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Abstract

Predicting how different interventions will causally affect a specific individual is
important in a variety of domains such as personalized medicine, public policy,
and online marketing. There are a large number of methods to predict the effect
of an existing intervention based on historical data from individuals who received
it. However, in many settings it is important to predict the effects of novel inter-
ventions (e.g., a newly invented drug), which these methods do not address. Here,
we consider zero-shot causal learning: predicting the personalized effects of a
novel intervention. We propose CaML, a causal meta-learning framework which
formulates the personalized prediction of each intervention’s effect as a task. CaML
trains a single meta-model across thousands of tasks, each constructed by sampling
an intervention, its recipients, and its nonrecipients. By leveraging both interven-
tion information (e.g., a drug’s attributes) and individual features (e.g., a patient’s
history), CaML is able to predict the personalized effects of novel interventions that
do not exist at the time of training. Experimental results on real world datasets in
large-scale medical claims and cell-line perturbations demonstrate the effectiveness
of our approach. Most strikingly, CaML’s zero-shot predictions outperform even
strong baselines trained directly on data from the test interventions.

1 Introduction

Personalized predictions about how an intervention will causally affect a specific individual are
important across many high impact applications in the physical, life, and social sciences. For instance,
consider a doctor deciding whether or not to prescribe a drug to a patient. Depending on the patient,
the same drug could either (a) cure the disease, (b) have no effect, or (c) elicit a life-threatening
adverse reaction. Predicting which effect the drug will have for each patient could revolutionize
healthcare by enabling personalized treatments for each patient.

The causal inference literature formalizes this problem as conditional average treatment effects
(CATE) estimation, in which the goal is to predict the effect of an intervention, conditioned on patient
characteristics (X). When natural experiment data is available, consisting of individuals who already
did and did not receive an intervention, a variety of CATE estimators exist to accomplish this task
Alaa and Van Der Schaar [2017], Athey and Imbens [2016], Curth and van der Schaar [2021c], Green
and Kern [2012], Hill [2011], Johansson et al. [2016], Kiinzel et al. [2019], Nie and Wager [2021],
Kennedy [2020a], Shalit et al. [2017]. These methods can then predict the effect of an existing
intervention (W) on a new individual (X").
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However, in many real-world applications natural experiment data is entirely unavailable, and yet
CATE estimation is critical. For instance, when new drugs are discovered, or new government policies
are passed, it is important to know the effect of these novel interventions on individuals and subgroups
in advance, i.e., before anybody is treated. There is thus a need for methods that can predict the effect
of a novel intervention (W') on a new individual (X”) in a zero-shot fashion, i.e., without relying on
any historical data from individuals who received the intervention.

Generalizing to novel interventions is especially challenging because it requires generalizing across
two dimensions simultaneously: to new interventions and new individuals. This entails efficiently
“aligning” newly observed interventions to the ones previously observed in the training data.

Present work. Here, we first formulate the zero-shot CATE estimation problem. We then propose
CaML (Causal Meta-learning), a general framework for training a single meta-model to estimate
CATE across many interventions, including novel interventions that did not exist at the time of
model training (Figure 1). Our key insight is to frame CATE estimation for each intervention as a
separate meta-learning task. For each task observed during training, we sample a retrospective natural
experiment consisting of both (a) individuals who did receive the intervention, and (b) individuals
who did not receive the intervention. This natural experiment data is used to estimate the effect of
the intervention for each individual (using any off-the-shelf CATE estimator), which serves as the
training target for the task.

In order to achieve zero-shot generalization to new interventions, we include information (W) about
the intervention (e.g., a drug’s attributes), in the task. We then train a single meta-model which fuses
intervention information with individual-level features (X) to predict the intervention’s effect (7).
Our approach allows us to predict the causal effect of novel interventions, i.e., interventions without
sample-level training data, such as a newly discovered drug (Figure 1). We refer to this capability as
zero-shot causal learning.

In our experiments, we evaluate our method on two real-world datasets—breaking convention with
the CATE methods literature which typically relies on synthetic and semi-synthetic datasets. Our
experiments show that CaML is both scalable and effective, including the application to a large-scale
medical dataset featuring tens of millions of patients. Most strikingly, CaML’s zero-shot performance
exceeds even strong baselines that were trained directly on data from the test interventions. We
further discover that CaML is capable of zero-shot generalization even under challenging conditions:
when trained only on single interventions, at inference time it can accurately predict the effect of
combinations of novel interventions. Finally, we explain these findings, by proving a zero-shot
generalization bound.

2 Related work

We discuss recent work which is most closely related to zero-shot causal learning, and provide an
extended discussion of other related work in Appendix B. Most CATE estimators do not address
novel interventions, requiring that all considered interventions be observed during training. A notable
exception is recent methods which estimate CATE for an intervention using structured information
about its attributes Harada and Kashima [2021], Kaddour et al. [2021]. In principle, these methods
can also be used for zero-shot predictions. These methods estimate CATE directly from the raw
triplets (W, X,Y"), without considering natural experiments, by tailoring specific existing CATE
estimators (the S-learner Kiinzel et al. [2019] and Robinson decomposition Nie and Wager [2021],
respectively) to structured treatments. The main drawback of these approaches is that they are
inflexible, i.e., they are restricted to using a single estimator and are unable to take advantage of the
recent advances in the broader CATE estimation literature (e.g., recently developed binary treatment
estimators Curth and van der Schaar [2021c], Frauen and Feuerriegel [2022], Konstantinov et al.
[2022]). This is a limitation because any single CATE estimator can be unstable across different
settings Curth and van der Schaar [2021a]. Notably, the estimators which these methods build on have
already been shown to result in high bias in many domains Kiinzel et al. [2019], Kennedy [2020b],
Chernozhukov et al. [2018a], Curth and van der Schaar [2021c¢]. Likewise, we find that these methods
struggle with zero-shot predictions (Section 6). CaML’s key difference from prior work is that we
construct a separate task for each training intervention by synthesizing natural experiments. This
allows us to (a) flexibly wrap any existing CATE estimator to obtain labels for each task, and thus
take advantage of the most recent CATE estimation methods and (b) leverage meta-learning, which
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Figure 1: Overview of the zero-shot causal learning problem. Each individual has features (X), an
intervention with features (W), and an outcome (Y"). Lightning bolts (¥) represent interventions (e.g.
drugs). The personalized effect of an intervention (7) is always unobserved. The goal is to predict the
7 for a novel intervention (') and individual (X’) that did not exist during training.

requires task-structured data. Consequently, CaML is able to achieve strong zero-shot performance
(Section 6).

3 Background: single-intervention CATE estimation

Each task in the CaML framework consists of estimating conditional average treatment effects
(CATEs) for a single binary treatment. In this section, we first provide background on CATE
estimation under this simple case of a single treatment (W) and outcome (Y"), and subsequently
generalize it to our zero-shot setting. Under a single intervention and outcome, we consider n
independent observations P, ..., P, drawn from a distribution P. For unit: = 1,....,n, P; =
(W, X;,Y;) ~ P collects: a binary or continuous outcome of interest Y; € Y C R, instance features
(i.e., pre-treatment covariates) X; € X C RY, and a treatment-assignment indicator W; € {0, 1}.
We use the Neyman-Rubin potential outcomes framework Imbens and Rubin [2015], in which
Yi(1),Y;(0) reflect the outcome of interest either under treatment (W; = 1), or under control
(W; = 0), respectively. In our running medical example, Y;(1) is the health status if exposed
to the drug, and Y;(0) is the health status if not exposed to the drug. Notably, the fundamental
problem of causal inference is that we only observe one of the two potential outcomes, as Y; =
W;-Yi(1)+ (1 —W;) - Y;(0) (e.g., either health status with or without drug exposure can be observed
for a specific individual, depending on whether they are prescribed the drug). However, it is possible
to make personalized decisions by estimating treatment effects that are tailored to the attributes of
individuals (based on features X). Thus, we focus on estimating 7(x), known as the conditional
average treatment effect (CATE):

CATE=7(z)=Ep|Y(1)-Y(0) | X == 1)

A variety of methods have been developed to estimate 7(x) from observational data Curth and
van der Schaar [2021c]. These rely on standard assumptions of unconfoundedness, consistency, and
overlap Morgan and Winship [2015]. Unconfoundedness: there are no unobserved confounders, i.e.
Y:(0),Y;(1)LLW; | X;. Consistency: Y; = Y;(W;), i.e. treatment assignment determines whether
Y;(1) or Y;(0) is observed. Overlap: Treatment assignment is nondeterministic, such that for all z in
supportof X: 0 < P(W; =1| X; =2) < 1.

4 Zero-shot causal learning

In many real-world settings (e.g. drugs, online A/B tests) novel interventions are frequently introduced,
for which no natural experiment data are available. These settings require zero-shot CATE estimates.
The zero-shot CATE estimation problem extends the prior section, except the intervention variable
W; is no longer binary, but rather contains rich information about the intervention: W; € WW C R¢
(e.g., adrug’s chemistry), where W; = 0 corresponds to a sample that did not receive any intervention.
Thus, each intervention value w has its own CATE function that we seek to estimate:

CATE,, = 7o (z) = Ep|Y(w) — Y(0) | X = x} @)

During training, we observe n independent observations P, ..., P, drawn from a distribution P.
Each P, = (W;, X;,Y;) ~ P. Let Wgcen, be set of all interventions observed during training. The
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Figure 2: Visual illustration of the CaML (causal meta-learning) framework. (1) We sample a task
(i.e., an intervention) and a natural experiment from the training data consisting of individuals who
either received the intervention (W={%1), or did not (W={}). Each individual has features (X) and an
outcome (Y"), and the intervention also has information (W) (e.g., a drug’s attributes). (2) For each
individual we estimate the effect of the intervention on the outcome (pseudo-outcomes 7). (3) We
predict an individual’s pseudo-outcomes 7 using a model that fuses X and W. CaML is trained by
repeating this procedure across many tasks and corresponding natural experiments.
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zero-shot CATE estimation task consists of estimating CATE for a novel intervention that was never
observed during training:

Problem 1 (Zero-shot ~CATE  estimation). Given n  training  observations
(Wi, X1, Y1),...,(W,,X,,Y,) drawn from P containing intervention information, individ-
ual features, and outcomes... estimate 7., (x) for a novel intervention w’ ¢ Wgeen.

This problem formulation extends in a straightforward manner to combinations of interventions,
by allowing a single intervention W; to consist of a set of intervention vectors. CaML supports
combinations of interventions, as we elaborate on in Section 4.1

CaML overview. We propose a novel framework for estimating CATE across multiple interventions,
even including ones that were never encountered during training. Our framework consists of three
key components (Figure 2). First, we formulate CATE estimation as a meta-learning problem in
which each task corresponds to the CATE estimation for a unique intervention. A task dataset for a
given intervention is constructed by sampling a natural experiment of all individuals who received
the intervention, and a sample of individuals who did not. Tasks are augmented with intervention
information (W). Synthesizing these natural experiments allows us to compute a noisy CATE label
7 using any off-the-shelf estimator (7 is referred to as pseudo-outcomes by the causal inference
literature Curth and van der Schaar [2021c]). Finally, we train a single meta-model to predict these
labels using individual-level (X) and intervention-level (W) information, such that it is able to
generalize to novel tasks, i.e., estimating CATE for novel interventions.

The CaML framework incorporates three important design considerations: (1) Single meta-model.
In domains such as electronic health records and online marketing, we observe that large-scale
datasets contain thousands of interventions with rich feature information (W). Instead of training
a separate model for each intervention, CaML trains a single meta-model that can estimate CATE
across all interventions. This approach lets us leverage shared structure across tasks and generalize to
novel interventions that were not present during training. (2) Pseudo-outcomes. Instead of directly
modeling the response surfaces E[Y (w) | X = ] and E[Y(0) | X = z], we use pseudo-outcomes
for each intervention to train our model. This approach is informed by recent studies indicating
bias in estimating CATE from direct predictions of observed outcomes Chernozhukov et al. [2018a],
Kiinzel et al. [2019]. CaML outperforms strong baselines that meta-learn Y (w) and Y (0) directly,
as demonstrated in our experiments (see Tables 2 and 3, rows S-learner and T-learner with meta-
learning). (3) Discrete tasks from continuous interventions. CaML takes advantage of the extensive
literature on CATE estimation for single, binary interventions. By creating a natural experiment for
each intervention, CaML taps into this literature and benefits from the high performance of recently
developed nonparametric CATE estimators Curth and van der Schaar [2021c¢], Nie and Wager [2021],
Kiinzel et al. [2019].

