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Abstract

Sequential data collection has emerged as a widely adopted technique for enhanc-
ing the efficiency of data gathering processes. Despite its advantages, such data
collection mechanism often introduces complexities to the statistical inference
procedure. For instance, the ordinary least squares (OLS) estimator in an adap-
tive linear regression model can exhibit non-normal asymptotic behavior, posing
challenges for accurate inference and interpretation. In this paper, we propose a
general method for constructing debiased estimator which remedies this issue. It
makes use of the idea of adaptive linear estimating equations, and we establish
theoretical guarantees of asymptotic normality, supplemented by discussions on
achieving near-optimal asymptotic variance. A salient feature of our estimator is
that in the context of multi-armed bandits, our estimator retains the non-asymptotic
performance of the least square estimator while obtaining asymptotic normality
property. Consequently, this work helps connect two fruitful paradigms of adaptive
inference: a) non-asymptotic inference using concentration inequalities and b)
asymptotic inference via asymptotic normality.

1 Introduction

Adaptive data collection arises as a common practice in various scenarios, with a notable example
being the use of (contextual) bandit algorithms. Algorithms like these aid in striking a balance
between exploration and exploitation trade-offs within decision-making processes, encompassing
domains such as personalized healthcare and web-based services [35, 24, 3, 22]. For instance, in
personalized healthcare, the primary objective is to choose the most effective treatment for each
patient based on their individual characteristics, such as medical history, genetic profile, and living
environment. Bandit algorithms can be used to allocate treatments based on observed response, and
the algorithm updates its probability distribution to incorporate new information as patients receive
treatment and their response is observed. Over time, the algorithm can learn which treatments are the
most effective for different types of patients.

Although the adaptivity in data collection improves the quality of data, the sequential nature (non-iid)
of the data makes the inference procedure quite challenging [34, 26, 5, 28, 27, 10, 30, 29]. There is a
lengthy literature on the problem of parameter estimation in the adaptive design setting. In a series of
work [15, 19, 17], the authors studied the consistency of the least squares estimator for an adaptive
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linear model. In a later work, Lai [14] studied the consistency of the least squares estimator in a
nonlinear regression model. The collective wisdom of these papers is that, for adaptive data collection
methods, standard estimators are consistent under a mild condition on the maximum and minimum
eigenvalues of the covariance matrix [19, 14]. In a more recent line of work [1, 2], the authors provide
a high probability upper bound on the ℓ2-error of the least squares estimator for a linear model. We
point out that, while the high probability bounds provide a quantitative understanding of OLS, these
results assume a stronger sub-Gaussian assumption on the noise variables.

The problem of inference, i.e. constructing valid confidence intervals, with adaptively collected data
is much more delicate. Lai and Wei [19] demonstrated that for a unit root autoregressive model,
which is an example of adaptive linear regression models, the least squares estimator doesn’t achieve
asymptotic normality. Furthermore, the authors showed that for a linear regression model, the least
squares estimator is asymptotically normal when the data collection procedure satisfies a stability
condition. Concretely, letting xi denote the covariate associated with i-th sample, the authors require

B−1
n Sn

p−→ I (1)

where Sn =
∑n

i=1 xix
⊤
i and {Bn}n≥1 is a sequence of non-random positive definite matrices.

Unfortunately, in many scenarios, the stability condition (1) is violated [37, 19]. Moreover, in
practice, it might be difficult to verify whether the stability condition (1) holds or not. In another
line of research [10, 36, 4, 9, 28, 31, 25, 37], the authors assume knowledge of the underlying data
collection algorithm and provide asymptotically valid confidence intervals. While this approach
offers intervals under a much weaker assumption on the underlying model, full knowledge of the data
collection algorithm is often unavailable in practice.

Online debiasing based methods: In order to produce valid statistical inference when the stability
condition (1) does not hold, some authors [8, 7, 13] utilize the idea of online debiasing. At a high
level, the online debiased estimator reduces bias from an initial estimate (usually the least squares
estimate) by adding some correction terms, and the online debiasing procedure does not require the
knowledge of the data generating process. Although this procedure guarantees asymptotic reduction
of bias to zero, the bias term’s convergence rate can be quite slow.

In this work, we consider estimating the unknown parameter in an adaptive linear model by using
a set of adaptive linear estimating equations (ALEE). We show that our proposed ALEE estimator
achieves asymptotic normality without knowing the exact data collection algorithm while addressing
the slowly decaying bias problem in online debiasing procedure.

2 Background and problem set-up

In this section, we provide the background for our problem and set up a few notations. We begin by
defining the adaptive data collection mechanism for linear models.

2.1 Adaptive linear model

Suppose a scalar response variable yt is linked to a covariate vector xt ∈ Rd at time t via the linear
model:

yt = x⊤
t θ

∗ + ϵt for t ∈ [n], (2)

where θ∗ ∈ Rd is the unknown parameter of interest.

In an adaptive linear model, the regressor xt at time t is assumed to be a (unknown) function of
the prior data point {x1, y1, . . . ,xt−1, yt−1} as well as additional source of randomness that may
be present in the data collection process. Formally, we assume there is an increasing sequence of
σ-fields {Ft}t≥0 such that

σ(x1, y1, . . . ,xt−1, yt−1,xt) ∈ Ft−1 for t ∈ [n].

For the noise variables {ϵt}t≥1 appearing in equation (2), we impose the following conditions

E[ϵt|Ft−1] = 0, E[ϵ2t |Ft−1] = σ2, and sup
t≥1

E[|ϵt/σ|2+δ|Ft−1] < ∞, (3)

for some δ > 0. The above condition is relatively mild compared to a sub-Gaussian condition.
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Examples of adaptive linear model arise in various problems, including multi-arm and contextual
bandit problems, dynamical input-output systems, adaptive approximation schemes and time series
models. For instance, in the context of the multi-armed bandit problem, the design vector xt is one
of the basis vectors {ek}k∈[d], representing an arm being pulled, while θ∗, yt represent the true mean
reward vector and reward at time t, respectively.

2.2 Adaptive linear estimating equations

As we mentioned earlier, the OLS estimator can fail to achieve asymptotic normality due to the
instability of the covariance matrix with adaptively collected data. To get around this issue, we
consider a different approach ALEE (adaptive linear estimating equations). Namely, we obtain an
estimate by solving a system of linear estimating equations with adaptive weights,

ALEE:
∑n

t=1 wt(yt − x⊤
t θ̂ALEE) = 0. (4)

Here the weight wt ∈ Rd is chosen in a way that wt ∈ Ft−1 for t ∈ [n]. Let us now try to gain some
intuition behind the construction of ALEE. Rewriting equation (4), we have

{
∑n

t=1 wtxt} · (θ̂ALEE − θ∗) =
∑n

t=1 wtϵt. (5)

Notably, the choice of wt ∈ Ft−1 makes
∑n

t=1 wtϵt the sum of a martingale difference sequence.
Our first theorem postulates conditions on the weight vectors {wt}t≥1 such that the right-hand side
of (5) converges to normal distribution asymptotically. Throughout the paper, we use the shorthand
Wt = (w1, . . . ,wt)

⊤ ∈ Rt×d, Xt = (x1, . . . ,xt)
⊤ ∈ Rt×d.

Proposition 2.1. Suppose condition (3) holds and the predictable sequence {wt}1≤t≤n satisfies

max
1≤t≤n

∥wt∥2 = op(1) and
∥∥Id −W⊤

nWn

∥∥
op = op(1). (6)

Let Aw = VwU
⊤
wXn with Wn = UwΛwV

⊤
w being the SVD of Wn. Then,

Aw(θ̂ALEE − θ∗)/σ̂
d−→ N

(
0, Id

)
, (7)

where σ̂ is any consistent estimator for σ.

Proof. Invoking the second part of the condition (6), we have that Λw is invertible for large n, and
∥VwΛ

−1
w V⊤

w − Id∥op = op(1). Utilizing the expression (5), we have

Aw(θ̂ALEE − θ∗)/σ = VwΛ
−1
w V⊤

wW
⊤
nXn(θ̂ALEE − θ∗)/σ = VwΛ

−1
w V⊤

w

n∑
t=1

wtϵt/σ.

