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Abstract

Boneh, Bonneau, Biinz, and Fisch (CRYPTO 2018) recently introduced the notion of a
verifiable delay function (VDF). VDFs are functions that take a long sequential time T to
compute, but whose outputs y := Eval(z) can be efficiently verified (possibly given a proof )
in time t < T (e.g., t = poly(A,logT) where A is the security parameter). The first security
requirement on a VDF, called uniqueness, is that no polynomial-time algorithm can find a
convincing proof 7/ that verifies for an input = and a different output 3’ # y. The second
security requirement, called sequentiality, is that no polynomial-time algorithm running in time
o < T for some parameter o (e.g., ¢ = T"/1°) can compute y, even with poly(7, \) many parallel
processors. Starting from the work of Boneh et al. , there are now multiple constructions of
VDF's from various algebraic assumptions.

In this work, we study whether VDFs can be constructed from ideal hash functions in a
black-box way, as modeled in the random oracle model (ROM). In the ROM, we measure the
running time by the number of oracle queries and the sequentiality by the number of rounds of
oracle queries. We rule out two classes of constructions of VDFs in the ROM:

e We show that VDFs satisfying perfect uniqueness (i.e., no different convincing solution
y' # y exists) cannot be constructed in the ROM. More formally, we give an attacker that
finds the solution y in &~ ¢ rounds of queries, asking only poly(T") queries in total.

o We also rule out tight VDF's in the ROM. Tight VDFs were recently studied by Dottling,
Garg, Malavolta, and Vasudevan (ePrint Report 2019) and require sequentiality o ~ T —T*
for some constant 0 < p < 1. More generally, our lower bound also applies to proofs
of sequential work (i.e., VDFs without the uniqueness property), even in the private
verification setting, and sequentiality o > T — T/2¢ for a concrete verification time ¢.
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1 Introduction

A verifiable delay function (VDF) [BBBF18] with domain X and range ) is a function that takes
long sequential time T to compute, but whose output can be efficiently verified in time t < T
(e.g., t = poly(A,log T') where A is a security parameter). More precisely, there exists an evaluation
algorithm Eval that on input x € X computes a value y € ) and a proof 7 in time T". In addition,
there is a verification algorithm Verify that takes as input a domain element x € X, a value y € ),
and a proof m and either accepts or rejects in time ¢. In some cases, a VDF might also have a
setup algorithm Setup which generates a set of public parameters pp that is provided as input
to Eval and Verify.! Typically, we require that the setup is also fast: namely, Setup runs in time
s = poly(A,logT') as well. The two main security requirements for a VDF are (1) uniqueness which
says that for all inputs € X, no adversary running in time poly(X,T") can find y’ # Eval(z) and
a proof 7’ such that Verify(z,y',7') = 1; and (2) sequentiality with some parameter o < T, which
says that no adversary running in sequential time o can compute y = Eval(x). The sequential time
o allows the adversary to have up to poly (A, T') parallel processors.

Verifiable delay functions have recently received extensive study, and have found numerous
applications to building randomness beacons [BBBF18, EFKP19] and cryptographic timestamping
schemes [LSS19]. Driven by these exciting applications, a sequence of recent works have developed
constructions of verifiable delay functions from various algebraic assumptions [Wes19,Pie19, FMPS19,
Shal9]. However, existing constructions still leave much to be desired in terms of concrete efficiency,
and today, there are significant community-driven initiatives to construct, implement, and optimize
more concretely-efficient VDFs [HC19]. One of the bottlenecks in existing constructions of VDFs is

Tdeally, the public parameters can be sampled by a public-coin process [BBBF18, Wes19, Piel9]. Otherwise, we require
a trusted setup to generate the public parameters [FMPS19, Shal9).



their reliance on structured algebraic assumptions (e.g., groups of unknown order [RSA78, BBHMO02]
or isogenies over pairing groups [FMPS19)]).

A natural question to ask is whether we can construct VDF's generically from unstructured
primitives, such as one-way functions, collision-resistant hash functions, or stronger forms of hash
functions. In this work, we study whether black-box constructions of VDFs are possible starting
from hash functions or other symmetric primitives. Specifically, we consider black-box constructions
of VDFs from ideal hash functions (modeled as a random oracle). Similar to previous work
(cf. [MMV11, AS15]) in the parallel random oracle model (ROM), we measure the running time of
the adversary by the number of oracle queries it makes and the sequentiality of the adversary by
the number of rounds of oracle queries it makes. However, for sake of simplicity, in this work we
simply refer to the parallel ROM as the ROM.

1.1 Our Results

In this work, we rule out the existence of VDFs with perfect uniqueness (i.e., VDF's where for any
x € X, there does not exist any (y/, ) such that Verify(z,y’,7) = 1 and ¢’ # Eval(z)) in the random
oracle model. Specifically, we construct an adversary that asks O(t) rounds of queries and a total
number of poly(T') queries and breaks the uniqueness of VDFs with respect to some oracle.

A natural class of VDFs with perfect uniqueness is the class of permutation VDFs where the
function Eval(-) implements a permutation on the domain (specifically, X = )), and verification
consists of inverting y and checking if it is = or not. Recently, Abusalah et al. [AKK™19] constructed
permutation VDFs in the ROM, but they additionally relied on the assumptions used in the sloth
functions of Lenstra and Wesolowski [LW15]. Our work shows that relying on some kind of structured
assumption is necessary to achieve permutation VDFs.

