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Abstract

Estimation and inference in statistics pose significant challenges when data are
collected adaptively. Even in linear models, the Ordinary Least Squares (OLS)
estimator may fail to exhibit asymptotic normality for single coordinate estimation
and have inflated error. This issue is highlighted by a recent minimax lower bound,
which shows that the error of estimating a single coordinate can be enlarged by a
multiple of

√
d when data are allowed to be arbitrarily adaptive, compared with the

case when they are i.i.d. Our work explores this striking difference in estimation
performance between utilizing i.i.d. and adaptive data. We investigate how the
degree of adaptivity in data collection impacts the performance of estimating a
low-dimensional parameter component in high-dimensional linear models. We
identify conditions on the data collection mechanism under which the estimation
error for a low-dimensional parameter component matches its counterpart in the
i.i.d. setting, up to a factor that depends on the degree of adaptivity. We show that
OLS or OLS on centered data can achieve this matching error. In addition, we
propose a novel estimator for single coordinate inference via solving a Two-stage
Adaptive Linear Estimating equation (TALE). Under a weaker form of adaptivity
in data collection, we establish an asymptotic normality property of the proposed
estimator.

1 Introduction

Estimating a low-dimensional parameter component in a high-dimensional model is a fundamental
problem in statistics and machine learning that has been widely studied in e.g., semiparametric
statistics [35, 8], causal inference [16, 15] and bandit algorithms [1, 27]. When data are independently
and identically distributed (i.i.d.), it is often possible to derive estimators that are asymptotically
normal with a rate of convergence of

√
n, and that achieve the semi-parametric variance lower bound
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that is independent of the dimension. There is now a rich body of literature that studies this problem
under various scenarios [5, 6, 33, 36, 4, 8, 41].

In this work we are interested in the same estimation and inference problem but under the setting
where the i.i.d. data assumption fails. Specifically, we consider an adaptive collection framework
where the data collected at time i is allowed to be dependent on the historical data collected up to
time i − 1. This adaptive framework incorporates datasets originated from applications in many
fields, including sequential experimental design [15], bandit algorithm [27], time series modeling [7],
adaptive stochastic approximation schemes [13, 24].

1.1 An interesting lower bound

To see the intrinsic difference between the i.i.d. and the adaptive data collection settings, we consider
the canonical example of linear model y = x⊤θ∗ + ε, where the parameter θ∗ = (θ∗1 ,θ

∗
2) ∈

R1 × Rd−1, εiid∼N (0, 1). Clearly, when the covariates {xi}i≤n are deterministic, a straightforward
calculation yields

θ̂ols,1 − θ∗1
d
= N (0, (S−1

n )11), and E[(S−1
n )−1

11 · (θ̂ols,1 − θ∗1)
2] = 1, (1)

where θ̂ols is the OLS estimator and Sn :=
∑n

t=1 xix
⊤
i is the sample covariance matrix.

However, somewhat surprisingly, when the covariates {xi}i≤n are allowed to be collected in an
arbitrary adaptive manner, in a recent work [20] the authors proved the following (informal) counter-
intuitive minimax lower bound on the scaled-MSE (defined in Definition 2.2)

min
θ̂

max
θ∗

E[(S−1
n )−1

11 · (θ̂ − θ∗1)
2] ≥ cd · log(n), (2)

where the extra d-factor enters the estimation of a single coordinate. This lower bound indicates
that a dimension independent single coordinate estimation is infeasible when the data are collected
arbitrarily adaptively. This is undesirable especially in the high dimensional scenario where d→∞,
since a

√
n-consistent estimation is unattainable. Motivated by the contrast between i.i.d. and

adaptive data collection, we pose the following question in this work:

Can we bridge the gap between iid and adaptive data collection, and obtain an
estimator for a low-dimensional parameter component in linear models, such that

its performance depends on the degree of adaptivity?

1.2 Contributions

In this work, we initiate the study of how the adaptivity of the collected data affects low-dimensional
estimation in a high-dimensional linear model. We explore the previously posed question and provide
an affirmative answer.

We begin by introducing a general data collection assumption, which we term (k, d)-adaptivity.
Broadly speaking, (k, d)-adaptivity implies that the data pairs {(xi, yi)}ni=1 ∈ Rd×R are collected in
a way that the first k coordinates of xi (denoted by xad

i ) are chosen adaptively based on the historical
data, while the remaining d− k coordinates of xi (denoted by xnad

i ) are i.i.d. across time i ∈ [n].

Assume the collected data are (k, d)−adaptive from a linear model y = x⊤θ∗ + ε. We analyze the
lower-dimensional estimation problem under the scenarios where the i.i.d. non-adaptive components
xnad
i are either zero-mean or nonzero-mean. In the zero mean case, we show that the ordinary

least squares estimator (OLS) for the first k-coordinate yields a scaled mean squared error (scaled-
MSE) of k log(n) (Theorem 3.1). For the nonzero-mean case, a similar result is achieved using the
OLS estimator on centered data (Theorem 3.2). Consequently, we find that the degree of adaptivity
significantly impacts the performance of single coordinate estimation, in the sense that the scaled-MSE
is inflated by a factor of k, where k denotes the number of adaptive coordinates (see Corollary 3.3).

Although OLS for a single coordinate has a dimension independent scaled-MSE when the collected
data are (1, d)-adaptive, it should be noted that OLS may exhibit non-normal asymptotic behavior [13,
20] when data are adaptively collected. Therefore, we propose a novel estimator by solving a Two-
stage Adaptive Linear Estimating Equation (TALE). When the collected data are (1, d)-adaptive and
the non-adaptive component is zero mean, we show that our new estimator is asymptotically normal
and has a comparable scaled-MSE as the naive OLS estimator (see Theorem 3.4).
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2 Problem set up

Consider a linear model

y = x⊤θ∗ + ε, (3)

where the parameter θ∗ ∈ Rd, and ε is a zero mean noise variable. Given access to a data set
{(xi, yi)}i≤n from the model (3), we are interested in the estimation and inference problem of a
low-dimensional parameter component θ∗

ad ∈ Rk, where θ∗ = (θ∗⊤
ad ,θ

∗⊤
nad)

⊤.

In this paper, we are interested in adaptive data collection regime. Concretely, we assume that the
data are collected adaptively in the following way

Definition 2.1 ((k, d)-adaptivity) The collected samples {(xi, yi)}i≤n forms a filtration {F}∞i=0

with F0 = ∅ and Fi = σ(x1, y1, . . . ,xi, yi). Let P be an unknown distribution on Rd−k. We assume
that at each stage, i ≥ 1

• The adaptive component xad
i = xi,1:k is collected from some unknown distribution that

could depend on Fi−1.

• The non-adaptive component xnad
i = xi,k+1:d is a sample from P and independent of

(xad
i ,Fi−1).

When k = 0, Definition 2.1 reduces to an i.i.d. data collection strategy; when k = d, it corresponds
to the case where the data are allowed to be collected arbitrarily adaptively. Consequently, (k, d)-
adaptivity connects two extreme scenarios, and the degree of adaptivity increases as k increases.

Example 2.1 (Treatment assignment) As a concrete example, consider the problem of treatment
assignment to patients. At round i, we observe the health profile of the patient i, which we denote
by xi ∈ Rd−1. Our job to assign a treatment Ai ∈ {0, 1} based on the patient’s health profile xi

and also our prior knowledge of effectiveness of the treatments. It is natural to capture our prior
knowledge using Fi = σ(A1,x1, y1, . . . , Ai−1,xi−1, yi−1) — the sigma field generated by previous
data-points. As already pointed out in (2), in the adaptive regime the estimator error for treatment
effect scales as

√
d/n ; in words, we have to pay for a dimension factor

√
d even if we are only

interested in estimating a one-dimensional component. While for our treatment assignment example,
the dimension d− 1 of the covariate vector xi is large in practice, it is natural to assume that the
treatment assignment is dependent on k − 1 ≪ d − 1, a few (unknown) components. Under this
assumption, it is easy to see that this treatment assignment problem is (k, d)-adaptive. We show that
the treatment effect can be estimated at a rate

√
k/n≪

√
d/n.

2.1 Statistical limits

Before we discuss how to obtain estimators for a low-dimensional parameter component of θ⋆, we
establish some baselines by recalling existing lower bounds. Throughout this section, we assume the
noise ϵi

iid∼N (0, σ2). We start with defining the metric for comparison.

Definition 2.2 (scaled mean squared error (scaled-MSE)) Given a subset I ⊆ [d]. We define the
scaled-MSE of an estimator θ̂I for θ∗

I ∈ R|I| to be E[(θ̂I − θ̂I)
⊤[(S−1

n )II ]
−1(θ̂I − θ̂I)], where

Sn =
∑n

i=1 xix
⊤
i is the sample Gram matrix.