Invoking the stability condition on the weights {wt} and using the fact that
∑n

t=1 wtϵt is a martingale
difference sequence, we conclude from martingale central limit theorem [11, Theorem 2.1] that∑n

t=1 wtϵt/σ
d−→ N

(
0, Id

)
.

Combining the last equation with ∥VwΛ
−1
w V⊤

w − Id∥op = op(1) and using Slutsky’s theorem yield

Aw(θ̂ALEE − θ∗)/σ
d−→ N

(
0, Id

)
.

The claim of Proposition 2.1 now follows from Slutsky’s theorem.

A few comments regarding the Proposition 2.1 are in order. Straightforward calculation shows

A⊤
wAw = X⊤

nPwXn ⪯ Sn, where Pw = Wn(W
⊤
nWn)

−1W⊤
n . (8)

In words, the volume of the confidence region based on (7) is always larger than the confidence
region generated by the least squares estimate. Therefore, the ALEE-based inference, which is
consistently valid, exhibits a reduced efficiency in cases where both types of confidence regions are
valid. Compared with the confidence regions based on OLS, the advantage of the ALEE approach is
to provide flexibility in the choice of weights to guarantee the validity of the CLT conditions (6).

Next, note that the matrix Aw is asymptotically equivalent to the matrix W⊤
nXn (see equation (5))

under the stability condition (6). The benefit of this reformulation is that it helps us better understand
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efficiency of ALEE compared with the OLS. This has led us to define a notion of affinity between
the weights {wt}t≥1 and covariates {xt}t≥1 for better understanding of the efficiency of ALEE and
ways to design nearly optimal weights, as it will be clear in the next section.

Finally, it is straightforward to obtain a consistent estimate for σ. For instance, assuming
log(λmax(X

⊤
nXn))/n

a.s.−→ 0 and the noise condition (3), we have

σ̂2 :=
1

n

n∑
t=1

(yt − x⊤
t θ̂LS)

2 a.s.−→ σ2. (9)

Here, θ̂LS refers to the least squares estimate. See [19, Lemma 3] for a detailed proof of equation (9).

3 Main results

In this section, we propose methods to construct weights {wt}t≥1 which satisfy the stability prop-
erty (6), and study the resulting ALEE. Section 3.1 is devoted to the multi-arm bandit case, Section 3.2
to an autoregressive model, and Section 3.3 to the contextual bandit case. Before delving into details,
let us try to understand intuitively how to construct weights that have desirable properties.

The expression (8) reveals that the efficiency of ALEE depends on the projection of the data matrix
Xn on Wn. Thus, the efficiency of the ALEE approach can be measured by the principal angles
between the random projections Pw in (8) and Px = XnS

−1
n X⊤

n . Accordingly, we define the affinity
A(Wn,Xn) of the weights {wt}t≥1 as the cosine of the largest principle angle, or equivalently

A(Wn,Xn) = σd(PxPw) = σd

(
U⊤

wXnS
−1/2
n

)
(10)

as the d-th largest singular value of PxPw. Formally, the above definition captures the cosine of the
angle between the two subspaces spanned by the columns of Xn and Wn, respectively [12]. Good
weights {wt}t≥1 are those with relatively large affinity or

Uw ∝ XnS
−1/2
n (approximately). (11)

3.1 Multi-arm bandits

In the context of the K-arm bandit problem, the Gram matrix has a diagonal structure, which means
that we can focus on constructing weights {wt}t≥1 for each coordinate independently. For an arm
k ∈ [K] and round t ≥ 1, define

st,k = s0 +
∑t

i=1 x
2
i,k for some positive s0 ∈ F0. (12)

Define the k-th coordinate of the weight wt as

wt,k = f
(st,k

s0

)
· xt,k√

s0
with f(x) =

√
log 2

x · log(e2x) · (log log(e2x))2
. (13)

The intuition behind the above construction is as follows. The discussion at near equation (11)
indicates that the k-th coordinate of wt should be proportional to xt,k/(

∑
i≤n x

2
i,k)

1/2. However,
the weight wt is required to be predictable, which can only depend on the data points 1 up to time t.
Consequently, we approximate the sum

∑
i≤n x

2
i,k by the partial sum st,k in (12). Finally, note that

wt,k = f
(st,k

s0

)
· xt,k√

s0
≈ xt,k√

st,k
. (14)

The logarithmic factors in (13) ensure that the stability conditions (6) hold. In the following theorem,
we generalize the above method as a general strategy for constructing weights {wt}t≥1 satisfying
the stability condition (6).

1Note that xt,k ∈ Ft−1 can be used to construct wt
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Figure 1: Empirical distribution of the standardized errors from OLS and ALEE approach. Results
are obtained with a dataset of size n = 1000 and 3000 independent replications. Left: AR(1) model
yt = yt−1 + ϵt with independent errors ϵt ∼ N (0, 1). Right: Two-armed bandit problem with equal
arm mean θ∗1 = θ∗2 = 0.3 and independent noise ϵt ∼ N (0, 1). Figure 4 in Section C.3 considers the
same setting with centered Poisson noise, which is not sub-Gaussian.

3.1.1 Stable weight construction strategy

Let f(x) be a positive decreasing function with support [1,∞) and increasing derivative f ′(x).
Additionally, let f satisfy the condition that f ′/f is increasing as well as∫ ∞

1

f2(x)dx = 1 and
∫ ∞

1

f(x)dx = ∞. (15)

With s0 ∈ F0, we define weight wt,k as

wt,k = f
(st,k

s0

) xt,k√
s0

with st,k = s0 +

t∑
i=1

x2
i,k. (16)

A key condition that ensures the weights {wt,k}t≥1 satisfy the desirable stability property (6) is

max
1≤t≤n

f2
(st,k

s0

)x2
t,k

s0
+ max

1≤t≤n

(
1− f(st,k/s0)

f(st−1,k/s0)

)
+

∫ ∞

sn,k/s0

f2(x)dx = op(1). (17)

For multi-armed bandits, this condition is automatically satisfied when both quantities 1/s0 and
s0/sn,k converge to zero in probability. Putting together the pieces, we have the following result for
multi-armed bandits.
Theorem 3.1. Suppose condition (3) holds and 1/s0 + s0/sn,k = op(1) for some k ∈ [K]. Then,
the k-th coordinate θ̂ALEE,k, obtained using weights from equation (16), satisfies

(θ̂ALEE,k − θ∗k) ·
∫ sn,k/s0

1

√
s0
σ̂

f(x)dx
d−→ N (0, 1), (18)

where σ̂ is a consistent estimate of σ. Equivalently,

(θ̂ALEE,k − θ∗k)

σ̂
√∑

1≤t≤n w
2
t,k

·
( n∑

t=1

wt,kxt,k

)
d−→ N (0, 1). (19)

The proof of Theorem 3.1 can be found in Section A.1 of the Appendix. A few comments regarding
Theorem 3.1 are in order.

First, the above theorem enables us to construct valid CI in the estimation of the mean θ∗k for a
sub-optimal arm k when employing an asymptotically optimal allocation rule to achieve the optimal
regret in [18] with sample size

∑
t≤n xt,k ≍ log n, or when using a sub-optimal rule to achieve

polylog(n). On the other hand, the classical martingale CLT is applicable to the optimal arm (if
unique) under such asymptotically optimal or sub-optimal allocation rules. Consequently, one may
obtain a valid CI for the optimal arm from the standard OLS estimate [19]. However, it is important
to note that such CIs are not guaranteed for sub-optimal arms.
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Next, while Theorem 3.1 holds for any s0 diverging to infinity but of smaller order than sn,k ( which
may depend on k), the convergence rate of

∑
1≤t≤n wt,kϵt to normality is enhanced by choosing a

large value for s0. In practical terms, it is advisable to choose an s0 that is slightly smaller than the
best-known lower bound for sn,k.

Finally, the choice of function f determines the efficiency of ALEE estimator. For instance, taking
function f(x) = 1/x, we obtain an estimator with asymptotic variance of order 1/{s0 log2(sn,k/s0)},
which is only better than what one would get using stopping time results by a logarithmic factor. In
the next Corollary, an improved choice of f yields near optimal variance up to logarithmic terms.