We next show that in the “tight” regime of sequentiality, as recently studied in the concurrent
work of Dottling et al. [DGMV19] (i.e., when the sequentiality parameter o is quite close to T'), even
proofs of sequential work (PoSW) [DN92, CLSY93, RSW96, MMV 13| cannot be based on random
oracles. In particular, our result essentially applies to settings where o > T' - (1 — 1/t) where t is
the verification time. A proof of sequential work is a relaxation of a VDF without the uniqueness or
the public-verifiability properties. Thus, our lower bound for ruling out tight PoSW also rules out
tight VDF's in the ROM. We note, however, that since (even publicly-verifiable) PoOSW satisfying
weaker notions of sequentiality (e.g., o = T'/2) are known to exist in the ROM [MMV13], it is not
clear whether this lower bound for PoSW can be extended to rule out (non-tight) VDFs, and we
leave this as an intriguing open question.

We note that both of our lower bounds are proven in settings that have already been studied in
previous (or concurrent) work. Namely, by ruling out permutation VFDs in the ROM, our first main
result complements the previous work on (what we refer to as) permutation VDFs [LW15, AKK™19]
by showing that the random oracle alone is not sufficient to realize such strong VDFs. Moreover,
our second result shows that when it comes to the tight regime of sequentiality (studied in the
concurrent work of [DGMV19]), VDFs as well as more relaxed notions like proofs of sequential work
cannot be based on symmetric primitives in a black-box way.

1.1.1 Ouwur Techniques

At a technical level, the proofs of our lower bounds start from the techniques of Mahmoody, Moran,
and Vadhan [MMV11] for ruling out time-lock puzzles in the random oracle model. In fact, for a



special case of perfectly-unique VDFs where the VDF is a permutation on its domain X = ), which
we refer to as a “permutation VDF” (cf., [LW15,KJGT16, AKK™19]), we can use the impossibility
result of [MMV11] as a black-box by reducing the task of constructing time-lock puzzles in the
ROM to constructing permutation VDF's in the ROM.

For the more general case of perfectly-unique VDFs (that are not necessarily permutations)
we cannot use the result of [MMV11] as a black-box, but we can still adapt the ideas from their
work that are reminiscent of similar techniques also used in [Rud88, BKSY11, MM11]. Namely, our
attacker will sample full executions of the evaluation function Eval in its head, while respecting
answers to queries that it has already learned from the real oracle. At the end of each simulated
execution, it will ask all previously-unasked queries in a single round to the oracle (and use those
values in subsequent simulated executions). We show that using just O(t) rounds of this form,
we can argue that in most of these rounds, the adversary does not hit any “new query” in the
verification process. Consequently, in most of the executions it is consistent with the verification
procedure with respect to some oracle O, and thus by the perfect uniqueness property, the answer
in those executions should be the correct one. Finally, by taking a majority vote over the executions,
we obtain the correct answer with high probability. Observe that this argument critically relies
on perfect uniqueness. The main open question remaining is whether a similar lower bound for
computational uniqueness holds for VDF in the ROM or not. In this setting, the security requirement
is that no efficient adversary can find a different value y' # Eval(z) with a proof 7’ that passes
verification. (See Section 3.1.)

We then adapt this technique to additionally rule out tight proofs of sequential work in the
ROM. Roughly, a scheme satisfies tight sequentiality if no adversary running in sequential time
o =T —TP? for constant p < 1 can compute (y, ) such that Verify(z,y, 7) = 1. More generally, we
consider a setting of parameters where o > T - (1 — 1/2¢), where ¢t denotes the number of queries
made by Verify. In this setting, we can construct an algorithm that simulates the answers to some
but not all of the oracle queries made by the evaluation algorithm. The algorithm answers the
remaining queries based on the real oracle evaluations. To simplify the description, in the following,
assume that the setup algorithm is essentially nonexistent, and that the public parameter is fixed
and publicly known ahead of time. Since the scheme is assumed to be tightly sequential, as long
as the algorithm simulates sufficiently-many queries (e.g., 7/2¢ queries), it is possible to reduce the
number of rounds of queries made to the real oracle (i.e., from T to T — T/2t). Moreover, if the
number of “simulated responses” is small enough and if the set of queries for which the algorithm
simulates is chosen at random, then there is a good chance that none of the simulated queries
are asked during verification. If both of these properties hold simultaneously, then the algorithm
successfully computes a response that verifies, thus breaking tight sequentiality. We provide the
formal analysis in Section 3.2. However, the formal version of this argument needs to also incorporate
the query complexity of the setup algorithm as well, leading to a weaker attack that only applies
when o > T - (1 — 1/2(s+t)). However, in Section 4, we describe how to extend our lower bounds on
tight proofs of sequential work (and correspondingly, tight VDFs) to additionally rule out tight
proofs of sequential work with an expensive setup phase as well as tight proofs of sequential work in
the random permutation model. In particular, we show how to leverage preprocessing to essentially
eliminate the dependency of the attack’s online phase on the query complexity of the setup.



1.2 Related Work

Verifiable delay functions are closely related to the notion of (publicly-verifiable) proofs of sequential
work (PoSW) [MMV13,CP18, AKK ™19, DLM19]. The main difference between VDFs and PoSWs
is uniqueness. More specifically, a VDF ensures that for every input x, an adversary running in
time poly(A,T") can only find at most one output y (accompanied with a possibly non-unique proof
m) that the verifier would accept (and if it does, the verifier is also convinced that the prover
performed T sequential work). In contrast, a PoOSW does not provide any guarantees on uniqueness.
In particular, for every input z, there might be many possible pairs (y,7) that the verifier would
accept, and as a result, in this setting there is no longer a need to distinguish between the output y
and the proof 7. Even more generally, proofs of work need not be publicly-verifiable [DN92], and
one could only require sequentiality against adversaries who do not know a secret verification key
generated during the setup. We emphasize that the uniqueness property in VDFs is important both
for applications as well as constructions. Indeed, publicly-verifiable proofs of sequential work can be
constructed in the random oracle model [MMV13,CP18, DLM19], while our work rules out a broad
class of VDFs in the same model.

