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Abstract

Graph Neural Networks (GNNs) are powerful machine learning prediction models
on graph-structured data. However, GNNs lack rigorous uncertainty estimates,
limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction
(CP) to graph-based models for guaranteed uncertainty estimates. Given an entity
in the graph, CF-GNN produces a prediction set/interval that provably contains
the true label with pre-defined coverage probability (e.g. 90%). We establish a
permutation invariance condition that enables the validity of CP on graph data
and provide an exact characterization of the test-time coverage. Besides valid
coverage, it is crucial to reduce the prediction set size/interval length for practical
use. We observe a key connection between non-conformity scores and network
structures, which motivates us to develop a topology-aware output correction
model that learns to update the prediction and produces more efficient prediction
sets/intervals. Extensive experiments show that CF-GNN achieves any pre-defined
target marginal coverage while significantly reducing the prediction set/interval
size by up to 74% over the baselines. It also empirically achieves satisfactory
conditional coverage over various raw and network features.

1 Introduction

Graph Neural Networks (GNNs) have shown great potential in learning representations for graph-
structured data, which has led to their widespread adoption in weather forecasting [29], drug discov-
ery [31], and recommender systems [46], etc. As GNNs are increasingly deployed in high-stakes
settings, it is important to understand the uncertainty in the predictions they produce. One prominent
approach to uncertainty quantification is to construct a prediction set/interval that informs a plausible
range of values the true outcome may take. A large number of methods have been proposed to achieve
this goal [17, 49, 28, 44]. However, these methods often lack theoretical and empirical guarantees
regarding their validity, i.e. the probability that the prediction set/interval covers the outcome [2].
This lack of rigor hinders their reliable deployment in situations where errors can be consequential.

Conformal prediction [43] (CP) is a framework for producing statistically guaranteed uncertainty
estimates. Given a user-specified miscoverage level a € (0, 1), it leverages a set of “calibration”
data to output prediction sets/intervals for new test points that provably include the true outcome
with probability at least 1 — «. Put another way, the conformal prediction sets provably only miss
the test outcomes at most « fraction of the time. With its simple formulation, clear guarantee and
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distribution-free nature, it has been successfully applied to various problems in computer vision [2, 4],
causal inference [30, 22, 47], time series forecasting [11, 48], and drug discovery [21].

Despite its success in numerous domains, conformal prediction has remained largely unexplored in
the context of graph-structured data. One primary challenge is that it is unclear if the only, yet crucial,
assumption for CP—exchangeability between the test and calibration samples—holds for graph data.
When applying conformal prediction, exchangeability is usually ensured by independence among the
trained model, the calibration data, and test samples (see Appendix B for more discussion). However,
in the transductive setting, GNN training employs all nodes within the same graph—including test
points—for message passing, creating intricate dependencies among them. Thus, to deploy conformal
prediction for graph data, the first challenge is to identify situations where valid conformal prediction
is possible given a fitted GNN model that already involves test information.

Efficiency is another crucial aspect of conformal prediction for practical use: a prediction set/interval
with an enormous set size/interval length might not be practically desirable even though it achieves
valid coverage. Therefore, the second major challenge is to develop a graph-specific approach to
reduce the size of the prediction set or the length of the prediction interval (dubbed as inefficiency
hereafter for brevity) while retaining the attractive coverage property of conformal prediction.

Present work. We propose conformalized GNN (CF-GNN),! extending conformal prediction to
GNN for rigorous uncertainty quantification over graphs. We begin by establishing the validity
of conformal prediction for graphs. We show that in the transductive setting, regardless of the
dependence among calibration, test, and training nodes, standard conformal prediction [43] is valid
as long as the score function (whose definition will be made clear in Section 2) is invariant to the
ordering of calibration and test samples. This condition is easily satisfied by popular GNN models.
Furthermore, we provide an exact characterization of the empirical test-time coverage.

Subsequently, we present a new approach that learns to optimize the inefficiencies of conformal
prediction. We conduct an empirical analysis which reveals that inefficiencies are highly correlated
along the network edges. Based on this observation, we add a topology-aware correction model
that updates the node predictions based on their neighbors. This model is trained by minimizing
a differentiable efficiency loss that simulates the CP set sizes/interval lengths. In this way, unlike
the raw prediction that is often optimized for prediction accuracy, the corrected GNN prediction
is optimized to yield smaller/shorter conformal prediction sets/intervals. Crucially, our approach
aligns with the developed theory of graph exchangeability, ensuring valid coverage guarantees while
simultaneously enhancing efficiency.

We conduct extensive experiments across 15 diverse datasets for both node classification and regres-
sion with 8 uncertainty quantification (UQ) baselines, covering a wide range of application domains.
While all previous UQ methods fail to reach pre-defined target coverage, CF-GNN achieves the
pre-defined empirical marginal coverage. It also significantly reduces the prediction set sizes/interval
lengths by up to 74% compared with a direct application of conformal prediction to GNN. Such
improvement in efficiency does not appear to sacrifice adaptivity: we show that CF-GNN achieves
strong empirical conditional coverage over various network features.

2 Background and Problem Formulation

Let G = (V,&,X) be a graph, where V is a set of nodes, £ is a set of edges, and X = {x, },ev is
the attributes, where x,, € R? is a d-dimensional feature vector for node v € V. The label of node v
is y, € Y. For classification, ) is the discrete set of possible label classes. For regression, ) = R.

Transductive setting. We focus on transductive node classification/regression problems with random
data split. In this setting, the graph G is fixed. At the beginning, we have access to { (X, ) }vep as
the “training” data, as well as test data Dieg With unknown labels {y, } yep,,. Here D and D are
disjoint subsets of V. We work on the prevalent random split setting where nodes in D and Dy are
randomly allocated from the entire graph, and the test sample size is m = |Diey|. The training node set
D is then randomly split into Dyyain/Dyatid/ Peatib Of fixed sizes, the training/validation/calibration
set, correspondingly. A perhaps nonstandard point here is that we withhold a subset D¢y, as
“calibration” data in order to apply conformal prediction later on. During the training step, the data

ISee Figure 1 for an overview. The code is available at https://github.com/snap-stanford/
conformalized-gnn.
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Figure 1: Conformal prediction for graph-structured data. (1) GNN training. We first use standard GNN training

to obtain a base GNN model (GNNy) that produces prediction scores fi(X;) for node i. It is fixed once trained.
(2) Conformal correction. Since the training step is not aware of the conformal calibration step, the size/length
of prediction sets/intervals (i.e. efficiency) are not optimized. We propose a novel correction step that learns to
correct the prediction to achieve desirable properties such as efficiency. We use a topology-aware correction
model GNNy that takes z(X;) as the input node feature and aggregates information from its local subgraph to
produce an updated prediction fi(X;). ¥ is trained by simulating the conformal prediction step and optimizing a
differentiable inefficiency loss. (3) Conformal prediction. We prove that in a transductive random split setting,
graph exchangeability holds (Section 3) given permutation invariance. Thus, standard CP can be used to produce
a prediction set/interval based on /i that includes true label with pre-specified coverage rate 1-a.

{(Xus Yv) }veDanUDwa» the attribute information in {x, } v, UD,... @nd the entire graph structure
(V, &) are available to the GNN to compute training nodes representations, while {yy }ve D11 UDseus
are not seen.

Graph Neural Networks (GNNs). GNNs learn compact representations that capture network
structure and node features. A GNN generates outputs through a series of propagation layers [12],
where propagation at layer [ consists of the following three steps: (1) Neural message passing.

GNN computes a message me,Z = MSG(th _1), th‘”) for every linked nodes u, v based on their
embeddings from the previous layer hg Y and th‘”. (2) Neighborhood aggregation. The messages

between node u and its neighbors N, are aggregated as m,) = AGG(me1),|U € Ny). (3) Update.

Finally, GNN uses a non-linear function to update node embeddings as hq(f ) — UPD(rqu(f ), hq(f 71))

using the aggregated message and the embedding from the previous layer. The obtained final node
representation is then fed to a classifier or regressor to obtain a prediction fi(X).