Corollary 3.2. Consider the same set of assumptions as stated in Theorem 3.1. The ALEE estimator
θ̂ALEE,k, obtained by using f(x) = (β logβ 2)1/2{x(log e2x)(log log e2x)1+β}−1/2 for any β > 0
satisfies √

4β(log 2)β

log(sn,k/s0){log log(sn,k/s0)}1+β
·
√
sn,k(θ̂ALEE,k − θ∗)

σ̂

d−→ N (0, 1).

The proof of this corollary follows directly from Theorem 3.1. For s0 = log n/ log log n in multi-
armed bandits with asymptotically optimal allocations, log(sn,k/s0) = (1 + o(1)) log log sn,k.

3.1.2 Finite sample bounds for ALEE estimators

One may also construct finite sample confidence intervals for each arm via applying concentration
bounds. Indeed, for any arm k ∈ K, we have

{
n∑

t=1

wt,kxt,k} ·
(
θ̂ALEE,k − θ∗k

)
=

n∑
t=1

wt,kϵt. (20)

Following the construction of wt,k ∈ Ft−1, the term
∑n

t=1 wt,kϵt is amenable to concentration
inequalities if we assume that the noise ϵt is sub-Gaussian conditioned on Ft−1, i.e.

∀λ ∈ R E[eλϵt | Ft−1] ≤ eσ
2
gλ

2/2. (21)

Corollary 3.3 (Theorem 1 in [1]). Suppose the sub-Gaussian noise condition (21) is in force. Then
for any δ > 0 and λ0 > 0, the following bound holds with probability at least 1− δ∣∣∣∣∣

n∑
t=1

wt,kxt,k

∣∣∣∣∣ · |θ̂ALEE,k − θ∗k| ≤ σg

√√√√(λ0 +
n∑

t=1

w2
t,k) · log

(
λ0 +

∑n
t=1 w

2
t,k

δ2λ0

)
. (22)

Remark 3.4. In the context of multi-armed bandit, by considering the function f in Corollary 3.2
with β = 1 and Corollary 3.3 with λ0 = 1, we derive that with probability at least 1− δ

|θ̂ALEE,k − θ∗k| ≤ σg

√
log(2/δ2)

√
2 + log(sn,k/s0) log{2 + log(sn,k/s0)}√

sn,k −√
s0

(23)

provided s0 > 1. See Section A.2 of the Appendix for a proof of this argument. Recall that√
sn,k = (s0 +

∑
i≤n x

2
i,k)

1/2, the bound is in the same spirit as existing finite sample bounds for
the OLS estimator for arm means [1, 21]. In simple terms, the ALEE estimator behaves similarly to
the OLS estimator in a non-asymptotic setting while still maintaining asymptotic normality.

3.2 Autoregressive time series

Next, we focus on an autoregressive time series model

yt = θ∗yt−1 + ϵt for t ∈ [n], (24)

where y0 = 0. Note that the above model is a special case of the adaptive linear model (2). It is
well-known that when θ∗ ∈ (−1, 1), the time series model (24) satisfies a stability assumption (1).
Consequently, one might use the OLS estimate based confidence intervals [19] for θ∗. However,
when θ∗ = 1 — also known as the unit root case — stability condition (1) does not hold, and the
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least squares estimator is not asymptotically normal [19]. In other words, when θ∗ = 1, the least
squares based intervals do not provide correct coverage.

In this section, we apply ALEE-based approach to construct confidence intervals that are valid
for θ∗ ∈ [−1, 1]. Similar to previous sections, let s0 ∈ F0 and denote st = s0 +

∑
1≤i≤t y

2
i−1.

Following a construction similar to the last section, we have the following corollary.
Corollary 3.5. Assume the noise variables {ϵt}t are i.i.d with mean zero, variance σ2 and sub-
Gaussian parameter σ2

g . Then, for any θ∗ ∈ [−1, 1], the ALEE estimator, obtained using wt =
f(st/s0)yt−1/

√
s0 with function f from Corollary 3.2 and s0 = n/ log log(n), satisfies√

4β(log 2)β

log(sn/s0){log log(sn/s0)}1+β
·
√
sn(θ̂ALEE − θ∗)

σ̂

d−→ N (0, 1). (25)

The proof of Corollary 3.5 can be found in Section A.3 of the Appendix.

3.3 Contextual bandits

In contextual bandit problems, the task of defining adaptive weights that satisfy the stability con-
dition (6) while maintaining a large affinity is challenging. Without loss of generality, we assume
that ∥xt∥2 ≤ 1. Following the discussion around (11) and using St as an approximation of Sn, we

see that a good choice for the weight is wt ≈ S
− 1

2
t xt. However, it is not all clear at the moment

why the above choice produces d−dimensional weights wt satisfying the stability condition (6). It
turns out that the success of our construction is based on the variability of certain matrix Vt. For a
F0-measurable d× d symmetric matrix Σ0 ⪰ Id and t ∈ [n], we define

Σt = Σ0 +
t∑

i=1

xix
⊤
i and zt = Σ

− 1
2

t−1xt. (26)

For t ∈ [n], we define the variability matrix Vt as

Vt =

(
Id +

t∑
i=1

ziz
⊤
i

)−1

(Variability). (27)

The variability matrix Vt comes up frequently in finite sample analysis of the least squares estima-
tor [16, 19, 2], the generalized linear models with adaptive data [23], and in online optimization [6];
see comments after Theorem 3.6 for a more detailed discussion on the matrix Vt. Now, we define
weights {wt}t≥1 as

wt =
√
1 + z⊤

t Vt−1zt ·Vtzt. (28)

Theorem 3.6. Suppose condition (3) holds and ∥Σ−1
0 ∥op + ∥Vn∥op = op(1). Then, the ALEE

estimator θ̂ALEE, obtained using the weights {wt}1≤t≤n from (28), satisfies(
n∑

t=1

wtxt

)
· (θ̂ALEE − θ∗)

d−→ N
(
0, σ2Id

)
.

The proof of Theorem 3.6 can be found in Section A.4 of the Appendix. In Theorem B.4 in the
appendix, we establish the asymptotic normality of a modified version of the ALEE estimator, which
has the same asymptotic variance as the one in Theorem 3.6 under the assumption ∥Σ−1

0 ∥op = op(1).
In other words, the modified theorem B.4 does not assume any condition on the ∥Vn∥op.

To better convey the idea of our construction, we provide a lemma that may be of independent interest.
This lemma applies to weights wt generated by (27) and (28) with general zt.
Lemma 3.7. Let wt be as in (28) with the variability matrix Vt in (27). Then,

n∑
t=1

wtw
⊤
t = Id −Vn, max

1≤t≤n
∥wt∥2 = max

1≤t≤n
∥Vt−1zt∥2/(1 + z⊤

t Vt−1zt)
1/2. (29)

For zt ∈ Ft−1, the stability condition (6) holds when max1≤t≤n z
⊤
t Vtzt + ∥Vn∥op = op(1).
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Proof. For any t ≥ 1, Vt = Vt−1 −Vt−1ztz
⊤
t Vt−1/(1 + z⊤

t Vt−1zt). It follows that Vtzt =
Vt−1zt/(1 + z⊤

t Vt−1zt) and
∑n

t=1 wtw
⊤
t =

∑n
t=1 Vt−1(V

−1
t −V−1

t−1)Vt = Id −Vn.

Comments on Theorem 3.6 conditions: It is instructive to compare the conditions of Theorem 3.1
and Theorem 3.6. The condition ∥Σ−1

0 ∥op = op(1) is an analogue of the condition 1/s0 = op(1).
The condition ∥Vn∥op = op(1) is a bit more subtle. This condition is an analogue of the condition
s0/sn,k = op(1). Indeed, applying elliptical potential lemma [2, Lemma 4] yields

log(det(Σ0 + Sn))

log(det(Σ0))
≤ trace(V−1

n )− d =
n∑

t=1

x⊤
t Σ

−1
t−1xt ≤ 2 · log(det(Σ0 + Sn))

log(det(Σ0))
(30)

where Sn =
∑n

i=1 xix
⊤
i is the Gram matrix. We see that for ∥Vn∥op = op(1), it is necessary that

the eigenvalues of Sn grow to infinity at a faster rate than the eigenvalues of Σ0. Moreover, in the
case of dimension d = 1, the condition ∥Vn∥op = op(1) is equivalent to s0/sn,k = op(1).