CaML identifies CATE for novel interventions under the assumptions that: (1) for each observed
intervention w, 7, () is identifiable under the binary treatment assumptions (unconfoundedness,
consistency, and overlap) in Section 3. This allows for valid training labels for each task. (2)
Tw(z) = 7(w, x), i.e., a global function 7(w, =) unifies all intervention-specific CATE functions, (3)



7(w, x) is continuous in w. This allows the model to smoothly extrapolate the treatment effect to
new interventions that are close to observed interventions in the intervention space. Lastly, (4) W
follows a continuous distribution.

4.1 Meta-dataset

We formulate CATE estimation as a meta-learning problem. For this, each task refers to CATE

estimation for a distinct intervention. Interventions as well as tasks in our meta-dataset are jointly

indexed by 7 € Nwith 1 < 5 < K, such that we can refer to the j-th intervention information with
(4)

w9,

We then construct a meta-dataset D in the following way:

control’

D ={(Dhua U DD w?) b~ with 3)
=1

DY {(X;,Y;) | W; =wDYand DY) = {(X,,Y;) | W; = 0)}. )

treated control —

D) denotes the natural experiment dataset for task j, composed of a treated group (instances which
received the intervention, i.e. W; = w()) and control group (instances which did not receive any
intervention, i.e. W; = 0). Each sample 4 represents an individual, for which the quantities (X;,Y;)
are collected as introduced in Section 3. In practice, we down-sample both groups (i.e. to 1 million
samples for the treated and control groups) in our large-scale experiments.

We augment each task dataset DY) with intervention information, w) € R¢, for zero-shot gener-
alization to new interventions Kaddour et al. [2021], DeJong and Mooney [1986], Yasunaga et al.
[2021], Koh et al. [2021]. The form of w9 varies with the problem domain — for text interventions,
it could be a language model’s text embedding Veitch et al. [2020], Weld et al. [2022], Nilforoshan and
Wu [2018], while biomedical treatments can be represented as nodes in a knowledge graph Chandak
et al. [2022], Li et al. [2022b]. Additionally, domain-specific features, like treatment categories
from an ontology, may be included in w). To handle combinations of interventions (e.g., pairs of
drugs), we aggregate the w for each intervention using an order-invariant pooling operation (we used
the sum operator), and sample a separate natural experiment for individuals who received the full
combination.

4.2 Estimating pseudo-outcomes

We next estimate the training targets for each task (i.e. intervention) in the meta-dataset. The training
target (%(J )) is an unbiased, but noisy, estimate of CATE. More formally, for each task j (which
points to the natural experiment dataset for intervention wl )), we estimate 7, where Ep [%(7) |X =

x] = T, (x). Thus, %i(J ) denotes the target for the i-th sample in the j-th task (indexing will be
omitted when it is clear from context). We refer to these targets as pseudo-outcomes, following prior
literature Curth and van der Schaar [2021c]. For prior work on pseudo-outcomes, refer to Appendix B.
In Appendix E we demonstrate why these pseudo-outcomes provide an unbiased training objective.
For a detailed explanation on the necessity of using pseudo-outcomes instead of directly modeling
Y (w) and Y (0), please see Kiinzel et al. [2019], Curth and van der Schaar [2021c], Chernozhukov
et al. [2018a].

CaML is agnostic to the specific choice of pseudo-outcome estimator. Thus, we assume a function
n(D(j )) which takes as input a task dataset D) € D and returns a vector containing the pseudo-
outcomes 7 for each sample in the task. We extend each task dataset D) with the pseudo-outcomes,
such that a sample holds the elements (X;,Y;,7;). Our key insight is that by collecting these
pseudo-outcomes across multiple tasks, and predicting them using a combination of intervention
and individual information (W, X') we can develop a CATE estimator which generalizes to novel
interventions. In practice, we use the RA-learner Curth and van der Schaar [2021b] and treat
pseudo-outcome estimation as a data pre-processing step (Appendix C.6).



Algorithm 1 The CaML algorithm
Require: meta-dataset D, meta-model Wy with initialized function ADAPT(Data D, Pseudo-outcomes 7,

parameters 6, hyperparameter k. Intervention information w, Model Wy, # of
for iteration = 1,2,..., L do Steps k)

j < SAMPLETASK() Uy «+ Create copy of ¥y

DY), DY) w) « QUERYTASKDATA(5) fors=1,2,....k do

7 ESTIMATEPSEUDOOUTCOMES(D),, D)) Draw batch of size b from D).

Compute loss L5 by feeding instances

@) Py =G j
0’ <+ ADAPT((Dyla, D), 79, wP), W, k) through model, conditioned on task:

treat s ctrl

g <+ 0 — 0" {Reptile gradient} B
0 < 0 — Bg {Gradient step for meta-model Wy} Ls =73 i (Fi \Ilgl(.w” 7))
end for Update parameters of Wy:
return ¥y 0+ 60—aVLs
end for

end function

4.3 Meta-model training

Given m target outcomes Y7, ..., Y,, (e.g., different drug side effects), our goal is then to learn a
model Wy: R x RY — R™ that for parameters § minimizes

0% = argmin B;~y(p) Ew.x.7~00) (L (Wo)], ®)

where U (D) denotes the discrete uniform distribution over the tasks of the meta-dataset D, and
where L(f) refers to a standard loss function between the pseudo-outcomes and the model output,
ie., L(f) = (7 — f (w,z))?. To assess whether the model generalizes to novel tasks, we partition
our meta-dataset by task, into non-overlapping subsets D = Dyin U Dyy U Dy During training,
Wy is optimized on training tasks Dy,i,. We validate and test this model on Dy, and Dy, which
are thus unseen during training tasks. While the CaML framework is agnostic to a specific training
strategy, we based our approach (Algorithm 1) on the Reptile meta-learning algorithm Nichol et al.
[2018] which we find performs better compared to straightforward empirical risk minimization (c.f.
Section 6). For this, the objective is slightly modified to

0 = arg;nin Ejvpy [L (A%, (T9))], ©)

where A% : F — F represents the operator that updates a model f € JF using data sampled from
the dataset D for k gradient steps. This operator is defined in more detail as the ADAPT routine in
Algorithm 1. Note that depending on the choice of CATE estimator, this routine iterates only over
treated samples of a task dataset D7) (as in our experiments), or over all samples, including untreated
ones.

4.4 CaML architecture

To parameterize Wy, we propose a simple but effective model architecture (see Section 6):
Uy (w, x) = MLP; ([w; Z]), with & = MLPs(x) and w = MLP3(w), @)

where |- ;-] denotes concatenation. Equation 7 shows that the intervention information w and
individual features x are encoded separately into dense vectors w and Z, respectively. Our MLPs
consist of layers of the form g (z) = z + ReLU(Linear(z)).

5 Theoretical analysis

We now consider zero-shot causal learning from a theoretical perspective. Under simplified assump-
tions, we bound the prediction error in the zero-shot setting.

We formulate the setting as a supervised learning problem with noisy labels (pseudo-outcomes) where
we learn a smooth function f = ¥(w, z) — 7 among a family F. We focus on 7 € R, and assume
T € [0, 1] without loss of generality, since we can normalize 7 to this range. The training dataset has

n interventions with m samples each, i.e. first n i.i.d. draws from Py : w® .. w™ and then for
each w9, m i.i.d. draws from Px: xgj), )



The main theorem quantifies the rate that combining information across different interventions helps
with zero-shot performance. We prove a finite-sample generalization bound for the ERM variant
of CaML. The ERM is a special case of ADAPT with & = 1 that is more conducive to rigorous
analysis. The advantage of Reptile over ERM is orthogonal and we refer the readers to the original
discussion Nichol and Schulman [2018]. We assume the estimated pseudo-outcomes 7 during training
satisfy 7 = 7 4+ £ where £ is an independent zero-mean noise with |£| < € almost surely for some
€e>0,

. R 1 &2 _ ) .
= min L(f) = min — () LWy _ z0)y2.
F=ypip L) = min s 2, 2 () al?) = 75)

The test error is L(f) = Ew. x -[(f(w,2) — 7)?]. Let f* = mins L(f). We bound the excess

loss L(f) — L(f*). Our key assumption is that interventions with similar features W have similar
effects in expectation. We assume that all functions in our family are smooth with respect to W, i.e.,

Vf € F.Ewx [I07/0W]3] < 5.
Theorem 1. Under our assumptions, with probability 1 — 6,

(14 €)Rpm (F)log(1/6) N 2log(1/9) N

n 3n

L(f) < L(f*) + 8(1 + €) R (F) + 8\/
1+ €>\/(32()62 +2(1 + €)2/m)log (1/6)

n

where R, is a novel notion of zero-shot Rademacher complexity defined in equation (9); C'is a
Poincaré constant that only depends on the distribution of W. For large n, m, the leading terms
are the function complexity R, (F), and an O(y/1/n) term with a numerator that scales with
and (1 + €)?/m. This validates our intuition that when the intervention information W is more
informative of the true treatment effects (smaller [3), and when the estimation of 7 in the training
dataset is more accurate, the performance is better on novel interventions. Please refer to Section A
for the full proof. Compared to standard generalization bound which usually has a /1 /n term, our
main technical innovation involves bounding the variance by the smoothness of the function class
plus Poincaré-type inequalities. When S is much smaller than 1 we achieve a tighter bound.

Intervention Intervention in-
Dataset  Samples Features (X) Outcome (V) type formation (1)
Patient history (binned Drug intake (pre- Drug embedding
Claims  Patients counts of medical Pancytopenia onset 18! p (knowledge
scription)
codes) graph)
. Molecular
LINCS  Cell lines Qancer cell encyclope- Expression of land- Perturbagen embeddings
dia mark genes (DEG) (small molecule) (RDKit)

Table 1: High-level overview of our two experimental settings. Details in Appendix C.1.

6 Experiments

We explore to what extent zero-shot generalization is practical when predicting the effects of in-
terventions. We thus design two novel evaluation settings using real-world data in domains where
zero-shot CATE estimation will be highly impactful: (1) Health Insurance Claims: predicting the
effect of a drug on a patient, and (2) LINCS: predicting the effect of a perturbation on a cell. We use
new datasets because existing causal inference benchmarks Hill et al. [2003], Shimoni et al. [2018]
focus on a single intervention. By contrast, zero-shot causal learning must be conceptualized in a
multi-intervention setting.

Zero-shot Evaluation. Each task corresponds to estimating CATE for a single intervention, across
many individual samples (e.g. patients). We split all tasks into meta-training/meta-validation, and
a hold-out meta-testing set for evaluating zero-shot predictions (Table 2, unseen drugs for Claims



and Table 3, unseen molecular perturbations in LINCS). For the Claims dataset, we also consider the
challenging setting of combinations of unseen drugs (Table B.3).

Each meta-validation and meta-testing task contains a natural experiment of many samples (e.g.,
patients) who received the unseen intervention, and many control samples who did not receive the
intervention. The same patient (Claims) or cell-line (LINCS) can appear in multiple tasks (if they
received different interventions at different times). Thus, to ensure a fair zero-shot evaluation, we
exclude all samples who have ever received a meta-testing intervention from meta-val/meta-train.
Similarly, we exclude all meta-validation patients from meta-train. Details on holdout selection are
provided in Appendix C.2.

Table 1 gives an overview of both benchmarks. In the Claims dataset, we compare zero-shot
predictions with strong single-intervention baselines which cannot generalize to unseen interventions.
To do so, we further split each task in meta-validation and meta-testing into a train/test (50/50) split
of samples. These baselines are trained on a task’s train split, and all methods are evaluated on
the test split of the meta-testing tasks. On the LINCS dataset, as each task consists of < 100 cells,
single-intervention baselines performed weakly and are excluded from analysis.

Baselines. We compare the zero-shot performance of CaML to two distinct categories of baselines.
(1) Trained directly on test interventions. These are strong CATE estimators from prior work and can
only be trained on a single intervention. Thus, we train a single model on each meta-testing task’s
train split, and evaluate performance on its test split. This category includes T-learner Kiinzel et al.
[2019], X-learner Kiinzel et al. [2019], RA-learner Curth and van der Schaar [2021c], R-learner Nie
and Wager [2021], DragonNet Shi et al. [2019], TARNet Shalit et al. [2017], and FlexTENet Curth
and van der Schaar [2021b].