Roughly speaking, when the covariates xi are all fixed, the scaled-MSE compares the performance
of θ̂I against the estimator with minimal variance (OLS). Moreover, we have the following result:

Proposition 2.2 (A simplified version of Theorem 2 in Khamaru et al. [20])

(a). Given a set I ⊆ [d]. Suppose the data {(xi, yi)}i=1n are i.i.d. ((0, d)-adaptive) from
model (3). Then the scaled-MSE satisfies

inf
θ̂

sup
θ∗∈Rd

E
∥∥∥θ̂I − θ∗

I

∥∥∥2
[(S−1

n )II ]−1
≥ σ2|I|. (4)

Furthermore, the equality holds when choosing θ̂I to be the OLS estimator for θ∗
I .
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(b). Suppose the data points {(xi, yi)}ni=1 are allowed to be arbitrarily adaptive ((d, d)-
adaptive). For any (n, d) with d ≥ 2 and n ≥ c · d3, and any non-empty set I ∈ [d],
there exists a data collection algorithm such that

inf
θ̂

sup
θ∗∈Rd

E
∥∥∥θ̂I − θ∗

I

∥∥∥2
[(S−1

n )II ]−1
≥ c′ · dσ2 log(n), (5)

where c, c′ > 0 are some universal constants.

Proposition 2.2 exhibits the striking difference between two extreme data collection mechanisms.
While the scaled-MSE scales as O(|I|) when data are i.i.d., the scaled-MSE for even a single
coordinate (e.g., setting I = {1}) can be of the order O(d) if the data are allowed to be collected
arbitrarily adaptively.

Let Ic = [d] \ I. By the matrix inverse formula, we have

[(S−1
n )II ]

−1 = (Sn)II − (Sn)IIc [(S−1
n )IcIc ]−1(Sn)IcI = X⊤

I (In −PXIc )XI ,

where PXIc denotes the projection onto the column space of XIc ∈ Rn×|I|. In this work, we are
often interested in the special cases where I = [k] (or {ℓ} for ℓ ∈ [k]), which denote (a single
coordinate of) the adaptive component.

2.2 Related work

Adaptive linear model In the early works by Lai et al. [24, 23], the authors studied regression
models when the data are adaptively collected. They established the asymptotic normality of OLS
under a stability assumption on the covariate matrix. However, the stability assumption might
be violated under various setting, including data collected from online bandit algorithms such as
UCB [27, 2, 31, 34, 42], forecasting and autoregressive models [14, 38, 24]. Recent works [13, 20]
addressed this issue and proposed debiasing estimators with inferential guarantee in linear models
with fixed dimension. While allowing for arbitrarily adaptively collected data, their results impose an
additional

√
d factor in the error bound for single coordinate estimation, limiting their applicability in

linear models with increasing dimensions [19, 28].

Parameter estimation in bandit algorithms Though with the primary goal being achieving a low
regret, the problem of parameter estimation under adaptive data are also studied when designing
online bandit algorithms [1, 26, 29, 27]. Many online bandit algorithms are built based on the
estimation or construction of adaptive confidence sets for the reward function [2, 9, 17], which can be
viewed as finite sample estimation and inference of the unknown parameter of a model. Most related
to our paper, in linear bandits, the works [1, 26] derived non-asymptotic upper bound on scaled-MSE
of OLS for the whole parameter vector, as well as for a single coordinate. However, the upper bound
on scaled-MSE for estimating a single coordinate is inflated by a factor of d compared with the i.i.d.
case, as suggested by the lower bound in [20].

Inference using adaptively collected data The problem of estimation and inference using adap-
tively collected data has also been studied under other settings. The work by Hadad et al. [15] and
Zhan et al. [40] proposed a weighted augmented inverse propensity weighted (AIPW, [32]) estimator
for treatment effect estimation that is asymptotic normal. Zhang et al. [43] analyzed a weighted
M -estimator for contextual bandit problems. Lin et al. [30] proposed a weighted Z-estimator for
statistical inference in semi-parametric models. While investigating more intricate models, these
works are built on the strong assumption that the adaptive data collection mechanism is known.
In contrast, our (k, d)-adaptivity assumption allows the adaptive component to be collected in an
arbitrary adaptive way.

Semi-parametric statistics A central problem in semi-parametric statistics is to derive
√
n-

consistent and asymptotic normal estimators of a low-dimensional parameter component in high-
dimensional or semi-parametric models [5, 6, 33, 36, 4, 8, 41]. Most works in this literature assume
i.i.d. data collection and aim to obtain estimators that achieve the optimal asymptotic variance
(i.e., semi-parametric efficient [35, 16]). On the other hand, our work focuses on a complementary
perspective, with the goal of understanding how the data collection assumption affects the statistical
limit of low-dimensional parameter estimation.
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2.3 Notations

In the paper, we use the bold font to denote vectors and matrices (e.g., x,x,X,θ, ε), and the regular
font to denote scalars (e.g., x, θ, ε). Given data {(xi, yi)}ni=1 from the linear model (3) that are
(k, d)-adaptive, we use xad

i ∈ Rk,xnad
i ∈ Rd−k to denote the adaptive and non-adaptive covariates.

We also write θ∗ = (θ∗⊤
ad ,θ

∗⊤
nad)

⊤ to denote the components that correspond to the adaptive and
non-adaptive covariates. Let X = (x⊤

1 , . . . ,x
⊤
n )

⊤ ∈ Rn×d be the covariate matrix, with Xad (or
Xnad) representing the submatrices consisting of the adaptive (or non-adaptive) columns. We use xj

to denote the j-th column of the covariate matrix.

For a matrix M with n rows, let M−j be the matrix obtained by deleting the j-th column of M.
We define the projection operator PM := M(M⊤M)−1M⊤ and the (columnwise) centered matrix
M̃ := (In −P1n

)M, where I ∈ Rn×n is the identity matrix and 1n ∈ Rn is the all-one vector. For
a symmetric M ⪰ 0, we define ∥x∥M :=

√
x⊤Mx. Lastly, we use c, c′, c′′ > 0 to denote universal

constants and C,C ′, C ′′ > 0 to denote constants that may depend on the problem specific parameters
but not on k, d, n. We allow the values of the constants to vary from place to place.

3 Main results

This section is devoted to our main results on low-dimensional estimation and inference. In Sec-
tion 3.1 and 3.2 we discuss the problem of estimating a low-dimensional component of θ⋆, and
Section 3.3 is devoted to inference of low-dimensional components.

3.1 Low-dimensional estimation

Suppose the collected data {(xi, yi)}ni=1 are (k, d)-adaptive. In this section, we are interested in
estimating the adaptive parameter component θ∗

ad ∈ Rk.

In addition to (k, d)-adaptivity, we introduce the following assumptions on the collected data
{(xi, yi)}ni=1.

Assumption A

(A1) There exists a constant Ux > 0 such that

1 ≤ σmin(X
⊤
adXad) ≤ σmax(X

⊤
adXad) ≤ nUx.

(A2) The non-adaptive components {xnad
i }ni=1 are i.i.d. sub-Gaussian vectors with parameter

ν > 0, that is, for any unit direction u ∈ Sd−1,

E[exp{λ⟨u, xnad
i − E[xnad

i ]⟩}] ≤ eλ
2ν2/2 ∀λ ∈ R.

(A3) There exist some constants 0 ≤ σmin ≤ σmax such that the covariance matrix of the
non-adaptive component Σ := Cov[xnad

i ] satisfies,

0 < σmin ≤ σmin(Σ) ≤ σmax(Σ) ≤ σmax.

(A4) Conditioned on (xi,Fi−1), the noise variable εi in (3) is zero mean sub-Gaussian with
parameter v > 0, i.e.,

E[εi|xad
i ,Fi−1] = 0, and E[eλεi |xad

i ,Fi−1] ≤ eλ
2v2/2 ∀λ ∈ R,

and has conditional variance σ2 = E[ε2i |xi,Fi−1] for all i ∈ [n].

Let us clarify the meaning of the above assumptions. Assumption (A1) is the regularity assumption
on the adaptive component. Roughly speaking, we allow the adaptive component to be arbitrarily
adaptive as long as X⊤

adXad is not close to be singular and xad
i has bounded ℓ2−norm. This is

weaker than the assumptions made in [15, 43, 30], which assume that the conditional distribution of
Xad is known. Assumption (A2), (A3) on the non-adaptive component, assume its distribution is
non-singular and light-tailed. Assumption (A4) is a standard assumption that characterizes the tail
behavior of the zero-mean noise variable. We remark that the equal conditional variance assumption
in Assumption (A4) is mainly required in Theorem 3.4, while it is sufficient to assume σ2 being a
uniform upper bound of the conditional variance in Theorem 3.1 and 3.2.
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3.1.1 Warm up: zero-mean non-adaptive component

We start with discussing a special case where the non-adaptive component xnad
i is zero-mean. In this

case, we prove that the Ordinary Least Squares (OLS) estimator on (X,y) for θ∗
ad is near-optimal;

see the discussion in Section 2.1. Denote the OLS estimator by θ̂ = (θ̂
⊤
ad, θ̂

⊤
nad)

⊤. Throughout, we
assume that the sample size n and dimension d satisfies the relation

n

log2(n/δ)
≥ Cd2, (6)

where C is an independent of (n, d) but may depend on other problem specific parameters. With this
set up, our first theorem states

Theorem 3.1 Given data points {(xi, yi)}ni=1 from a (k, d)-adaptive model, and tolerance level
δ ∈ (0, 1/2). Let, assumption (A1)–(A4) and the bound (6) in force, and the non-adaptive component
xnad
i is drawn from a zero-mean distribution. Then, we have

∥θ̂ad − θ∗
ad∥2X⊤

ad(In−PXnad
)Xad

≤ C ′ log(n det(X⊤
adXad)/δ) (7a)

≤ C ′′k log(n/δ). (7b)

with probability at least 1− δ.

