
Experiments and evaluation. In International Con-
ference on Human-Computer Interaction. Springer.

Krishnaswamy, N., Narayana, P., Wang, 1., Rim, K.,
Bangar, R., Patil, D., Mulay, G., Beveridge, R., Ruiz,
J., Draper, B., et al. (2017). Communicating and
acting: Understanding gesture in simulation seman-
tics. In IWCS 2017—12th International Conference
on Computational Semantics—Short papers.

Krishnaswamy, N., Beveridge, R., Pustejovsky, J.,
Patil, D., McNeely-White, D. G., Wang, H., and Or-
tega, F. R. (2020a). Situational awareness in human
computer interaction: Diana’s world.

Krishnaswamy, N., Narayana, P., Bangar, R., Rim, K.,
Patil, D., McNeely-White, D., Ruiz, J., Draper, B.,
Beveridge, R., and Pustejovsky, J. (2020b). Diana’s
world: A situated multimodal interactive agent. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 34, pages 13618-13619.

Krishnaswamy, N. (2017). Monte Carlo Simulation
Generation Through Operationalization of Spatial
Primitives. Ph.D. thesis, Brandeis University.

Kuhl, P. K. (1998). Language, culture and intersub-
jectivity: The creation of shared perception. Inter-

subjective communication and emotion in early on-
togeny, (3):297.

Laird, J. E. (2019). The Soar cognitive architecture.

Lerer, A., Gross, S., and Fergus, R. (2016). Learning
physical intuition of block towers by example. In In-
ternational conference on machine learning, pages
430-438. PMLR.

Li, W, Bohg, J., and Fritz, M. (2017). Acquir-
ing target stacking skills by goal-parameterized
deep reinforcement learning. arXiv preprint
arXiv:1711.00267.

Li, R., Jabri, A., Darrell, T., and Agrawal, P. (2020).
Towards practical multi-object manipulation using
relational reinforcement learning. In 2020 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 4051-4058. IEEE.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. (2016).
Continuous control with deep reinforcement learn-
ing. In ICLR (Poster).

McNeely-White, D. G., Ortega, F. R., Beveridge, J. R.,
Draper, B. A., Bangar, R., Patil, D., Pustejovsky, J.,
Krishnaswamy, N., Rim, K., Ruiz, J., et al. (2019).
User-aware shared perception for embodied agents.
In 2019 IEEE International Conference on Human-
ized Computing and Communication (HCC), pages
46-51. IEEE.

Miller, G. A. and Johnson-Laird, P. N. (2013). Lan-
guage and perception. Harvard University Press.
Mooney, R. J. (2008). Learning to connect language

and perception. In AAAI, pages 1598-1601.

Moratz, R., Nebel, B., and Freksa, C. (2002). Qualita-
tive spatial reasoning about relative position. In In-
ternational Conference on Spatial Cognition, pages
385—400. Springer.

Narayana, P., Krishnaswamy, N., Wang, 1., Bangar,
R., Patil, D., Mulay, G., Rim, K., Beveridge, R,
Ruiz, J., Pustejovsky, J., et al. (2018). Cooperat-
ing with avatars through gesture, language and ac-
tion. In Proceedings of SAI Intelligent Systems Con-
ference, pages 272-293. Springer.

Pecher, D. and Zwaan, R. A. (2005). Grounding cog-
nition: The role of perception and action in mem-
ory, language, and thinking. Cambridge University
Press.

Pomarlan, M. and Bateman, J. A. (2020). Embodied
functional relations: A formal account combining
abstract logical theory with grounding in simulation.
In FOIS, pages 155-168.

Pustejovsky, J. and Krishnaswamy, N. (2016). Voxml:
A visualization modeling language. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 4606—
4613.

Pustejovsky, J. and Krishnaswamy, N. (2019). Sit-
uational grounding within multimodal simulations.
arXiv preprint arXiv:1902.01886.

Pustejovsky, J. and Krishnaswamy, N. (2020). Em-

1539



bodied human-computer interactions through situ-
ated grounding. In Proceedings of the 20th ACM In-
ternational Conference on Intelligent Virtual Agents,
pages 1-3.

Pustejovsky, J. and Krishnaswamy, N. (2021a). Em-
bodied human computer interaction. KI-Kiinstliche
Intelligenz, pages 1-21.

Pustejovsky, J. and Krishnaswamy, N. (2021b). The
role of embodiment and simulation in evaluating hci:
Theory and framework. In International Conference
on Human-Computer Interaction. Springer.

Pustejovsky, J. and Moszkowicz, J. L. (2011). The
qualitative spatial dynamics of motion in language.
Spatial Cognition & Computation, 11(1):15-44.

Pustejovsky, J. (2013). Dynamic event structure and
habitat theory. In Proceedings of the 6th Interna-
tional Conference on Generative Approaches to the
Lexicon (GL2013), pages 1-10.

Pylyshyn, Z. W. (1978). What has language to do with
perception? some speculations on the lingua men-
tis. American Journal of Computational Linguistics,
pages 79-86.

Quick, D. and Morrison, C. T. (2017). Composition by
conversation. In 43rd International Computer Music
Conference, ICMC 2017 and the 6th International
Electronic Music Week, EMW 2017, pages 52-57.
Shanghai Conservatory of Music.

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kan-
ervisto, A., and Dormann, N. (2019). Stable base-
lines3. GitHub repository.