4 Numerical experiments

In this section, we consider three settings: two-armed bandit setting, first order auto-regressive
model setting and contextual bandit setting. In two-armed bandit setting, the rewards are generated
with same arm mean (θ∗1 , θ

∗
2) = (0.3, 0.3), and noise is generated from a normal distribution with

mean 0 and variance 1. To collect two-armed bandit data, we use ϵ-Greedy algorithm with decaying
exploration rate

√
log(t)/t. The rate is designed to make sure the number of times each armed is

pulled has order greater than log(n) up to time n. In the second setting, we consider the time series
model,

yt = θ∗yt−1 + ϵt, (31)
where θ∗ = 1 and noise ϵt is drawn from a normal distribution with mean 0 and variance 1. In the
contextual bandit setting, we consider the true parameter θ∗ to be 0.3 times the all-one vector. In
the initial iterations, a random context xt is generated from a uniform distribution in Sd−1. Then,
we apply ϵ-Greedy algorithm to these pre-selected contexts with decaying exploration rate log2(t)/t.
For all of the above three settings, we run 1000 independent replications.
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Figure 2: Two-armed bandit problem with equal arm mean θ∗1 = θ∗2 = 0.3. Error bars plotted are ±
standard errors.

To analyze the data we collect for these settings, we apply ALEE approach with weights specified
in Corollary 3.2, 3.5 and Theorem B.4, respectively. More specifically, in the first two settings, we
consider β = 1 in Corollary 3.2. For two-armed bandit example, we set s0 = e2 log(n), which
is known to be a lower bound for sn,1. For AR(1) model, we consider s0 = e2n/ log log(n). For
the contextual bandit example, we consider Σ0 = log(n) · Id. In the simulations, we also compare
ALEE approach to the normality based confidence interval for OLS estimator [19] (which may be
incorrect), the concentration bounds for the OLS estimator based on self-normalized martingale
sequence [1], and W-decorrelation [8]. Detailed implementations about these methods can be found
in Appendix C.1.

In Figure 2, we display results for two-armed bandit example, providing the empirical coverage plots
for the first arm mean θ∗1 as well as average width for two-sided CIs. We observe that CIs based on
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Figure 3: AR(1) with model coefficient θ∗ = 1 and s0 = e2n/ log log(n). Error bars plotted are ±
standard errors.

OLS undercover θ∗1 while other methods provide satisfactory coverage. Notably, from the average
CI width plot, we can see that W-decorrelation and concentration methods have relatively large CI
widths. On the contrary, ALEE-based CIs achieve target coverage while keeping the width of CIs
relatively small.

For AR(1) model, we display the results in Figure 3. For the context bandit example, we consider
d = 20 and summarize the empirical coverage probability and the logarithm of the volume of the
confidence regions in Table 1, along with corresponding standard deviations. See Appendix C.2 for
experiments with dimension d = 10 and d = 50.

Table 1: Contextual bandit: d = 20
Method Level of confidence

0.8 0.85 0.9

Avg. Coverage Avg. log(Volumn) Avg. Coverage Avg. log(Volumn) Avg. Coverage Avg. log(Volumn)
ALEE 0.805 (± 0.396) 6.541 (± 0.528) 0.861 (± 0.346) 7.108 (± 0.528) 0.910 (± 0.286) 7.806 (± 0.528)
OLS 0.776 (± 0.417) -2.079 (± 0.525) 0.830 (± 0.376) -1.513 (± 0.525) 0.881 (± 0.324) -0.815 (± 0.525)
W-Decorrelation 0.777 (± 0.416) 25.727 (± 0.518) 0.829 (± 0.377) 26.294 (± 0.518) 0.870 (± 0.336) 26.992 (± 0.518)
Concentration 1.000 (± 0.000) 17.374 (± 0.506) 1.000 (± 0.000) 17.408(± 0.506) 1.000 (± 0.000) 17.455 (± 0.506)

5 Discussion

In this paper, we study the parameter estimation problem in an adaptive linear model. We propose to
use ALEE (adaptive linear estimation equations) to obtain point and interval estimates. Our main
contribution is to propose an estimator which is asymptotically normal without requiring any stability
condition on the sample covariance matrix. Unlike the concentration based confidence regions, our
proposed confidence regions allow for heavy tailed noise variables. We demonstrate the utilitity of
our method by comparing our method with existing methods.

Our work leaves several questions open for future research. For example, it would be interesting to
characterize the variance of the ALEE estimator compared to the best possible variance[13, 20] for
d > 1. It would also be interesting to know if such results can be extended to non-linear adaptive
models, e.g., to an adaptive generalized linear model [23]. Furthermore, our paper assumes a fixed
dimension d for the problem while letting n → ∞. It would be interesting to explore whether we can
allow the dimension to grow with the number of samples at a specific rate.
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A Proof

In Theorem 3.1, Corollary 3.3 and Remark 3.4, we deal with an arm with index k ∈ [K]. To simplify notations,
we drop the subscript k in st,k, wt,k, xt,k, θ̂ALEE,k and θ∗k throughout the proof, and use st, wt, xt, θ̂ALEE and
θ∗, respectively.

A.1 Proof of Theorem 3.1

Condition (17) serves as an important role in proving (18). Therefore, we start our proof by verifying the
condition (17). Since function f is a positive decreasing function, we first have

max
1≤t≤n

f2(
st
s0

)
x2
t

s0
≤ f2(1)

1

s0
. (32)

Furthermore, since function f ′/f is increasing, we have

max
1≤t≤n

(
1− f(st/s0)

f(st−1/s0)

)
= max

1≤t≤n

f(st−1/s0)− f(st/s0)

f(st−1/s0)

(i)

≤ 1

s0
max
1≤t≤n

−f ′(st−1/s0)

f(st−1/s0)
=

1

s0

−f ′(1)

f(1)
,

(33)

where inequality (i) follows from mean value theorem and the monotonicity of the function f ′/f . Thus,
by assuming 1/s0 = op(1) and s0/sn = op(1), condition (17) follows directly from equation (32) and
equation (33).

By the construction of ALEE estimator, we have{ n∑
t=1

wtxt

}
· (θ̂ALEE − θ∗) =

n∑
t=1

wtϵt. (34)

Note that
n∑

t=1

wtxt =
√
s0

n∑
t=1

f(st/s0)
x2
t

s0
=

√
s0

∫ sn/s0

1

f(x)dx ·
∑

t≤n f(st/s0)x
2
t/s0∫ sn/s0

1
f(x)dx

. (35)

By the mean value theorem, we have that for t ∈ [n], ξt ∈ [st−1, st]∫ st/s0

st−1/s0

f(x)dx = f(ξt/s0)
x2
t

s0
.

12



Therefore, we have ∑
t≤n f(st/s0)x

2
t/s0∫ sn/s0

1
f(x)dx

= 1 +

∑
t≤n(

f(st/s0)
f(ξt/s0)

− 1)f(ξt/s0)x
2
t/s0∑

t≤n f(ξt/s0)x2
t/s0︸ ︷︷ ︸

∆
=R

.

Observe that

|R| ≤
∑

t≤n | f(st/s0)
f(ξt/s0)

− 1|f(ξt/s0)x2
t/s0∑

t≤n f(ξt/s0)x2
t/s0

≤

∑
t≤n | f(st/s0)

f(st−1/s0)
− 1|f(ξt/s0)x2

t/s0∑
t≤n f(ξt/s0)x2

t/s0

≤ max
1≤t≤n

(
1− f(st/s0)

f(st−1/s0)

)
(ii)
= op(1).

Equality (ii) follows from condition (17). Consequently, applying Slutsky’s theorem yields∑n
i=1 wtxt

√
s0
∫ sn/s0
1

f(x)dx

p−→ 1.