See Appendix A.3 for a detailed proof. A few comments regarding Theorem 3.1 are in order. One
might integrate both sides of the last bound to get a bound on the scaled-MSE. Comparing the
bound (7b) with the lower bound from Proposition 2.2, we see this bound is tight in a minimax sense,
up to some logarithmic factors.

It is now worthwhile to compare this bound with the existing best upper bounds in the literature.
Invoking the concentration bounds from [26, Lemma 16] one have that

∥θ̂ad − θ∗
ad∥2X⊤

ad(In−PXnad
)Xad

≤ ∥θ̂ad − θ∗
ad∥2X⊤

adXad
≤ c · d log(n/δ) (8)

One might argue that the first inequality is loose as we only want to estimate a low-dimensional
component θ∗

ad ∈ Rk. However, invoking the lower bound from Proposition 2.2, we see that the
bound (8) is the best you can hope for if we do not utilize the (k, d)-adaptivity structure present in
the data. See also the scaled-MSE bound for a single coordinate estimation in [26, Theorem 8] which
also has a dimension dependence in the scaled-MSE bound.

3.1.2 Nonzero-mean non-adaptive component

In practice, the assumption that the non-adaptive covariates are drawn i.i.d. from a distribution P
with zero mean is unsatisfactory. One would like to have a similar result where the distribution P has
an unknown non-zero mean.

Algorithm 1 Centered OLS for k adaptive coordinates (X,y)

1: µ̂ad ←
X⊤

ad1n

n , µ̂nad ←
X⊤

nad1n

n

2: X̃ad = Xad − 1nµ̂
⊤
ad, X̃nad = Xnad − 1nµ̂

⊤
nad

3: Run OLS on centered response vector y − y · 1n and centered covariate matrix

X̃ = (X̃ad, X̃nad) ∈ Rn×d; obtain the estimator θ̃ = (θ̃
⊤
ad, θ̃

⊤
nad)

⊤.

Before we state our estimator for the nonzero-mean case, it is helpful to understand the proof intuition
of Theorem 3.1. A simple expansion yields

θ̂ad − θ∗
ad = (X⊤

adXad −X⊤
adPXnad

Xad)
−1(X⊤

adε−X⊤
adPXnad

ε)

≈ (X⊤
adXad)

−1X⊤
adε+ smaller order terms

We show that the interaction term X⊤
adPXnad

is small compared to the other terms under (k, d)-
adaptivity and zero-mean property of Xnad. In particular, under zero-mean property, each entry of
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the matrix X⊤
adXnad is a martingale difference sequence, and can be controlled via concentration

inequalities [1]. This martingale property is not true when the columns of Xnad have a nonzero mean.

As a remedy, we consider the mean-centered linear model:

y − y · 1n = X̃
⊤
adθ

∗
ad + X̃

⊤
nadθ

∗
nad + (ϵ− ϵ · 1n) (9)

where X̃ad = Xad − 1n1n
⊤

n Xad, and X̃nad = Xnad − 1n1n
⊤

n Xnad are centered version of the
matrices Xad and Xnad, respectively. The centering in (9) ensures that Xnad is approximately
zero-mean, but unfortunately, it breaks the martingale structure present in the data. For instance, the

elements of X̃
⊤
adX̃nad are not a sum of martingale difference sequence because we have subtracted

the column mean from each entry. Nonetheless, it turns out that subtracting the sample mean, while
breaks the martingale difference structure, does not break it in an adversarial way, and we can still

control the entries of X̃
⊤
adX̃nad. See Lemma A.1 part (b) for one of the key ingredient in the proof.

We point out that this finding is not new. Results of this form are well understood in various forms in
sequential prediction literature, albeit in a different context. Such results can be found in earlier works
of Lai, Wei and Robbins [21, 22, 24] and also in the later works by several authors [11, 12, 10, 1]
and the references therein.

Our following Theorem 3.2 ensures that the intuition developed in this section so far is useful to
characterize the performance of the solution obtained from the centered OLS.

Theorem 3.2 Given data points {(xi, yi)}ni=1 from a (k, d)-adaptive model, and tolerance level
δ ∈ (0, 1/2). Let, assumption (A1)–(A4) and the bound (6) be in force. Then, θ̃ad obtained from
Algorithm 1, satisfies

∥θ̃ad − θ∗
ad∥2X̃⊤

ad(In−PX̃nad
)X̃ad

≤ C ′ log(n det(X̃
⊤
adX̃ad)/δ) (10)

≤ C ′′k log(n/δ).

with probability at least 1− δ.

See Appendix A.4 for a proof. Note that the variance of θ̃ad is given by X̃
⊤
ad(In −PX̃nad

)X̃ad. The
covariance matrix is the same as X⊤

ad(In −PXnad
)Xad when the all one vector 1n belongs to the

column space of X̃nad.

3.2 Single coordinate estimation: Application to treatment assignment

Let us now come back to Example 2.1 that we started. Let, at every round i, the treatment assignment
Ai depends on k − 1 (unknown) coordinate of the covariates xi ∈ Rd−1. We assume that the
covariates x′

is are drawn i.i.d. from some unknown distribution P . Assuming the response is related
to the treatment and covariates via a linear model, it is not hard to see that this problem satisfies
a (k, d)-adaptivity property. The following corollary provides a bound on the estimation error of
estimating the (homogeneous) treatment effect.

0 100 200
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0 100 200
Dimension of adaptive covariates
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50

75
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Figure 1: The plot depicts the empirical relation between the scaled MSE of the OLS and centered
OLS estimate from Algorithm 1 and the number of adaptive covariates (k) for a carefully constructed
problem. See Section B.1 for simulation details.
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Corollary 3.3 Suppose the assumptions from Theorem 3.2 are in force, and ℓ ∈ [k] be an index
corresponding to one of the adaptive coordinates. Then, the ℓth coordinate of the the centered OLS
estimator from Algorithm 1 satisfies

|θ̃ad,ℓ − θ∗ad,ℓ| ≤

√
C log(n det(X̃

⊤
adX̃ad)/δ)√

x̃⊤
ℓ (In −PX̃−ℓ

)x̃ℓ

≤
C
√
k log(n/δ)√

x̃⊤
ℓ (In −PX̃−ℓ

)x̃ℓ

.

The bounds above hold with probability at least 1 − δ, and X̃−ℓ denote the matrix obtained by
removing the ℓth column from X̃.

See Appendix A.5 for a proof of this Corollary. We verify the result of Corollary 3.3 via simulations
as shown in Figure 1. From the figure we see that the scaled MSE increases linearly as the number of
adaptive covariates increases, matching with our theoretical predictions. See Appendix B for more
details about the simulation.

3.3 Inference with one adaptive arm

In this section, we provide a method for constructing valid confidence intervals for θ∗
ad. To simplify

the problem, we restrict our attention to the case of (1, d)-adaptivity and E[xnad
i ] = 0.

A two-stage estimator

Our goal is to derive an asymptotically normal estimator for a target parameter in presence of a
nuisance component. We call our estimator a “Two-stage-adaptive-linear-estimating-equation” based

estimator, or TALE-estimator for short. We start with a prior estimate θ̂
Pr
nad of θ∗

nad, and define our
estimate θ̂TALE for θ∗

ad as a solution of this

TALE-estimator:
n∑

i=1

wi(yi − xad
i · θ̂TALE − xnad⊤

i θ̂
Pr
nad) = 0. (11)

Recall that θ̂TALE is a scalar and the equation has a unique solution as long as
∑

1≤i≤n w
ad
i xi ̸= 0.

The weights {wi}i≤n in equation (11) are a set of predictable random scalars (i.e.
wi ∈ σ(xad

i ,Fi−1)). Specifically, we start with s0 > 0 and s0 ∈ F0, and define

wi =
f(si/s0)x

ad
i√

s0
where si = s0 +

∑
t≤i

(xad
t )2 and (12a)

f(x) =
1√

x(log e2x)(log log e2x)2
for x > 1. (12b)

Let us first gain some intuitions on why TALE works. By rewriting equation (11), we have
n∑

i=1

wix
ad
i

(
θ̂TALE − θ∗ad

)
=

n∑
i=1

wiϵi︸ ︷︷ ︸
vn

+
n∑

i=1

wix
nad⊤
i (θ∗

nad − θ̂
Pr
nad)︸ ︷︷ ︸

bn

. (13)

Following the proof in [39], we have vn
d−→ N (0, σ2). Besides, one can show that with a proper

choice of prior estimator θ̂
Pr
nad, the bias term bn converges to zero in probability as n goes to infinity.