Time-lock puzzles. Time-lock puzzle [RSW96] are closely related to VDF's as they are also based
on the notion of sequentiality. In a time-lock puzzle, a puzzle generator can generate a puzzle x
together with a solution y in time t < T, but computing y from x still requires sequential time 7.
The main difference between VDFs and time-lock puzzles is that time-lock puzzles might require
knowledge of a secret key for efficient verification (in time ¢). In contrast, VDFs are publicly-verifiable
(in time t). However, similar to VDF's, the output of a time-lock puzzle is unique. Mahmoody et al.
[MMV11] leverage this very uniqueness property and the fact that the solution is known ahead of
the time to the verifier (because it is sampled during the puzzle generation) to show an impossibility
result for time-lock puzzles in the random oracle model. While VDF's also require unique solutions,
these solutions might not be known when we directly sample an input.

Concurrent work. In an independent and concurrent work, Déttling et al. [DGMV19] introduce
and provide an in-depth study of tight verifiable delay functions. Their work both provides a
positive construction of tight VDFs (from algebraic assumptions) as well as a negative result on the
existence of tight VDFs in the random oracle model. In this work, we show that the lower bound
on tight VDFs also extends to (even privately-verifiable) proofs of sequential work. At the same
time, we note that (even publicly-verifiable) proofs of sequential work do exist in the non-tight
regime (e.g., 0 = T'/2) in the ROM [MMV13]. Thus, whether or not this lower bound in the random
oracle model on tight VDFs can be extended to arbitrary (non-tight) VDFs or not still remains an
intriguing open question.

2 Preliminaries

Throughout this work, we use A to denote the security parameter. For an integer n € N, we write
[n] to denote the set {1,2,...,n}. We write poly(A) to denote a quantity that is bounded by a fixed
polynomial in A and negl(\) to denote a function that is A1), For a distribution D, we write
x < D to denote that x is drawn from D. For a randomized algorithm Alg, we write y + Alg(z) to
denote the process of computing y by running Alg on input x with (implicitly-defined) randomness



r of the appropriate length (based on the length of x). For a finite set S, we write x £ 8 to denote
that z is sampled uniformly at random from S§. We say that an algorithm is efficient if it runs in
probabilistic polynomial time in the length of its input. We now review the definition of a verifiable
delay function.

Definition 2.1 (Verifiable Delay Function [BBBF18]). A wverifiable delay function is a tuple of
algorithms Ilypr = (Setup, Eval, Verify) with the following properties:

° Setup(lA, T) — pp: On input the the security parameter A and the time bound T, the setup
algorithm outputs the public parameters pp. The public parameter determines a (uniformly)
samplable input space Xpp and an output space Vpp. When the context is clear, we simply
denote them as X and V.

e Eval(pp,z) — (y,7): On input the public parameters pp and an element x € X', the evaluation
algorithm outputs a value y € ) and a (possibly empty) proof m. Moreover, in case Eval is
randomized, the first output y should be determined by = and pp (and be independent of the
randomness used). We will typically refer to y as the “output” of the VDF on x, and since y
is unique, when the context is clear, we simply write y = Eval(pp, z) to denote the output of
the VDF on z.

e Verify(pp, z,y,7) — {0,1}: On input the public parameters pp, an element = € X, a value
y € ), and a proof string 7w € {0, 1}*, the verification algorithm outputs a bit (1 means accept
and 0 means reject).

Moreover, the algorithms must satisfy the following efficiency requirements:
e The setup algorithm Setup runs in time poly (A, logT).
e The evaluation algorithm Eval runs in time 7'
e The verification algorithm Verify runs in time poly(A,logT)).

For simplicity of notation, in the following sections, we sometimes write s (resp., t) to denote the
running time of Setup (resp., Verify). This additionally allow us to state our results more generally
while also explicitly stating how our results depend on the precise bounds on the running time of
Setup and Verify.

Completeness. We now define the completeness requirement on VDFs.

Definition 2.2 (Completeness of VDF). A VDF Ilypg = (Setup, Eval, Verify) has completeness
error v if for all A€ Nand T € N,

pp Setup(l’\, T),x & Xop

r | Verify(pp, x,y, ) (y, ) < Eval(pp, z)

>1—7.

Unless stated otherwise, we assume v = 0. For our first lower bound, we need perfect completeness
v = 0, but our second lower bound in the tight regime directly extends to more generalized settings
where the completeness error v is negl(A) (or even a small constant).



Security. The two main security requirements we require on a VDF are uniqueness and sequen-
tiality. We define these below.

Definition 2.3 (Uniqueness of VDF). A VDF Ilypg = (Setup, Eval, Verify) satisfies uniqueness for
a class A of adversaries with error (), if for all adversaries Adv € A, we have that

. — Setup(1, T
Pr |y # Eval(pp, z) A Verify(pp, z,y, ) : (z ypljr) a Ad\F/)((lA 1T) op) =1] <e(A).

We say that Ilypr satisfies statistical uniqueness if A is the set of all (computationally unbounded)
adversaries and €(\) is negligible. We say Ilypg satisfies perfect uniqueness if we further require
g(A) = 0. We say that Ilypg is computationally unique if A is the class of poly(A, T')-time adversaries
and () is negligible.

Definition 2.4 (Sequentiality of VDF). A VDF Ilypr = (Setup, Eval, Verify) is o-sequential (where
o may be a function of A\, T and ¢) if for all adversaries Adv = (Advg, Advy), where Advg, Advy both
run in total time poly(A,T") and Adv; runs in parallel time at most o, we have that

pp < Setup(1*,T")
Pr |y = Eval(pp,z) :  Staa < Advo(1*,17,pp) | = negl(\).
x <i X,y < Advy (StAd\,7 33)

We can view Advg as a “preprocessing” algorithm that precomputes some initial state stag, based
on the public parameters and Adv; as the “online” adversarial evaluation algorithm.