Similarly, we can derive

n∑
t=1

w2
t =

n∑
t=1

f2(st/s0)
x2
t

s0
= (1 + op(1))

∫ sn/s0

1

f2(x)dx = 1 + op(1). (36)

Knowing max1≤t≤n w2
t = max1≤t≤n f2(st/s0)x

2
t/s0 = op(1), which is a consequence of equation (17),

martingale central limit theorem together with an application of Slutsky’s theorem yields

(θ̂ALEE − θ∗) ·
∫ sn/s0

1

√
s0

σ̂
f(x)dx

d−→ N (0, 1).

Lastly, we recall that

θ̂ALEE − θ∗

σ̂
√∑

t≤n w2
t

·
( n∑

t=1

wtxt

)
=

1

σ̂
√∑

t≤n w2
t

n∑
t=1

wtϵt.

Therefore, equation (19) follows from martingale central limit theorem and Slutsky’s theorem.

Remark A.1. Equation (18) sheds light on the asymptotic variance of the ALEE estimator, thereby aiding in the
selection of a suitable function f to improve the efficiency of ALEE estimator. On the other hand, equation (19)
offers a practical approach to obtaining an asymptotically precise confidence interval.

Remark A.2. Condition (17) is a general requirement that governs equation (18), and is not specific to bandit
problems. However, the difficulty in verifying (17) can vary depending on the problem at hand.

A.2 Proof of Remark 3.4

Corollary 3.3 follows directly from Theorem 1 in [1]. In this section, we provide a proof of Remark 3.4. By
considering λ0 = 1 in Corollary 3.3, we have with probability at least 1− δ∣∣∣∣∣

n∑
t=1

wtxt

∣∣∣∣∣ · |θ̂ALEE − θ∗| ≤ σg

√√√√(1 +

n∑
t=1

w2
t ) · log

(
1 +

∑n
t=1 w

2
t

δ2

)
. (37)

By the construction of the weights in Corollary 3.2, we have

n∑
t=1

w2
t =

n∑
t=1

f2(
st
s0

)
x2
t

s0
≤
∫ ∞

1

f2(x)dx = 1. (38)

13



Therefore, to complete the proof, it suffices to characterize a lower bound for
∑

1≤t≤n wtxt. By definition, we
have

n∑
t=1

wtxt =

n∑
t=1

f(st/s0)
x2
t√
s0

(i)
=

n∑
t=1

x2
t

(st log(e2st/s0))1/2 log log(e2st/s0)

≥ 1

(2 + log(sn/s0))1/2 log(2 + log(sn/s0))

n∑
t=1

x2
t√
st

(ii)

≥ 1

(2 + log(sn/s0))1/2 log(2 + log(sn/s0))
· 2(

√
sn −

√
s0)

√
s0

1 + s0
(iii)

≥ 1

(2 + log(sn/s0))1/2 log(2 + log(sn/s0))
·
√
2(
√
sn −

√
s0).

(39)

In equation (i), we plug in the expression of function f and hence
√
s0 cancels out. Since xt is either 0 or 1,

inequality (ii) follows from the integration of the function h(x) = 1/
√
x. Inequality (iii) follows from s0 > 1.

Putting things together, we have

|θ̂ALEE − θ∗| ≤ σg

√
2 log(2/δ2)∑
1≤t≤n wtxt

≤ σg

√
log(2/δ2)

√
2 + log(sn/s0) log{2 + log(sn/s0)}√

sn −√
s0

.

(40)

This completes our proof of Remark 3.4.

A.3 Proof of Corollary 3.5

Note that it suffices to verify the following condition (41)

max
1≤t≤n

f2
( st
s0

)y2
t−1

s0
+ max

1≤t≤n

(
1− f(st/s0)

f(st−1/s0)

)
+

∫ ∞

sn/s0

f2(x)dx = op(1) (41)

for θ∗ ∈ [−1, 1] in order to complete the proof of Corollary 3.5. The other part of the proof can be adapted from
the proof of Theorem 3.1. To simplify notations, we let

T1
∆
= max

1≤t≤n
f2
( st
s0

)y2
t−1

s0
, T2

∆
= max

1≤t≤n

(
1− f(st/s0)

f(st−1/s0)

)
, and T3

∆
=

∫ ∞

sn/s0

f2(x)dx.

Therefore, proving equation (41) is equivalent to showing that T1, T2, and T3 converge to zero in probability.
We will now demonstrate the convergence of each of these three terms to zero in probability.

T1 with θ∗ = 1: To prove T1 = op(1), we make use of a result in [19, Equation 3.23], which is

P

(
lim inf
n→∞

n−2(log log n)

n∑
t=1

y2
t−1 = σ2/4

)
= 1. (42)

Observe that

T1 = max
1≤t≤n

f2(
st
s0

)
y2
t−1

s0
= max

1≤t≤n

y2
t−1

st log(e2st/s0){log log(e2st/s0)}1+β

≤ max
1≤t≤n

y2
t−1

st log(e2){log log(e2)}1+β

=
1

2(log 2)1+β
max
1≤t≤n

y2
t−1

st

≤ 1

2(log 2)1+β
max{ max

1≤t≤⌊n2/3⌋

y2
t−1

s0
, max
⌊n2/3⌋+1≤t≤n

y2
t−1

s⌊n2/3⌋ − s0
}

(43)

In equation (43), we split the sequence into two parts and set different lower bounds for st. The major
benefit of this step is to help us derive a better choice of s0. Now we bound max1≤t≤⌊n2/3⌋ y

2
t−1 and
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max⌊n2/3⌋+1≤t≤n y2
t−1. Note that

P
(

max
1≤t≤⌊n2/3⌋

y2
t−1 ≥ ϵ

)
=P
(
max{ max

1≤t≤⌊n2/3⌋
yt−1, max

1≤t≤⌊n2/3⌋
−yt−1} ≥

√
ϵ

)

≤
E
[
max{max1≤t≤⌊n2/3⌋ yt−1,max1≤t≤⌊n2/3⌋ −yt−1}

]
√
ϵ

(i)

≤
√

2n2/3σ2
g log(2n2/3)

ϵ
,

(44)

where inequality is derived from [33, Exercise 2.12] and the fact that yi is sub-Gaussian with sub-Gaussian
parameter σ2

gn
2/3 for i ≤ ⌊n2/3⌋. Therefore, we conclude that

max
1≤t≤⌊n2/3⌋

y2
t−1 = Op(n

2/3 log n).

Consequently, we have

max
1≤t≤⌊n2/3⌋

y2
t−1

s0
=

n2/3 log n

n/ log log n
·Op(1) = op(1). (45)

By applying the same trick to max⌊n2/3⌋+1≤t≤n y2
t−1, we can derive

max
⌊n2/3⌋+1≤t≤n

y2
t−1 = Op(n log n).

Hence we have

max
⌊n2/3⌋+1≤t≤n

y2
t−1

s⌊n2/3⌋ − s0
=

Op(n log n)

n4/3/ log log n2/3
· n

4/3/ log log n2/3

s⌊n2/3⌋ − s0

(ii)
= op(1) ·Op(1) = op(1). (46)

Equality (ii) makes use of equation (42). Combining equation (44) with equations (45) and (46), we conclude
that T1 = op(1).