It is important to note that [39] considers the linear regression model where the number of covariates
is fixed, and the sample size goes to infinity. In this work, however, we are interested in a setting
where the number of covariates can grow with the number of samples. Therefore, our approach,
TALE-estimator, has distinctions with the ALEE estimator proposed in [39]. The above intuition is

formalized in the following theorem. Below, we use the shorthand θ̂
OLS
nad to denote the coordinates of

the least squares estimate of θ̂
OLS

corresponding to the non-adaptive components.
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Theorem 3.4 Suppose 1/s0 + s0/sn = op(1), n/(log
2(n) · d2)→∞, and assumptions (A1)-(A4)

are in force. Then, the estimate θ̂TALE, obtained using weights from (12a) and θ̂
Pr
nad = θ̂

OLS
nad, satisfies

1

σ̂
√∑

1≤i≤n w
2
i

( ∑
1≤i≤n

wix
ad
i

)
·
(
θ̂TALE − θ∗ad

)
d−→ N (0, 1),

where σ̂ is any consistent estimate of σ. Moreover, the asymptotic variance θ̂TALE is optimal up to
logarithmic-factors.

See Appendix A.6 for a proof of this theorem. The assumption 1/s0 + s0/sn = op(1) in the theorem
essentially requires s0 grows to infinity in a rate slower than sn. Therefore, in order to construct
valid confidence intervals for θ̂TALE, one has to grasp some prior knowledge about the lower bound
of sn. In our experiments in Section 4 we set s0 = log log(n). Finally, it is also worth mentioning
that one can apply martingale concentration inequalities (e.g. [1]) to control the terms bn and vn in
equation (13), which in turn yields the finite sample bounds for θ̂TALE estimator. Finally, a consistent
estimator of σ can be found using [24, Lemma 3].

4 Numerical experiments
In this section, we investigate the performance of TALE empirically, and compare it with the ordinary
least squares (OLS) estimator, W-decorrelation proposed by Deshpande et al. [13], and the non-
asymptotic confidence intervals derived from Theorem 8 in Lattimore et al. [26]. Our simulation set
up entails the motivating Example 2.1 of treatment assignment. In our experiments, at stage i, the

treatments Ai ∈ {0, 1} are assigned on the sign of θ̂(i)1 , where θ̂
(i)

= (θ̂
(i)
1 , θ̂

(i)
2 , . . . , θ̂

(i)
d ) is the least

square estimate based on all data up to the time point i−1; here, the first coordinate of θ̂(i)1 is associated
with treatment assignment. The detailed data generation mechanism can be found in Appendix. From
Figure 2 (top) we see that both TALE and W-decorrelation have valid empirical coverage (i.e., they are
close to or above the baseline), while the nonasymptotic confidence intervals are overall conservative
and the OLS is downwardly biased. In addition, TALE has confidence intervals that are shorter than
those of W-decorrelation, which indicates a better estimation performance. Similar observations
occur in the high-dimensional model in Figure 2 (bottom), where we find that both the OLS estimator
and W-decorrelation are downwardly biased while TALE has valid coverage.
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Figure 2: Empirical coverage probability and the width of confidence intervals versus target coverage
probability 1− α for TALE, the OLS estimator, non-asymptotic concentration inequalities, and W-
decorrelation. We select the noise level σ = 0.3. Top: n = 1000, d = 10. Bottom: n = 500, d = 50.
At bottom right we do not display the result for concentration since the CIs are too wide. We run the
simulation 1000 times and display the ±1 standard deviation.
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Figure 3: Histograms of the scaled errors for TALE and OLS. Left: n = 1000, d = 10. Right:
n = 500, d = 50. We choose the noise level σ = 0.3 and repeat the simulation 1000 times. Observe
that the distribution of the OLS estimator is much more different than standard normal, and it exhibits
a downwards bias [31], while TALE is in good accordance with a standard normal distribution.

5 Discussion
In this paper, we investigate the statistical limits of estimating a low-dimensional component in a high
dimensional adaptive linear model. We start by recalling a recent lower bound [20], which states that
we need to pay for the underlying dimension d even if we want to estimate a low (one)-dimensional
component. Our main result is to show that in order to estimate a low-dimensional component, we
need to pay only for the degree of adaptivity k, which can potentially be much smaller than the
underlying dimension d. Additionally, we propose a two-stage estimator for the one-dimensional
target component, which is asymptotically normal. Finally, we demonstrate the effectiveness of this
two-stage estimator via numerical simulations. For the future work, there are several avenues for
further exploration that can contribute to a more comprehensive understanding of adaptive regression
models. First of all, it would be interesting to generalize the (k, d)−adaptivity for the case when the
number of adaptive components may vary between samples. It is also interesting to investigate if the
current assumptions can be relaxed or not. For statistical inference part, it would be interesting to
extend the TALE estimator to the case when the number of adaptive components is great than one.
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A Proofs

Throughout the proof, we use c, c′, c′′ > 0 to denote constants universal constants. We use
C,C ′, C ′′ > 0 to denote constants that may depend on the problem specific parameters. Concretely,
we use them to denote constants that only depends polynomially on (1, σmax, 1/σmin, v, ν,Ux). We
allows the values of the constants to vary from place to place.

A.1 Auxiliary lemmas

Before stating our main theorems, we list some useful lemmas, which can be of independent interest.
All the proofs of lemmas can be found in Appendix A.

Lemma A.1 Given n ≥ d ≥ 1. Let {(ai, bi)}ni=1 be a sequence of pairs such that ai ∈ Rd are
Fi−1-measurable and bi ∈ R are Fi-measurable w.r.t. some filtration {Fi}ni=1. Assume in addition
that bi are zero-mean sub-Gaussian random variables with parameter σ conditioned on Fi−1, i.e.,

E[bi|Fi−1] = 0, and E[eλbi |Fi−1] ≤ eσ
2λ2/2, for all λ ∈ R.

Let A = [a1, . . . , an]
⊤ and b = [b1, . . . , bn]

⊤. Suppose that 1 ≤ σmin(A
⊤A) ≤ σmax(A

⊤A) ≤
nB for some constant B > 0.

(a). (A simplified version of Theorem 1 in Abbasi et al. [1].) With probability over 1− δ

∥PAb∥22 = b⊤PAb ≤ cσ2 log(det(A⊤A)/δ) ≤ cσ2d log(nB/δ)

for some universal constant c > 0.

(b). Let Ã := A−P1n
A be the centered matrix, then with probability over 1− δ

∥PÃb∥22 = b⊤PÃb ≤ cσ2 log(n det(Ã⊤Ã)/δ) ≤ cσ2d log(nB/δ)

for some universal constant c > 0.

In the proofs we choose (A,b) = (Xnad, ε), (Xad, ε), (Xad,xj) for j ∈ [k + 1, d]. It is readily
verified that conditions in Lemma A.1 are satisfied under assumptions in Theorem 3.1 and 3.2. See
the proof of this lemma in Section A.7.
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Lemma A.2 Suppose the data set {(xi, yi)}ni=1 is (k, d)-adaptive and satisfies Assumption (A1)–
(A4). Suppose the sample size condition (6) is in force. Adopt the notations in Section 3.1.2. Define
Xnad = Xnad − E[Xnad] and recall that X̃nad = (In −P1n)Xnad. For the matrices Xnad, X̃nad,
we have the following with probability over 1− δ

1

σmin(Xnad)2
= |||(X⊤

nadXnad)
−1|||op ≤

2

nσmin
(14a)

|||Xnad|||op ≤
√
2nσmax (14b)

|||Xnad − X̃nad|||op ≤ C
√
log(n/δ)

√
d− k ≤ 1

2
σmin(Xnad), (14c)

|||(X⊤
nadXnad)

−1 − (X̃
⊤
nadX̃nad)

−1|||op ≤
C
√
log(n/δ)

√
d− k

n3/2
. (14d)

|||PXnad
−PX̃nad

|||op ≤ C
√
log(n/δ)

√
d− k

n
≤ 1

4
(14e)

∥(PXnad
−PX̃nad

)ε∥2 ≤ C (14f)

for some parameter-dependent constants C > 0. Moreover, equation (14a), (14b) also hold when
replacing Xnad with the zero-mean matrix Xnad defined in Section 3.1.1.

See the proof in Section A.8.

Lemma A.3 Under assumptions in Theorem 3.1, with probability over 1− δ

X⊤
adPXnad

Xad ⪯
C(d− k)k log(n/δ)

n
X⊤

adXad

for some parameter-dependent constant C > 0.

See the proof in Section A.9.

Lemma A.4 Under assumptions in Theorem 3.2, with probability over 1− δ

X̃
⊤
adPX̃nad

X̃ad ⪯
C(d− k)k log(n/δ)

n
X̃

⊤
adX̃ad

for some parameter-dependent constant C > 0.

See the proof in Section A.10.

A.2 Proof of Proposition 2.2

Part (a). Proposition 2.2(a) is a standard result on the minimax optimality of the OLS estimator in
linear models. A proof of this result using a Bayes argument can be found in the proof of Theorem
2(a) in Khamaru et al. [20].

By properties of the OLS estimator, we have (θ̂ols − θ∗) ∼ N (0, σ2(Sn)
−1) conditioned on

X. Therefore (θ̂ols,I − θ∗
I) ∼ N (0, σ2(S−1

n )II) conditioned on X, where (S−1
n )II denotes the

submatrix of S−1
n that consists of the coordinates in I. It follows immediately that

E
∥∥∥θ̂I − θ∗

I

∥∥∥2
[(S−1

n )II ]−1
= σ2 tr(I|I|) = σ2|I|

for any θ∗ ∈ Rd. As a result, the OLS estimator attains the minimax lower bound when the data are
i.i.d.