Conformal prediction. In this work, we focus on the computationally efficient split conformal
prediction method [43].> Given a predefined miscoverage rate o € [0, 1], it proceeds in three steps:
(1) non-conformity scores. CP first obtains any heuristic notion of uncertainty called non-conformity
score V: X x ¥ — R. Intuitively, V' (z, y) measures how y "conforms" to the prediction at z. An
example is the predicted probability of a class y in classification or the residual value V(z,y) =
|y — fi(z)| in regression for a predictor i: X — Y. (2) Quantile computation. CP then takes the
1 — « quantile of the non-conformity scores computed on the calibration set. Let {(X;, Y;)}?_; be the
calibration data, where n = |De,ip|, and compute 7 = quantile({V (X1,Y1), -+, V(X,, Ya)}, (1 —
a)(1 + 1)). (3) Prediction set/interval construction. Given a new test point X, 1, CP constructs
a prediction set/interval C'(X,41) = {y € ¥ : V(Xpp1,y) < 7). H{Z3MH = {(X,, Y3) )
are exchangeable,® then V;, 41 := V (X, 41, Yy11) is exchangeable with {V;}™_; since /i is given.
Thus, C(X,,+1) contains the true label with predefined coverage rate [43]: P{Y,,11 € C(X,41)} =
P{V,,+1 > Quantile({V1,...,V11},1 — @) > 1 — « due to exchangeability of {V; ?:11. This
framework works for any non-conformity score. CF-GNN is similarly non-conformity score-agnostic.
However, for demonstration, we focus on two popular scores, described in detail below.

Adaptive Prediction Set (APS). For the classification task, we use the non-conformity score in APS
proposed by [37]. It takes the cumulative sum of ordered class probabilities till the true class. Formally,
given any estimator /i;(z) for the conditional probability of Y being class jat X = z,j =1,...,|Y|,

we denote the cumulative probability till the k-th most promising class as V(x, k) = Z?:l fir (2,

2See Appendix B for discussion on full and split conformal prediction. We refer to the split conformal
prediction when we describe conformal prediction throughout the paper.

*Exchangeability definition: for any 21, ..., z,+1 and any permutation 7 of {1,...,n + 1}, it holds that
P((Zﬂ-(l), ey Zfr(n+1)) = (21, ceey Zn+1)) = ]P)((Zl7 ey Zn+1) = (Zl, e ,Zn+1)).



where 7 is a permutation of ) so that fi(1)(x) > fiz(2)(x) > - -+ > [ix(|y))(x). Then, the prediction
set is constructed as C'(z) = {n(1),--- ,7w(k*)}, where k* = inf{k : Z?Zl fr(jy(x) > 1}

Conformalized Quantile Regression (CQR). For the regression task, we use CQR in [36]. CQR is
based on quantile regression (QR). QR obtains heuristic estimates /i, /2(z) and fi1_q 2 (x) for the
a/2-th and 1 — a/2-th conditional quantile functions of Y given X = x. The non-conformity score
is V(z,y) = max{jia/2(®) — ¥,y — l1—qa/2()}, interpreted as the residual of true label projected
to the closest quantile. The prediction interval is then C(z) = [fiq/2(2) — 7, f1—a/2(x) + 7).

In its vanilla form, the non-conformity score (including APS and CQR) in CP does not depend on the
calibration and test data. That means, {X, } yeD_,UD,., are not revealed in the training process of V,
which is the key to exchangeability. In contrast, GNN training typically leverages the entire graph,
and hence the learned model depends on the calibration and test attributes in a complicated way. In
the following, for clarity, we denote any non-conformity score built on a GNN-trained model as

V('ra Y; {ZU}’UEDmmUDvaudv {XU}UEDcanbU'Dtesn V, 8)

to emphasize its dependence on the entire graph, where z,, = (x,,Y,) forv € V.

Evaluation metrics. The goal is to ensure valid marginal coverage while decreasing the ineffi-
ciency as much as possible. Given the test set Dyest, the empirical marginal coverage is defined
as Coverage := m > iep,.., 1(Yi € C(X;)). For the regression task, inefficiency is measured
as the interval length while for the classification task, the inefficiency is the size of the prediction
. . 1 . . .

§et. I]@ff = BT > 1€Dtont, C’ (Xl)| The larger the length/size, t}?e.more 1n§fﬁc1ent. Note that
inefficiency of conformal prediction is different from accuracy of the original predictions. Our method
does not change the trained prediction but modifies the prediction sets from conformal prediction.

3 Exchangeability and Validity of Conformal Prediction on Graph

To deploy CP for graph-structured data, we first study the exchangeability of node information
under the transductive setting. We show that under a general permutation invariant condition
(Assumption 1), exchangeability of the non-conformity scores is still valid even though GNN training
uses the calibration and test information; this paves the way for applying conformal prediction to
GNN models. We develop an exact characterization of the test-time coverage of conformal prediction
in such settings. Proofs of these results are in Appendix A.1.

Assumption 1. For any permutation © of Deaiip U Dyest, the non-conformity score V- obeys

V(l‘, Y; {ZU}UEDIVMiIXUDVMIid7 {XU}UEDmh’bUDmM V, 5)
= V(z,y; {ZU}UEDImMUDvth {XW(v)}veDm/,‘bUme Vi, Sﬂ),

where (Vy, Ex) represents a graph where Dy, U D5 nodes (indices) are permuted according to .

Assumption 1 imposes a permutation invariance condition for the GNN training, i.e., model
output/non-conformity score is invariant to permuting the ordering of the calibration and test nodes
(with their edges permuted accordingly) on the graph. To put it differently, different selections of
calibration sets do not modify the non-conformity scores for any node in the graph. GNN models
(including those evaluated in our experiments) typically obey Assumption 1, because they only use
the structures and attributes in the graph without information on the ordering of the nodes [24, 16, 12].

For clarity, we write the calibration data as {(X;,Y;)}" ;, where X; = X,,, and v; € Degp is

the ¢-th node in the calibration data under some pre-defined ordering. Similarly, the test data are
{(Xn+s, Yn+j)}§”:1, where X, = X, and vj € Dy is the j-th node in the test data. We write

Vi= V(Xiv Yi; {Zi}iEDu-ainUDvanaa {X11}06Dcz\libUDtestv V, 5)’ i=1,...,n,n+1,....,n+m.

V; is a random variable that depends on the training process and the split of calibration and test data.
The next lemma shows that under Assumption 1, the non-conformity scores are still exchangeable.

Lemma 2. In the transductive setting described in Section 2, conditional on the entire unordered
graph (V, &), all the attribute and label information {(X,, Y, ) }vey, and the index sets Dygin and

Dot = Deutip U Dyesr, the unordered set of the scores [Vi]?jlm are fixed. Also, the calibration
scores {V;}1_, are a simple random sample from {V;}1]™. That is, for any subset {v1,...,v,} C

(VY of size m, PUVIYy = {o1, v} (VT = 1/ (4.



Based on Lemma 2, we next show that any permutation-invariant non-conformity score leads to valid
prediction sets, and provide an exact characterization of the distribution of test-time coverage.

Theorem 3. Given any score V obeying Assumption 1 and any confidence level o € (0, 1), we define
the split conformal prediction set as C(x) = {y: V(z,y) < 7}, where

i=inf {n: L Y0 V(XY < np = (1-a)(1+1/n)}.

ThenP(Y,+, € 6(Xn+j)) >1—q,Vj=1,...,m. Moreover, define Cover = L Y Y,y €

m J

CA'(XR_H)}. Ifthe V;’s, i € Degiip U Diesr, have no ties almost surely, then for any t € (0, 1),
P(Cover < £) = 1 — Bug ([(n+ (1 — )] — Lm+m,m, [(1— @) + )] + [,

where Py (; N, n, k) denotes the cumulative distribution function of a hyper-geometric distribution
with parameters N, n, k (drawing k balls from an urn wherein n out of N balls are white balls).

Figure 2 plots the probability density functions (p.d.f.) of Cover at a 0T 7
sequence of ¢ € [0, 1] fixing n = 1000 while varying m. The exact 40 100 ;
distribution described in Theorem 3 is useful in determining the size of 5 250 //\
the calibration data in order for the test-time coverage to concentrate 2, | — i‘s’g A
sufficiently tightly around 1 — «. More discussion and visualization 1000 / !
/\

of Cover under different values of (n,m) are in Appendix A.2. Note . 2009

that similar exchangeability and validity results are obtained in several 085 090 095 100
concurrent works [15, 33], yet without exact characterization of the coverage
test-time coverage.

Figure 2: Pd.f. of Cover for
n = 1000 and o = 0.05;

4 CF-GNN: Conformalized Graph Neural Networks  curves represent different val-
ues of test sample size m.

We now propose a new method called CF-GNN to reduce inefficiency while maintaining valid
coverage. The key idea of CF-GNN is to boost any given non-conformity score with graphical
information. The method illustration is in Figure 1 and pseudo-code is in Appendix C.