(2) Zero-shot baselines are trained across all meta-training tasks and are able to incorporate inter-
vention information (W). These methods are thus, in principle, capable of generalizing to unseen
interventions. We use GraphITE Harada and Kashima [2021] and Structured Intervention Networks
(SIN) Kaddour et al. [2021]. We also introduce two strong baselines which learn to directly estimate
Y (w) and Y (0) by meta-learning across all training interventions, without using pseudo-outcomes:
S-learner and T-learner with meta-learning. These extend the S-learner and T-learner from prior
work Kiinzel et al. [2019] to incorporate intervention information (W) in their predictions. We
elaborate on implementation details of baselines in Appendix C.7. For details on hyperparameter
search and fair comparison, see Appendix C.1.

Ablations. In our first ablation experiment (w/o meta-learning), we trained the CaML model without
meta-learning, instead using the standard empirical risk minimization (ERM) technique Vapnik
[1991]. Our second ablation (w/o RA-learner) assesses the sensitivity of CaML’s performance to
different pseudo-outcome estimation strategies. For further details on how these ablation studies were
implemented, see Appendix C.3. We discuss the key findings from these ablations in Section 6.3.

6.1 Setting 1: Personalized drug side effect prediction from large-scale medical claims

Our first setting (Claims) is to predict the increased likelihood of a life-threatening side effect caused
by a drug prescription. We leverage a large-scale insurance claims dataset of over 3.5 billion claims
across 30.6 million patients in the United States>. Each datestamped insurance claim contains a set
of diagnoses (ICD-10 codes), drug prescriptions (DrugBank ID), procedures (ICD-10 codes), and
laboratory results (LOINC codes). Laboratory results were categorized by whether the result was
high, low, normal, abnormal (for non-continuous labs), or unknown.

Interventions are administration of one drug (n = 745), or two drugs (n = 22,883) prescribed in
combination. Time of intervention corresponds to the first day of exposure. Intervention information
(W) was generated from pre-trained drug embeddings from a large-scale biomedical knowledge
graph Chandak et al. [2022] (Appendix C). We compute drug combination embeddings as the sum of
the embeddings of the constituent drugs. We focus on the binary outcome (Y') of the occurrence of
the side effect pancytopenia within 90 days of intervention exposure. Pancytopenia is a deficiency
across all three blood cell lines (red blood cells, white blood cells, and platelets). Pancytopenia is
life-threatening, with a 10-20% mortality rate Khunger et al. [2002], Kumar et al. [2001], and is a
rare side effect of many common medications Kuhn et al. [2016] (e.g. arthritis and cancer drugs),
which in turn require intensive monitoring of the blood work. Following prior work Guo et al. [2022],

Insurance company undisclosed per data use agreement.



RATE @u (1) Recall @u (1) Precision @u (1)
0.999 .998 0.995 0.99 {0.999 0.998 0.995 0.99 |0.999 0.998 0.995 0.99

Random 0.00 0.00 0.00 0.00 | 0.00 0.00 0.01 0.00 | 0.00 0.00 0.00 0.00
T-learner 032 0.26 0.16 0.10 | 0.12 0.18 0.26 0.31 | 0.36 0.29 0.18 0.11
X-learner 0.06 0.05 0.04 0.03 | 0.02 0.04 0.08 0.12 | 0.09 0.07 0.06 0.05
R-learner 0.19 0.17 0.12 0.08 | 0.06 0. 0.19 026 | 024 021 0.15 0.11
RA-learner 047 037 023 0.4 |0.17 026 038 045 | 054 042 026 0.16
DragonNet 0.09 0.07 0.05 0.04 | 0.03 0.05 0.08 0.11 | 0.15 0.12 0.08 0.06
TARNet 0.15 0.12 0.07 0.05 | 0.05 0.08 0.12 0.14 | 0.18 0.15 0.09 0.06
FlexTENet 0.10 0.09 0.06 0.04 | 0.04 0.06 0.1 0.16 | 0.15 0.13 0.09 0.06
GraphITE 0.19 0.12 0.05 0.03 | 0.07 0.08 0.09 0.10 | 023 0.14 0.07 0.04
SIN 0.00 0.00 0.00 0.00 | 0.00 0.00 0.01 0.02 | 0.01 0.01 0.01 0.01

S-learner w/ meta-learning | 0.21 0.16 0.09 0.05 | 0.08 0.11 0.15 0.16 | 025 0.18 0.1 0.06
T-learner w/ meta-learning | 0.40 0.31 0.18 0.11 | 0.15 0.22 032 038 | 045 035 021 0.13
CaML - w/o meta-learning | 0.39 0.31 0.18 0.11 | 0.15 0.22 032 039 | 045 035 022 0.14
CaML - w/o RA-learner 045 036 022 0.14 | 0.16 024 034 041 | 048 038 026 0.16
CaML (ours) 048 038 023 0.13 | 0.18 027 0.38 045 | 0.54 043 026 0.16

Table 2: Performance results for the Claims dataset (predicting the effect of drug exposure on
pancytopenia onset from patient medical history). Key findings are (1) CaML outperforms all zero-
shot baselines (RATE is 18-27% higher than T-Learner w/ meta-learning, the strongest zero-shot
baseline) (2) CaML performs stronger (up to 8 x higher RATE values) than 6 of the 7 baselines
which are trained directly on the test interventions, and performs comparably to the strongest baseline
trained directly on the test interventions (RA-learner). Mean is reported across all runs; standard
deviations included in (Appendix Table 4). Analogous trends hold for generalization to pairs of
unseen drugs (Appendix Table B.3).

patient medical history features (X ) were constructed by time-binned counts of each unique medical
code (diagnosis, procedure, lab result, drug prescription) at seven different time scales before the
drug was prescribed, resulting in a total of 443,940 features. For more details, refer to Appendix C.1.

Metrics We rely on best practices for evaluating CATE estimators in observational data, as established
by recent work Yadlowsky et al. [2021], Chernozhukov et al. [2018b], which recommend to assess
treatment rules by comparing subgroups across different quantiles of estimated CATE. We follow
the high vs. others RATE (rank-weighted average treatment effect) approach from Yadlowsky et.
al Yadlowsky et al. [2021], which computes the difference in average treatment effect (ATE) of the
top u percent of individuals (ranked by predicted CATE), versus all individuals (for more details, see
Appendix C.1). For instance, RATE @ 0.99 is the difference between the top 1% of the samples (by
estimated CATE) vs. the average treatment effect (ATE) across all samples, which we would expect
to be high if the CATE estimator is accurate. Note that estimates of RATE can be negative if model
predictions are inversely associated with CATE. We elaborate on the RATE computation in Appendix
C.1.

The real-world use case of our model is preventing drug prescription for a small subset of high-risk
individuals. Thus, more specifically, for each task j, intervention w; in the meta-dataset, and meta-
model ¥y, we compute RATE @ u for each v in [0.999, 0.998, 0.995, 0.99] across individuals who
received the intervention. We use a narrow range for v because pancytopenia is a very rare event
occurring in less than 0.3% of the patients in our dataset. Hence, in a real-world deployment scenario,
it is necessary to isolate the small subset of high-risk patients from the vast majority of patients for
whom there is no risk of pancytopenia onset.

Additionally, because our meta-testing dataset consists of individuals treated with drugs known to
cause pancytopenia, observational metrics of recall and precision are also a rough proxy for successful
CATE estimation (and highly correlated to RATE, Table 2). Thus, as secondary metrics, we also
compute Recall @ v and Precision @ u for the same set of thresholds as RATE, where a positive
label is defined as occurrence of pancytopenia after intervention.

6.2 Setting 2: Cellular gene expression response due to perturbation

Our second setting (LINCS) is to predict how a cell’s gene expression (Y") will respond to intervention
from perturbagen (small molecule compound such as a drug). This is a critical problem as accurately
predicting intervention response will accelerate drug-discovery. We use data for 10,325 different
perturbagens from the LINCS Program Subramanian et al. [2017]. Each perturbagen corresponds to a
different small molecule. Molecular embeddings were generated using the RDKit featurizer Landrum



et al. [2006] and used as intervention information (W). Outcomes (Y") of interest are post-intervention
gene expression across the top-50 and top-20 differentially expressed landmark genes (DEGs) in the
LINCS dataset. We did not look at all 978 genes since most do not show significant variation upon
perturbation. We use 19,221 features (X') from the Cancer Cell Line Encyclopedia (CCLE) Ghandi
et al. [2019] to characterize each cell-line (n = 99), each of which correspond to unperturbed gene
expression measured in a different lab environment using a different experimental assay. For more
details, see Appendix C.1.

Metrics. A key advantage of experiments on cells is that at evaluation time we can observe both
Y (0) and Y (1) for the same cell line X, through multiple experiments on clones of the same cell-
line in controlled lab conditions. In the LINCS dataset, Y (0) is also measured for all cells which
received an intervention. Thus, we can directly compute the precision in estimating heterogeneous
effects (PEHE) on all treated cells in our meta-testing dataset, an established measure for CATE
estimation performance analogous to mean-squared error Hill [2011] (see Appendix C.1).

6.3 Key findings

CaML’s zero-shot predictions outperform baselines with direct access to the target intervention. In
the medical claims setting, single intervention baselines (Tables 2, dark grey rows) are the highest
performing baselines as we train them directly on the meta-test intervention. Still, CaML outper-
forms 6 out of 7 of these baselines (up to 8 x higher RATE) and achieves comparable performance
to the strongest of these baselines, the RA-learner. Furthermore, CaML strongly outperforms
alternative zero-shot CATE estimators (RATE is 18-27% higher than T-Learner w/ meta-learning,
the strongest zero-shot baseline). In the LINCS data, multi-intervention learners are strongest as
there are only a small number of instances (cell lines) per intervention®. CaML outperforms both
single-intervention and multi-intervention learners by drawing from both of their strengths—it allows
us to use strong CATE estimation methods (i.e. the RA-learner) which previously were restricted to
single interventions, while sharing information across multiple interventions.

CaML learns to generalize from single interventions to combinations of unseen interventions (drug
pairs). We evaluate CaML’s performance in the challenging setting of predicting the personalized
effects of combinations of two drugs which are both unseen during training, while only training on
interventions consisting of single drugs. CaML achieves strong performance results (see Appendix
Table B.3), surpassing the best baseline trained on the test tasks, and outperforms all zero-shot
baselines, across all 12 metrics.

Understanding CaML'’s performance results. Our ablation studies explain that CaML’s performance
gains are due to (1) our meta-learning formulation and algorithm (in contrast to the w/o meta-learning
row, in which ERM is used to train the model), and (2) the flexible CATE estimation strategy, allowing
to take advantage of recently developed CATE estimators previously restricted to single interventions
(in contrast to the w/o RA-learner row, in which an alternative pseudo-outcome estimator is used).
Lastly, (3) comparison to existing binary intervention CATE estimators trained separately on each
meta-testing intervention (Table 2, grey rows) shows that we gain from learning from thousands
interventions. See Appendix C.3 for details on ablations.

7 Conclusion

We introduce a novel approach to predict the effects of novel interventions. CaML consistently
outperforms state-of-the-art baselines, by unlocking zero-shot capability for many recently developed
CATE estimation methods which were previously restricted to studying single interventions in
isolation. While our study is limited to retrospective data, we plan to prospectively validate our
findings. Future work includes designing new model architectures and CATE estimators which learn
well under the CaML framework, developing new metrics to evaluate zero-shot CATE estimators, as
well as more generally exploring novel learning strategies that enable zero-shot causal learning.