Part (b). When |I| = 1, part (b) follows immediately from Theorem 2(b) of Khamaru et al. [20]
with v chosen to be the one-hot vector supported on I. When |I| > 1, w.l.o.g. assume I consists of
the first |I| coordinates of [d]. It suffices to show the scaled-MSE for I is always no less than the
scaled-MSE for the first coordinate.
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This follows from properties of Schur complement and the projection operator,∥∥∥θ̂I − θ∗
I

∥∥∥2
[(S−1

n )II ]−1

= (θ̂I − θ∗
I)

⊤X⊤
I (In −PXIc )XI(θ̂I − θ∗

I)

= (θ̂I − θ∗
I)

⊤
(
1 ⋆
0 Ik−1

)(
d1 0⊤

0 D2

)(
1 0
⋆ Ik−1

)
(θ̂I − θ∗

I)

=
(
θ̂1 − θ∗1 ⋆

)(d1 0⊤

0 D2

)(
θ̂1 − θ∗1

⋆

)
≥ d1(θ̂1 − θ∗1)

2,

where P⊥
M denote the projection onto the orthogonal space of the column space of M and

d1 = x⊤
1 P

⊥
XIcx1 − x⊤

1 P
⊥
XIcXI,−1(X

⊤
I,−1P

⊥
XIcXI,−1)

−1X⊤
I,−1P

⊥
XIcx1,

D2 = X⊤
I,−1P

⊥
XIcXI,−1.

Using the properties of projection operator and linear space decomposition, it can be verified that

d1 = x⊤
1 P

⊥
X−1

x1 = x⊤
1 (In −PX−1

)x1.

Therefore
∥∥∥θ̂I − θ∗

I

∥∥∥2
[(S−1

n )II ]−1
≥
∥∥∥θ̂1 − θ∗1

∥∥∥2
[(S−1

n )11]−1
. This completes the proof.

A.3 Proof of Theorem 3.1

By the definition of the OLS estimator, we have

θ̂ − θ∗ =

(
X⊤

adXad X⊤
adXnad

X⊤
nadXad X⊤

nadXnad

)−1

·

(
X⊤

adε

X⊤
nadε

)
.

Applying the block matrix inverse formula, we obtain

θ̂ad − θ∗
ad = (X⊤

adXad −X⊤
adPXnad

Xad)
−1(X⊤

adε−X⊤
adPXnad

ε).

To simplify notation, we define

R1 := X⊤
adXad −X⊤

adPXnad
Xad, R2 := X⊤

adε−X⊤
adPXnad

ε,

and let
R1 := X⊤

adXad, R2 := X⊤
adε.

Therefore

(θ̂ad − θ∗
ad)

⊤R1(θ̂ad − θ∗
ad) = R

⊤
2 R

−1

1 R2.

We claim the following results which we prove later. With probability over 1− δ

0 ⪯ 1

2
R1 ⪯ R1 ⪯ R1, (15a)

|R⊤
2 R

−1
1 R2 −R⊤

2 R
−1
1 R2| ≤ C log(n det(X⊤

adXad)/δ), (15b)

R⊤
2 R

−1
1 R2 ≤ C log(det(X⊤

adXad)/δ), (15c)

Taking these claims as given, we establish

(θ̂ad − θ∗
ad)

⊤R1(θ̂ad − θ∗
ad) = R

⊤
2 R

−1

1 R2 ≤ 2R
⊤
2 R

−1
1 R2, (16)

R
⊤
2 R

−1
1 R2 ≤ |R

⊤
2 R

−1
1 R2 −R⊤

2 R
−1
1 R2|+R⊤

2 R
−1
1 R2 ≤ C log(n det(X⊤

adXad)/δ) (17)

where equation (16) uses claim (15a) and equation (17) uses claim (15b), (15c). Putting the last two
displays together completes the proof.
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Proof of claim (15a) The first and third inequality follows from the definition of R1 and R1. The
second inequality follows from Lemma A.3 and noting that C(d−k)k log(n/δ)

n < 1/2 under the sample
size assumption (6) with C in (6) chosen sufficiently large.

Proof of claim (15b) Define P̃A := (A⊤A)−1/2A⊤ for any A ∈ Rn×d. Then we have
∥P̃Ab∥2 = ∥PAb∥2 for any b ∈ Rn. Note that

|R⊤
2 R

−1
1 R2 −R⊤

2 R
−1
1 R2|

≤ |(R2 −R2)
⊤R−1

1 (R2 −R2)|+ 2|(R2 −R2)
⊤R−1

1 R2|
= ε⊤PXnad

PXad
PXnad

ε+ 2|ε⊤PXnad
PXad

ε|
= ε⊤P̃Xnad

(X⊤
nadXnad)

−1/2(X⊤
nadPXad

Xnad)(X
⊤
nadXnad)

−1/2P̃Xnad
ε

+ 2|ε⊤P̃Xnad
(X⊤

nadXnad)
−1/2X⊤

nadPXad
ε|

≤
|||X⊤

nadPXad
Xnad|||op

σmin(X
⊤
nadXnad)

∥P̃Xnad
ε∥22 + 2

∥X⊤
nadPXad

ε∥2
σmin(X

⊤
nadXnad)1/2

∥P̃Xnad
ε∥2.

Applying equation (14a) and Lemma A.1 in the last display, we continue

|R⊤
2 R

−1
1 R2 −R⊤

2 R
−1
1 R2|

≤ C

n
tr(X⊤

nadPXad
Xnad)∥P̃Xnad

ε∥22 +
C|||X⊤

nadP̃Xad
|||F∥P̃Xad

ε∥2√
n

∥P̃Xnad
ε∥2

≤ C(d− k)

n
max

k+1≤j≤d
(x⊤

j PXad
xj)∥PXnad

ε∥22

+
C
√
kmaxk+1≤j≤d(

√
x⊤
j PXad

xj)∥PXad
ε∥2

√
n

∥PXnad
ε∥2

≤ C(d− k)2

n
log(n det(X⊤

adXad)/δ) log(n/δ) +
C
√

k(d− k)√
n

log(n det(X⊤
adXad)/δ) log

1/2(n/δ)

≤ log(n det(X⊤
adXad)/δ),

where the fourth line uses Lemma A.1 and equation (14a), the last line follows from the sample size
assumption (6).

Proof of claim (15c) This is a direct consequence of Lemma A.1 since εi are conditionally zero-
mean sub-Gaussian by Assumption (A4).

A.4 Proof of Theorem 3.2

Let µ∗ = (µ∗⊤
ad ,µ

∗⊤
nad)

⊤ denote the mean vector of E[xi] and define

Xnad := Xnad − 1nµ
∗⊤
nad.

We write Xnad = [xk+1 . . . xd]. The proof of this theorem follows the same basic steps as the
proof of Theorem 3.1.

Recall that θ̂ad ∈ Rk denotes the non-adaptive component of the centered OLS estimator. By
definition and the matrix inverse formula, we have

θ̂ad − θ∗
ad = (X̃

⊤
ad(In −PX̃nad

)X̃ad)
−1 · X̃

⊤
ad(In −PX̃nad

)ε.

To simplify notation, we introduce

R̃3 := X̃
⊤
ad(In −PX̃nad

)X̃ad, R̃4 := X̃
⊤
ad(In −PX̃nad

)ε,

and

R3 := X̃
⊤
ad(In −PXnad

)X̃ad, R4 := X̃
⊤
ad(In −PXnad

)ε,

R3 := X̃
⊤
adX̃ad, R4 := X̃

⊤
adε,

17



Consequently,

(θ̂ad − θ∗
ad)

⊤R̃3(θ̂ad − θ∗
ad) = R̃

⊤
4 R̃

−1

3 R̃4.

Again, we claim the following results which we prove later. With probability over 1− δ

0 ⪯ 1

2
R3 ⪯ R̃3 ⪯ R3, (18a)

|R̃
⊤
4 R

−1
3 R̃4 −R⊤

4 R
−1
3 R4| ≤ C log(n det(X̃

⊤
adX̃ad)/δ), (18b)

R⊤
4 R

−1
3 R4 ≤ C log(n det(X̃

⊤
adX̃ad)/δ). (18c)

With the claims at hand, we obtain

(θ̂ad − θ∗
ad)

⊤R̃3(θ̂ad − θ∗
ad) = R̃

⊤
4 R̃

−1

3 R̃4 ≤ 2R̃
⊤
4 R

−1
3 R̃4, (19)

R̃
⊤
4 R

−1
3 R̃4 ≤ |R̃

⊤
4 R

−1
3 R̃4 −R⊤

4 R
−1
3 R4|+R⊤

4 R
−1
3 R4 ≤ C log(n det(X̃

⊤
adX̃ad)/δ) (20)

where equation (19) uses claim (18a) and equation (20) uses claim (18b), (18c). Combining the last
two displays concludes the proof.

Proof of claim (18a) The first and third inequality follows from the definition of R̃3 and R3. For
the second inequality, we have

R3 − R̃3 = (R3 −R3) + (R3 − R̃3)

= X̃
⊤
adPXnad

X̃ad + X̃
⊤
ad(PX̃nad

−PXnad
)X̃ad

⪯ 1

4
X̃

⊤
adX̃ad +

1

4
X̃

⊤
adX̃ad =

1

2
R3,

where the last line uses Lemma A.2, A.4 and noting that C(d−k)k log(n/δ)
n < 1/4 under our sample

size assumption (6) with C in (6) chosen sufficiently large.