Efficiency-aware boosting. Standard CP takes any pre-trained predictor to construct the prediction
set/interval (see Section 2). A key observation is that the training stage is not aware of the post-hoc
stage of conformal prediction set/interval construction. Thus, it is not optimized for efficiency. Our
high-level idea is to include an additional correction step that boosts the non-conformity score,
which happens after the model training and before conformal prediction. To ensure flexibility and
practicality, our framework is designed as a generic wrapper that works for any pre-trained GNN
model, without changing the base model training process.

Motivation: Inefficiency correlation. Our approach to boosting the scores is based on exploiting
the correlation among connected nodes. Since the connected nodes usually represent entities that
interact in the real world, there can be strong correlation between them. To be more specific, it is
well established in network science that prediction residuals are correlated along edges [20]. Such a
result implies a similar phenomenon for inefficiency: taking CQR for regression as an example, the
prediction interval largely depends on the residual of the true outcome from the predicted quantiles.
Hence, the prediction interval lengths are also highly correlated for connected nodes. We empirically
verify this intuition in Figure 3, where we plot the difference in the prediction interval lengths for
connected/unconnected node pairs in the Anaheim dataset using vanilla CQR for GCN.* In Figure 3,
we observe that inefficiency has a topological root: connected nodes usually have similar residual
scales, suggesting the existence of rich neighborhood information for the residuals. This motivates us
to utilize such information to correct the scores and achieve better efficiency.

Topology-aware correction model. Based on the motivation above, we update the model predictions
using the neighbor predictions. However, the relationship in neighborhood predictions could be
complex (i.e. beyond homophily), making heuristic aggregation such as averaging/summing/etc.
overly simplistic and not generalizable to all types of graphs. Ideally, we want to design a general and
powerful mechanism that flexibly aggregates graph information. This requirement could be perfectly

*That is, we take the predicted quantiles from GCN and directly builds prediction intervals using CQR.
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Figure 3: Inefficiency is corre-

lated in the network. Connected Figure 4: We simulate the downstream conformal step and optimize for inef-
nodes have significantly smaller ficiency directly. We first produce differentiable quantile 77 using V' (X, Y;)
gaps in prediction interval length  from Vcor—ca1. We then construct a prediction set size/interval length proxy
compared to unconnected nodes.  on Veor—test and directly minimize inefficiency loss by updating GNNy.

fulfilled by GNN message passing as it represents a class of learnable aggregation functions over
graphs. Therefore, we use a separate GNN learner parameterized by ¢ for the same network G but
with modified input node features; specifically, we use the base GNN prediction (Xo = (X)) as
input, and output i(X) = GNNy((X), G). We will then use /i(X) as the input for constructing
conformal prediction sets/intervals. Note that this second GNN model is a post-hoc process and only
requires base GNN predictions, instead of access to the base GNN model.

Training with conformal-aware inefficiency loss. Given the hypothesis class, it remains to devise
a concrete recipe for training the correction model GNN, parameters. Recall that as with many other
prediction models, a GNN model is typically trained to optimize prediction loss (i.e.cross-entropy
loss or mean squared error) but not geared towards efficiency for the post-hoc conformal prediction
step. We design GNNy to be efficiency-aware by proposing a differentiable inefficiency loss that
GNNy optimizes over; this allows integration of GNN message passing to exploit the neighborhood
information and also ensures a good fi(-) that leads to efficient prediction sets in downstream steps.

We first withhold a small fraction ~y of the calibration dataset and use it for the correction procedure.
The remaining data is used as the “usual” calibration data for building the conformal prediction set.
We then further split the withheld data into a correction calibration set Vo, —ca1 and correction testing
set Veor—test, to simulate the downstream conformal inference step. Given i(X) = GNNy(1u(X), G)
and a target miscoverage rate «, the framework follows three steps:

(1) Differentiable quantile: we compute a smooth quantile 77 based on the Vo, —ca1 by
7 = DiffQuantile({V (X;, Y2)|é € Veor—cal}s (1 — @) (1 4+ 1/[Veor—call)-

Since the non-conformity score is usually differentiable, it only requires differentiable quantile
calculation where there are well-established methods available [6, 5].

(2) Differentiable inefficiency proxy: we then construct a differentiable proxy c of the inefficiency
on Veor—test by simulating the downstream conformal prediction procedures. We propose general
formulas to construct c that are applicable for any classification and regression tasks respectively:

a. Inefficiency loss instantiation for Classification: The desirable proxy is to simulate the prediction
set size using Do, —test as the “test” data and Deop—calib as the “calibration” data. For class k and
node ¢ in Deor—test, the non-conformity score is V' (X, k) for class k, where V(+), for instance, is
the APS score in Section 2. Then, we define the inefficiency proxy as

- )

where o(z) = H% is the sigmoid function and 7 is a temperature hyper-parameter [40]. It can
be interpreted as a soft assignment of class & to the prediction set. When 7 — 0, it becomes a hard
assignment. The per-sample inefficiency proxy is then readily constructed as ¢; = ‘71| Y ke y Ci k-

cik =0

b. Inefficiency loss instantiation for Regression: The desirable proxy is to simulate the prediction inter-
val length. For node 7 in Veor —test» the conformal prediction interval is [fiq /o (Xs) — 7, fi1—a/2(Xs) +
7). Thus, the per-sample prediction interval length could be directly calculated as

i = (fi1—a/2(Xi) + 1) = (fay2(Xi) — 1)



Since GNNy maps intervals to intervals and do not pose a constraint on the prediction, it may incur a
trivial optimized solution where fi;_q /2(X) < fiq/2(X). Thus, we pose an additional consistency
regularization term: (fi1—q/2(X) — fi1—a/2(X))? + (fiay2(X) — fia/2(X))?. This regularizes the
updated intervals to not deviate significantly to reach the trivial solution.

(3) Inefficiency loss: finally, the inefficiency loss is an average of inefficiency proxies Linog =
1 I >, €i. The GNNy is optimized using backpropagation in an end-to-end fashion.

|Vcor7test

Conditional coverage. A natural question is whether optimizing the efficiency of conformal pre-
diction may hurt its conditional validity.’ In Section 5, we empirically demonstrate satisfactory
conditional coverage across various graph features, which even improves upon the direct application
of APS and CQR to graph data. We conjecture that it is because we correct for the correlation among
nodes. However, theoretical understanding is left for future investigation.

Graph exchangeability. The post-hoc correction model is GNN-based, thus, it is permutation-
invariant. Thus, it satisfies the exchangeability condition laid out in our theory in Section 3. Empiri-
cally, we demonstrate in Section 5 that CF-GNN achieves target empirical marginal coverage.

Computational cost. We remark that CF-GNN scales similarly as base GNN training since the
correction step follows a standard GNN training procedure but with a modified input attribute and
loss function. Notably, as the input to the correction model usually has a smaller attribute size (the
number of classes for classification and 2 for regression), it has smaller parameter size than standard
GNN training. In addition, it is also compatible with standard GNN mini-batching techniques.

General loss functions. Finally, we note that the choice of our loss function can be quite general.
For instance, one may directly optimize for conditional validity by choosing a proper loss function.

S Experiments

We conduct experiments to demonstrate the advantages of CF-GNN over other UQ methods in
achieving empirical marginal coverage for graph data, as well as the efficiency improvement with
CF-GNN. We also evaluate conditional coverage of CF-GNN and conduct systematic ablation and
parameter analysis to show the robustness of CF-GNN.

Evaluation setup. For node classification, we follow a standard semi-supervised learning eval-
uation procedure [24], where we randomly split data into folds with 20%/10%/70% nodes
aS Dirain/Dvalid/Deatib U Diest.  For the node regression task, we follow a previous evalua-
tion procedure from [20] and randomly split the data into folds with 50%/10%/40% nodes as
Dirain/Dyvatid/Dealib U Diest- We conduct 100 random splits of calibration/testing sets to estimate the
empirical coverage. Using the test-time coverage distribution in Figure 2 to ensure that coverage is
concentrated tightly around 1-«, we modify the calibration set size to min{ 1000, | Deajib U Diest|/2},
and use the rest as the test sample. For a fair comparison, we first train 10 runs of the base GNN
model and then fix the predictions (i.e. the input to UQ baselines and CF-GNN). In this way, we
ensure that the gain is not from randomness in base model training. The hyperparameter search
strategy and configurations for CF-GNN and baselines can be found in Appendix D.1.