T1 with θ∗ = −1: When θ∗ = −1, the proof is essentially the same as the case when θ∗ = −1. The only
difference lies in the order of

∑
1≤i≤n y2

i−1. However, by pairing ϵ2t−1 with ϵ2t for t ∈ N+, we can arrive at
the same result. Specifically, for t ∈ N+, we let ϵ′t = ϵ2t − ϵ2t−1 and define

y′
t =

t∑
k=1

ϵ′k

where y′
0

∆
= 0 and {ϵ′t}t≥1 are random variables with mean zero, variance 2σ2 and sub-Gaussian parameter 2σ2

g .
Therefore, applying equation (44) yields

lim inf
n→∞

n−2(log log n)

n∑
t=1

(y′
t−1)

2 = σ2. (47)

Setting n0 = ⌊(⌊n2/3⌋ − 1)/2⌋, we have

s⌊n2/3⌋ − s0 =

⌊n2/3⌋−1∑
t=1

y2
t ≥

n0∑
t=1

(y′
t)

2 =

n0+1∑
t=1

(y′
t−1)

2. (48)

According to equation (47) and equation (48), we have

max
⌊n2/3⌋+1≤t≤n

y2
t−1

s⌊n2/3⌋ − s0
≤

max⌊n2/3⌋+1≤t≤n y2
t−1∑

1≤t≤n0+1(y
′
t−1)

2

=
max⌊n2/3⌋+1≤t≤n y2

t−1

(n0 + 1)2/ log log(n0 + 1)
· (n0 + 1)2/ log log(n0 + 1)∑

1≤t≤n0+1(y
′
t−1)

2

= op(1) ·Op(1) = op(1),

(49)

which completes the proof of T1 = op(1) for the case when θ∗ = −1.
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T1 with θ∗ ∈ (−1, 1): Given θ∗ ∈ (−1, 1), we observe that yt is a sub-Gaussian random variable with

sub-Gaussian parameter
σ2
g

1−(θ∗)2 for any t ∈ N+. Therefore, following equation (43), we have

T1 ≤ 1

2(log 2)1+β
max
1≤t≤n

y2
t−1

s0
(50)

where in the above inequality we use s0 as a lower bound for st. By applying [33, Exercise 2.12], we have

max
1≤t≤n

y2
t−1 = Op(log n), (51)

leading to the conclusion that T1 = op(1).

T2 with θ∗ ∈ [−1, 1]: Similar to equation (33), we have

T2 = max
1≤t≤n

(
1− f(st/s0)

f(st−1/s0)

)
= max

1≤t≤n

f(st−1/s0)− f(st/s0)

f(st−1/s0)

≤ max
1≤t≤n

−f ′(st−1/s0)

f(st−1/s0)

y2
t−1

s0
.

Define g(x) = −f ′(x)/f(x) and we can compute that∫
g(x)dx = −

∫
f ′(x)

f(x)
dx = −

∫
1

f
df = − log f + C,

where C is some constant. Doing some calculation yields

g(x) =
d

dx
− log f =

d

dx

{
1

2
(log(x) + log log(e2x)) + (1 + β) log log log(e2x))

}
=

1

2x

{
1 +

1

log(e2x)
+

1 + β

log(e2x)
· 1

log log(e2x)

}
.

Therefore, we have

T2 ≤ max
1≤t≤n

−f ′(st−1/s0)

f(st−1/s0)

y2
t−1

s0
= max

1≤t≤n
g(st−1/s0)

y2
t−1

s0

≤ 1

2

(
3

2
+

1 + β

2 log 2

)
max
1≤t≤n

y2
t−1

st−1
.

We note that demonstrating max1≤t≤n y2
t−1/st−1 = op(1) follows the same approach as the proof of

max1≤t≤n y2
t−1/st = op(1). Hence, we omit it. To conclude, we show that T2 = op(1) for θ∗ ∈ [−1, 1].

T3 with θ∗ ∈ [−1, 1]: To prove T3 = op(1), it suffices to verify that

s0∑
1≤t≤n y2

t

= op(1). (52)

For convenience, in equation (52) we use yt instead of yt−1. Note that when θ∗ = 1 or θ∗ = −1, we have
provided almost sure lower bounds for

∑
1≤t≤n y2

t in the proof of T1 = op(1). Therefore, equation (52) follows
from these lower bounds. To prove equation (52) when θ∗ ∈ (−1, 1), we begin by rewriting

∑
1≤t≤n y2

t in
quadratic form. Without confusion and loss of generality, we replace θ∗ by θ, consider var(ϵt) = 1, and set
εn = (ϵ1, ϵ2, . . . , ϵn)

⊤. For t ∈ [n], we have

yt =

t∑
k=1

θt−kϵk = a⊤
t εn,

where at ∈ Rn and at,j = θt−j for j ≤ t and at,j = 0 for j > t. Therefore,
∑

1≤t≤n y2
t can be written as∑

1≤t≤n

y2
t =

∑
1≤t≤n

ε⊤
nata

⊤
t εn = ε⊤

nAεn, (53)

where A =
∑

1≤t≤n ata
⊤
t . Applying Hanson-Wright inequality (e.g. see [32]), we have

P
(
|ε⊤

nAεn − Eε⊤
nAεn| > t

)
≤ 2 exp

[
−cmin

(
t2

K4|||A|||2F
,

t

K2|||A|||F

)]
, (54)
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where c and K are some universal constants. Observe that

Eε⊤
nAεn = trace(A) = trace(

∑
1≤t≤n

ata
⊤
t ) = trace(

∑
1≤t≤n

a⊤
t at)

=
∑

1≤t≤n

(1 + θ2 + · · ·+ θ2(t−1))

=
∑

1≤t≤n

1− θ2t

1− θ2

=
n

1− θ2
− θ2(1− θ2n)

(1− θ2)2
.

Furthermore, we have

|||A|||2F = trace(A⊤A) = trace(
∑

1≤i≤n

aia
⊤
i ·

∑
1≤j≤n

aja
⊤
j )

=
∑

1≤i≤n

∑
1≤j≤n

(a⊤
i aj)

2

=
∑

1≤i≤n

∥ai∥42 + 2
∑

1≤i<j≤n

∥ai∥42 · θ2(j−i).

(55)

Subsequently, we have ∑
1≤i≤n

∥ai∥42 ≤ |||A|||2F ≤ (1 +
2

1− θ2
)
∑

1≤i≤n

∥ai∥42, (56)

where ∑
1≤i≤n

∥ai∥42 =
n

(1− θ2)2
− 2θ2(1− θ2n)

(1− θ2)3
+

θ4(1− θ4n)

(1− θ2)2(1− θ4)
.

Assuming δ ≤ 2e−c and t = 1
c
K2|||A|||F log( 2δ ), we have with probability at least 1− δ,

ε⊤
nAεn ≥ Eε⊤

nAεn − 1

c
K2|||A|||F log(

2

δ
). (57)

We note that the term on the right hand side of equation (57) has order n. For any ϵ > 0, consider the following
probability

lim sup
n→∞

P
(

s0
ε⊤
nAεn

> ϵ

)
≤ lim sup

n→∞
P
(

s0
ε⊤
nAεn

> ϵ, ε⊤
nAεn ≥ Eε⊤

nAεn − 1

c
K2|||A|||F log(

2

δ
)

)
+ lim sup

n→∞
P
(
ε⊤
nAεn < Eε⊤

nAεn − 1

c
K2|||A|||F log(

2

δ
)

)
≤ lim sup

n→∞
P
(

s0

Eε⊤
nAεn − 1

c
K2|||A|||F log( 2δ )

> ϵ

)
+ δ.

(58)

By fixing δ and comparing the order of s0 with the order of ε⊤
nAεn − 1

c
K2|||A|||F log( 2δ ), we have

lim sup
n→∞

P
(

s0

Eε⊤
nAεn − 1

c
K2|||A|||F log( 2δ )

> ϵ

)
= 0.

Since δ can be arbitrarily small, we conclude that
s0

ε⊤
nAεn

= op(1), (59)

which completes the proof of T3 = op(1).

A.4 Proof of Theorem 3.6

Note that for any t ≥ 1, we have

∥Vt∥op ≤ 1 and Vt = Vt−1 −Vt−1ztz
⊤
t Vt−1/(1 + z⊤

t Vt−1zt). (60)

The second part of equation (60) follows from the Sherman–Morrison formula. Let ut = Vtzt and we adopt
the notation V0 = Id. By multiplying zt on the right hand side of Vt, we have

Vtzt = Vt−1zt −Vt−1ztz
⊤
t Vt−1zt/(1 + z⊤

t Vt−1zt)

= Vt−1zt

(
1− z⊤

t Vt−1zt

1 + z⊤
t Vt−1zt

)
=

Vt−1zt

1 + z⊤
t Vt−1zt

.
(61)
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Therefore, following the definition of ut, we have (1 + z⊤
t Vt−1zt)ut = Vt−1zt. Consequently,

n∑
t=1

(1 + z⊤
t Vt−1zt)utu

⊤
t =

n∑
t=1

Vt−1(V
−1
t −V−1

t−1)Vt = Id −Vn. (62)

By recognizing wt =
√

1 + z⊤
t Vt−1zt · ut, we come to

n∑
t=1

wtw
⊤
t =

n∑
t=1

Vt−1(V
−1
t −V−1

t−1)Vt = Id −Vn.