Societal impacts. In high-stakes decision-making inaccurate predictions can lead to severe conse-
quences. It is important not to overly rely on model predictions and proactively involve domain
experts, such as doctors, in the decision-making process. Additionally, it is crucial to ensure that
underserved communities are not disadvantaged by errors in treatment effect estimates due to un-

3Single-task baselines excluded from Table 3: all performed similar or worse than mean baseline due to low
task sample size.
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PEHE 50 DEGs (/) PEHE 20 DEGs ({,)

Mean. 3.78 4.11

GraphlITE 3.58 +0.023 3.82 £0.011
SIN 3.78+ 0.001 4.06 £ 0.001
S-learner w/ meta-learning 3.63 + 0.004 3.90 £+ 0.004
T-learner w/ meta-learning 3.61 + 0.007 3.85 + 0.006
CaML - w/o meta-learning 3.57 + 0.006 3.79 + 0.004
CaML - w/o RA-learner 4.28 £0.517 4.60 £ 0.413
CaML (ours) 3.56 + 0.001 3.78 &+ 0.005

Table 3: Performance results for the LINCS dataset (predicting the effect of an unseen perturbation
on the gene expression of an unseen cell-line). CaML outperforms all baselines. Improvement is
largest for the 20 most differentially expressed genes, where most signal is expected.

derrepresentation in the training data. Important avenues for achieving equitable CATE estimation
in future work include process-oriented approaches (i.e., evaluating model errors for underserved
demographics), and outcome-oriented methods (i.e., gauging model impacts on demographic utility)
Corbett-Davies et al. [2023], Nilforoshan et al. [2022], Seyyed-Kalantari et al. [2021], Althoff et al.
[2022], Nilforoshan et al. [2023]. Furthermore, the deployment of CATE models could raise privacy
concerns. These models typically require access to individual patient data to estimate personalized
treatment effects accurately. Ensuring the privacy and security of this sensitive information is crucial
to avoid potential data breaches or unauthorized access, which could harm patients and erode public
trust in healthcare systems.
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A Zero-shot Rademacher complexity and Proof of Theorem 1
A.1 Problem setup and assumptions

Let w € W C Re denote an intervention and x € X C R¢ denote an individual that received it.
Assume the outcome to predict is a scalar y € [0, 1]. The hypothesis class is F = {f : (w,z) — y}.
The dataset has n interventions with m independent units which received each intervention, i.e. first
n i.i.d. draws from Py and then m i.i.d. draws from Py for each w(). During training we have
access to noisy estimate § = y + & where ¢ is an independent noise with E¢ = 0 and |¢| < e almost
surely. We are tested directly on y.

The ERM is

n m

1 o )
f= m;nL(f) = min — Z; z;(f(w<a>’xl<,n) _ g9y,
j=1i=

The test error is

L(f) = Eupuy(f(w,z) — 9)2 3
and let f* = min; L(f).
We are interested in bounding the excess error L(f) — L(f*).

Our key assumption is that interventions with similar attributes (w) have similar effects in expectation.
More concretely, we assume that all hypotheses in our family are smooth with respect to w:

Assumption 2.
2
2

VieF,Eypyx H‘af
ow

1<62‘

Furthermore, we assume that Py satisfies a Poincaré-type inequality:

Assumption 3. For some constant C' that only depends on Py, for any smooth function F',

Vary[F(w)] < CE [||[VyF(w)]3] -

For example, Py can be any of the following distributions:
* Multivariate Gaussian: w € R® ~ A (u,X) for some vector 1 € R and positive semi-
definite matrix X € Reé*¢;

* w € R® has independent coordinates; each coordinate has the symmetric exponential
distribution 1/2¢~1*l for t € R.

* Py is a mixture over base distributions satisfying Poincaré inequalities, and their pair-wise
chi-squared distances are bounded.

* Py is a mixture of isotropic Gaussians in R®.
* Py is the uniform distribution over YW C R€, which is open, connected, and bounded with
Lipschitz boundary.

‘We note that isotropic Gaussian can approximate any smooth densities in R® Kostantinos [2000]
(since RBF kernels are universal), showing that Assumption 3 is fairly general. We define a novel
notion of function complexity specialized to the zero-shot setting. Intuitively, it measure how well we
can fit random labels, which is first drawing n interventions and m recipients for each intervention.
For examples of concrete upper bound on zero-shot Rademacher complexity see section A.4.

1 LU ) )
Ry (F) = %Ew@,g szlcp Z Z ol f(w, xgj)) ©)

j=1i=1

where of are independently randomly drawn from {—1,1}.

19



A.2 Formal theorem statement

Theorem 4. Under Assumptions 2 3, with probability 1 — 6,

m (F)log(1/0)

n

L(F) < L(*) + 801+ ) R (F) + 8\/ SRl

2 4 204e)?y g o
+(1+€)\/(320f3+ ) log (1/9) | 2log (1/0)

n 3n

A.3 Proof of the main theorem

We define the population loss on the noisy label L( f) = Eypey (f(w,x) — 7)*. Due to independence
of & B ¢ (f(w,2) —y — 6)? = Eyuy(f(w,z) —y)? + E[§?] = L(f) + E[¢?] for any [, so
L(f)— L(f*) = L(f) — L(f*). We shall focus on bounding the latter.

We first need a lemma that bounds the supremum of an empirical process indexed by a bounded
function class.

Lemma 5 (Theorem 2.3 of Bousquet [2002]). Assume that X; are identically distributed ac-
cording to P, G is a countable set of functions from X to R and, and all ¢ € G are P-
measurable, square-integrable, and satisfy E[g] = < 1, and we denote

Z = sup, ‘2?21 g(Xj)‘. Suppose o > supgeg Var(g(X;)) almost surely, the for all t > 0, we
have

t
Pr [Z >EZ ++/2t(no? +2EZ) + 3} <et.

We apply Lemma 5 with X; = (w92l . .. 2d 7l,....9), 9X;) =
(£ Zi @, o) = g2~ L(f)), o* = supper(Var(h Si(f(w, o) - 57)2),
t =log(1/4). Since f — g € [-1,1], g € [-1, 1]. With probability 1 — 4,

nsup () = £07)| < nsup ()~ E()] + 2log +

3 <n02 + 2nE sup ‘ﬁ(f) - z(f)D + %loga
f

Multiplying both sides by 1/n, and using va + b < \/a + Vb,

. _ Esup; |L(f) — L(f)|log(1/) o2
Sup ‘L(f) - L(f)‘ < ]ESI;I) ’L(f) - L(f)‘ +2 o ’ ’ + 207los (1/9) + g (1/9)

n n 3n
(10
The next lemma bounds the variance o2 in equation (10).
Lemma 6.
, , (J) ~(5)\2 22, (L+6)?
Vi€ FVar,g i g l Z — ;) ] SA(1+€°C8 + .

Proof of Lemma 6. Using the law of total variance, if we write

1 m ) . (i
9] ) = - D@2y =577,
i=1

then
Var(gl = Vary [Eqz glg(w, 2, 9) | w]] + Ep [Vars glg(w, 2, ) | w]] (11

To bound the first term of equation (11), we use Poincaré-type inequalities in Assumption 3. For each
of the example distributions, we show that they indeed satisfy Assumption 3.
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Lemma 7. Each of the example distributions in Assumption 3 satisfies a Poincare-type inequality.

Proof. * When Py is the uniform distribution over W € R€, which is open, connected, and
bounded with Lipschitz boundary, we use Poincaré—Wirtinger inequality Poincaré [1890] on
the smooth function E[g | w]: For some constant C' that only depends on Py,

Vary[Elg | w] < CE [|[VE[g | w]|[3] - (12)

C'is the Poincaré constant for the domain W in Lo norm. It can be bounded by 1/\; where
A1 is the first eigenvalue of the negative Laplacian of the manifold W Yau [1975]. Many
previous works study the optimal Poincaré constants for various domains Kuznetsov and
Nazarov [2015]. For example, when w is uniform over V¥ which is a bounded, convex,
Lipschitz domain with diameter d, C' < d/7 Payne and Weinberger [1960].

We can apply probabilistic Poincaré inequalities over non-Lebesgue measure Py :

* When w ~ N (p,X), we use the Gaussian Poincaré inequality (see e.g. Theorem 3.20
of Boucheron et al. [2013] and using change of variables),

VarlF(w)] < E[(EV,F(w), V. F(w))].

We apply this with F(w) = E[g | w]. Since E[v T Av] = E[Tr(v" Av)] = E[Tr(Avv )] =
Tr(AE[vvT]) < [|All2E [[v]|3].

Vary[Elg | w] < |Z]2E [|VElg | w][l3] ,
which satisfies equation (12) with C' = || X||2.

* When w € R has independent coordinates wy, . . ., w. and each coordinate has the sym-
metric exponential distribution 1/2¢~I*! for t € R, we first bound a single dimension using
Lemma 4.1 of Ledoux [1999], which says for any function k € L*,

Var(k(w;)) < 4E [ (w;)?]
which, combined with the Efro-Stein inequality (Theorem 3.1 of Boucheron et al. [2013]),

Var(F(w)) = EZ Var(F(w) | wi, ..., Wim1, Wit1,...,Wy),
i=1

yields:
Var(F(w)) <4E [||[F'(w)|3]

which satisfies equation (12) with C' = 4.

Lastly, we consider the case where Py is a mixture over base distributions satisfying Poincaré
inequalities. We first consider the case where the pair-wise chi-squared distances are bounded. Next,
we show that mixture of isotropic Gaussians satisfies Poincaré inequality without further condition
on pair-wise chi-squared distances.

* When { P}, }4c o is a family of distributions, each satisfying Poincaré inequality with con-
stant C9, and Py is any mixture over { Py}, } 4o with density y, let Kp(u) = ess,, sup, CY,
which is an upper bound on the base Poincaré constants almost surely, and K )’Z .(n) =

Eqqmnl(1+ X2 (P \P&;))p]l/p, which is an upper bound on the pairwise y?-divergence.
Using Theorem 1 of Chen et al. [2021] we get that Py satisfies Poincaré inequality with con-
stant C' such that C' < Kp(u)(p* + K72 (1)) where p* is the dual exponent of p satisfying

l/p+1/p* =1
As an example, when base distributions are from the same exponential family and the
natural parameter space is affine, such as mixture of Poisson or Multinomial distribu-

tions, the pair-wise chi-squared distances are bounded (under some additional condi-
tions) and hence the mixture satisfies Poincaré inequality. More formally, let py(z) =
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exp (T(z) "0 — F(0) + k(z)) where 6 € © is the natural parameter space and A() is the
log partition function. Lemma 1 in Nielsen and Nock [2013] shows that

X2(p91”p92) = e(A(202701)7(2A(62)7A(61))) - la
which is bounded as long as 205 — #; € ©. This is satlsﬁed for mixture of 1-D Pois-
son distributions which can be written as p(w|\) = -L exp (wlog A — ) with natural

parameter space R, and mixture of e-dimensional Multinomial distributions p(w|m) =

exp ((w, log (77/ ( -y m))) + log (1 =y 11 m)) with natural parameter space
R°~!. When applied to Gaussian family the natural parameters are

o ¥, g
b= ( (%z;l)) |

Since the covariance has to be positive definite matrices, 26, — , may not be a set of valid
natural parameter. We deal with this in the next case.

» When {P}, }4co is a mixture of isotropic Gaussians, each with mean p, € R® and co-
variance X, = O'gle, each satisfying Poincaré inequality with constant C? (in the single-
Gaussian case above we know that C'7 < og), Py also satisifes Poincaré inequality. We
prove this via induction. The key lemma is below:

Lemma 8 (Corollary 1 of Schlichting [2019]). Suppose measure py is absolutely continuous
with respect to measure py, and pg, p1 satisfy Poincaré inequality with constants C, Cy
respectively, then for all o € [0, 1] and = 1 — o, mixture measure p = apg + Sp; satisfies

Poincaré inequality with with C' < max {Cy, C1 (1 + ax1)} where x1 = [ Zg? dpo — 1.

We sort the components in the order of non-decreasing 02, and add in each component one
by one. For each new component ¢ = 2,. , we apply the above lemma with py being
mixture of P}, .. P;V ! and p; being the new component Pi,. We only need to prove that

X1 is bounded at every step. Suppose po = Z; 1 & P}, with Zj Lo =1,p1 = Pjy,
and P}, = Wexp{ (w — ;) "S5 (w — pj) }. Therefore

d 2
X1+1: podo—/p()(w) dw
d w pl(w)
1 of 20500 o G o
i s eXp{ o= “J“ }+Z 12 7iot, exp{—lwz:?’l T }
: d

:/w wexp{_w}

e 2
o5 20;

w
The convergence condition of the above integral is 207 > 2O’J2- for all j < 7 which is satisfied
when o7 > 0%

O

Next we observe that

VuEly | w] =V [ (f(w.0) - 5 (o pdedy =2 |

z,y

(F(w,2) = ) g ple, §)ddy = 28| (F(w, ) — )

2
Since |f(w, z) — g| < 1 4 € almost surely, E [H‘%H } < B2,
2

 [IVuElg | w3] = 4 U‘(f(w,w) 0 ] <401+

Therefore
Vary[Elg | w]] < CE [[[V,E[g | w]l5] <4(14€)?CB>
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To bound the second term of equation (11), we use concentration of mean of m i.i.d. random
variables.