Models & baselines to evaluate coverage. For classification, we first use general statistical calibra-
tion approaches including temperate scaling [13], vector scaling [13], ensemble temperate scaling [49].
We also use SOTA GNN-specific calibration learners including CaGCN [44] and GATS [17]. The
prediction set is the set of classes from highest to lowest scores until accumulative scores exceed 1-a.
For regression, we construct prediction intervals using quantile regression (QR) [25], Monte Carlo
dropouts (MC dropout) [9], and Bayesian loss to model both aleatoric and epistemic uncertainty [23].
More information about baselines can be found in Appendix D.2.

Models & baselines to evaluate efficiency. As smaller coverage always leads to higher efficiency,
for a fair comparison, we can only compare methods on efficiency that achieve the same coverage.
Thus, we do not evaluate UQ baselines here since they do not produce exact coverage and are thus
not comparable. While any CP-based methods produce exact coverage, to the best of our knowledge,

SConditional coverage asks for P(Yy1; € C(Xp1;) | Xnt; = ) ~ 1 — a forall z € X. Although exact
conditional validity is statistically impossible [8], approximate conditional validity is a practically important
property that APS and CQR are designed for. See Section 5 for common ways to assess conditional coverage.



Table 1: Empirical marginal coverage of node classification(upper table) and node regression tasks(lower table).
The result takes the average and standard deviation across 10 GNN runs with 100 calib/test splits. ¢ means that
the UQ method reaches the target coverage (i.e. coverage > 0.95) while X means that it fails to reach it. The last
column "Covered" becomes ¢ if a UQ method reaches target coverage for all datasets and X vice versus.
Task  |UQModel | Cora | DBLP | CiteSeer | PubMed | Computers | Photo | CS | Physics |Covered?
Temp. Scale. | 0.946:£.003 X | 0.920-£.000 X [0.952-.004 ¢/ | 0.899+.002 X | 0.929+.002 X [0.962:+.002 ¢ |0.957+.001 | 0.969-+.000 ¥
Vector Scale. | 0.944-+004 X | 0.9214009 X |0.951£.004 ¢ | 0.899+.003 X | 0.932.002 X |0.963+.002 | 0.958 001 ¢ |0.969+.000 ¢
Node " |gncemble TS| 0.947:+.003 X | 0.920.008 X |0.9532.003 ¢ | 0.899:002 X | 0.930002 X |0.964.002 ¢ |0.958:.001 #|0.969:£.000 ¢

classif. | uGeN 0.939-.005 X | 0.922:.004 X | 0.949.005 X | 0.898.003 X | 0.926+.003 X [0.956:£.002 ¥ |0.954-.003 ¥ |0.968-.001 ¥
GATS 0.939:+.005 X | 0.921.004 X |0.951£.005 | 0.898+.002 X | 0.9252.002 X |0.957+.002 ¢ [0.957+.001 ¢ |0.968+.000 ¢/

|CE-GNN  |0.952:.001 ¢ [0.952:£.001 ¢/ |0.953.001 ¢/ [0.953£.001 ¢/ |0.952.001 ¢ [0.953.001 ¢/ |0.952.001 ¢/ |0.952:.001 V/ |

N> % % % %

Task  |UQModel | Anaheim | Chicago | Education | Election | Income | Unemploy. | Twitch |Covered?

QR 0.943+.031 X 0.959-.001 ¢ 0.956:+.004 | 0.960-+.005 ¥ [0.954=-.004 ¢
MC dropout | 0.553+.022 X | 0.427+.015 X | 0.423+.013 X | 0.417+.008 X | 0.532£.022 X | 0.489+.016 X | 0.448+.017 X
BayesianNN |0.967+001 ¢ |0.955+.003 #|0.957.002 ¢ |0.958+.000 ¢ |0.970.004 ¢ |0.960+.001 ¢ | 0.923+ 006 X

|CF-GNN  ]0.957.003 ¢ 0.954.002 ¢/ |0.951£.001 ¢/ |0.950.001 ¢ |0.951 001 #[0.951 2001 ¢ [0.954.001 |

0.950+.007 X 0.900+.015 X
Node

regress.

AN R

there are no existing graph-based conformal prediction methods for transductive settings. Thus, we
can only compare with the direct application of conformal prediction (CP) to base GNN. In the main
text, we only show results for GCN [24] as the base model; results of three additional popular GNN
models (GraphSAGE [16], GAT [42], and SGC [45]) are deferred to Appendix D.4.

Datasets. We evaluate CF-GNN on 8 node classification datasets and 7 node regression datasets
with diverse network types such as geographical network, transportation network, social network,
citation network, and financial network. Dataset statistics are in Appendix D.3.

5.1 Results

CF-GNN achieves empirical marginal coverage while existing UQ methods do not. We report
marginal coverage of various UQ methods with target coverage at 95% (Table 1). There are three
key takeaways. Firstly, none of these UQ methods achieves the target coverage for all datasets while
CF-GNN does, highlighting the lack of statistical rigor in those methods and the necessity for a
guaranteed UQ method. Secondly, it validates our theory from Section 3 that CF-GNN achieves
designated coverage in transductive GNN predictions. Lastly, CF-GNN achieves empirical coverage
that is close to the target coverage while baseline UQ methods are not. This controllable feature of
CF-GNN is practically useful for practitioners that aim for a specified coverage in settings such as
planning and selection.

CF-GNN significantly reduces inefficiency. We report empirical inefficiency for 8 classification
and 7 regression datasets (Table 2). We observe that we achieve consistent improvement across
datasets with up to 74% reduction in the prediction set size/interval length. We additionally con-
duct the same experiments for 3 other GNN models including GAT, GraphSAGE, and SGC in
Appendix D.4 and we observe that performance gain is generalizable to diverse architecture choices.
Furthermore, CF-GNN yields more efficient prediction sets than existing UQ methods even if we
manually adjust the nominal level of them to achieve 95% empirical coverage (it is however impossi-
ble to do so in practice, here we do this for evaluation). For instance, the best calibration method
GATS yields an average prediction size of 1.82 on Cora when the nominal level is tuned to achieve
95% empirical coverage. In contrast, CF-GNN has an average size of 1.76, smaller than GATS. In
Appendix D.5, we also observe that CF-GNN also reduces inefficiency for advanced conformal
predictor RAPS for classification task. In addition, we find that CF-GNN yields little changes to the
prediction accuracy of the original GNN model (Appendix D.7).

CF-GNN empirically maintains conditional coverage. While CF-GNN achieves marginal cover-
age, it is highly desirable to have a method that achieves reasonable conditional coverage, which was
the motivation of APS and CQR. We follow [37] to evaluate conditional coverage via the Worst-Slice
(WS) coverage, which takes the worst coverage across slices in the feature space (i.e. node input
features). We observe that CF-GNN achieves a WS coverage close to 1 — «, indicating satisfactory
conditional coverage (Cond. Cov. (Input Feat.) row in Table 3). Besides the raw features, for each
node, we also construct several network features (which are label agnostic) including clustering



Table 2: Empirical inefficiency measured by the size/length of the prediction set/interval for node classification
(left table)/regression(right table). A smaller number has better efficiency. We show the relative improvement
(%) of CF-GNN over CP on top of the —. The result uses APS for classification and CQR for regression with
GCN as the base model. Additional results on other GNN models are at Appendix D.4. We report the average
and standard deviation of prediction sizes/lengths calculated from 10 GNN runs, each with 100 calibration/test
splits.