Definition 2.5 (Decodable VDF [BBBF18]). Let ¢ be a function of A and 7. A VDF Ilypr =
(Setup, Eval, Verify) is t-decodable if there is no extra proof (i.e., # = L) and there is a decoder Dec
with the following properties:

e Dec runs in time t.
e For all z € X, if y = Eval(pp, z), then Dec(pp,y) = =.

We say that Ilypr is strongly decodable, if for all ¢’ # y = Eval(pp, x), it holds that Dec(pp,y) # .
Finally, we say a VDF is efficiently (strongly) decodable if it is (strongly) ¢-decodable for t =
poly (A, log T').

Remark 2.6 (Strongly Decodable VDFs and Perfect Uniqueness). Strong decodability (Defini-
tion 2.5) implies perfect uniqueness (Definition 2.3). However, the reverse is not true in general.

Definition 2.7 (Random Oracle Model (ROM)). A random oracle O implements a truly random
function from {0,1}* to range R.?> Equivalently, one can use “lazy evaluation” to simulate the
behavior of a random oracle as follows:

e If the oracle has not been queried on x € {0,1}*, sample y & R. The oracle returns y and
remembers the mapping (x,y).

2There are multiple possible ways to model a random oracle in the literature. We describe three possibilities here.
Sometimes, the range R is {0, 1}A where X is a security parameter; other times, it is simply {0, 1}, and sometimes it
is a “length preserving” mapping that maps each input x to a string of the same length.



e If the oracle was previously queried on x € {0, 1}*, return the previously-chosen value of y € R
associated with x.

Remark 2.8 (Hardness in the Random Oracle Model). Note that constructions with unconditional
security in the ROM use the oracle as the only source of hardness. In particular, as stated above,
the number of rounds of queries to the oracle model the cost of the parallel computation. If one
allows other sources of computational hardness, existing constructions of VDF's trivially also exist
relative to the ROM (by ignoring the random oracle).

Definition 2.9 (VDFs in the ROM). We define uniqueness and sequentiality of a VDF in the
ROM by allowing the components Setup, Eval, Verify of a VDF to be oracle-aided algorithms in the
ROM and adjusting their notion of time and parallel time (in Definitions 2.3 and 2.4 according to
Definition 2.7 and Remark 2.8). In particular, for sequentiality, we measure the running time of
the adversary by the number of rounds of oracle queries the adversary makes (this is to model the
capabilities of a parallel adversary). Furthermore, for the uniqueness property, we require that the
probability of the adversary succeeding is taken over the random coins of Setup and of the adversary,
but not over the choice of oracle.

3 Lower Bounds for VDF's in the Random Oracle Model

In this section, we first show that perfectly unique VDFs (Definition 2.3) are impossible in the
random oracle model. Then, as a corollary, we obtain barriers for strongly decodable VDF's as well.
In particular, if a VDF in the ROM is perfectly unique, it means that for every sampled random
oracle O < O, perfect uniqueness holds. Moreover, our result shows that a recent construction
of [AKK™'19] for reversible VDF's that is of the form of a permutation function and uses the sloth
functions from [LW15] cannot be modified to only rely on a random oracle.

We then turn our attention to the case of tight VDFs (and more generally, tight proofs of
sequential work) and show that they cannot be constructed in the ROM as well.

3.1 Case of Perfectly Unique VDF's

In this section, we give a lower bound for perfectly unique VDFs in the random oracle model.
Specifically, we prove the following theorem:

Theorem 3.1 (Lower Bounds for Perfectly Unique VDF's in the ROM). Suppose Ilypr = (Setup,
Eval, Verify) is a VDF in the ROM with perfect uniqueness and perfect completeness in which (for a
concrete choice of ), Setup runs in time s, Eval runs in time T, and Verify runs in time t. Then,
there is an adversary Adv that breaks sequentiality (Definition 2.4) by asking a total of 2T - (s + )
queries in 2(s +t) rounds of queries.

Before proving Theorem 3.1, we observe that this result already rules out the possibility of
constructing strongly decodable VDFs (which are forced to be perfectly unique; see Remark 2.6)
in the ROM. In fact, a special case of this theorem for the class of “permutation VDFs” can be
derived from the impossibility result of [MMV11] for time-lock puzzles [RSW96].3 We first define
this class of special VDFs below and prove their impossibility in the ROM as a warm up.

3In a time-lock puzzle, there is a puzzle-generation algorithm that runs in time ¢ and samples a puzzle = together
with a solution y, and an evaluation algorithm that runs in sequential time 7" that takes an input x and outputs the
solution y.



3.1.1 Warm Up: The Special Case of Permutation VDF's

Permutation VDFs. As a special case of strongly decodable VDFs, one can further restrict the
mapping from X to Y to be a permutation (instead of just being an injective function). Indeed, the
recent construction of [AKK™19] has this exact property as they construct decodable/reversible VDFs
where the evaluation function is a permutation on its domain. Indeed, [AKK™19] constructs proofs
of sequential work in the ROM, which when combined with with the sloth function from [LW15] leads
to permutation VDFs with weakly efficient verification (similarly to the sloth function itself [LW15]).
Thus, it was left open whether random oracle would suffice for permutation VDF's or not. Our
result rules this possibility out, even if the verification is slightly more efficient than the evaluation.

Proposition 3.2. Let Ilypr be a permutation VDE in the ROM with a decoder Dec that runs in
time t, and a setup algorithm Setup that runs in time s. Then, there is an adversary that breaks
sequentiality (Definition 2.4) in O(s +t) rounds of queries and O(T - (s +t)) queries.

Proof. To prove Proposition 3.2, we show how to construct a time-lock puzzle from a permutation
VDF. The result then follows from the lower bound of Mahmoody et al. [MMV11] who showed an
impossibility result for time-lock puzzles in the ROM. The construction is as follows. The puzzle
generator would first run the setup algorithm Setup of the VDF to get the public parameter pp.
Then, it samples y Sx= Y (here, we use the fact that & is efficiently-samplable, and that X = )))
and sets x <— Dec(pp, y). It outputs = as the puzzle (and keeps y as the solution). Since Setup and
Dec for a VDF are both efficient (i.e., run in time poly(\,¢)), the puzzle generator is also efficient.