Conditioned on w(?), each of the loss (f(w), ) — 79))2 are i.i.d. and bounded in [0, (1 + €)?].
Hence each variable has variance upper bound ((1 + 6)é —0)2/4 = (1 + €)*/4 and the mean has
variance upper bound (1 + €)% /4m.

Therefore Var[g] < 4(1 + €)2CB% + (1 + €)*/4m. O

Proof of Theorem 4.

Esup; L(f) - z(f)‘ log(1/6) N \/(32(1 +€)2Cp2 + W)log (1/8) N 2log (1/0)
n 3n
(13)

< 2Esup|i(f) *Ii(f” +4
; n

by equation (10) and Lemma 6.

We now show that E sup IL(f) — L(f)| < 2(1 + €) Ry (F). This is similar to the argument for
classical Rademacher complexity

nm <
2%

1 , . 4 . . N
Euagsup | o S (P, 2) = G2~ By g g (f (0P, 2 — 592

< Ec o @) LGN _ =02 1GG) )Y _ =102
< —Ess St}p ;j (" 27) = g;77)" = (f (W™, 27) = g;77)7]
— Esg o E : J @) LGN =0)y2 _ J 1(5) 1)y _ =152
nm S,S ’ Sl}p - j [Jz (f(w ? 'Iz ) yz ) Uz (f('U} 9 ‘rz ) yz ) ]
1 . , , . 1 . , . .
< nEsosw | 2 (F@a?) =g | + B sup | 3o ol(f Dl = 510)?

2%
=2R,m(L).
where the first inequality uses Jensen’s inequality and convexity of sup.

Now we prove the equivalent of Talagrand’s contraction lemma to show that R,,,,, (£) < 2R, (F).
~\2

Note that the squared loss is 2(1 + €)-Lipschitz since ‘%‘ =2|f —g| <2(1+ ¢€). We use the

following lemma to prove this:

Lemma 9 (Lemma 5 of Meir and Zhang [2003]). Suppose {¢;}, {¢;i}, i =1,..., N are two sets of
functions on © such that for each i an 0,0" € ©, |$;(0) — ¢;(0")| < [1:(0) — ¥i(0")|. Then for all

Sfunctions c: © = R,
N
sup {0(9) +> ini(G)H
i=1

sup {0(9) + Z Ui¢i(9)}

For any set of w, z, we apply Lemma 9 with © = F, 0 = f, N = nm, ¢;;(f) = (f(w(j),xgj)) —

372 () = 2040 f (w2, and e(0) = 0. Since |(f — §)? = (f' = )| < 201 +0)|f -
1], so the condition for Lemma 9 hold. We take expectation over w, z and divide both sides by nm
to get

Eo < E,

1 n m . ( ) ( ) 2(1 + 6) n m . ( )
— Ky 2,0 SUP o (f(w(j)vxij ) — ?jij )2 < Ey 2,0 sup Uff(w(j),l‘ij )
which means R, (L) < 2(1 + €) Ry, (F). Substituting this into inequality (13) finishes the proof.

O
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A.4 Zero-shot Rademacher complexity bound for the linear hypothesis class

Consider the linear classifier F' = {(w] w + wq x : ||wy|2 < B, ||wi]|2 < C}. Suppose ||w|2 < 1
and ||z|j2 < 1.

1

B (F) = nmEU@J sg}p o, Zij U’jw(j)> + (w2, ij ngz(j)>
1 C o
= — | BiE, . J 0y (3) BsE, 4 § : 3 ..(3)

i 11hg, Hizjo'z’w ||2 + BolEs, || A olx; H2

1 : ;
< — B mZHw(J)H%-i—Bz ZHCUEJ)”%
j ij

We observe that the bound is the same as the standard Rademacher complexity for nm indepen-
dent samples, which is interesting. The relationship between standard and zero-shot Rademacher
complexity for other function classes is an important future direction.

B Extended Related Work

Our approach to zero-shot prediction of intervention effects is related to recent advances in heteroge-
nous treatment effect (HTE) estimation, zero-shot learning, and meta-learning.

B.1 Heterogenous treatment effect (HTE) estimation

Conditional average treatment effect (CATE) estimation. A number of approaches have been
developed to predict the effect of an existing intervention on an individual or subgroup, based on
historical data from individuals who received it. This problem is often referred to in the literature
as heterogeneous treatment effect (HTE) estimation Hastie et al. [2009], Crump et al. [2008], to
denote that the goal is to detect heterogeneities in how individuals respond to an intervention. A more
specific instance of HTE estimation, which we focus on here, is conditional average treatment effect
(CATE) estimation Wager and Athey [2018], Kiinzel et al. [2019], in which the goal is to predict
the effect of a treatment conditioned on an individual’s features. A variety of methods and specific
models have been developed to achieve this goal Hastie et al. [2009], Johansson et al. [2016], Green
and Kern [2012], Hill [2011], Wager and Athey [2018], Shalit et al. [2017], Alaa and Van Der Schaar
[2017], Yoon et al. [2018], Hassanpour and Greiner [2019a], Zhang et al. [2020], Hassanpour and
Greiner [2019b], Curth and van der Schaar [2021c], Curth et al. [2021], Kiinzel et al. [2019], Kennedy
[2020a], Crump et al. [2008], Athey and Imbens [2016], and we refer to Bica et al. and Curth et al.
for a detailed review of these methods Bica et al. [2021], Curth and van der Schaar [2021c]. These
methods estimate CATE for an existing intervention, based on historical data from individuals who
received it and those that did not.

While these approaches have a number of useful applications, they do not address CATE for novel
interventions which did not exist during training (zero-shot). Our primary contribution is a meta-
learning framework to leverage these existing CATE estimators for zero-shot predictions. In the
CaML framework (Figure 2), each task corresponds to predicting CATE for a single intervention. We
synthesize a task by sampling a natural experiment for each intervention, and then use any existing
CATE estimator to generate a noisy target label for our the task (Step 2: estimate pseudo-outcomes).
We rely on pseoudo-outcome estimates as training labels because prior work has shown that training
on observed outcomes directly leads to biased CATE estimates Chernozhukov et al. [2018a], Kiinzel
et al. [2019], Kennedy [2020a], a result which we find holds true in our experiments as well (see
T-learner and S-learner w/ meta-learning in Tables 2 and 3).

Pseudo-outcome estimators. Prior work has developed a variety of methods to estimate CATE
pseudo-outcomes, which are noisy but unbiased estimates of CATE, such as the X-learner Kiinzel
et al. [2019], R-learner Nie and Wager [2021], DR-learner Kennedy [2020a], and RA-learner Curth
and van der Schaar [2021c]. Moreover, the outputs of any other CATE estimation method, such as
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methods which directly estimate CATE via an end-to-end neural network Johansson et al. [2016],
Shalit et al. [2017], Shi et al. [2019] are an equally valid choice of pseudo-outcome. The literature on
pseudo-outcome estimation is growing continuously as new estimators are being developed Frauen
and Feuerriegel [2022], Konstantinov et al. [2022]. Typically, these estimators are specific to a
single binary intervention, for which a set of nuisance models are trained and used to compute the
pseoudo-outcomes. As such, applying meta-learning algorithms to these pseudo-outcomes requires
synthesizing a natural experiment for each intervention, which corresponds to a single task in the
CaML framework.

Multi-cause estimators. Our methods to address zero-shot CATE estimation for combinations
of interventions are distinct from multi-cause estimators for combinations of binary or categorical
interventions Wang and Blei [2019], Qian et al. [2021], Saini et al. [2019]. Recent work has shown
that these methods can predict the effects of new combinations of interventions Ma et al. [2021],
when every intervention in the combination has been observed at some point during. However,
these methods do not estimate CATE for novel interventions which did not exist during training.
By contrast, CaML estimates CATE for zero-shot intervention combinations in which none of the
interventions in the combo was ever observed during training (Appendix Table C).

B.2 Zero-shot learning

Zero-shot learning (ZSL) has traditionally aimed to reason over new concepts and classes Xian et al.
[2017], Romera-Paredes and Torr [2015] which did not exist during training time. While ZSL has
primarily focused on natural language processing and computer vision Wang et al. [2019], recent
interest has been sparked in generalizing over novel interventions (zero-shot) in the biomedical
domain Roohani et al. [2022], Hetzel et al. [2022] in which data can be cheaply collected for
hundreds or thousands of possible interventions Zitnik et al. [2018], Tatonetti et al. [2012], Duan
et al. [2014]. However, general-purpose zero-shot causal methods have been largely unexplored.
Notable exceptions include GranITE Harada and Kashima [2021] and SIN Harada and Kashima
[2021], which each extend a specific CATE estimation Nie and Wager [2021], Kiinzel et al. [2019]
method to incorporate intervention information (). However, these approaches have significant
drawbacks, which we discuss in Section 2.

B.3 Meta-learning

Meta-learning, or learning to learn, aims to train models which can quickly adapt to new settings
and tasks. The key idea is to enable a model to gain experience over multiple learning episodes
- in which episodes typically correspond to distinct tasks - to accelerate learning in subsequent
learning episodes Hospedales et al. [2021]. The meta-learning literature is rich and spans multiple
decades Thrun and Pratt [2012], Schmidhuber [1987], Salimans and Kingma [2016], Bengio et al.
[1990], with recent interest focused on model-agnostic methods to train deep learning models to
quickly adapt to new tasks Finn et al. [2017], Raghu et al. [2019], Nichol and Schulman [2018]. A
common focus in the meta-learning literature is few-shot learning, in which a model must adapt to a
new task given a small support set of labeled examples. By contrast, we focus on the zero-shot setting,
in which no such support set exists. However, we hypothesize that the typical meta-learning problem
formulation and training algorithms may also improve zero-shot performance. Thus, CaML’s problem
formulation and algorithm inspiration from the meta-learning literature, particularly the Reptile
algorithm Nichol and Schulman [2018] and its application to other tasks in causal inference Sharma
et al. [2019]. Our experimental results show that this meta-learning formulation improves CaML’s
performance, compared to a standard multi-task learning strategy.

C Experimental details

C.1 Experimental setup

Here, we provide more details about the experimental setup for each investigated setting. This serves
to complement the high-level overview given in Table 1. Experiments were run using Google Cloud
Services. Deep learning-based methods (i.e., CaML and its ablations, S-learner w/ meta-learning,
T-learner w/ meta-learning, SIN, GraphITE, FlexTENET, TARNet, and DragonNet) were run on
nl-highmem-64 machines with 4x NVIDIA T4 GPU devices. The remaining baselines (RA-learner,
R-learner, X-learner, and T-learner) were run on nl-highmem-64 machines featuring 64 CPUs.
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Fair comparison. We perform hyper-parameter optimization with random search for all models,
with the meta-testing dataset predetermined and held out. To avoid “hyperparameter hacking”,
hyperparameters ranges are consistent between methods wherever possible, and were chosen using
defaults similar to prior work Kaddour et al. [2021], Harada and Kashima [2021]. Choice of
final model hyper-parameters was determined using performance metrics (specific to each dataset)
computed on the meta-validation dataset, using the best hyper-parameters over 48 runs (6 servers x 4
NVIDIA T4 GPUs per server x 2 runs per GPU ) (Appendix C.4). All table results are computed as
the mean across 8 runs of the final model with distinct random seeds.

C.1.1 Claims dataset

Interventions (17'): We consider drug prescriptions consisting of either one drug, or two drugs
prescribed in combination. We observed 745 unique single drugs, and 22,883 unique drug pairs,
excluding interventions which occurred less than 500 times. Time of intervention corresponds to the
first day of exposure. To obtain intervention information, we generated pre-trained drug embeddings
from a large-scale biomedical knowledge graph Chandak et al. [2022] (see Appendix C.5). Drugs
correspond to nodes in the knowledge graph, which are linked to other nodes (e.g. genes, based on
the protein target of the drug). Our approach builds on prior work leveraging knowledge graphs for
clinical predictions Zitnik et al. [2018], Fouladvand et al. [2023]. Drug combination embeddings are
the sum of the embeddings for their constituent drugs.