Task | Dataset | CP——CF-GNN Task | Dataset | CP——CF-GNN
—53.61%
Cora 3‘80i'28m>1‘76i'27 Anaheim 289430 220%5 17411
DBLP 2.43+.03——""1.23+.01 . —0.48%
. ~T4.27%, 0 00 Chicago 2.05+.07———2.04+.17
CiteS 3.86+.11———50.99+. . —5.07%
Node Heseer = 10.05% Node Education | 2.56+.00—22"%,2 43+ 5
classif. PubMed 1.60+.02————1.294+.03 regress. i +0.21%
—49.05% Election 0.90+.01——=0.90+.02
Computers | 3.56+.13————1.81+.12 _4.58%
—56.28% Income 2.51+.12——2.40+.05
Photo 3.79+.13———=1.66+21 _10.83%
cs 779420 =0216%5 95 49 Un.employ 2.72i.03TM>2.43i.04
Physics 3 11200=251% 1 1601 Twitch 2.43+.10——2.39+.07
Average Improvement | -53.75% Average Improvement | -6.73%

Table 3: CF-GNN achieves conditional coverage, measured by ~ Table 4: Ablation. For Size/length, we
Worse-Slice Coverage [37]. We use Cora/Twitch as an example  use Cora/Anaheim dataset with GCN
classification/regression dataset. Results on other network features ~ backbone. Each experiment is with 10
and results on target coverage of 0.9 can be found in Appendix D.6.  independent base model runs with 100

Target: 0.95 |  Classification | Regression conformal split runs.
Model | CP  CFGNN| CP  CF-GNN Topology Ineff. | i o 1 ohoth
- -aware Loss

Marginal Cov. | 0.95t01 0.95+01 | 0.96+02 0.96+.02 / /

Cond. Cov. (Input Feat.) | 0.94+02 094203 | 0.95+04  0.9405 [ 17622 2172
Cond. Cov. (Cluster) 0.89+06 0.93+04 | 0.96+.03 0.96+.03 v X 242+35  2.23+00
Cond. Cov. (Between) 0.81+06 0.95+03 | 0.94+05 0.94+.05 X v 2.35+47 2.32+.8
Cond. Cov. (PageRank) | 0.78+06  0.94+03 | 0.94+05 0.94+.05 X X 3.80+28 2.89+.39

coefficients, betweenness, PageRank, closeness, load, and harmonic centrality, and then calculate
the WS coverage over the network feature space. We observe close to 95% WS coverage for various
network features, suggesting CF-GNN also achieves robust conditional coverage over network
properties. We also see that the direct application of CP (i.e. without graph correction) has much
smaller WS coverage for classification, suggesting that adjusting for neigborhood information in
CF-GNN implicitly improves conditional coverage.

Ablation. We conduct ablations in Table 4 to test two main components in CF-GNN, topology-aware
correction model, and inefficiency loss. We first remove the inefficiency loss and replace it with
standard prediction loss. The performance drops as expected, showing the power of directly modeling
inefficiency loss in the correction step. Secondly, we replace the GNN correction model with an MLP
correction model. The performance drops significantly, showing the importance of the design choice
of correction model and justifying our motivation on inefficiency correlation over networks.

Parameter analysis. We conduct additional parameter analysis to test the robustness of CF-GNN.
We first adjust the target coverage rate and calculate the inefficiency (Figure 5(1)). CF-GNN
consistently beats the vanilla CP across all target coverages. Moreover, we adjust the fraction ~ of
the holdout calibration data in building the inefficiency loss, and observe that CF-GNN achieves
consistent improvement in inefficiency (Figure 5(2)). We also observe a small fraction (10%) leads
to excellent performance, showing that our model only requires a small amount of data for the
inefficiency loss and leaves the majority of the calibration data for downstream conformal prediction.

6 Related Works

We discuss here related works that are closest to the ideas in CF-GNN and provide extended
discussion on other related works in Appendix E.

(1) Uncertainty quantification (UQ) for GNN: Many UQ methods have been proposed to construct
model-agnostic uncertain estimates for both classification [13, 49, 14, 27, 1] and regression [25, 41,
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Figure 5: (1) Parameter analysis on inefficiency given different target coverage rate 1-c. (2) Parameter analysis
on inefficiency given calibration set holdout fraction. Analyses use Cora/Anaheim for classification/regression.

38,9, 28, 26, 35, 23, 19]. Recently, specialized calibration methods for GNNs that leverage network
principles such as homophily have been developed [44, 17]. However, these UQ methods can fail to
provide a statistically rigorous and empirically valid coverage guarantee (see Table 1). In contrast,
CF-GNN achieves valid marginal coverage in both theory and practice.

(2) Conformal prediction for GNN: The application of CP to graph-structured data remains largely
unexplored. [7] claims that nodes in the graph are not exchangeable in the inductive setting and
employs the framework of [3] to construct prediction sets using neighborhood nodes as the calibration
data for mitigating the miscoverage due to non-exchangeability. In contrast, we study the transductive
setting where certain exchangeability property holds; thus, the method from [3] are not comparable
to ours. Concurrent with our work, [15] studies the exchangeability under transductive setting and
proposes a diffusion-based method for improving efficiency, which can be viewed as an instantiation
of our approach where the GNN correction learns an identity mapping; [33] studies exchangeability
in network regression for of non-conformity scores based on various network structures, with
similar observations as our Theorem 3. Other recent efforts in conformal prediction for graphs
include [32, 34] which focus on distinct problem settings.

(3) Efficiency of conformal prediction: How to achieve desirable properties beyond validity is an
active topic in the CP community; we focus on the efficiency aspect here. One line of work designs
“g0od” non-conformity scores in theory such as APS [37] and CQR [36]. More recent works take
another approach, by modifying the training process of the prediction model. CF-GNN falls into the
latter case, although our idea applies to any non-conformity score. ConfTr [40] also modifies training
for improved efficiency. Our approach differs from theirs in significant ways. First, we develop a
theory on CP validity on the graph data and leverage topological principles that are specialized to
graph to improve efficiency while ConfTr focuses on i.i.d. vision image data. Also, ConfTr happens
during base model training using the training set, while CF-GNN conducts post-hoc correction
using withheld calibration data without assuming access to base model training, making ConfTr not
comparable to us. Finally, we also propose a novel loss for efficiency in regression tasks.

7 Conclusion

In this work, we extend conformal prediction to GNNs by laying out the theoretical conditions for
finite-sample validity and proposing a flexible graph-based CP framework to improve efficiency.
Potential directions for future work include generalizing the inefficiency loss to other desirable CP
properties such as robustness and conditional coverage; extensions to inductive settings or transductive
but non-random split settings; extensions to other graph tasks such as link prediction, community
detection, and so on.
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A Deferred details for Section 3

A.1 Technical proofs for theoretical results

Proof of Lemma 2. Hereafter, we condition on the entire unordered graph, all the attribute and label
information, and the index sets Dy, and D.;. We define the scores evaluated at the original node
indices as

Uy = V(X’LH Yo {Zi}ieDminqu“da {XU}UEDca]ibUD(CS|7 V? g)? v E Dcalib U Dtesl g V'

By Assumption 1, for any permutation 7 of D, we always have

Uy = V(X'l” Yo; {Zi}ieptrainupw'alid7 {XT"('U) }UEDcalihUDlesH Vﬂ" 577)'

That is, given Dy, the evaluated score at any v € D, remains invariant no matter which subset of Dy,
is designated as D,y This implies that the scores are fixed after conditioning:

[Vla ey Vner] = [vv]vEDC”

where we use [] to emphasize unordered sets. Thus, the calibration scores {V;}7", is a subset of size
n of [v,|yep, - Note that under random splitting in the transductive setting, any permutation 7 of Dy,
occurs with the same probability, which gives the conditional probability in Lemma 2. O

Proof of Theorem 3. Throughout this proof, we condition on the entire unordered graph, all the
attribute and label information, and the index sets Dyi, and D. By Lemma 2, after the conditioning,
the unordered set of {V;}71™ is fixed as [v,],ep,, and {V;}7, is a simple random sample from
[Un]veD, - As aresult, any test sample V (X4, Y,4;), 7 = 1,..., m is exchangeable with {V;}7_;.
By standard theory for conformal prediction [43], this ensures valid marginal coverage, i.e.,P(Y, 4+, €

C (Xn+j5)) > 1 — «, where the expectation is over all the randomness.

We now proceed to analyze the distribution of Cover. For notational convenience, we write N =
m + n, and view D, as the ‘population’. In this way, {V;}_, is a simple random sample from
[vy]veD,. For every n € R, we define the ‘population’ cumulative distribution function (c.d.f.)

1
F(U) = N Z ]l{vv ST)},
VEDy
which is a deterministic function. We also define the calibration c.d.f. as
~ 1 1 —
Eotn)=— > Moo <} =~ 1{V; <},
V€ Dealib i=1
which is random, and its randomness comes from which subset of D, is De,jip. By definition,
N =inf{n: F.(n) > (1 —q)(1+1/n)}.
Since the scores have no ties, we know
F,(m)=[(1-¢)(n+1)]/n.

The test-time coverage can be written as

—— 1 & N
Cover = ooy Zl Vs <7}
=

_Nl_n( PRI n{vvsm)

vEDy VE Dealip
N " e N e [0 ]

= F(7) — E.(n) =
N—-n ) N—-n ) N—n " N—n
Now we characterize the distribution of 7. For any 1 € R, by the definition of 7,

P(7 < 1) =P(nFu(n) > (n+1)(1 - q)) = P(nFu(n) > [(n+1)(1 - g)]).
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Note that nﬁn(n) = Do 1{v, < n} is the count of data in D,y such that the score is below 7).