Proof of claim (18b) Recall that we define P̃A := (A⊤A)−1/2A⊤ for any A ∈ Rn×d. Note that

|R̃
⊤
4 R

−1
3 R̃4 −R⊤

4 R
−1
3 R4|

≤ |(R̃4 −R4)
⊤R−1

3 (R̃4 −R4)|+ 2|(R̃4 −R4)
⊤R−1

3 R4|
≤ 2[(R̃4 −R4)

⊤R−1
3 (R̃4 −R4) + (R4 −R4)

⊤R−1
3 (R4 −R4)

+ |(R̃4 −R4)
⊤R−1

3 R4|+ |(R4 −R4)
⊤R−1

3 R4|]
=: 2[W1 +W2 +W3 +W4],

where

W1 := ε⊤(PXnad
−PX̃nad

)PX̃ad
(PXnad

−PX̃nad
)ε

W2 := |ε⊤(PXnad
−PX̃nad

)PX̃ad
ε|

W3 := ε⊤PXnad
PX̃ad

PXnad
ε

W4 := |ε⊤PXnad
PX̃ad

ε|.

We next bound Wi(i = 1, 2, 3, 4) respectively.

For W1 and W2, we have from Lemma A.1 and equation (14f) that

W1 ≤ ∥(PXnad
−PX̃nad

)ε∥22 ≤ C

W2 ≤ ∥ε⊤(PXnad
−PX̃nad

)∥2∥PX̃ad
ε∥2 ≤ C

√
log(n det(X̃

⊤
adX̃ad)/δ).

18



For W3, similar to the proof of claim (15b), we have

W3 = ε⊤P̃Xnad
(X

⊤
nadXnad)

−1/2X
⊤
nadPX̃ad

Xnad(X
⊤
nadXnad)

−1/2P̃Xnad
ε

≤
(d− k)maxk+1≤j≤d x

⊤
j PX̃ad

xj

σmin(X
⊤
nadXnad)

∥P̃Xnad
ε∥22

≤ C(d− k)2

n
log(n det(X̃

⊤
adX̃ad)/δ) log(n/δ)

≤ C log(n det(X̃
⊤
adX̃ad)/δ),

where third line follows from Lemma A.1 and the last line follows from the sample size assumption (6).
Likewise,

W4 = |ε⊤PXnad
PX̃ad

ε|

≤ ∥P̃Xnad
ε∥2|||(X

⊤
nadXnad)

−1/2|||op∥X
⊤
nadPX̃ad

ε∥2

≤ c
√
d− k

σmin(X
⊤
nadXnad)1/2

max
k+1≤j≤d

∥x⊤
j P̃X̃ad

∥2∥P̃X̃ad
ε∥2∥P̃Xnad

ε∥2

≤ C(d− k)√
n

log(n det(X̃
⊤
adX̃ad)/δ)

√
log(n/δ)

≤ C log(n det(X̃
⊤
adX̃ad)/δ).

where the third inequality follows from Lemma A.1 again. Putting pieces together yields the desired
result.

Proof of claim (18c) This is a direct consequence of Lemma A.1.

A.5 Proof of Corollary 3.3

W.l.o.g. assume ℓ = 1. By Schur decomposition, we have

(θ̃ad − θ∗
ad)

⊤X̃
⊤
adX̃ad(θ̃ad − θ∗

ad)

= (θ̃ad − θ∗
ad)

⊤

(
1 x̃⊤

1 X̃ad,−1

(
X̃

⊤
ad,−1X̃ad,−1

)−1

0 Ik−1

)(
x̃⊤
1 (In −PX̃ad,−1

)x̃1 0⊤

0 X̃
⊤
ad,−1X̃ad,−1

)

·

(
1 0(

X̃
⊤
ad,−1X̃ad,−1

)−1

X̃
⊤
ad,−1x̃1 Ik−1

)
(θ̃ad − θ∗

ad)

=
(
θ̃ad,1 − θ∗ad,1 ⋆

)(x̃⊤
1 (In −PX̃ad,−1

)x̃1 0⊤

0 X̃
⊤
ad,−1X̃ad,−1

)(
θ̃ad,1 − θ∗ad,1

⋆

)
≥ (θ̃ad,1 − θ∗ad,1)

2(x̃⊤
1 (In −PX̃ad,−1

)x̃1).

Therefore by Lemma A.4, the sample size assumption (6), and Theorem 3.2, we establish

(θ̃ad,1 − θ∗ad,1)
2(x̃⊤

1 (In −PX̃ad,−1
)x̃1)

≤ (θ̃ad − θ∗
ad)

⊤X̃
⊤
adX̃ad(θ̃ad − θ∗

ad) ≤ C(θ̃ad − θ∗
ad)

⊤X̃
⊤
ad(In −PX̃nad

)X̃ad(θ̃ad − θ∗
ad)

≤ C log(n det(X̃
⊤
adX̃ad)/δ) ≤ Ck log(n/δ).

Corollary 3.3 follows immediately from the fact that In − PX̃−1
⪯ In − PX̃ad,−1

since X̃ad,−1

consists of some columns of X̃−1.
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A.6 Proof of Theorem 3.4

We start with the following decomposition

n∑
i=1

wix
ad
i

(
θ̂TALE − θ∗ad

)
=

n∑
i=1

wiϵi︸ ︷︷ ︸
vn

+
n∑

i=1

wix
nad⊤
i (θ∗

nad − θ̂
Pr
nad)︸ ︷︷ ︸

bn

.

To prove the theorem, it suffices to show

vn
d−→ N (0, α · σ2) and bn

p−→ 0,

where d−→ stands for convergence in distribution and α is a constant that is specified in equation (21).

Proof of vn
d−→ N (0, α · σ2): The proof of this part directly follows from [39, Theorem 3.1]. For

completeness, we provide a proof here. Note that function f is a positive decreasing function and
satisfies properties ∫ ∞

1

f(x)dx =∞ and
∫ ∞

1

f2(x)dx = α. (21)

Furthermore, it can be shown that

max
1≤i≤n

f2(
si
s0

)
(xad

i )2

s0
= op(1) and max

1≤i≤n

(
1− f(si/s0)

f(si−1/s0)

)
= op(1). (22)

Next we compute

n∑
i=1

w2
i =

n∑
i=1

f2(si/s0)
(xad

i )2

s0
=

∫ sn/s0

1

f2(x)dx ·
∑

t≤n f
2(si/s0)(x

ad
i )2/s0∫ sn/s0

1
f2(x)dx

(i)
=

∫ sn/s0

1

f2(x)dx · (1 +
∑

i≤n(
f2(si/s0)
f2(ξi/s0)

− 1)f2(ξi/s0)(x
ad
i )2/s0∑

i≤n f
2(ξi/s0)(xad

i )2/s0
).

In equation (i), we consider the mean value theorem where
∫ si/s0
si−1/s0

f2(x)dx = f2(ξi/s0)(x
ad
i )2/s0.

Consequently, we have∑
i≤n |

f2(si/s0)
f2(ξi/s0)

− 1|f2(ξi/s0)(x
ad
i )2/s0∑

i≤n f(ξi/s0)(x
ad
i )2/s0

≤
∑

i≤n |
f2(si/s0)

f2(si−1/s0)
− 1|f2(ξi/s0)(x

ad
i )2/s0∑

i≤n f
2(ξi/s0)(xad

i )2/s0

≤ max
i≤n

(
1− f2(si/s0)

f2(si−1/s0)

)
= op(1).

We conclude that
n∑

i=1

w2
i = (1 + op(1))

∫ sn/s0

1

f2(x)dx = α+ op(1) (23)

By noticing max1≤i≤n w
2
i = max1≤i≤n f2(si/s0)(x

ad
i )2/s20 = op(1), we conclude from martin-

gale central limit theorem that
n∑

i=1

wiεi
d−→ N (0, α · σ2).

Moreover, applying Slutsky’s theorem yields

1

σ̂(
∑

1≤i≤n w
2
i )

1/2

( n∑
i=1

wiεi

)
d−→ N (0, 1). (24)
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Proof of bn
p−→ 0: To simplify notations, let w = (w1, . . . , wn)

⊤. Without loss of generality, we
consider the first column of the design matrix is collected adaptively. By the definition of bn, we
observe that

∣∣∣∣∣
n∑

i=1

wix
nad⊤
i (θ̂

Pr
nad − θ∗

nad)

∣∣∣∣∣ ≤ ∥
n∑

i=1

wix
nad
i ∥2 · ∥θ̂

Pr
nad − θ∗

nad∥2

=

√√√√ d∑
i=2

(w⊤xnad
i )2︸ ︷︷ ︸

∆
=bn,1

· ∥θ̂
Pr
nad − θ∗

nad∥2︸ ︷︷ ︸
∆
=bn,2

(25)

Analysis of bn,1: By the construction of the weights {wi}1≤i≤n, we have

∥w∥22 ≤
∫ ∞

1

f2(x)dx = α. (26)

Applying Lemma A.1 with A = w and b = xnad
i , we conclude that with probability at least 1− δ,

(w⊤xnad
i )2 ≤ cν2∥w∥22 log(∥w∥22/δ) ≤ cν2α log(α/δ), (27)

where c is a universal constant. Therefore, with probability at least 1− δ,

bn,1 ≤
√
d ·
√

cν2α log(dα/δ). (28)

Analysis of bn,2: note θ̂
Pr
nad = θ̂

ols

nad is the OLS estimate. Therefore, we can use block-wise matrix
inverse formula to get its expression. Precisely, we have

θ̂
Pr
nad − θ∗

nad = − (X⊤
nadXnad)

−1X⊤
nadx1x

⊤
1 ε

∥x1 −PXnad
x1∥22

+ (X⊤
nadXnad)

−1X⊤
nadε

+
(X⊤

nadXnad)
−1X⊤

nadx1x
⊤
1 Xnad(X

⊤
nadXnad)

−1X⊤
nadε

∥x1 −PXnad
x1∥22

.