We can now use the result of [MMV11] which shows that any time-lock puzzle in the ROM
where the puzzle-generation algorithm makes k queries and the puzzle-solving algorithm makes T
queries can be broken by an adversary making O(k) rounds of queries and a total of O(k-T') queries.
For the time-lock puzzle based on the permutation VDF, k = s+ t, where s is the number of queries
made by the Setup algorithm and ¢ is the number of queries made by the Dec algorithm. O

3.1.2 Proof of Theorem 3.1 in the General (Perfectly Unique) Case

We now give the proof of Theorem 3.1. It follows the ideas from [MMV11] for ruling out time-lock
puzzles in the ROM, but this time, we cannot simply reduce the problem to the setting of time-lock
puzzles, and we need to go into the proof and extend it to our setting. We begin with an informal
overview of the proof before providing the formal analysis.

Proof overview. We begin with an informal description of the main ideas behind the lower bound.
Our goal is to construct an adversary that can efficiently find an output that passes verification,
while asking fewer than T' rounds of queries to the random oracle. To do so, we consider an algorithm
that implements the honest evaluation algorithm, but instead of issuing queries to the actual random
oracle, the algorithm will instead sometimes simulate the outputs from those queries itself (i.e., by
sampling from the output distribution of the random oracle). Of course, if one of these “faked” or
“simulated” queries was asked to the oracle by another algorithm in the system (e.g., by Setup or
Verify), then our algorithm will almost certainly fail. On the other hand, if none of the simulated
queries were asked to the oracle, then our attacker wins (because the set of “faked” queries and
real queries together form an oracle that is consistent). This means that as long as the number of
queries Setup and Verify make are much smaller than T" and our algorithm is able to “identify” or



“learn” those queries with fewer than T rounds of queries to the random oracle, then the algorithm
succeeds in breaking sequentiality of the VDF.

Proof of Theorem 3.1. Without loss of generality, assume that Eval asks no repeated queries in a
single execution. We construct an attacker Adv that breaks sequentiality of the VDF as follows.
Our adversary is entirely online (i.e., there is no separate preprocessing step).

1. At the beginning of the game, the adversary Adv receives the public parameters pp and a
challenge x € X from the sequentiality challenger.

. Initialize a query set Qaqv < @ and a set of query-answer pairs Pagy <+ 9.

. Let d=2(s+1t)+ 1.

. For i € [d], do the following:

=W N

(a) Tnitialize P{), + @ and QY) + 2.
(b) Execute (y;,m;) < Eval(pp, z) where the random oracle queries (made by Eval) are
answered using the following procedure. On every oracle query ¢:
e If ¢ € Qady, then reply with the value r where (q,7) € Pagy-
e Otherwise, choose a uniformly random value r ER (where R is the range of the
random oracle Q) and add (g, r) to PA(fd)V and add ¢ to Q%V.
(c¢) If i < d, then in one round, for all (q,x) € ng, query the real oracle O to get
r < O(q) as the answer; and then add (¢, ) to Pagy and add ¢ to Qady-

5. Output Maj(yz, ..., yq) where Maj denotes the majority operation (which outputs L if no
majority exists).

Algorithm 1: The adversary Adv that breaks sequentiality of the VDF

We now show that Adv in Algorithm 1 satisfies the properties needed in Theorem 3.1. Let Qg
be the queries made by the setup algorithm Setup(1*,T) to sample pp and Qy be the queries made
by Verify(pp, z,y) where y = Eval(pp, z) is the true solution.

For i € [d], we define H; to be the event where there is a query ¢ € Q(Aic)jv N(QsUQy) during the
i*" round of emulation that was not previously asked by the adversary: q € Qadv at that moment.
Equivalently, when ¢ is asked, it holds that ¢ € (Q/(f()jv N(QsUQv))\ Qadv-

The following claim shows that H; cannot happen for too many rounds 1.

Claim 3.3. IfZ = {i: H; holds}, then |Z| < s +t.

Proof. If event H; occurs as a result of some query ¢, then at the end of round ¢, Adv queries the
oracle O on the input ¢q. By construction, since ¢ € (Q%V N(QsUQy)) \ Qady, it must be the
case that Adv makes a new query on an input that was previously queried by either the Setup or
Verify algorithms (but not queried in any of the previous rounds). However, since Setup and Verify
together ask a combined total of (at most) s + ¢ queries, this event cannot happen more than s + ¢
times. O

Claim 3.4. If H; does not happen, then y; = vy.
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Proof. Let y; # y for a round 4 in which H; has not happened. This means that the set of
oracle query-answer pairs used during Setup, and the i*" emulation of Eval by Adv are consistent.
Namely, there is an oracle O', relative to which, we have pp + Setup?, (v, 7)) + Evalo/(pp, x),
and Verify /(pp, x,y,m) = 1. However, this shows that the perfect uniqueness property is violated
relative to O, because for input z, there is a “wrong” solution y (i.e. ) Y + 9y = = Eval? (pp,x))
together with some proof 7 for y such that the verification passes Verify® (pp, x,y,m) = 1. O

By the above two claims, it holds that y; = y for at least s + ¢ + 1 values of i € [2(s + t) + 1],
and thus the majority gives the right answer y for Adv. O

3.2 Lower Bound for Tight Proofs of Sequential Work

We can apply similar techniques to rule out tight proofs of sequential work [MMV13] in the random
oracle model. At a high level, a (publicly-verifiable) proof of sequential work is a VDF without
uniqueness. Namely, for an input x, there can be many pairs (y,7) that passes verification. In
this setting, there is no need to distinguish y and 7. While we have constructions of (publicly-
verifiable) proofs of sequential work in the ROM, our results show that tight proofs of sequential
work (see [DGMV19] for more discussion on this tightness notion) are impossible in this setting.
In particular, the following barrier applies to settings where the sequentiality parameter o is very
close to T (e.g., this does not apply to o = T//2). The following definition derives publicly-verifiable
proofs of sequential work [DN92, CLSY93, RSW96, MMV 13] as a relaxation of VDFs.*

Definition 3.5 (Publicly-Verifiable Proofs of Sequential Work). A publicly-verifiable proof of
sequential work is a relaxation of a VDF where the uniqueness property is not needed. Hence, there
is no need to distinguish between an output y and a proof w. In particular, y = 7 can be the only
(not-necessarily-unique) output of Eval that is still sequentially hard to compute.