By the simple random sample (i.e., sampling without replacement), nﬁn (n) follows a hyper-geometric
distribution with parameter N, n, N F'(n). That is,

(Nf;(n)) (N*NF(W))

n—k
() ’
Denoting the c.d.f. of hypergeometric distribution as Py (k; N, n, NF(n)), we have
PH<n) =1-2uc([(n+ 1)1 —q)] = LN,n,NF()).
Then, for any ¢ € [0, 1],

P(Cover < t) :IP’(NnF(ﬁ)—m_q)W <t>

~

P(”Fn(m = k) =

0<k<NF(n).

N — N—n
P<F(ﬁ) < [0=a+ D) +<N—n>t>_

Since F'(-) is monotonely increasing,

P(@gt) P(ﬁg F1<[(1Q)(”+11\;] +(Nn)t)),

where F~1(s) = inf{n: F(n) > s} for any s € [0,1]. Plugging in the previous results on the
distribution of 7, we have

(Cover<t —1—<I>Hg( [(n+ 1)( 1—qﬂ—1;N,n,NF<F—1(f(l—q)(n—«—]l\;]-&-(N—n)t)))

—1- @HG( (n+1)1-¢q)] - 1;N,n,N ”(1‘q><"+}vﬂ+(N‘”>”>
_1—@HG( [0+ 1) 1—qﬂ—1;N,n,w<1—q><n+1ﬂ+<N—n>ﬂ)

=1- @HG(HHJF D =gl -LN,n [(1-g)(n+1)] + [(Nn)ﬂ>

where the second equality uses the fact that F(n) € {0,1/N,...,(N — 1)/N,1}, hence
F(F~Y(s)) = [Ns]/N for any s € [0,1]. By tower property, such an equation also holds for
the unconditional distribution, marginalized over all the randomness. This completes the proof of
Theorem 3. O

A.2 Additional visualization of test-time coverage

In this part, we provide more visualization of the distributions of test time coverage Cover under
various sample size configurations. We note that such results also apply to standard application of
split conformal prediction when the non-conformity score function V' is independent of calibration
and test samples, so that Assumption 1 is satisfied.

Figures 6 and 7 plot the p.d.f. of Cover for & = 0.05 and a = 0.1, respectively, when fixing n
and varying the test sample size m. The y-axis is obtained by computing P(¢y_; < Cover <
tr)/(tk — ti—1) at x = (tx—1 + tx)/2 for a sequence of evenly spaced {tx} € [0,1]. All figures
in this paper for p.d.f.s are obtained in the same way. We see that Cover concentrates more tightly
around the target value 1 — o as m and n increases.

Figures 8 and 9 plot the p.d.f. of Cover for a = 0.05 and a = 0.1, respectively, where we fix
N = m + n but vary the calibration sample size n. This mimics the situation where the total number
of nodes on the graph is fixed, while we may have flexibility in collecting data as the calibration
set. We observe a tradeoff between the calibration accuracy determined by n and the test-sample

concentration determined by n. The distribution of Cover is more concentrated around 1 — o« when
m and n are relatively balanced.
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Figure 6: P.d.f. of test-time coverage Cover for n = 500 (left), 1000 (middle), 2000 (right) and o = 0.05 with
curves representing different values of m, the test sample size.
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Figure 7: P.d.f. of test-time coverage Cover for n = 500 (left), 1000 (middle), 2000 (right) and o = 0.1 with
curves representing different values of m, the test sample size.
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Figure 8: P.d.f. of test-time coverage Cover for N = m + n = 500 (left), 1000 (middle), 2000 (right) and
« = 0.05 with curves representing different values of n, the calibration sample size.

151 30
n 201 n n
0l — %0 ‘ 154 — 100 5] — 500
o — 200 ‘ o — 250 J o — 1000
< _ © 04 — ‘ ] —
& 300 | QIO 500 /! S 1250 :
51 — 400 1 — 750 - 1097 — 1500 1
— : \ 1 — 900 : \ — 1750 :
0 i q 0 . i 0 J |

075 0.80 0.85 0.90 0.95 1.00 075 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
coverage coverage coverage

Figure 9: P.d.f. of test-time coverage (T)V\er for N = m 4+ n = 500 (left), 1000 (middle), 2000 (right) and
« = 0.1 with curves representing different values of n, the calibration sample size.
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B Discussion on full conformal prediction, split conformal prediction

In this part, we discuss the relation of our application of conformal prediction to full conformal
prediction and split conformal prediction, two prominent conformal prediction methods proposed
by Vovk and his coauthors in [43]. Split conformal prediction is mostly widely used due to its
computational efficiency, where exchangeability is usually ensured by independence (which is not
obvious for graph data) as we discussed briefly in the introduction.

Full conformal prediction (FCP) is arguably the most versatile form of conformal prediction. Given
calibration data Z; = (X;,Y;) € X x Y,i =1,...,n, and given a test point X,,;1; € X whose
outcome Y, 1 € ) is unknown, at every hypothesized value y € ), FCP uses any algorithm S to
train the following scores

Szy = S(X’L'a YL; Zlv R Zi—17 Zi+17 R Z7L7 (X'rz+la y))? 1= la ceey My
where S is symmetric in the arguments Z1, ..., Z;_1, Zi11, - Zn, (Xnt1,y), as well as

Sy =SXnt1,45 21,y Zn).

Here, for 1 < i < n, S;y intuitively measures how well the observation (X;,Y;) conforms to the
observations Z1,...,Z;—1,Zi41, -, Zn, (Xn+1,y) with the hypothesized value of y. For instance,
when using a linear prediction model, it can be chosen as the prediction residual

where 6Y is the ordinary least squares coefficient by a linear regression of
Yi,..., Y1, Y, ..., Y,y over Xy, X1, Xi41,..., X, Xnt1.  More generally, one
may train a prediction model ¥: X — Y using Z1,...,Z;—1, Zit1, - Zn, (Xn+1,y), and set
SY = |Y; — p¥(X;)|. For a confidence level a € (0, 1), the FCP prediction set is then

~ Y Y
C(Xps1) ;:{ . % Sa}-

Since the original form of FCP involves training n + 1 models at each hypothesized value y, its
computation can be very intense. It is thus impractical to directly apply FCP to GNN models (i.e.,
imagining S as the GNN training process on the entire graph with a hypothesized outcome ).

Split conformal prediction (SCP) is a computationally-efficient special case of FCP that is most
widely used for i.i.d. data. The idea is to set aside an independent fold of data to output a single
trained model. To be specific, we assume access to a given non-conformity score V: X x Y — R,
i.i.d. calibration data Z; = (X;,Y;)?;, and an independent test sample (X, 41, Y,+1) from the
same distribution with Y, ; unobserved. Here by a “given” score, we mean that it is obtained
without knowing the calibration and test sample; usually, it is trained on an independent set of data
{(X;,Y;)}jeD,.. before seeing the calibration and test sample. Then define V; = V(X,,Y;) for

i =1,...,n. The SCP prediction set is

O(Xir) = {y: 1+1L{Vi>n\jr(1Xn+1,y)} < a}.

The above set is usually convenient to compute, because we only need one single model to obtain
V. The validity of SCP usually relies on the independence of V' to calibration and test data as
we mentioned in the introduction. However, the application of SCP to GNN model is also not
straightforward: as we discussed in the main text, the model training step already uses the calibration
and test samples, and the nodes are correlated.

Indeed, our method can be seen as a middle ground between FCP and SCP: it only requires one
single prediction model as SCP does, but allows to use calibration and test data in the training step as
FCP does. In our method introduced in the main text, there exists a fixed function V: Y x Y — R
(provided by APS and CQR) such that

SE/ = V(///Z(Xz)v}/z)a SZ+1 - V(//’Z(Xn+1ay)7

where i is the final output from the second GNN model whose training process does not utilize the
outcomes Y7, ..., Y, and y, but uses the features X;,..., X, and X, ;.
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Algorithm 1: Pseudo-code for CF-GNN algorithm.