(29)

Therefore, we can upper bound bn,2 by

bn,2 ≤
1

∥x1 −PXnad
x1∥22

|||(X⊤
nadXnad)

−1|||op · ∥X⊤
nadx1∥2 · ∥x⊤

1 ε∥2︸ ︷︷ ︸
:=b

(1)
n,2

+ ∥(X⊤
nadXnad)

−1X⊤
nadε∥2︸ ︷︷ ︸

:=b
(2)
n,2

+
1

∥x1 −PXnad
x1∥22

|||(X⊤
nadXnad)

−1|||op · ∥X⊤
nadx1∥22 · ∥(X

⊤
nadXnad)

−1X⊤
nadε∥2︸ ︷︷ ︸

:=b
(3)
n,2

.

(30)
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To analyze terms b(1)n,2, b
(2)
n,2, and b

(3)
n,2, we make use of the results from Lemma A.1, Lemma A.2, and

Lemma A.3. Specifically, we have with probability 1− δ, the following statements hold

b
(1)
n,2 =

1

∥x1 −PXnad
x1∥22

· |||(X⊤
nadXnad)

−1|||op · ∥X⊤
nadx1∥2 · ∥x⊤

1 ε∥2

(i)

≤ c′
(

1

(1− Cd log(n/δ)/n) · ∥x1∥22

)
· 1
n
· ∥x1∥2

√
d
√
log(d∥x1∥22/δ)

· ∥x1∥2
√
log(∥x1∥22/δ)

≤ c′
√
d log(n2d/δ)

(1− Cd log(n/δ)/n)n

b
(2)
n,2 = ∥(X⊤

nadXnad)
−1X⊤

nadε∥2 ≤ |||(X
⊤
nadXnad)

−1|||op · ∥X⊤
nadε∥2

(ii)

≤ c′′
√

d log(d/δ)

n

b
(3)
n,2 =

1

∥x1 −PXnad
x1∥22

|||(X⊤
nadXnad)

−1|||op · ∥X⊤
nadx1∥22 · ∥(X

⊤
nadXnad)

−1X⊤
nadε∥2

(iii)

≤ 1

(1− Cd log(n/δ)/n) · ∥x1∥22
· c

′′′

n
· d∥x1∥22 log(d∥x1∥22/δ) ·

√
d log(d/δ)

n

≤ c′′′
1

(1− Cd log(n/δ)/n)

d3/2{log(dn2/δ)}3/2

n3/2
,

(31)

where c′, c′′ and c′′′ are universal constants that are independent of n and d. In inequatity (i),
we use Lemma A.3 to obtain a lower bound for ∥x1 − PXnad

x1∥22 and apply Lemma A.1 and
Lemma A.2 to control the other three terms separately. Inequality (ii) makes use of the fact that
xijεi is sub-exponential with parameter (cνv, cνv) conditioned on Fi−1 for j = 2, . . . , d. Therefore,
by Azuma-Bernstein inequality and the sample size assumption, we obtain for 2 ≤ j ≤ d,

|x⊤
j ε| ≤ νv

√
log(d/δ)

(√
n ∨

√
log(d/δ)

)
= νv

√
n log(d/δ)

with probability over 1− δ/d for any 2 ≤ j ≤ d. Applying a union bound to j = 2, . . . , d, we have

∥X⊤
nadε∥2 ≤ C ′nd log(d/δ), (32)

for some constant C ′. Inequality (iii) makes use of the bound for b(2)n,2 and Lemmas A.1 and A.2.
Therefore, when d2 log2(n)/n→ 0, we conclude

bn,1 · bn,2 = op(1). (33)

With bn
p−→ 0 at hand, a direct application of Slutsky’s theorem yields

1

σ̂
√∑

1≤i≤n w
2
i

( n∑
i=1

wix
nad⊤
i

)
· (θ̂

Pr
nad − θ∗

nad)
p−→ 0. (34)

Putting things together, we conclude that

1

σ̂
√∑

1≤i≤n w
2
i

( n∑
i=1

wix
ad
i

)
· (θ̂TALE − θ∗1)

d−→ N (0, 1). (35)

A.7 Proof of Lemma A.1

Proof of Part (a) The proof follows immediately from choosing V = Id in Theorem 1 of Abbasi
et al. [1].
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Proof of Part (b) Define S1 := Ã⊤Ã and Aaug := [A 1n]. Then

b⊤PÃb = b⊤ÃS1
−1

S1S1
−1

Ã⊤b

= b⊤Aaug(A
⊤
augAaug)

−1

(
Ik
0

)
(Ik 0)S1

(
Ik
0

)
(Ik 0) (A⊤

augAaug)
−1A⊤

augb

≤ b⊤Aaug(A
⊤
augAaug)

−1(A⊤
augAaug)(A

⊤
augAaug)

−1A⊤
augb

= b⊤Aaug(A
⊤
augAaug)

−1A⊤
augb

≤ cσ2 log(det(A⊤
augAaug)/δ)

= cσ2 log(n det(Ã⊤Ã)/δ)

for all k+1 ≤ j ≤ d with probability over 1− δ. Here the first equality comes from the definition of
P; the second equality uses the fact that the coefficients of A in the ordinary least squares (OLS)
estimator for the linear model b ∼ A+ 1 equals the OLS estimator for the centered linear model
b ∼ Ã, i.e., (

Ik
0

)
(Ik 0) (A⊤

augAaug)
−1A⊤

augb = S1
−1

(A−P1n
A)⊤b;

the third line is due to the fact that
[
S1 0k

0⊤
k 0

]
⪯ A⊤

augAaug; the fifth line follows from Lemma A.1

and the last line exploits the Schur complement of Ã⊤Ã.

A.8 Proof of Lemma A.2

Let µ∗ = (µ∗⊤
ad ,µ

∗⊤
nad)

⊤ denote the mean vector of E[xi] and define

Xnad := Xnad − 1nµ
∗⊤
nad.

Proof of (14a) and (14b). Applying the concentration result for a sample covariance matrix of
sub-Gaussian ensemble (see e.g., Theorem 6.5 in Wainwright [37]), we obtain

|||X⊤
nadXnad − nΣ|||op ≤ cν2n

(√d− k + log(1/δ)

n
+

d− k + log(1/δ)

n

)
with probability over 1− δ. Using Weyl’s theorem (see e.g., Theorem 4.3.1 in Horn et al. [18]), the
sample size assumption and the last display, we find that

σmin(X
⊤
nadXnad) ≥ nσmin(Σ)− |||X⊤

nadXnad − nΣ|||op ≥
nσmin

2
.

Similarly, we have |||Xnad|||op = (σmax(X
⊤
nadXnad))

1/2 ≤
√
n(σmax + σmin/2) ≤

√
2nσmax.

This concludes (14a), (14b).

Proof of (14c). Recall that we use µ̂ = (µ̂∗⊤
ad , µ̂

∗⊤
nad)

⊤ to denote the empirical average of {xi}ni=1.
From Assumption (A2) and properties of sub-Gaussian vectors, we have with probability over 1− δ

∥µ̂nad − µ∗
nad∥2 ≤ cν

√
log((d− k)/δ)

√
d− k

n
. (36)

It follows immediately that

|||Xnad − X̃nad|||op = |||1n(µ̂nad − µ∗
nad)

⊤|||op = ∥µ̂nad − µ∗
nad∥2∥1n∥2 ≤ C

√
log(n/δ)

√
d− k.

The second inequality in (14c) follows from equation (14a) and the sample size assumption 6.