Proofs of sequential work in the ROM. While Definition 2.9 defines the notion of a VDF in
the ROM, the same definition extends to the setting of (publicly-verifiable) proofs of sequential
work in the ROM as well. Namely, we measure the running time in terms of the total number of
oracle queries and the parallel time by the the number of rounds of oracle queries. We now show
how to adapt our techniques for ruling our perfectly-unique VDFs in the ROM to also rule out tight
proofs of sequential work.

Theorem 3.6 (Attacking Proofs of Sequential Work in the ROM). Suppose IIpsw = (Setup, Eval,
Verify) is a publicly-verifiable proof of sequential work in the ROM in which (for a concrete choice of
A), Setup runs in time s, Eval runs in time T, and Verify runs in time t. Then, for any 1 < G < T
there is an adversary Adv that asks a total of at most T — G queries and breaks sequentiality
(Definition 2.4) with probability at least 1 — (s +1t)-G/T.

Corollary 3.7 (Ruling Out Tight Proofs of Sequential Work in the ROM). Let \ be a security
parameter and T be the time bound parameter. For any choice of s,t = poly(\,logT), there does
not exist a proof of sequential work in the ROM with sequentiality o = T - (1 — 1/2(s+t)). More
generally, for any constant 0 < p < 1, there does not exist a proof of sequential work in the ROM
with sequentiality o =T —T".

“Definition 3.5 is even more general as it allows a setup phase.
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Proof. The first statement follows by instantiating Theorem 3.6 with G = T/2(s+t). For this setting
of parameters, Theorem 3.6 implies an adversary that breaks sequentiality with probability at least
1/2 and making only T'— G =T - (1 — 1/2(s+t)) queries. For the more general statement, we take
T to be a sufficiently large polynomial in the security parameter A such that s,t < T'~”/4. Note
that this is always possible since s,t = poly(\,log T'); that is, both s,¢ are poly-logarithmic in T
and 0 < p < 1 is constant. Then, we can again set G =T — ¢ = T* and appeal to Theorem 3.6 to
obtain an adversary that makes T'— G = o queries and breaks sequentiality with probability at
least 1/2. O

Remark 3.8 (Secretly-Verifiable Tight Proofs of Sequential Work). We note that Theorem 3.6 also
holds for secretly-verifiable proofs of sequential work as well. The proof for the secretly-verifiable
setting is identical to that for the publicly-verifiable setting. For simplicity of notation we write the
proof for the publicly-verifiable version (Definition 2.4) which uses pp as both the evaluation and
the verification key.

Remark 3.9 (Other Extensions). The extension from Remark 3.8 on ruling out secretly-verifiable
tight proofs of sequential work relies on the same proof as that of Theorem 3.6. In Section 4, we show
two extensions of this result by adapting the proof of Theorem 3.6. These include extending the
lower bound to: (1) the setting where the Setup algorithm is “slow” (i.e., runs in time proportional
to T'); and (2) the random permutation model (rather than the random oracle model). We refer to
Section 4 for the details on those extensions.

Proof of Theorem 3.6. Again, without loss of generality, we assume that Eval asks no repeated
queries in a single execution. The attacker’s algorithm Adv is defined as follows:

1. At the beginning of the game, the adversary Adv receives the public parameters pp and a
challenge x € X from the sequentiality challenger.

2. Pick a random set S C [T'] of size T' — G.

3. Execute (y, ) < Eval(pp, ) where the i*" oracle query ¢; is answered as follows:

e If i € S, compute the response 7; < O(g;) from the true oracle O.
e Otherwise sample a uniformly random r; < R as the response for the query g;.

4. Output (y, ).

Algorithm 2: The adversary Adv that breaks sequentiality for the proof of sequential work

To analyze Algorithm 2, we compare the output of the attacker’s experiment (Real) with the output
in an “ideal” experiment (ldeal) where all of the oracle queries are answered using the real oracle.
We define these two experiments below:

12



1. Sample pp < Setup(1*,T).

2. Sample x Sx.

3. In Experiment Real, run Algorithm 2 to obtain a pair (y, 7). In Experiment ldeal, run
Algorithm 2, except use the real oracle O to answer all of the oracle queries made by Eval
(in Step 3 of Algorithm 2).

4. The output of the experiment is 1 if Verify(pp, z,y,7) = 1 and 0 otherwise.

Figure 1: The Real and ldeal experiments

In the following, we write Preea[-] (resp., Prigeal[-]) to denote the probability of an event E in the
Real (resp., ldeal) experiment.

Events. Let Qv be the set of oracle queries made by Verify and Qg be the set of oracle queries
made by Setup. Let Qaqy be the set of oracle queries ¢; that appears in Step 3 of Algorithm 2 where
i ¢ S. Namely, these are the set of oracle queries ¢; that Adv answers with uniformly random values
in Real. We now define the following two events:

e Let W be the event that Verify(pp, z,y,7) = 1 when (y, 7) is the output of the adversary (i.e.,
W is the event that the adversary wins and the experiment outputs 1).

e Let B be the “bad” event where (Qy U Qs) N Qagv # . Namely, this is the event that
adversary makes up an answer to a query that is asked either by the setup algorithm or the
verification algorithm.