Control group. A challenge in such causal analyses of clinical settings is defining a control group.
We randomly sample 5% (1.52M patients) to use as controls, with a 40/20/40 split betweem meta-
train/meta-val/meta-test. When sampling a natural experiment for a given intervention, we select all
patients from this control group that did not receive such an intervention. An additional challenge is
defining time of intervention for the control group. It is not possible to naively sample a random date,
because there are large quiet periods in the claims dataset in which no data is logged. We thus sample
a date in which the control patient received a random drug, and thus our measure of CATE estimates
the increase in side effect likelihood from the drug(s) W, compared to another drug intervention
chosen at random.

Outcome (Y): We focus on the side effect pancytopenia: a deficiency across all three blood cell
lines (red blood cells, white blood cells, and platelets). Pancytopenia is life-threatening, with a
10-20% mortality rate Khunger et al. [2002], Kumar et al. [2001], and is a rare side effect of many
common medications Kuhn et al. [2016] (e.g. arthritis and cancer drugs), which in turn require
intensive monitoring of the blood work. Our outcome is defined as the (binary) occurrence of
pancytopenia within 90 days of intervention exposure.

Features (X): Following prior work Guo et al. [2022], patient medical history features were
constructed by time-binned counts of each unique medical code (diagnosis, procedure, lab result,
drug prescription) before the drug was prescribed. In total, 443,940 features were generated from the
following time bins: 0-24 hours, 24-48 hours, 2-7 days, 8-30 days, and 31-90 days, 91-365 days, and
365+ days prior. All individuals in the dataset provided by the insurance company had at least 50
unique days of claims data.

Metrics: We rely on best practices for evaluating CATE estimators as established established by
recent work Yadlowsky et al. [2021], Chernozhukov et al. [2018b], which recommend to assess
treatment rules by comparing subgroups across different quantiles of estimated CATE. We follow
the high vs. others RATE (rank-weighted average treatment effect) approach from Yadlowsky et.
al Yadlowsky et al. [2021], which computes the difference in average treatment effect (ATE) of the
top u percent of individuals (ranked by predicted CATE), versus all individuals:

RATE @Qu = E[Y(l) —Y(0) | Fs(S(X)) >1— u] - E[Y(l) - Y(O)], (14)

where S(-) is a priority score which ranks samples lowest to highest predicted CATE, and Fg(-) is the
cumulative distribution function (CDF) of S(X;). For instance, RATE @ 0.99 would be the difference
between the top 1% of the samples (by estimated CATE) vs. the average treatment effect (ATE) across
all samples, which we would expect to be high if the CATE estimator is accurate. The real-world
use case of our model would be preventing drug prescription a small subset of high-risk individuals.
Thus, more specifically, for each task j, intervention w; in the meta-dataset, and meta-model Wy
(our priority score S(-)), we compute RATE @ u for each w in [0.999,0.998,0.995, 0.99] across
individuals who received the intervention.
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We now summarize how to estimate RATE performance metrics for a single intervention (task).
As RATE performance is calculated separately per-intervention we are concerned with a single
intervention, we use the simplified notation (i.e. Y;(1) instead of Y;(w)) from Section 3. Due to the
fundamental problem of causal inference (we can only observe Y;(0) or Y;(1) for a given sample),
the true RATE, as defined above, cannot be directly observed.

We follow the method outlined in Section 2.2 and 2.4 of Yadlowsky et. al, Yadlowsky et al. [2021] in
which we compute I';, a (noisy but unbiased) estimate for CATE which is in turn used to estimate
RATE:

E [ﬁ- |XZ} ~7(X;) = E [Yi(1) - Y;(0) | X.] . (15)

Our data is observational, and as such we can estimate I'; using a direct non-parametric estimator Wa-
ger [2020]:

Ty = Wi(Y; — m(X;,0)) + (1 — W) (1 (X;,1) — Y;) (16)
m(z,w) = E[Y;(w)|X; = 2] (17)

where m(z, w) is a model that predicts the outcome. Here 1i(x, w) represent nonparametric estimates
of m(z, w), respectively, which we obtain by fitting a cross-fitting a model to the intervention natural
experiment over 5-folds. We use random forest models for 7 (x, w), as they perform well (achieving
> 0.90 ROC AUC across all meta-testing tasks for predicting outcomes) and are robust to choice of
hyperparameters.

RATE can then be estimated via sample-averaging estimator. Specifically, we compute the difference
between the average value of I'; for those in the top w percent of individuals (based on our meta-
model’s predictions), compared to the average I'; across all individuals. For further discussion on
estimating RATE, we refer readers to Yadlowsky et al. [2021]. Note that estimates of RATE are
unbounded: RATE can be less than 0 (due to predictions inversely relating to CATE).

Finally, because our meta-testing dataset consists of individuals treated with drugs known in the
medical literature to cause pancytopenia (identified by filtering drugs using the side effect database
SIDER Kuhn et al. [2016]), observational metrics of recall and precision are also a rough proxy
for successful CATE estimation. Thus, as secondary metrics, we also compute Recall @ u and
Precision @u for the same set of thresholds as RATE, where a positive label is defined as occurrence
of pancytopenia after intervention. We find that these metrics are highly correlated to RATE in our
performance results.

Training & Evaluation: For each method, we ran a hyperparameter search with 48 random config-
urations (48 due to running 8 jobs in parallel on 6 servers each) that were drawn uniformly from a
pre-defined hyperparameter search space (see Appendix C.4). Methods that can be trained on multiple
tasks to then be applied to tasks unseen during training (i.e., CaML and its ablations, S-learner w/
meta-learning, T-learner w/ meta-learning, SIN, GraphITE) were trained for 24 hours (per run) on the
meta-training tasks. Model selection was performed on the meta-validation tasks by maximizing the
mean RATE@0.998 across meta-validation tasks. Then, the best hyperparameter configuration was
used to fit 8 repetition runs across 8 different random seeds. Each repetition model was then tested on
the meta-testing tasks, where for all metrics averages across the testing tasks are reported. To make
the setting of multi-task models comparable with single-task models that were trained on meta-testing
tasks (requiring a train and test split of each meta-testing task), the evaluation of all models was
computed on the test split of the meta-testing tasks, respectively. Single-task baselines (FlexTENET,
TARNet, and DragonNet, RA-learner, R-learner, X-learner, and T-learner) were given access to the
meta-testing tasks during training. Specifically, model selection was performed on the meta-validation
tasks, while the best hyperparameter configuration was used to train 8 repetition models (using 8
random seeds) on the train split of each meta-testing task. For the final evaluation, each single-task
model that was fit on meta-testing task ¢ was tested on the test split of the same meta-testing task ¢,
and the average metrics were reported across meta-testing tasks.

C.1.2 LINCS

Interventions (17): Interventions in the LINCS dataset consist of a single perturbagen (small
molecule). For intervention information, we used the molecular embeddings for each perturbagen
using the RDKit featurizer The same cell line-perturbagen combinations are tested with different
perturbagen dosages and times of exposure. Landrum et al. [2006].To maintain consistency in
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experimental conditions while also ensuring that the dataset is sufficiently large for training a model,
we filter for most frequently occurring dosage and time of exposure in the dataset, which are 10pAM
and 24 hours, respectively. We use data from 10,322 different perturbagens.

Control group. For each perturbagen (at a given timepoint and dose), we use cell lines which did not
receive that intervention as the control group.

Outcomes (Y): We measure gene expression across the top-50 and top-20 landmark differentially
expressed genes (DEGs) in the LINCS dataset. Accurately predicting in gene expression in these
DEGs is most crucial to the drug discovery process.

Features (X): We use 19,221 features from the Cancer Cell Line Encyclopedia (CCLE) Ghandi
et al. [2019] to describe each cell-line, based on historical gene expression values in a different lab
environment. Our dataset consisted of 99 unique cell lines (after filtering for cell-lines with CCLE
features).

Metrics: A key advantage of experiments on cells is that at evaluation time we can observe both
Y (0) and Y (1) for the same cell line X, through multiple experiments on clones of the same cell-
line in controlled lab conditions. In the LINCS dataset, Y (0) is also measured for all cells which
received an intervention. Thus, we can directly compute the Precision Estimation of Heterogenous
Effects (PEHE) on all treated cells in our meta-testing dataset. PEHE is a standard metric for CATE
estimation performance Hill [2011], analagous to mean squared error (MSE).

N
_ 1 A2
PEHE = + ;(n — %) (18)

Training & Evaluation: For each method, we ran a hyperparameter search with 48 random con-
figurations (48 due to running 8 jobs in parallel on 6 servers each) that were drawn uniformly from
a pre-defined hyperparameter search space (see Appendix C.4). Methods that can be trained on
multiple tasks to then be applied to tasks unseen during training (i.e., CaML and its ablations,
S-learner w/ meta-learning, T-learner w/ meta-learning, SIN) were trained for 12 hours (per run) on
the meta-training tasks. Model selection was performed on the meta-validation tasks by minimizing
the overall PEHE for the Top-20 most differentially expressed genes (DEGs) across meta-validation
tasks. Then, the best hyperparameter configuration was used to fit 8 repetition runs across 8 different
random seeds. Each repetition model was then tested on the meta-testing tasks, where for all metrics
averages across the testing tasks are reported.

Data augmentation: We augment each batch of data during training to also include treated samples
that have their pseudo-outcome labels to 0, and their W set to the zero vector.

C.2 Selecting holdout interventions for meta-validation and meta-testing
C.2.1 Claims.

In the 30.4 million patient insurance claims dataset, each intervention task in meta-train/meta-
val/meta-testing corresponds to a natural experiment of multiple patients, with some interventions
(e.g. commonly prescribed drugs) having millions of associated patients who were prescribed the
drug. One challenge is that in this setting, there is overlap in subjects between the natural experiments
sampled by CaML, which can lead to data leakage between training and testing. For instance, if a
patient received Drug 1 (in meta-test) and Drug 2 (meta-train), they would appear in both natural
experiments, resulting in data leakage.

We take a conservative approach and exclude all patients who have ever received a meta-testing
drug in their lifespan from the natural experiments for meta-val/meta-train. Similarly, we exclude all
patients who received a meta-validation drug from meta-training.

This approach means we must take great care in selecting meta-testing drugs. Specifically, we
must trade off between selecting drugs that are important (covering enough patients) while not
diminishing the training dataset size. For instance selecting a commonly prescribed (e.g. aspirin) for
meta-testing would deplete our meta-training dataset by over 50% of patients. Thus we only selected
meta-test/meta-validation drugs which were prescribed to between 1,000,000 and 100K patients in
our dataset, after filtering for only drugs which known to cause Pancytopenia Kuhn et al. [2016]
(using the SIDER database). From this subset of drugs, we randomly selected 10 meta-testing drugs
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and 2 meta-validation drugs, resulting in a total meta-testing/meta-validation pool of 4.1 million
patients and 685K patients respectively.

To evaluate on unseen pairs of drugs on the same hold-out test dataset, we additionally created
a second pairs testing dataset from the 5 most frequently occurring combinations from the meta-
testing dataset. This allowed us to train a single model on the same meta-train split and evaluate
on both single drug and drug pair interventions without occurrence of data leakage. Designing a
larger evaluation of pairs was not possible because while pairs of drugs are commonly prescribed as
intervention, each particular pair of drugs is a rare event, and accurately evaluating CATE estimation
performance (for a rare outcome such as Pancytopenia) requires amassing a natural experiment with
at least several thousand patients who received the same intervention.

C.2.2 LINCS.

The goal in selecting holdout interventions for the meta-validation and meta-testing sets was to ensure
that they consisted of both cell lines and tasks (small molecules) that had not been seen previously at
the time of training (i.e. zero-shot on cell lines and tasks).

Using a random data splitting approach would result in large portions (up to 50%) of the data being
unused to comply with the zero-shot requirements on cell lines and tasks. One approach to tackle this
was to reserve only those tasks in the held-out sets which had been tested on the fewest cell lines.
This preserved the maximum amount of data but resulted in an average of just 1 cell line per task in
the meta-testing and meta-validation sets, which would not be fair to the non-zero shot baselines.