Proof of equation (14d) and (14e). By Woodbury’s matrix identity, we have

|||(X⊤
nadXnad)

−1 − (X̃
⊤
nadX̃nad)

−1|||op

≤|||(X⊤
nadXnad)

−1|||op|||X
⊤
nadXnad − X̃

⊤
nadX̃nad|||op|||(X̃

⊤
nadX̃nad)

−1|||op.
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By equation (14a), (14b), (14c) and a standard triangular inequality, we find

|||X⊤
nadXnad − X̃

⊤
nadX̃nad|||op ≤ C

√
log(n/δ)

√
(d− k)n ≤ nσmin

4
≤ 1

2
σmin(X

⊤
nadXnad),

where the second inequality follows from the sample size assumption (6). Therefore, we have

|||(X̃
⊤
nadX̃nad)

−1|||op ≤
2

σmin(X
⊤
nadXnad)

and hence

|||(X⊤
nadXnad)

−1 − (X̃
⊤
nadX̃nad)

−1|||op ≤
C

σmin(X
⊤
nadXnad)2

|||X⊤
nadXnad − X̃

⊤
nadX̃nad|||op

≤
C
√
log(n/δ)

√
d− k

n3/2
. (37)

This gives equation (14d). Moreover, note that

|||PXnad
−PX̃nad

|||op

≤ |||X̃nad[(X
⊤
nadXnad)

−1 − (X̃
⊤
nadX̃nad)

−1]X̃
⊤
nad|||op

+ |||(Xnad − X̃nad)(X
⊤
nadXnad)

−1(Xnad − X̃nad)
⊤|||op

+ 2|||(Xnad − X̃nad)
⊤(X

⊤
nadXnad)

−1X
⊤
nad|||op

≤ |||X̃nad|||2op|||(X
⊤
nadXnad)

−1 − (X̃
⊤
nadX̃nad)

−1|||op

+ |||Xnad − X̃nad|||op(|||Xnad − X̃nad|||op + 2|||Xnad|||op)|||(X
⊤
nadXnad)

−1|||op.

It follows immediately from equation (14a), (14b), (14c), (14d) and (37) that with probability over
1− δ

|||PXnad
−PX̃nad

|||op ≤
C
√
log(n/δ)

√
d− k√

n
.

This yields equation (14e).

Proof of equation (14f). Define ∆ := µ̂− µ∗. We have

∥(PXnad
−PX̃nad

)ε∥2

≤ ∥X̃nad(X̃
⊤
nadX̃nad)

−1∆1⊤
n ε∥2 + ∥(X̃nad(X̃

⊤
nadX̃nad)

−1 −Xnad(X
⊤
nadXnad)

−1)X
⊤
nadε∥2

≤ |||X̃nad(X̃
⊤
nadX̃nad)

−1|||op∥∆∥2|1⊤
n ε|+ |||X̃nad(X̃

⊤
nadX̃nad)

−1

−Xnad(X
⊤
nadXnad)

−1|||op|||X
⊤
nadXnad|||1/2op ∥P̃Xnad

ε∥2.

Since |1⊤
n ε| ≤ cv

√
n log(1/δ) with probability over 1− δ by Assumption (A4) and concentration

of sub-Gaussian variables, and

|||X̃nad(X̃
⊤
nadX̃nad)

−1 −Xnad(X
⊤
nadXnad)

−1|||op

≤|||X̃nad −Xnad|||op|||(X̃
⊤
nadX̃nad)

−1|||op

+ |||Xnad|||op|||(X̃
⊤
nadX̃nad)

−1 − (X
⊤
nadXnad)

−1|||op

by the triangular inequality, it follows immediately from combining equa-
tion (14a), (14b), (14c), (14d), (36), (37) that

∥(PXnad
−PX̃nad

)ε∥2 ≤ C
[√ (d− k) log(n/δ) log(1/δ)

n
+

√
(d− k)2 log2(n/δ)

n

]
≤ C

with probability over 1− δ.
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A.9 Proof of Lemma A.3

Denote (X⊤
adXad)

−1/2X⊤
adPXnad

Xad(X
⊤
adXad)

−1/2 by B. By our construction and noting that
|||B|||op ≤ tr(B), it suffices to show

tr(B) ≤ C(d− k)k log(n/δ)

n
with probability over 1− δ for some C > 0. Plugging in the definition of PXnad

, we obtain

tr(B) = tr((X⊤
adXad)

−1/2X⊤
adXnad(X

⊤
nadXnad)

−1X⊤
nadXad(X

⊤
adXad)

−1/2)

= tr(X⊤
nadXad(X

⊤
adXad)

−1X⊤
adXnad(X

⊤
nadXnad)

−1)

≤ tr(X⊤
nadXad(X

⊤
adXad)

−1X⊤
adXnad) · |||(X⊤

nadXnad)
−1|||op

≤ c

nσmin
tr(X⊤

nadXad(X
⊤
adXad)

−1X⊤
adXnad) (38)

with probability over 1−δ, where the third line follows from von Neumann’s trace inequality (see e.g.,
Theorem A.15 in Bai et al. [3]), and the last line uses equation (14a). Write Xad = [x1,x2, . . . ,xk] ∈
Rn×k and Xnad = [xk+1,xk+2, . . . ,xd] ∈ Rn×(d−k). Following the calculation, we further have

tr(X⊤
nadXad(X

⊤
adXad)

−1X⊤
adXnad) =

d∑
j=k+1

x⊤
j PXad

xj . (39)

It follows from Lemma A.1 that
x⊤
j PXad

xj ≤ Ck log(n/δ) (40)
for all k + 1 ≤ j ≤ d with probability over 1 − δ. The desired result follows immediately from
combining equation (40) with (38) and (39).

A.10 Proof of Lemma A.4

Following the same arguments as in the proof of Lemma A.3 with Xad replaced by X̃ad := Xad −
P1n

Xad, it suffices to show

x⊤
j PX̃ad

xj ≤ Ck log(n/δ). (41)
for all k + 1 ≤ j ≤ d with probability over 1− δ. This follows immediately from Lemma A.1 (b).

B Simulation set up

We provide implementation details of our simulations in this section. The code is available at
https://github.com/licong-lin/low-dim-debias.

B.1 Single coordinate estimation

In this section, we detail the simulation set up that was used to generate the Figure 1. The goal of this
simulation is to display the effect of degree of adaptivity k on the estimation of a single coordinate,
and provide empirical validation to the theory developed in the paper (c.f. Corollary 3.3).

We want to design an adaptive data collection mechanism, which can capture the estimation lower
bound. Therefore, we adopt a similar data collection procedure as provided in Khamaru et al. [20].
We also refer readers to Lattimore [25] for related information.

Simulation set-up:

• Sample size n = 1000, d = 300.
• The degree of adaptivity k varies from 2 to 200 with step size equal to 3.
• Replication number 20 for each level of adaptivity (k, d).

• θad1 = 1 and other coefficients are generated independently from N (0, 1).

• xnad
i is generated independently from uniform distribution on the sphere Sd−k−1. If xnad

i

has mean not equal to zero, then we consider xnad
i plus Exnad

i , where Exnad
i is generated

from N (1, Id−k).
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Data collection method: Here we modified the data collection algorithm from Section 5.2.2 in
Khamaru et al. [20]. The only difference between our data collection algorithm and the one in
Khamaru et al. [20] is that we replace mu,v :=

∑v
w=1 bw (yu,w − au,w) by

mu,v :=
v∑

w=1

bw

(
yu,w − au,w − θnad⊤xnad

u+(w−1)(d−1)

)
. (42)

Figure 1 shows that empirical relation between the MSE of the centered OLS estimate of the first
coordinate and the degree of dependence k.
B.2 Single coordinate inference

In this section, we detail the simulation set up that is used to generate the Figure 2 and 3.

We generate a dataset {(xi, yi)}ni=1 that satisfies the assumptions in Theorem 3.4. On this simulated
dataset, we compare our method with the ordinary least squares (OLS) estimator, W-decorrelation
proposed by Deshpande [13], and the non-asymptotic confidence intervals derived from Theorem 8
in Lattimore et al. [26].

We begin by describing our data generating mechanism. We assume the data {(xi, yi)}ni=1 ∈ Rd×R
are generated from a linear model yi = x⊤

i θ
∗ + εi, where εi

iid∼N (0, σ2). We generate the covariates
{xi}ni=1 in the following way

1. We assume the non-adaptive component xi,2:d are i.i.d N (0, Id−1) across i ∈ [n].
2. For the adaptive coordinate, we choose x1,1 = 1 and assume xi,1 ∈ {0, 1} for all i ∈ [n].

3. At each stage i ≥ 2, denote by θ̂
(i)
1 the OLS estimator for the first coordinate θ∗1 obtained

using the first i − 1 samples (X1:i−1,y1:i−1). With probability p we choose xi,1 = 1 if
θ̂
(i)
1 > 0 and xi,1 = 0 if otherwise; with probability 1 − p we simply choose xi,1 = 1 to

encourage exploration.

Recalling Example 2.1 on treatment assignment, in the simulated data, we use the OLS estimator
to obtain an prior estimate of the treatment effect θ∗1 and assign the treatment to the i-th patient if
the prior estimation suggests that the treatment has a positive effect (i.e., θ̂(i)1 > 0). Moreover, to
encourage exploration, we assign the treatment (i.e., xi,1 = 1) with some small probability 1 − p,
regardless of the prior estimation.

Throughout the simulation we choose θ∗
2:d = 1d−1/

√
d− 1 and θ∗1 = 0, which corresponds to the case

where no treatment effect is presented. We choose the noise level σ = 0.3 and the probability p = 0.8.
In the simulations we assume the noise level is known for simplicity. We run our simulations on both
a low-dimensional model (n = 1000, d = 10) and a high-dimensional model (n = 500, d = 50).

Comparison with W-decorrelation by Deshpande et al. [13] In our implementation of W-
decorrelation, we follow Algorithm 1 in [13], with the parameter λ · log(n) be the 1/n-quantile of
σmin(X

⊤X). To estimate the quantile, we use the sample estimate from 1000 i.i.d. data matrices
X’s to estimate the quantile.
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