With these definitions, the following claim trivially holds in the ideal experiment (by perfect
completeness of the underlying proof of sequential work®), as all of the oracle queries ¢; are
computed using the real oracle O(g;).

Claim 3.10. Prideal[W] =1.
The following lemma states that until event B happens, the two experiments are identical.

Lemma 3.11. Pry,[B] = Prigeal[B]. Moreover, conditioned on the event B not happening, the
two experiments are identically distributed. In particular, for any event like W, it hold that
Pr,ea|[W V B] = Pridea|[W V B] .

Proof. Here, we make a crucial use of the fact that the oracle O is random. To prove the lemma,
we run the two games in parallel using the same randomness for any query that is asked by any
party, step by step. Namely, we start by executing the evaluation algorithm identically as much as
possible until event B happens. More formally, we run both experiments by using fresh randomness
to answer any new query asked during the execution, and we will stop the execution as soon as
event B happens. Since until the event B happens both games proceed identically (in a perfect
sense) and consistently according to their own distribution, it means that until event B happens,
the two games have the same exact distributions. Therefore, by the “fundamental lemma of game

®Note that this argument extends also to the setting where we have completeness error v (i.e., completeness holds with
probability 1 — « over the choice of the public parameters). This modification introduces a + loss in the adversary’s
advantage in the real game.
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playing” [Mau02,BR04] it holds that Pres[B] = Prigeal[B] and that conditioned on the event B not
happening, the two experiments are identically distributed. O

We now observe that the probability of the event B is small in the ideal game, and conclude
that it is indeed small in both games.

Claim 3.12. Prideal[B] < (S + t) . %

Proof. In the ideal experiment, the set S is independent of all other components in the experiment,
so we can choose S at the end of the experiment (after Qg and @y have been determined). By
definition of Qady, we have that |Qady| < G. Therefore, for any query ¢ € Qg U Qy that is also
queried by Eval(pp, z), the probability that ¢ € Qady is at most G/T. The claim now follows by a
union bound. O

The above claims complete the proof of Theorem 3.6, as we now can conclude that the probability
of W in both experiments is “close”:

Pr(W] — Pr[W]| < Pr[B].

real ideal

We already know that Prigea[W] = 1, therefore, we conclude that

Pr[W]> Pr[W]— Pr[B] >1—(s+1t)-

real " ideal ideal

NI

4 Extensions to the Lower Bounds

In this section, we briefly discuss several extensions of our lower bounds on perfectly unique VDF's
and tight proofs of sequential work by extending the proofs of Theorems 3.1 and 3.6.

4.1 Handling Expensive Setup Phase

Our lower bounds in Theorems 3.1 and 3.6 construct an adversary whose running time depends
on both ¢ (the verification time) as well as s (the setup time). When these bounds ¢, s are only
poly(A,log T'), the running time of our attacker is much smaller compared to T, and thus, breaks
the sequentiality of the scheme. However, one might argue that since the setup is executed only
once, it is reasonable to consider a scenario where s is potentially as large as T'. In this case, both of
our lower bounds in Theorems 3.1 and 3.6 become meaningless.

Case of expensive public setup. If the setup algorithm is public coin (i.e, the randomness to
Setup is publicly known), then both Theorems 3.1 and 3.6 directly extend to the setting where
s = poly(A,T'). Specifically, in this setting, the setup queries can be discovered publicly (i.e., by
emulating an execution of Setup). Thus, the adversary can learn the oracle’s values on the set of
queries Qg made by Setup. In the online phase, the adversary carries out its attack by incorporating
the knowledge of Qs when answering oracle queries. In other words, if during the emulation of the
Eval algorithm, the adversary encounters a query g € Qg, it will use the known answer (saved as
part of the state staqy) instead of asking it from the oracle or guessing its answer.
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Case of expensive private setup for Theorem 3.6. When the setup algorithm uses private
randomness, the above argument for extending Theorems 3.1 and 3.6 no longer applies. Nonetheless,
we can still show how the proof of Theorem 3.6 (for ruling our tight proofs of sequential work) can
be extended to this setting as well.

Theorem 4.1 (Attacking Tight Proofs of Sequential Work with Expensive Setup in the ROM).
Suppose Ipsw = (Setup, Eval, Verify) is a publicly-verifiable proof of sequential work in the ROM in
which (for a concrete choice of \,T ), Setup runs in time s, Eval runs in time T', Verify runs in time
t, and completeness error is at most v (see Definition 2.2). Then, for anye <1 and 1 < G < T,
there is an adversary Adv = (Advg, Advy) where Advgy runs in time poly(s,T,t,1/e) and Advy makes
at most T — G queries (and run in total time poly(T')) and breaks sequentiality (Definition 2.4) with
probability at least 1 —e —t - G/T — .

Before proving Theorem 4.1, we first derive a corollary, formally stating the range of tight
sequentiality for which we rule out PoSWs in the ROM.

Corollary 4.2 (Ruling Out Tight Proofs of Sequential Work with Expensive Setup in the ROM). Let
A be a security parameter and T be the time bound parameter. For any choice of s = poly(A\,T),t =
poly(A,logT'), and completeness error v = negl(\), there does not exist a proof of sequential work
in the ROM with sequentiality o =T - (1 — 1/2t) and completeness error . In particular, for any
constant O < p < 1, there does not exist a proof of sequential work in the ROM with sequentiality
o=T —T? and completeness error ~y.

Proof. The proof is identical to that of Corollary 3.7, except here, we use the attack algorithm
from Theorem 4.1 that relies on a preprocessing step with time complexity poly (A, 7). The only
difference is that we now also need to make sure € + v < 1/2, which is easily satisfied whenever
~v = negl(\). For example, take e = 1/3. O

We now give the proof of Theorem 4.1.