Input: Graph G = (V, £, X); a trained base GNN model GNNy; non-conformity score function
V(X,Y); pre-specified mis-coverage rate «, Randomly initialized 9 for the conformal
correction model GNN .

while not done do

for i in []) () chorfcalib U Vcorftestu do

u(X;) = GNNy(X;, G) // Base GNN output scores
[L(XZ) = GNNg(ﬁ(Xi),G) // Correction model output scores
end
n,m= |Vcor,cahb\,\vcor,test| // Size of correction calib/test set
a= %H * // Finite-sample correction

7 = DiffQuantile({V(X;, Y;)|¢ € Veor—calib}) // Compute non-conformity scores
if Classification then

V(Xi,k)—7
Linest = % ZiGVcor—tcst ﬁ Zk€y U( ( T ) 71)

// Inefficiency proxy for classification tasks
end
if Regression then
Linet = 2 i Veor—ront F1—a/2(X)i + 1) = (fa/2(X)i — 1)

// Inefficiency proxy for regression tasks
(1—ay2(X)i = B1—ay2(X)i)? + (flay2(X )i — iay2(X)i)?

// Consistency regularization term

»CInef‘f"_ = 7% ZiEV

cor—test

end
V< ¥ — VyLlrner // Optimizing ¥ to reduce inefficiency

end

C Algorithm overview

We describe the pseudo-code of CF-GNN in Algorithm 1.

D Deferred details for experiments

D.1 Hyperparameters

Table 5 reports our set of hyperparameter ranges. We conduct 100 iterations of Bayesian Optimization
for CF-GNN with the validation set inefficiency proxy as the optimization metric. To avoid overfitting,
each iteration only uses the first GNN run. The optimized hyperparameters are then used for all 10
GNN runs and we then reported the average and standard deviation across runs. Each experiment is
done with a single NVIDIA 2080 Ti RTX 11GB GPU.

Table 5: Hyperparameter range for CF-GNN.

Task | Param. | Range

GNNy Hidden dimension [16,32,64,128,256]

Learning rate [le-1, 1e-2, 1e-3, 1e-4]
Classification | GNNy Number of GNN Layers | [1,2,3,4]

GNNy Base Model [GCN, GAT, GraphSAGE, SGC]

T [10, 1, 1e-1, 1e-2, 1e-3]

GNNy Hidden dimension [16,32,64,128,256]

Learning rate [le-1, 1e-2, 1e-3, 1e-4]
Regression GNNy Number of GNN Layers | [1, 2, 3, 4]

GNNy Base Model [GCN, GAT, GraphSAGE, SGC]

Reg. loss coeff. [1, 1e-1]
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D.2 Baseline Details

We report the details about baselines below and the hyperparameter range in Table 6.

1.

Temperature Scaling [13] divides the logits with a learnable scalar. It is optimized over NLL
loss in the validation set.

. Vector Scaling [13] has a scalar to scale the logits for each class dimension and adds an

additional classwide bias. It is optimized over NLL loss in the validation set.

. Ensemble Temperature Scaling [49] learns an ensemble of uncalibrated, temperature-scaled

calibrated calibrators.

. CaGCN [44] uses an additional GCN model that learns a temperature scalar for each node

based on its neighborhood information.

. GATS [17] identifies five factors that affect GNN calibration and designs a model that ac-

counts for these five factors by using per-node temperature scaling and attentive aggregation
from the local neighborhood.

. QR [25] uses a pinball loss to produce quantile scores. It is CQR without the conformal

prediction adjustment.

. MC dropout [9] turns on dropout during evaluation and produces K predictions. We then

take the 95% quantile of the predicted distribution. We also experimented with taking a
95% confidence interval but 95% quantile has better coverage, thus we adopt the quantile
approach.

. BayesianNN [23] model the label with normal distribution and the model produces two

heads, where one corresponds to the mean and the second log variance. We then calculate
the standard deviation as the square root of the exponent of log variance. Then we take the
[mean-1.96*standard deviation, mean+1.96*standard deviation] for the 95% interval.

Table 6: Hyperparameter range for baselines.

Baseline | Param. | Range
Temperature Scaling | No hyperparameter | Not Applicable
Vector Scaling | No hyperparameter | Not Applicable
Ensemble Temp Scaling | No hyperparameter | Not Applicable
Dropout [0.3, 0.5, 0.7]
Hidden dimension [16, 32, 64, 128, 256]
CaGEN Number of GNN Layers | [1,2,3,4]
Weight Decay [0, 1e-3, 1e-2, le-1]
Dropout [0.3,0.5,0.7]
GATS Hidden dimension [16, 32, 64, 128, 256]
Number of GNN Layers | [1,2,3,4]
Weight Decay [0, 1e-3, 1e-2, le-1]
MC Dropout | Number of Predictions | [100, 500, 1,000]
BayesianNN | No hyperparameter | Not Applicable

D.3 Dataset

For node classification, we use the common node classification datasets in Pytorch Geometric package.
For node regression, we use datasets in [20]. We report the dataset statistics at Table 7.

D.4 Marginal coverage and inefficiency across GNN architectures

We additionally conduct marginal coverage and inefficiency comparisons of CF-GNN over the vanilla
CP across 4 different GNN architectures: GCN, GAT, GraphSAGE, and SGC. The result for marginal
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Table 7: Dataset statistics.

Domain | Dataset | Task | #Nodes #Edges # Features # Labels
Cora Classification | 2,995 16,346 2,879 7
Citation DBLP Classification | 17,716 105,734 1,639 4
CiteSeer Classification | 4,230 10,674 602 6
PubMed Classification | 19,717 88,648 500 3
Co-purchase Computers Classification | 13,752 491,722 767 10
p Photos Classification | 7,650 238,162 745 8
Co-author CS Classification | 18,333 163,788 6,805 15
Physics Classification | 34,493 495,924 8,415 5
Transportation Anaheim Regression 914 3,881 4 -
p Chicago Regression | 2,176 15,104 4 -
Education Regression 3,234 12,717 6 -
Geoeranh Election Regression 3,234 12,717 6 -
graphy Income Regression 3,234 12,717 6 -
Unemployment | Regression 3,234 12,717 6 -
Social Twitch Regression 1,912 31,299 3,170 -
)
o 1.0
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Figure 10: Empirical coverage across 15 datasets with 10 independent runs of GNN, using CF-GNN.

coverage is in Figure 10. The result for inefficiency is in Table 8. We observe consistent improvement
in inefficiency reduction across these architectures, suggesting CF-GNN is a GNN-agnostic efficiency
improvement approach.

D.5 CF-GNN with Regularized Adaptive Prediction Sets

To further showcase that CF-GNN is a versatile framework that adapts to any advancement in
non-conformity scores, we experiment on RAPS [2], which regularizes APS to produce a smaller
prediction set size. We report the performance using the GCN backbond in Table 9. We observe that
CF-GNN still obtains impressive inefficiency reduction compared to the vanilla application of RAPS
to GNN.

D.6 Conditional coverage on full set of network features

We report the full set of network features and calculate the worse-slice coverage in Table 10 for
target coverage of 0.9 and Table 11 for a target coverage of 0.95. We observe that CF-GNN achieves
satisfactory conditional coverage across a wide range of diverse network features.

D.7 Prediction accuracy versus uncertainty calibration

As we discussed in the main text, the original GNN trained towards optimal prediction accuracy does
not necessarily yield the most efficient prediction model; this is corrected by the second GNN in
CF-GNN which improves the efficiency of conformal prediction sets/intervals. With our approach,
one can use the output of the original GNN for point prediction while that of the second GNN
for efficient uncertainty quantification, without necessarily overwriting the first accurate prediction
model. However, a natural question here still remains, which is that whether applying the second
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Table 8: Empirical inefficiency measured by the size/length of the prediction set/interval for node classifica-
tion/regression. The result uses APS for classification and CQR for regression. We report the average and
standard deviation calculated from 10 GNN runs with each run of 100 conformal splits.