What remains now is to verify conditions in (6). Notably, assumption ∥Vn∥op = op(1) implies
n∑

t=1

wtw
⊤
t

p−→ Id. (63)

Since ∥Σ−1
0 ∥op = op(1), ∥Vt∥op ≤ 1 and ∥xt∥2 ≤ 1, we can show

max
1≤t≤n

z⊤
t Vtzt = max

1≤t≤n
x⊤

t Σ
− 1

2
t−1VtΣ

− 1
2

t−1xt = op(1). (64)

Besides, equation (61) together with equation (64) implies

max
1≤t≤n

z⊤
t Vt−1zt = max

1≤t≤n

z⊤
t Vtzt

1− z⊤
t Vtzt

= op(1). (65)

Thus, it follows that

max
1≤t≤n

∥wt∥2 = max
1≤t≤n

∥∥∥∥√1 + z⊤
t Vt−1zt ·Vtzt

∥∥∥∥
2

≤ max
1≤t≤n

(√
1 + z⊤

t Vt−1zt · ∥V
1
2
t ∥op · ∥V

1
2
t zt∥2

)

≤

√(
1 + max

1≤t≤n
z⊤
t Vt−1zt

)
· max
1≤t≤n

z⊤
t Vtzt = op(1).

(66)

Combining equations (66) and (63) yields (6). Hence we complete the proof by applying Proposition 2.1.

Remark A.3. The detailed proof of Lemma 3.7 can be found in the proof of Theorem 3.6.

B Generalized Theorem 3.6

In Theorem 3.6, we impose the following condition (67) so that the ALEE estimator with weights specified in
equation (28) achieves asymptotic normality:

∥Vn∥op = op(1). (67)

However, it is typically difficult to directly verify the above condition in practice. To tackle this problem, in this
section, we provide a modified version of ALEE estimator which achieves asymptotic normality without requiring
condition (67). In this section, we use the same notations Σt, zt,Vt, and wt as defined in equations (26), (27)
and (28), respectively. Furthermore, we let λ1 ≥ . . . ≥ λn be the eigenvalues of the matrix V−1

n and a1, . . . ,an

be the corresponding eigenvectors.

At a high level, we construct additional mn vectors {zt}n+1≤t≤n+mn so that the minimum eigenvalue of the
resulting matrix V−1

n+mn
is greater than a pre-specified constant κn, which satisfies limn→∞ κn = ∞. It is

easy to see that by construction (see Algorithm 1), the matrix Vn+mn satisfies

∥Vn+mn∥op ≤ 1

κn

p−→ 0 where mn =

d∑
k=1

nk. (69)

Remark B.1. Parameter κn is set to ensure condition (69) holds. In practice, we set κn = d log(n).

Remark B.2. It’s worth mentioning that the number of extra {zt}t>n is a random variable. Therefore, in order
to prove a similar asymptotic normality theorem to Theorem 3.6, we have to apply martingale central limit
theorem with stopping times [11, Theorem 2.1].

Theorem B.3 (Theorem 2.1 in [11]). Let {ξn,k}k≥1,n≥1 be an array of random variables defined on a
probability space (Ω,F , P ) and let {Fn,k}n≥1,k≥0 be an array of σ-fields such that ξn,k is Fn,k-measurable
and Fn,k−1 ⊂ Fn,k ⊂ F for each n and k ⩾ 1. For each n, let kn be a stopping time with respect to
{Fn,k}k≥0. Suppose that
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Algorithm 1: Modified ALEE estimate
1: Input:{(xt, yt)}nt=1 and tuning parameter κn

2: Compute {(zt,Vt,wt)}nt=1, {(λk,ak)}dk=1, and obtain a consistent estimate σ̂2 of σ2

3: Initiate t = n and set τn = 1/∥Σ−1/2
0 ∥op

4: for k = 1, . . . , d do
5: Compute nk = ⌈max{κn − λk, 0} · τn⌉
6: if nk > 0 then
7: for i = 1, . . . , nk do
8: Set t = t+ 1
9: Simulate ϵt ∼ N (0, σ̂2)

10: Define zt = ak/τn
11: Compute

Vt = Vt−1 −
Vt−1ztz

⊤
t Vt−1

1 + z⊤
t Vt−1zt

and wt =
√
1 + z⊤

t Vt−1zt ·Vtzt

12: end for
13: end if
14: end for
15: Obtain θ̂ALEE from equation

n∑
i=1

wi(yi − x⊤
i θ̂ALEE) +

t∑
i=n+1

wiϵi = 0 (68)

16: Output: θ̂ALEE

kn∑
k=1

E [ξn,k | Fn,k−1]
p−→ 0, (70a)

kn∑
k=1

Var [ξn,k | Fn,k−1]
p−→ 1, (70b)

kn∑
k=1

E
[
|ξn,k|2+δ | Fn,k−1

]
p−→ 0 for some δ > 0, (70c)

then
∑kn

k=1 ξn,k
d−→ N (0, 1).

With this setup, we are now ready to prove the asymptotic normality of θ̂ALEE from (68).

Theorem B.4 (Generalized Theorem 3.6). Suppose condition (3) holds. Then, for any tuning parameters
Σ0 and κn that satisfy ∥Σ−1

0 ∥op = op(1) and limn→∞ κn = ∞, the ALEE estimator θ̂ALEE obtained from
equation (68) satisfies (

n∑
t=1

wtxt

)
· θ̂ALEE − θ∗

σ̂

d−→ N
(
0, Id

)
,

where σ̂ is a consistent estimator of σ.

Remark B.5. We would like to reiterate that the asymptotic variance of of the modified ALEE estimator obtained
from (68) is the same as the one mentioned in Theorem 3.6. Additionally, this modified version does not require
the condition ∥Vn∥op = op(1) hold and hence is more applicable in practice with theoretical guarantee.

Proof. Rewriting equation (68), we have

n∑
t=1

wtx
⊤
t (θ̂ALEE − θ∗) =

n+mn∑
t=1

wtϵt. (71)
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Therefore, by Cramér–Wold theorem, it suffices to show that for any unit vector v,

n+mn∑
t=1

v⊤wtϵt
d−→ N (0, σ2). (72)

The proof now follows by verifying the conditions (70a)-(70c) of Theorem B.3 with ξn,k = v⊤wkϵk. We begin
by verifying conditions (70a)-(70c). By Lemma 3.7, we have

n+mn∑
t=1

wtw
⊤
t = Id −Vn+mn . (73)

Note that
n+mn∑
t=1

Var[wtϵt | Ft−1] =

n+mn∑
t=1

σ2wtw
⊤
t + σ2

(
σ̂2

σ2
− 1

) n+mn∑
t=n+1

wtw
⊤
t . (74)

By equation (73) and the fact that σ̂2 is consistent, we have

n+mn∑
t=n+1

wtw
⊤
t ⪯ Id and

σ̂2

σ2
− 1

p−→ 0. (75)

Combining equations (69), (73), (74) and (75), we conclude

n+mn∑
t=1

Var[wtϵt | Ft−1]
p−→ σ2Id. (76)

On the other hand, we have

max
1≤t≤n+mn

∥wt∥2
(i)

≤ max
1≤t≤n+mn

(√
1 + z⊤

t Vt−1zt · ∥Vt∥op · ∥zt∥2
)

(ii)

≤ max
1≤t≤n+mn

√
2∥zt∥2

(iii)

≤
√
2∥Σ−1/2

0 ∥op.