Proof of Theorem 4.1. Here, Advy will perform a precomputation and compute the so-called “e-
heavy” queries [BM17,IR89] of the setup algorithm. More precisely, we aim to find queries that are
asked by the setup and have noticeable chance of being queried again during the evaluation. In
particular, Algorithm Advg outputs a set () consisting of input-output pairs of the oracle O. The
online algorithm Adv; then follows Algorithm 2 from the proof of Theorem 3.6, except whenever
Eval makes a query ¢ where ¢ € @), Adv; replies with the precomputed value of O(q) in Q. We now
describe Advy:

1. Initialize a set Q) < .
2. Repeat the following procedure k = s/¢ = poly(\,T) times:

(a) Sample z & X.

(b) Compute (y, ) < Eval(pp, ). Whenever Eval makes a query ¢ to the oracle O, add
the pair (¢, O(q)) to Q.
3. Output staqy = Q.

Algorithm 3: The adversary Advg that precomputes the e-heavy queries of the Setup algorithm.
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We define Advy as in Algorithm 2, except in Step 3, if the query ¢; is contained in stpgq, = @, then
the adversary always replies with the precomputed value of O(g;) in Q. Otherwise, it uses the
same procedure as in Algorithm 3. The rest of the analysis proceeds similar to that in the proof of
Theorem 3.6. Namely, let Qg denote the set of oracle queries made by Setup and Qv be the set of
queries made by Verify in the real/ideal experiments. We define the events W and B exactly as in
the proof of Theorem 3.6. We now show an analog of Claim 3.12:

Claim 4.3. Prigea[B] <c +1t- &.

Proof. Recall that the event B occurs if (Qy U Qg) N Qagy # . We consider the following two
setting. (All probabilities are stated in the ideal experiment.)

e Consider the event that Qv N Qagv # @. By the same argument as in the proof of Claim 3.12,
this event occurs with probability at most |Qv |- G/T < t-G/T over the randomness of S.

e Consider the probability that Qg N Qaqv # . Take any query g € Qg and consider the event
H, that ¢ € Qadv and ¢ ¢ staqy. By construction of Algorithm 3, for H, to happen, the first
k iterations of Advg should not query ¢ during Eval, and yet g is queried in the next (actual)
execution of Eval. However, it is easy to show that for any Bernoulli variable (of arbitrary
probability ) the probability of missing it k& times and hitting it on the (k + 1) iteration is

at most 1/k. Since Setup makes at most s queries, |@Qg| < s, so by a union bound,

s
Pr[Qs N Qagv # 9] < T = €.

The claim now follows by a union bound. O

The rest of the proof of Theorem 4.1 proceeds identically to the proof of Theorem 3.6 and noting
that the probability of W in the ideal game is 1 — . O

4.2 Extending to the Random Permutation Oracle Model

Random oracles can be used to instantiate all symmetric primitives (including the ideal cipher
model [CPS08, HKT11]) with one exception: the random permutation oracle R that implements a
random permutation on {0,1}" for all n € N. Indeed there are impossibility results showing that
such a construction does not exist [Rud88, MM11]. We can extend the proof of Theorem 3.6 to
rule out constructions of tight proofs of sequential work in the random permutation oracle as well
by developing a preprocessing attack and then using standard techniques based on the fact that a
random permutation oracle and a random oracle over a large domain is statistically indistinguishable
to any query-bounded algorithm [IR89].

Case of large input domains. More formally, let n be such that (T + s +t)?/2" < e. Then,
first suppose the only domain used by the three algorithms (Setup, Eval, Verify) is {0,1}". In this
case, the probability that a random oracle used by these three algorithms Setup, Eval, Verify has any
collision during the course of their execution is at most (T + s +t)?/2" < . However, whenever
there are no collisions, there is no way to distinguish between random permutations or random
oracles. Therefore, our attack in Theorem 3.6 would automatically work (as is) up to a loss of ¢ in
the success probability. This argument also works if the three algorithms (Setup, Eval, Verify) ask
their queries from input domains with different size as long as for any domain {0, 1}" that they
query, n satisfies (T + s +1)?/2" <e.
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General case. The above argument fails when any of the algorithms (Setup, Eval, Verify) ask their
queries from any domain {0, 1}" where n is small (and as such, (T + s + t)2/2" > ¢). However, the
total number of queries over all such domains is at most

7= {01+ {0,132+ -+ [{0,1}"],

where (T + s + t)2/2" = ¢, which means

(T+s+ﬂ2<%T+s+ﬂ2
3 9

T=2+4+ -+ = poly(\, T).

Therefore, a preprocessing adversary Advg can ask all of these 7 = poly(A,T") queries from the real
oracle O and send them together with their answers to the online adversary Adv; who will then
use the answers to these queries whenever needed without asking them from O or guessing their
answers. In this case, the analysis of our attack is identical to the aforementioned case with inputs
drawn from a large domain.

5 Conclusion and Open Questions

In this work, we initiated a formal study of the assumptions behind VDFs and provided new lower
bounds on basing VDFs with perfect uniqueness in the random oracle model as well as stronger
lower bounds in the tight security regime in which the sequentiality guarantees a very close running
time to the honest execution. The second lower bound applies not only to VDFs but also to
relaxations of it such as sequential proofs of work. While our first lower bound captures existing
notions [LW15, AKK™*19], they do not extend to the full range of VDF notions.

The main open question remaining is whether we can extend our first lower bound to rule
out VDF's satisfying computational uniqueness in the ROM, and ideally do so allowing negligible
completeness error as well. Alternatively, the fact that our current lower bound critically relies on
the perfect uniqueness property may suggest new approaches to basing VDF's on weaker assumptions.
In other words, any approach for constructing VDFs in the ROM must either rely on non-black-box
techniques or leverage imperfect soundness in a critical manner. Both of these possibilities represent
intriguing avenues for further research.
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