Ramirez-Amaro, K., Yang, Y., and Cheng, G. (2019).
A survey on semantic-based methods for the under-
standing of human movements. Robotics and Au-
tonomous Systems, 119:31-50.

Randell, D. A., Cui, Z., and Cohn, A. G. (1992). A
spatial logic based on regions and connection. KR,
92:165-176.

Rao, A. S., Georgeff, M. P, et al. (1995). Bdi agents:
From theory to practice. In Icmas, volume 95, pages
312-319.

Rehm, M. and Goecke, K. U. (2000). Perception, con-
cepts and language: Road and ipage. In COLING
2000 Volume 2: The 18th International Conference
on Computational Linguistics.

Richard-Bollans, A. L. (2021). Modelling the seman-
tic variability of spatial prepositions in referring ex-
pressions. Ph.D. thesis, University of Leeds.

Rodrigues, E. J., Santos, P. E., Lopes, M., Bennett, B.,
and Oppenheimer, P. E. (2020). Standpoint seman-
tics for polysemy in spatial prepositions. Journal of
Logic and Computation, 30(2):635-661.

Rohlfing, K. J., Rehm, M., and Goecke, K. U. (2003).
Situatedness: The interplay between context (s)
and situation. Journal of Cognition and Culture,
3(2):132-156.

Rosskamp, J., Weller, R., Kluss, T., Maldonado C, J. L.,
and Zachmann, G. (2020). Improved cnn-based
marker labeling for optical hand tracking. In In-

ternational Conference on Virtual Reality and Aug-
mented Reality, pages 165-177. Springer.

Russell, S. and Norvig, P. (2002). Artificial intelli-
gence: a modern approach.

Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M.,
and Beetz, M. (2008). Towards 3d point cloud based
object maps for household environments. Robotics
and Autonomous Systems, 56(11):927-941.

Savva, M., Chang, A. X., Dosovitskiy, A., Funkhouser,
T., and Koltun, V. (2017). Minos: Multimodal in-
door simulator for navigation in complex environ-
ments. arXiv preprint arXiv:1712.03931.

Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wi-
jmans, E., Jain, B., Straub, J., Liu, J., Koltun, V.,
Malik, J., et al. (2019). Habitat: A platform for em-
bodied ai research. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
9339-9347.

Scherer, S., Marsella, S., Stratou, G., Xu, Y., Morbini,
F, Egan, A., Rizzo, A. S., and Morency, L.-P.
(2012). Perception markup language: Towards a
standardized representation of perceived nonverbal
behaviors. In International Conference on Intelli-
gent Virtual Agents, pages 455-463. Springer.

Schermerhorn, P. W., Kramer, J. F., Middendorft, C.,
and Scheutz, M. (2006). Diarc: A testbed for natural
human-robot interaction. In AAAI, volume 6, pages
1972-1973.

Spelke, E. S. and Kinzler, K. D. (2007). Core knowl-
edge. Developmental science, 10(1):89-96.

Strout, J. J. (2020). Multimodal agents for cooperative
interaction. Master’s thesis, Colorado State Univer-
sity.

Tamari, R., Shani, C., Hope, T., Petruck, M. R., Abend,
O., and Shahaf, D. (2020). Language (re) mod-
elling: Towards embodied language understanding.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
6268-6281.

Tellex, S., Gopalan, N., Kress-Gazit, H., and Matuszek,
C. (2020). Robots that use language. Annual Re-
view of Control, Robotics, and Autonomous Systems,
3:25-55.

Thrun, S., Beetz, M., Bennewitz, M., Burgard, W.,
Cremers, A. B., Dellaert, F., Fox, D., Haehnel,
D., Rosenberg, C., Roy, N., et al. (2000). Proba-
bilistic algorithms and the interactive museum tour-
guide robot minerva. The International Journal of
Robotics Research, 19(11):972-999.

Ullman, T. D., Spelke, E., Battaglia, P., and Tenen-
baum, J. B. (2017). Mind games: Game engines as
an architecture for intuitive physics. Trends in cog-
nitive sciences, 21(9):649-665.

Van Eijck, J. and Unger, C. (2010). Computational
semantics with functional programming. Cambridge
University Press.

Waltz, D. L. (1978). On the interdependence of lan-

1540



guage and perception. American Journal of Compu-
tational Linguistics, pages 56—63.

Wang, 1., Fraj, M. B., Narayana, P., Patil, D., Mu-
lay, G., Bangar, R., Beveridge, J. R., Draper, B. A,
and Ruiz, J. (2017). Eggnog: A continuous, multi-
modal data set of naturally occurring gestures with
ground truth labels. In 2017 12th IEEE International
Conference on Automatic Face & Gesture Recogni-
tion (FG 2017), pages 414-421. IEEE.

Yan, C., Misra, D., Bennnett, A., Walsman, A.,
Bisk, Y., and Artzi, Y. (2018). Chalet: Cornell
house agent learning environment. arXiv preprint
arXiv:1801.07357.

1541



	Introduction
	Related Work
	What Makes an Agent?
	VoxWorld Platform Overview
	Action and Event Composition
	Reasoning about Results and States
	Blackboard Architecture and PDA

	Agent Implementations
	Diana
	Diana Evaluation
	Diana in a Web Browser

	Kirby
	BabyBAW
	BabyBAW Evaluation


	Timeline of Selected Publications
	Conclusion
	Acknowledgements
	Bibliographical References