Task | GNN Model | GCN | GraphSAGE | GAT | SGC
| Dataset | CP——CF-GNN | CP——CF-GNN | CP——CFGNN | CP——CF-GNN
Cora 380528 =M% 1 58420 | 6732007 020% 1 58515 | 414516 =223% 1 55110 | 3.882.19=223% 1 47410
—49.20% —68.27% —37.51% —48.93%
DBLP 243+03———=1.23+01 | 391x00———=1.24+01 | 2.02+06———1.26+01 | 2.44+.04————1.24+.02
Node | CiteSeer 3865112227009 01 | 5.88+.00=22%1 00201 | 318225221 0001 | 3.79+.14=22%1 01102
classif. PubMed 160200 =22M%, 1 294 00 | 193425 729% 1 200 05 | 13720072941 23000 | 160022221 21400
Computers 3.562.13022% 1 77501 | 6.00£10—22T4%3 265 48 | 233101 =210 1400 | 344000 —22%0 1 87405
—57.03% —37.22% —19.38% —62.86%
Photo 3.79+.13———1.63+.17 | 4.52+47———=284+67 | 2.24+21———1.81+16 | 3.81+.4———1.41+05
cs 779220 =225%,3 441 53 | 14.68200=225% 1 67214 | 6872082, 1 85510 | 776252220 00 20
Physics 311200 =23% 1 08410 | 49120072271 33008 | 2.00£19=223%1 09106 | 310208 =225 1 3041

Average Improvement

-53.75%

-63.75%

| -40.63%

| -56.07%

Anaheim 289430 20% 5 17111 | 2372052221 80007 | 302038 2120 14w | 2.94220729%00 01446

Chicago 2.05£0—22%0 04217 | 2.08+05—22% 192400 | 1.95£06— 2% 0 60105 | 2.022.03227%41.994 07
Node Education 2.56+.00=29"%,2 434 o5 220404 3311%,5 384 8 2.48:05 2% 0 41404 | 2.55:00=25%,0 484 04
regress. | Election 0.90+.012221%,0.90£ 02 0.87£01=22%,0 8602 0.892.00—22%,0.882.02 | 0.90+£00=222%,0.902.02

Income 25162 258%0 40105 | 2.0820022%0 75001 | 2352007220 34000 | 2420001 739%00 49, 4

Unemploy. | 272403 =25%,0 43204 | 2.75:.06=22%,239:.05 | 2.802.08 =222 4004 | 2.722.00=222%0 421 04

Twitch 243210=2%,0 39, 07 | 248+ 09=2%0 40207 | 2.50414=22%0 36107 | 2.42:08—22%2 38 06
Average Improvement | -6.73% | -1.02% | -17.68% | -5.56%

Table 9: Comparison with other non-conformity scores that reduce inefficiency.

Size | CP— CF-GNN

Cora 1.67+.11—2235%01 424 o5
DBLP 1.39+00=22%1 304 o
CiteSeer 1.304.07—2255% 1 04+ 04
PubMed 123201 24%1 26102
Computers | 1 58200 —22%, 1 514 05
Photo 1.342.01 —2247% 1 204 o1
CS 1.294.04—=513%1 214

GNN drastically changes the prediction accuracy. This question is more relevant to the classification
problem since for regression our method only adjusts the confidence band. For classification, we
consider top-1 class prediction as the “point prediction”. We present its accuracy "Before" and "After"
the correction in Table 12, which shows that this correction typically does not result in a visible
change in accuracy. In addition, in a new experiment on Cora, we find that 100% of the top-1 class
from the base GNN are in CF-GNN’s prediction sets. The potential to develop steps that explicitly
consider point prediction accuracy is an exciting avenue for future research.

E Extended Related Works

Uncertainty quantification for graph neural networks. Uncertainty quantification (UQ) is a well-
studied subject in general machine learning and also recently in GNNs. For multi-class classification,
the raw prediction scores are often under/over-confident and thus various calibration methods are
proposed for valid uncertainty estimation such as temperate scaling [13], vector scaling [13], ensemble
temperate scaling [49], and so on [14, 27, 39, 1]. Recently, specialized calibration methods that
leverage network principles such as homophily have been developed: examples include CaGCN [44]
and GATS [17]. In regression, various methods have been proposed to construct prediction intervals,
such as quantile regression [25, 41, 38], bootstrapping with subsampling, model ensembles, and
dropout initialization [9, 28, 26, 35], and bayesian approaches with strong modeling assumptions on
parameter and data distributions [23, 19]. However, these UQ methods can fail to provide statistically
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Table 10: CF-GNN achieves conditional coverage. We use Cora/Twitch as an example classification/regression
dataset.

Target: 0.9 \ Classification | Regression
Model ‘ Cp CF-GNN ‘ Cp CF-GNN
Marginal Cov. | 0.90£02  0.90+01 | 0.91+02 0.91+03

Cond. Cov. (Input Feat.) | 0.89+.04  0.90+.03 | 0.90+.07  0.86+.08

Cond. Cov. (Cluster) 0.82+.07 0.89+.03 | 0.90+06 0.88+.07
Cond. Cov. (Between) 0.82+06 0.89+.03 | 0.86+.08 0.88+.07
Cond. Cov. (PageRank) | 0.71+.08 0.87+.05 | 0.874+.09  0.89+.07
Cond. Cov. (Load) 0.83+05 0.90+.03 | 0.86+.08 0.88+.07
Cond. Cov. (Harmonic) | 0.89+.04 0.87+.05 | 0.88+.08 0.91+.06
Cond. Cov. (Degree) 0.79+.05 0.89+.04 | 0.86+.08 0.89+.06

Table 11: CF-GNN achieves conditional coverage. We use Cora/Twitch as an example classification/regression
dataset.

Target: 0.95 | Classification | Regression
Model | CP  CFGNN| CP  CF-GNN
Marginal Cov. | 0.95+01  0.95+01 | 0.96+02  0.96+.02

Cond. Cov. (Input Feat.) | 0.94+02  0.94+03 | 0.95+04  0.94+05

Cond. Cov. (Cluster) 0.89+06 0.93+04 | 0.96+.03 0.96+.03
Cond. Cov. (Between) 0.81+06 0.95+03 | 0.94+05 0.94+05
Cond. Cov. (PageRank) | 0.78+.06 0.94+.03 | 0.94+05 0.94+.05

Cond. Cov. (Load) 0.81+06 0.94+03 | 0.94+05 0.95+.05
Cond. Cov. (Harmonic) | 0.88+.04 0.95+.03 | 0.96+.04 0.95+.04
Cond. Cov. (Degree) 0.83+05 0.88+06 | 0.94+04 0.94+.04

rigorous and empirically valid coverage guarantee (see Table 1). In contrast, CF-GNN achieves valid
marginal coverage in both theory and practice. Uncertainty quantification has also been leveraged to
deal with out-of-distribution detection and imbalanced data in graph neural networks [50, 10]. While
it is not the focus here, we remark that conformal prediction can also be extended to tackle such
issues [18], and it would be interesting to explore such applications for graph data.

Conformal prediction for graph neural networks. As we discussed, the application of conformal
prediction to graph-structured data remains largely unexplored. At the time of submission, the
only work we awared of is [7], who claims that nodes in the graph are not exchangeable in the
inductive setting and employs the framework of [3] to construct conformal prediction sets using
neighborhood nodes as the calibration data. In contrast, we study the transductive setting where
certain exchangeablility property holds and allows for flexibility in the training step. We also study
the efficiency aspect that is absent in [7]. In addition, there have been concurrent works [15, 33] that
observe similar exchangeability and validity of conformal prediction in either transductive setting
or other network models. In particular, [15] proposes a diffusion-based method that aggregates non-
conformity scores of neighbor nodes to improve efficiency, while our approach learns the aggregation
of neighbor scores, which is more general than their approach. [32] studies the exchangeability for
node regression under certain network models instead of our transductive setting with GNNSs, and
without considering the efficiency aspect. With a growing recent interest in conformal prediction for
graphs, there are even more recent works that focus on validity [32] and link prediction [34].

Efficiency of conformal prediction. While conformal prediction enjoys distribution-free coverage
for any non-conformity score based on any prediction model, its efficiency (i.e., size of prediction sets
or length of prediction intervals) varies with specific choice of the scores and models. How to achieve
desirable properties such as efficiency is a topic under intense research in conformal prediction. To
this end, one major thread designs good non-conformity scores such as APS [37] and CQR [36]. More
recent works take another approach, by modifying the training process of the prediction model to
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Table 12: CF-GNN does not change the top-1 class prediction accuracy for classification tasks.
Dataset | Before |  After
Cora 0.844+0.004 | 0.843+0.016

DBLP 0.835+0.001 | 0.832+0.002
CiteSeer | 0.913+0.002 | 0.911+0.002

further improve efficiency. This work falls into the latter case. Our idea applies to any non-conformity
scores, as demonstrated with APS and CQR, two prominent examples of the former case. Related
to our work, ConfTr [40] also simulates conformal prediction so as to train a prediction model
that eventually leads to more efficient conformal prediction sets. However, our approach differs
from theirs in significant ways. First, ConfTr modifies model training, while CF-GNN conducts
post-hoc correction without changing the original prediction. Second, ConfTr uses the training set to
simultaneously optimize model prediction and efficiency of conformal prediction, while we withhold
a fraction of calibration data to optimize the efficiency. Third, our approach specifically leverages
the rich topological information in graph-structured data to achieve more improvement in efficiency.
Finally, we also propose a novel loss for efficiency in regression tasks.
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