To address these issues, we designed a new data split procedure that exploits the structure of how
tasks and cell lines are paired. To do so, We first clustered tasks by the cell lines they are tested on.
We then identified a set of 600 drugs that had all been tested on a shared set of roughly 20 cell lines.
We divided the cell lines and tasks within this set into the meta-validation and meta-testing set, while
enforcing zero-shot constraints on both. This resulted in roughly 10 cell lines per intervention in
both the meta-validation and meta-testing sets, while still maintaining a reasonably large size of 11
distinct cell lines and 300 distinct tasks in both sets. All remaining tasks and cell lines were reserved
for the training set. (See Table 8)

C.3 Understanding CaML’s performance

Our comparison to CATE estimators which are restricted to single interventions (Grey, Table 2,B.3)
shows that a key reason for CaML’s strong performance is the ability to joinly learn across from many
intervention datasets, in order to generalize to unseen intervention.

Additionally, in both the Claims and LINCS settings, we conduct two key ablation studies to further
understand the underlying reason for CaML’s strong performance results.

In our first ablation experiment (w/o meta-learning), we trained the CaML model without employing
meta-learning, instead using the standard empirical risk minimization (ERM) technique Vapnik
[1991]. This can be seen as a specific implementation of the CaML algorithm (refer to Algorithm 1)
when k£ = 1 Nichol and Schulman [2018]. The results of this experiment showed a varying degree of
performance deterioration across our primary tests. In the Claims settings, we observed a decrease
in the RATE performance metric by 15%-22% (refer to Table 2), while in the LINCS settings, the
PEHE performance metric decreased by approximately 0.01 (see Table 3). These results indicate that
the absence of meta-learning affects the model’s performance, although the impact varies depending
on the specific setting. An important detail to consider is that the Claims data experiments dealt with
substantially larger datasets, each comprising hundreds of thousands of patients per intervention. This
extensive scale of data potentially amplifies the benefits of using meta-learning in the CaML model
for the Claims dataset. The larger dataset enables the model to adapt to a given task over a larger set
of iterations without reusing the same data, thereby enhancing the efficacy of meta-learning.

Our second ablation (w/o RA-learner) assesses the sensitivity of CaML’s performance to different
pseudo-outcome estimation strategies. A key aspect of CaML is flexibility in choice of any pseudo-
outcome estimator to infer CATE, in contrast to prior work which uses specific CATE estimation
strategies Harada and Kashima [2021], Kaddour et al. [2021]. We find that CaML performance
benefits strongly from flexibility of pseudo-outcome estimator choice. We assess this by using an
alternative pseudo-outcome estimator. Firstly, we find that this ablation results in much noisier model
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training. For instance, the standard deviation in RATE across the 8 random seeds increases by 20 x
when using the alternative pseudo-outcome estimator in the claims setting. Moreover, the alternative
pseudo-outcome estimator typyically worsens performance, decreasing RATE by up to 6% in the
Claims setting , and increasing PEHE by 20%-21% in the LINCS setting (Table 3). We note that this
ablation performs slightly better at the 0.99 threshold, which may be a result of the high variance
in this ablation. Specific choice of alternative pseudo-outcome estimator for this ablation varies by
setting. We use the R-learner Nie and Wager [2021] for Claims as it also achieves strong single task
performance (Table 2, grey) on Claims data. However, R-learner is restricted to single-dimensional
outcomes, and thus for LINCS (in which outcomes are 50 and 20 dimensional), we use the PW-learner
instead Curth and van der Schaar [2021c¢].

C.4 Hyperparameter space
C.4.1 Claims dataset hyperparameter space

We list the hyperparameter search spaces for the medical claims dataset in the following tables. Table 9
represents the search space for CaML. The SIN baseline consists of two stages, Stage 1 and Stage 2.
For the Stage 1 model, we searched the identical hyperparameter search space as for CaML (Table 9).
For Stage 2, we used the hyperparameters displayed in Table 10. The search space for the GraphITE
baseline is displayed in Table 11. For the S-learner and T-learner w/ meta-learning baselines, we use
the same hyperparameter space as for CaML (Table 9) with the only major difference that the these
baselines predicts the outcome Y instead of 7. For all deep learning-based methods, we employed
a batch size of 8,192, except for GraphITE, where we were restricted to using a batch size of 512
due to larger memory requirements. Single-task neural network baselines (FlexTENet, TARNet, and
DragonNet) are shown in Tables 12,13, and 14, respectively. For the remaining baselines, i.e., the
model-agnostic CATE estimators, the (shared) hyperparameter search space is shown in Table 15.
Finally, applied L1 regularization to the encoder layer of the customizable neural network models (that
were not reused as external packages), i.e., SIN learner, GraphITE, T-learner w/ meta-learning, and
S-learner w/ meta-learning, and CaML.

C.4.2 LINCS hyperparameter space

We list the hyperparameter search spaces for LINCS in the following tables. CaMLis shown in
Table 16. SIN Stage 1 used the same search space as CaML (Table 16. The search space of SIN
Stage 2 is shown in Table 17. S learner and T-learner w/ meta-learning used the same search space as
CaML. The search space of GraphlITE is shown in Table 18. All methods that were applied to LINCS
used a batch size of 20.

C.5 More details on intervention information

Here we give more details about the intervention information used for the medical claims dataset.
In order to perform zero-shot generalization, we acquired information about a specific intervention
through the use of pretrained embeddings. We generated these embeddings on the Precision Medicine
Knowledge Graph Chandak et al. [2022] that contains drug nodes as well as 9 other node types. We
extracted embeddings for 7957 drugs from the knowledge graph.

To extract rich neighborhood information from the knowledge graph we used Stargraph Li et al.
[2022b], which is a coarse-to-fine representation learning algorithm. StarGraph generates a subgraph
for each node by sampling from its neighbor nodes (all nodes in the one-hop neighborhood) and
anchor nodes (a preselected subset of nodes appearing in the multihop neighborhood). In our case
the anchor nodes were the 2% of graph nodes with the highest degree. For the scoring function we
used the augmented version of TripleRE Yu et al. [2022] presented in the StarGraph article Li et al.
[2022b].

We performed a hyperparameter optimization to compare different models and determine the one we
used to calculate our final embeddings (see Table C.5). The hyperparameter search was random with
the objective of minimizing the loss function used in training on held out data. The search range for
each of the parameters is displayed in C.5. Since certain parameters did not seem to influence the
final score as much we decided to use them as constants and focus on optimizing the hyperparameters
in the table. Therefore the number of sampled anchors was set to 20 and © = 0.1 in the augmented
TripleRE function, the values matching those seen in Stargraph Li et al. [2022a].
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Our final embeddings were 256-dimensional, the learning rate was 2e-4, the drop-ratio was 5e-3. We
used the self-adversarial negative sampling loss with v = 8 and we sampled 4 neighbor nodes for
each subgraph.

To additionally evaluate the quality of the embeddings we assigned classes to drug combinations
and then scored them using multiple clustering metrics. We were interested to see if embeddings of
drug combinations used for similar purposes would be embedded closer together than other drug
combinations. For the class label of single drugs we used the first level of the Anatomical Therapeutic
Chemical (ATC) code, which represents one of the 14 anatomical or pharmacological groups. Since
certain medications have more than one ATC code, we took the mode of all labels for a specific
drug. For multiple drugs we combined all distinct first level values and took the mode of them as
the label. We used the Silhouette metric, Calinski Harabasz index and Davies Bouldin index as
well as the average classification accuracy over 10 runs of training a random forest classifier on
a random sample of 80% of the dataset and evaluating on the remaining 20%. Out of all tested
embeddings the hyperparameter optimized StarGraph embeddings performed best (exceeding 93% in
the classification accuracy metric).

C.6 Pseudo-outcome estimation

In our experiments, we estimate pseudo-outcomes 7 for a given intervention w using the RA-
learner Curth and van der Schaar [2021c]:

T =W — (X)) + (1= W)((X)-Y) (19)

where i, is an estimate of 11,,(X) = Ep [Y | X =2, W = w}

Furthermore, in both settings we only estimate CATE for treated individuals. We focus on treated
individuals in the Claims setting because we care about the risk of an adverse event for prescribing
a sick patients drugs that may cure their sickness, not the adverse event risk of prescribing healthy
patients drugs (which is of less clinical interest). In the LINCS setting, we focus on treated cells as
for these cell-lines Y (0) is also measured from a cloned cell-line under similar laboratory conditions,
which allows us to directly estimate CATE prediction performance using the PEHE metric. As we
focus on treated samples, the RA-learner can be simplified to 7 = Y — [ig(X). We estimate fio(X)
using a random forest model in the Claims setting, whereas in the LINCS setting we use the point
estimate from the untreated control cell line’s gene expression.

C.7 Baselines

Here we provide more details on the baselines used in our experiments.

Trained on test task: These baselines leverage CATE estimators which can only be trained on a single
task (typically these are the strongest baselines, when there is a large enough dataset for a single task).
Thus, we train a single model for each meta-testing task on its train split, and evaluate performance
on its test split. We use a number of strong baselines for CATE estimation developed by prior work
including both model-agnostic and end-to-end deep learning approaches: T-learner. Specifically,
we use the model-agnostic CATE estimators: Kiinzel et al. [2019], X-learner Kiinzel et al. [2019],
RA-learner Curth and van der Schaar [2021c], R-learner Nie and Wager [2021]. We additionally use
the end-to-end deep learning estimators DragonNet Shi et al. [2019], TARNet Shalit et al. [2017],
and FlexTENet Curth and van der Schaar [2021b], using implementations from Curth and van der
Schaar [2021b]. For model-agnostic CATE estimators, we use random forest models following prior
work Curth et al. [2021], Wager and Athey [2018].

Zero-shot. These baselines use CATE estimators which incorporate intervention information (W) and
are capable of multi-task learning. We train these baselines on all meta-training tasks. These baselines
have no access to the meta-testing tasks during training. We found in preliminary experiments that
in some cases, baseline models trained with vanilla ERM would not even converge. To allow for
fair comparison to baselines, we allow for all zero-shot baselines to be trained using Reptile (by
training using the same optimization strategy as Algorithm 1, while allowing for training with ERM
by including £ = 1 in the hyperparameter search space).

Firstly, we use GraphITE Harada and Kashima [2021] and Structured Intervention Networks Kaddour
et al. [2021]. These are, to the best of our knowledge, the only methods from prior work which are
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(in principle) capable of zero-shot generalization. We use existing implementations provided by the
authors Kaddour et al. [2021].

Additionally, we implement two strong baselines which estimate CATE by modeling Y (w) and Y (0),
rather than via pseudo-outcomes. These are variants of the S-learner and T-learner Kiinzel et al. [2019]
with meta-learning, which use the intervention information as input, rather than one-hot encoded
vectors of the different interventions—such that they also have zero-shot capability. Specifically, we
train MLPs using the same architecture as CaML to estimate the response function from observed
outcomes:

plz,w) = Ep[V | X =2,W = w] (20)
and estimate CATE by
Fule) = (e, w) — il 0) @1

Where w denotes the corresponding intervention information w for an intervention, and 0 denotes a
null intervention vector. In the LINCS setting, we represent 0 as a vector of zeros, whereas in the
Claims setting we represent 0 as the mean embedding of all drugs (as the estimand is the increase in
adverse event likelihood compared to a randomly chosen drug). The difference between the T-learner
and the S-learner is that the T-learner estimates two models, one for control units and one for treated
units. By contrast, the S-learner estimates a shared model across all units.
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D Additional Experiments

In general, limited training examples, or biases in the training data, will degrade model perfor-
mance—and the CaML algorithm is no exception in this regard. For instance, if there are too few
examples of prior interventions (e.g., only a handful of training drugs), then zero-shot generalization
may become more challenging. Therefore, it is important to study the robustness of CaML’s per-
formance to limitations in the training dataset. To this end, we conduct additional experiments in
which we downsample the number of training interventions. As expected, we find that: (1) zero-shot
capabilities improve as the set of unique training interventions increases in size and (2) we can still
achieve strong performance on smaller datasets (e.g., runs with 60% and 80%, of the interventions
achieve similar performance).
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Figure 3: Measuring the robustness of CaML to limitations in the training intervention data. We
downsample the number of training interventions and measure CaML’s performance. Overall, we
find that CaML’s zero-shot capabilities improve as the set of unique training interventions increases
in size. Nevertheless, CaML still achieves strong performance on smaller datasets (e.g., runs with
60% and 80%, of the interventions achieve similar performance). Results are analogous for other
metrics on both datasets. Top: Performance on the Claims dataset at predicting the effect on a novel
drug on the likelihood of Pancytopenia onset (RATE @ 0.998). Bottom: Performance on the LINCS
dataset at predicting the gene expression of the Top 20 and Top 50 most differentially expressed
genes (DEGs).