Inequality (i) follows from the definition of wt. In inequality (ii), we use the assumption that Σ0 ⪰ Id and
the fact that ∥zt∥2 ≤ 1 and ∥Vt∥op ≤ 1. The last inequality (iii) follows from the definition of zt and the
condition that ∥Σ−1

0 ∥op = op(1). Hence, we can see that

max
1≤t≤n+mn

∥wt∥2
p−→ 0. (77)

Therefore, we have

max
1≤t≤n+mn

|v⊤wt|
p−→ 0 and

n+mn∑
t=1

Var[v⊤wtϵt | Ft−1]
p−→ σ2. (78)

Note that condition (70a) holds because {v⊤wkϵk}k≥1 is a martingale difference sequence by construction.
Condition (70b) follows from statement (78). It remains to verify condition (70c). Observe that

n+mn∑
t=1

E[|v⊤wtϵt|2+δ | Ft−1] =

n+mn∑
t=1

|v⊤wt|2+δE[|ϵt|2+δ | Ft−1]

≤
(

max
1≤t≤n+mn

|v⊤wt|δ
)
·
(
sup
t≥1

E[|ϵt|2+δ | Ft−1]

)
·max{ 1

σ2
,
1

σ̂2
}

n+mn∑
t=1

Var[v⊤wtϵt | Ft−1]

(iv)
= op(1) ·Op(1) ·Op(1) = op(1).

Equation (iv) follows from condition (3), equation (78) and the fact that σ̂2 is a consistent estimator. Lastly, by
applying Slutsky’s theorem, we prove that

1

σ̂

n∑
t=1

wtx
⊤
t (θ̂ALEE − θ∗)

d−→ N (0, Id). (79)
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C Simulation

In this section, we provide additional comparisons among the ALEE method, the OLS, the W-decorrelation [8],
and the concentration inequality based bounds [1]. The code can be found at https://github.com/
mufangying/ALEE.

C.1 Simulation details

Throughout our experiments, we utilize σ̂2 from equation (9) as an (consistent) estimate of of σ2 [19].

OLS: When data are i.i.d, the least squares estimator satisfies the following condition

1

σ2
(θ̂LS − θ∗)⊤Sn(θ̂LS − θ∗)

d−→ χ2
d.

Therefore, we consider 1− α confidence region to be

CLS =

{
θ ∈ Rd :

1

σ̂2
(θ̂LS − θ)⊤Sn(θ̂LS − θ) ≤ χ2

d,1−α

}
. (80)

We point out that the above confidence region is not guaranteed to be accurate when the data is collected in an
adaptive manner, as will also be highlighted in our experiments.

W-decorrelation: The W-decorrelation method is borrowed from Algorithm 1 in [8]. Specifically, the
estimator takes the form

θ̂W = θ̂LS +

n∑
t=1

wt(yt − x⊤
t θ̂LS). (81)

Given a parameter λ, weights {wt}1≤t≤n are set as follows

wt =

(
Id −

t−1∑
i=1

wtx
⊤
t

)
xt/(λ+ ∥xt∥22). (82)

Following the recommendations from the paper [8], in order to set λ appropriately, we first run the
bandit algorithm or time series with N replications and record the corresponding minimum eigenvalues
{λmin(S

(1)
n ), . . . , λmin(S

(N)
n )}. We choose λ to be the 0.1-quantile of {λmin(S

(1)
n ), . . . , λmin(S

(N)
n )}. Finally,

we obtain a 1− α confidence region for θ∗ as

CW =

{
θ ∈ Rd :

1

σ̂2
(θ̂W − θ)⊤W⊤W(θ̂W − θ) ≤ χ2

d,1−α

}
, (83)

where W = (w1, . . . ,wn)
⊤.

Concentration based on self-normalized martingales: We consider [1, Theorem 1] for a single
coordinate in two-armed bandit problem and AR(1) model. For contextual bandits, we apply [1, Theorem 2].
Applying concentration bounds requires a sub-Gaussian parameter, for which we use σ̂ from equation (9) as an
estimate. We point out that this estimate of the sub-Gaussian parameter is conservative, as the sub-Gaussian
parameter of a sub-Gaussian random variable is always lower bounded by its variance [33, Chapter 2]. This
variance estimate is accurate for Gaussian noise random variables.

• For one dimensional examples, we have that for any λ > 0, with probability at least 1− α:

|θ̂LS − θ∗| ≤
σ̂
√

λ+
∑n

t=1 x
2
t∑n

t=1 x
2
t

√
log

(
λ+

∑n
t=1 x

2
t

λα2

)
. (84)

In two-armed bandit problem, xt is simply xt,1 for θ∗1 or xt,2 for θ∗2 . Here we consider λ = 1.

• For the contextual bandit examples, we apply Theorem 2 from [1], and set S =
√
d; we set a small

value of λ = 0.01 to mimic the performance of an OLS estimators. Specifically, we utilize the
following 1− α confidence region

Ccon =

{
θ ∈ Rd : (θ̂r − θ)⊤(λId + Sn)(θ̂r − θ) ≤

(
σ̂

√
log

(
det(λId + Sn)

λdα2

)
+ λ

1
2 S

)2}
,

(85)
where θ̂r = (X⊤

nXn + λId)
−1X⊤

nYn and Yn = (y1, . . . , yn)
⊤.
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C.2 Tables for contextual bandits

In all the contextual bandit simulations, we consider noises that are generated from a centered Poisson distribution
(i.e. Poisson(1)−1). We would like to highlight that the centered Poisson random variable is not sub-Gaussian.
Therefore, it is important to note that concentration inequality-based bounds [1] may not be guaranteed to work.
In the simulations of this section, we set the number of samples as n = 1000, and the tables below show results
over 1000 replications. The tables below clearly show that the average log-volume of the confidence regions
are smallest for ALEE among methods which yield valid confidence regions (empirical coverage is more than
the target coverage). The volume of the confidence region obtained from the OLS estimate is the smallest, but
they under-cover the true parameter. The confidence regions for ALEE are obtained from Theorem B.4 with
Σ0 = log(n) · Id and κn = d log(n).

Table 2: Contextual bandit: d = 10
Method Level of confidence

0.8 0.85 0.9

Avg. Coverage Avg. log(Volumn) Avg. Coverage Avg. log(Volumn) Avg. Coverage Avg. log(Volumn)
ALEE 0.819 (± 0.385) -2.761 (± 0.263) 0.872 (± 0.334) -2.370 (± 0.263) 0.920 (± 0.271) -1.894 (± 0.263)
OLS 0.807 (± 0.395) -7.306 (± 0.262) 0.863 (± 0.344) -6.915 (± 0.262) 0.905 (± 0.293) -6.439 (± 0.262)
W-Decorrelation 0.785 (± 0.411) 8.382 (± 0.252) 0.827 (± 0.378) 8.773 (± 0.252) 0.868 (± 0.338) 9.249 (± 0.252)
Concentration 1.000 (± 0.000) 2.517 (± 0.252) 1.000 (± 0.000) 2.548 (± 0.252) 1.000 (± 0.000) 2.591 (± 0.252)

Table 3: Contextual bandit: d = 50
Method Level of confidence

0.8 0.85 0.9

Avg. Coverage Avg. log(Volumn) Avg. Coverage Avg. log(Volumn) Avg. Coverage Avg. log(Volumn)
ALEE 0.744 (± 0.436) 72.759 (± 1.403) 0.809 (± 0.393) 73.680 (± 1.403) 0.875 (± 0.331) 74.822 (± 1.403)
OLS 0.730 (± 0.444) 44.640 (± 1.370) 0.791 (± 0.407) 45.560 (± 1.370) 0.847 (± 0.360) 46.703 (± 1.370)
W-Decorrelation 0.192 (± 0.394) 97.559 (± 1.337) 0.225 (± 0.418) 98.479 (± 1.337) 0.276 (± 0.447) 99.622 (± 1.337)
Concentration 1.000 (± 0.000) 90.964 (± 1.312) 1.000 (± 0.000) 91.004 (± 1.312) 1.000 (± 0.000) 91.060 (± 1.312)

C.3 Asymptotic normality with centered Poisson noise variables

4 3 2 1 0 1 2 3 4
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Figure 4: Same setting as Figure 1 but with noise variables {ϵt} distributed as centered Poisson(1).
We set n = 3000 and the number of replications is set to 1000. The simulations show that the
asymptotic distribution of ALEE is in good accordance with the asymptotic normality proved in
Corollary 3.5 and Theorem 3.1.
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