E Unbiasedness of CATE estimates

Unbiasedness of Pseudo-outcome labels

We show for an example pseudo-outcome label, the RA-learner Curth and van der Schaar [2021c],

that the estimated pseudo-outcome labels are unbiased estimates of the true CATE, i.e.:
EFfX=z]=7(z)=E[Y(1) - Y(0)| X = z]

The pseudo-outcome 7 for the RA-learner is defined as 7; = Y; — [ip(X;) for treated units (W; = 1),

and 7; = f1;(X;) —Y; for control units (W; = 0).

Here, fio(X), f11 (X)) denote unbiased and correctly specified nuisance models for the outcomes Y (0)
and Y'(1) respectively. In other words, E [fig(2)] = uo(z) = E[Y(0)|X = 2] and E [ji1 ()] =
im(w) = E[Y (DX = 1.

We consider the treated and control units separately. For treated units (WW; = 1), we have:
7 =Yi — fuo(Xy).
Hence, their expectation, conditioned on covariates X can be written as:
E[FfX =a] =E[Y — (X)X =2] =E[Y[X = 2] - E[(X)|X =2] =E[Y[X = 2] -E[Y(0)|X = z] = 7(x),
which by applying the consistency assumption (paper Line 98) for treated units is equivelant to:
EY)X=2]-E[Y(0)|X =z]=E[Y(1) - Y(0)|X = 2] = 7(x).

Analogously, we can make the same argument for control units (/W = 0). Here, the pseudo-outcome
is computed as:

Ti = (Xi) = Y.
Hence, we have
E[FIX = 2] = E[m(X) - VX = 2] = E [ (X)[X = 2] -E[Y|X = 2],
which under consistency (for control units) is equivalent to:
EYD)X=2]-E[Y(0)|X =2]=E[Y(1) - Y(0)|X = 2] = 7(x).

Unbiasedness of Model Loss

We consider parametrized CATE estimators Wg: R® x R? — R that take as input intervention
information w € R€ (e.g., a drug’s attributes) and individual features 2 € R? (e.g., patient medical
history) to return a scalar for the estimated CATE (e.g., the effect of the drug on patient health).

We denote the loss function L with regard to a CATE estimator ¥ and a target y as:
L(¥,y) = (¥ (w,x) —y)°

As in Theorem 1, we assume pseudo-outcomes targets 7 during training satisfy 7 = 7 + £ where 7 is
the true (unobserved) CATE and £ is an independent zero-mean noise.

Lemma 10. Given two different CATE estimators \ilgl, \1192, parameterized by 61 and 05:

E [L(¥o,,7)| <E [L(¥0,,7)] = E[L(0,,7)] <E[L(¥0,,7)]
Proof. We follow a similar argument as Tripuraneni et al. Tripuraneni et al. [2021].
. R 2 . 2
E [L(\Ilg,%)} —E (\119 (w, ) —%) ] —E {(\Ilg (w, ) —T+r—%) }

=F :(\ifg (w, z) —7')2 +(r—7)7%+2 (‘i’e (w,x) —7') (7'—7:)}

=& [ ( ) )] + B [t~ 7] 4 28 [ (0 ) ) (=)
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Now we subtract the loss for the two models parameterized by by 67 and 65:

Expanding out the righthand terms give us:

E[(@el (wvx)—r)f +2E [, (w,2) -7 — Ty, (w,) -7 — 7% 4 77| -

E[(@ez (W)_T)Q: ~9E g, (w,x) -7 — g, (w,2) 7~ 77 77| =
E{(@el (wyw)—T)TH}E_}if& (w,z) - 7 — b, (w,7) T}_E 2Bt
E {(%2 (w,x)7)1 — 28 [#, (w,2) - 7 — i, (w,mﬂ B[] BT

E [(\pg (w,z) — 7) 1 12K [\ifal (w,z) -7 — Wy, ( 7':|
E [(\1192 (w, ) —7)1 _9E {\1/ (w,z) -7 — Vg, ( 7’}
|-

E {(% (w,z) — T)Z] —E {(xp@ (w, z) — 7)1 +2E (¥, (w,2) - (r = 7)) = (¥s, =)

E [(% (w, 2) — 7)2] _E {(\pa (w,7) — 7)1 1B {(% (w,2) = o, (w,2)) - (r = )| =
+
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from which—due to equality with Equation 1—the claim follows.
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Split # of Patients

Allopurinol Test 815,921
Pregabalin Test 636,995
Mirtazapine Test 623,980
Indomethacin Test 560,380
Colchicine Test 370,397
Hydralazine Test 363,070
Hydroxychloroquine Test 324,750
Methotrexate Test 323,387
Memantine Test 306,832
Fentanyl Test 261,000
Etodolac Val 438,854
Azathioprine Val 100,000

Table 6: Held-out test and validation drugs for our single-drug meta-testing and meta-validation
datasets for our Claims evaluation in Table 2. Drugs are unseen (excluded) during training. All drugs
are known to cause pancytopenia Kuhn et al. [2016]

Split # of Patients

Allopurinol + Hydralazine Test 7,859
Methotrexate + Hydroxychloroquine Test 25,716
Pregabalin + Fentanyl Test 5,424
Indomethacin + Colchicine Test 42,846
Mirtazapine + Memantine Test 10,215

Table 7: Held-out test pairs of drugs for our meta-testing and meta-validation datasets in Appendix
Table B.3. Both drugs are unseen (excluded) during training. All drugs are known to cause pancy-
topenia Kuhn et al. [2016]

Split # Perturbagens # Cell-Lines Mean #Cell Lines/Task
Meta-training 9717 77 5.79
Meta-validation 304 11 9.99
Meta-testing 301 11 10.77

Table 8: Composition of the meta-training, meta-validation and meta-testing sets for the LINCS
dataset. No cell lines or drugs (tasks) were shared across any of the splits.

Hyperparameter Search range

Num. of layers {2,4,6}

Dim. of hidden layers {128,256}

Dropout {0,0.1}

Learning rate {3x1073,1x1073,3 x 1074,1 x 1074}
Meta learning rate {1}

Weight decay {5 x 1073}

Reptile k {1,10,50}

L1 regularization coefficient {0,1x1077,5 x 1077}

Table 9: Hyperparameter search space for CaML (our proposed method) on the medical claims
dataset.
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Hyperparameter Search range

Num. of como layers {2,4,6}

Num. of covariate layers {2,4,6}

Num. of propensity layers {2,4,6}

Num. of treatment layers {2,4,6}

Dim. of hidden como layers {128,256}

Dim. of hidden covariate layers {128,256}

Dim. of hidden treatment layers {128,256}

Dim. of hidden propensity layers {16, 32,64, 128}
Dropout {0,0.1}
Learning rate {3x1073,1x1072,3 x 10741 x 1074}
Meta learning rate {1}

Sin Weight decay {0,5 x 1073}

Pro Weight decay {0,5 x 1073}
GNN Weight decay {0,5 x 1073}
Reptile k {1,10,50}

L1 regularization coefficient {0,1x 10775 x 1077}

Table 10: Hyperparameter search space for SIN on the medical claims dataset. The SIN model
consists of two stages, Stage 1 and Stage 2. For the Stage 1 model we searched the identical
hyperparameter search space as for CaML (Table 9). For Stage 2, we used the hyperparameters
shown in this table.

Hyperparameter Search range
Num. of covariate layers {2,4,6}

Num. of treatment layers {2,4,6}

Dim. of hidden treatment layers {128,256}

Dim. of hidden covariate layers {128,256}
Dropout {0,0.1}
Independence regularization coefficient {0,0.01,0.1,1.0}
Learning rate {3x1072,1x1073,3 x 1074,1 x 1074}
Meta learning rate {1}

Weight decay {5 x 1073}
Reptile k {1,10,50}

L1 regularization coefficient {0,1 x 1077,5 x 1077}

Table 11: Hyperparameter search space for GraphITE on the medical claims dataset.

Hyperparameter Search range

Num. of out layers {1,2,4}

Num. of r layers {2,4,6}

Num. units p out {32,64,128,256}
Num. units s out {32,64,128,256}
Num. units s r {32,64,128,256}
Num. units p r {32,64, 128,256}
Weight decay {5 x 1073}
Orthogonal penalty {0,1 x107°,1 x 1073,0.1}
Private out {True, False }
Learning rate {3x1073,1x1073,3 x 10741 x 1074}

Table 12: Hyperparameter search space for FlexTENet on the medical claims dataset.
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Hyperparameter Search range

Num. of out layers {1,2,4}

Num. of r layers {2,4,6}

Num. units out {128,256}

Weight decay {5 x 1073}

Penalty disc {0,1 x 1073}

Learning rate {3x1073,1x1072,3 x 10741 x 1074}

Table 13: Hyperparameter search space for TARNet on the medical claims dataset.

Hyperparameter Search range

Num. of out layers {1,2,4}

Num. of r layers {2,4,6}

Num. units r {128,256}

Num. units out {128,256}

Weight decay {5 x 1073}

Learning rate {3x1073,1x1072,3 x 1074,1 x 1074}

Table 14: Hyperparameter search space for DragonNet on the medical claims dataset.

Hyperparameter Search range

Num. of estimators [50, 250]

Max depth [10, 50]

Min sample split (2, 8]

Criterion regress {squared error, absolute error}
Criterion binary {gini, entropy }

Max features {sqrt, log2, auto}

Table 15: Hyperparameter search space for model-agnostic CATE estimators, i.e., R-learner, X-
learner, RA-learner, and T-learner on the medical claims dataset.

Hyperparameter Search range

Num. of layers {2,4,6}

Dim. of hidden layers {512,1024}

Dropout {0,0.1}

Learning rate {3x1072,1x1073,3 x 10741 x 1074}
Meta learning rate {0.1,0.5,0.9}

Weight decay {0.1}

Reptile k {1,2,3}

L1 regularization coefficient {0,1x1077,5 x 1077}

Table 16: Hyperparameter search space for CaML (our proposed method) on the LINCS dataset.
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Hyperparameter Search range
Num. of como layers {2,4,6}
Num. of covariates layers {2,4,6}
Num. of propensity layers {2,4,6}
Num. of treatment layers {2,4,6}
Dim. output {128,256}
Dim. of hidden treatment layers {128,256}
Dim. of hidden covariate layers {128,256}
Dim. of hidden como layers {128,256}
Dim. of hidden propensity layers {16, 32,64, 128}
Model dim. {512, 1024}
Dropout {0,0.1}
Learning rate {3x1073,1x1072,3 x 107%,1 x 1074}
Meta learning rate {0.1,0.5,0.9}
Sin weight decay {0.0,0.005}
Pro weight decay {0.0,0.005}
GNN weight decay {0.0,0.005}
Weight decay {0.1}
Reptile k {1,2,3}

L1 regularization coefficient

{0,1x1077,5x 107}

Table 17: Hyperparameter search space for the SIN baseline on the LINCS dataset.

Hyperparameter Search range
Num. of covariate layers {2,4,6}
Num. of treatment layers {2,4,6}
Num. of layers {2,4,6}
Dim. of hidden covariate layers {128,256}
Independence regularization coefficient {0,0.01,0.1,1.0}
Dropout {0,0.1}
Model dim. {512, 1024}
Learning rate {3x1073,1x1072,3 x 10741 x 1074}
Meta learning rate {0.1,0.5,0.9}
Weight decay {0.1}
Reptile k {1,2,3}

L1 regularization coefficient

{0,1x1077,5x 107}

Table 18: Hyperparameter search space for the GraphITE baseline on the LINCS dataset.

Hyperparameter

Search range

Dropout
Learning rate
Weight decay

Adversarial temperature

Gamma

Num. of sampled neighbors
Dim. of hidden layers

[le-4,1e-1]
[1e-5,1e-3]
[le-5,1e-2]
[1,10]
[0,30]
0-10
{ 64, 128,256,512}

Table 19: The hyperparameter optimization search ranges used in the selection of the optimal model
for the generation of knowledge graph node embeddings that would serve as intervention information

for the medical claims dataset.
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