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AbstractÐ The hybrid nature of multi-contact robotic sys-
tems, due to making and breaking contact with the envi-
ronment, creates significant challenges for high-quality con-
trol. Existing model-based methods typically rely on either
good prior knowledge of the multi-contact model or require
significant offline model tuning effort, thus resulting in low
adaptability and robustness. In this paper, we propose a real-
time adaptive multi-contact model predictive control frame-
work, which enables online adaption of the hybrid multi-contact
model and continuous improvement of the control performance
for contact-rich tasks. This framework includes an adaption
module, which continuously learns a residual of the hybrid
model to minimize the gap between the prior model and reality,
and a real-time multi-contact MPC controller. We demonstrated
the effectiveness of the framework in synthetic examples, and
applied it on hardware to solve contact-rich manipulation
tasks, where a robot uses its end-effector to roll different
unknown objects on a table to track given paths. The hardware
experiments show that with a rough prior model, the multi-
contact MPC controller adapts itself on-the-fly with an adaption
rate around 20 Hz and successfully manipulates previously
unknown objects with non-smooth surface geometries. Accom-
panying media can be found at: https://sites.google.
com/view/adaptive-contact-implicit-mpc/home

I. INTRODUCTION

For in-home or workplace robots to achieve their true

potential, assisting humans across a wide range of tasks in

a complex and cluttered environments, they must be capable

of safely and quickly reacting to that complexity. One key

challenge to achieving high-performance control for multi-

contact robotic tasks, particularly dexterous manipulation,

lies in the combinatoric complexity of simultaneously se-

quencing contact locations and selecting continuous control

actions. Significant progress has been made in this area,

with recent methods demonstrating real-time multi-contact

(MPC) [1]±[3], but these methods require an accurate multi-

contact model, with control performance ultimately limited

by model accuracy and complexity. However, acquiring such

a model is difficult in real-world settings, and so performance

on these multi-contact robotic tasks, particularly dexterous

manipulation, remains limited to laboratory settings and

controlled demonstrations.

While classical approaches exist to modeling or identify-

ing the continuous dynamics, we observe that multi-contact

control is particularly sensitive to accurate predictions of
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Fig. 1. Given an initial guess that the object is a rigid sphere, the controller
adapts its model of the governing contact dynamics to roll and push real
fruits (orange, lime) with a Franka Emika Panda arm, tracking a desired
motion.

the contact events (e.g. when a robot will make or break

contact with an object). To address this requirement for a

model, recent work (e.g. [4], [5]) has started with system

identification, using collected data to learn a model [6]±[9]

to improve the control performance for contact-rich tasks.

Despite the success, the offline model learning in those

methods requires a significant effort of data collection and

training to obtain an effective model, limiting the flexibility

of these methods when deployed in practice. To address

those limitations, in this work, we take a perspective from

the classic adaptive control paradigm [10] but specifically

address multi-contact systems: we present an adaptive multi-

contact MPC controller such that it can adjust the multi-

contact hybrid model in real time to account for variations

of unknown objects/environments and improve its control

performance for multi-contact tasks.

The presented adaptive framework continuously adjusts

the hybrid model, using real-time in-stream data; meanwhile,

the MPC controller uses the most recent model for high-

quality control on multi-contact tasks. Compared to the ex-

isting work, we emphasize the two key contributions below.

(i) We present an adaptation law for multi-contact systems

that continuously minimizes the gap between the prior model

and reality by learning a hybrid residual model from in-

stream data. It is inspired by our offline learning method [6]

but unlike the previous work it focuses on online learning and

utilizes physics-based prior models to speed up the process.

Furthermore, the hybrid model adaption module is integrated

into our fast multi-contact MPC controller [11] which allows

real-time adaptive contact-implicit control on robots with on-

the-fly performance improvement for contact-rich tasks.

(ii) We validate the proposed approach with two different

hardware experiments, accomplishing challenging robot arm



manipulation tasks. Our method adapts itself on-the-fly with

an adaption rate around 20 Hz and can consistently be em-

ployed to manipulate objects with uneven or irregular surface

geometries. The findings also indicate that our approach can

succeed in tasks that purely model-based methods fail.

II. RELATED WORK

1) Learning Multi-Contact Dynamics Models: The hy-

brid nature of multi-contact dynamics poses challenges for

gradient-based learning. One line of work, termed differen-

tiable simulation, focuses on smoothing hybrid mode bound-

aries, although this can lead to approximation errors [12]±

[14]. Recently, however, results have shown that conventional

neural networks are limited in capturing the multi-modality

and high-stiffness of multi-contact systems [7], [15], [16]. To

address this, researchers [6], [7], [16] explicitly exploit the

hybrid structure (complementarity formulation) of contact

dynamics to develop learning algorithms, achieving state-of-

the-art performance. In our adaptive contact-implicit MPC

framework, the adaption module focuses on learning a hybrid

residual model on top of prior dynamics, which is based

on our previous work [6]. The benefit of [6] is that it

simultaneously performs the mode partitioning and linear

regression by proposing a novel training loss. The quadratic

formulation in the loss enables fast updates using in-stream

data, which can run up to 20 Hz.

2) Fast Multi-Contact Model Predictive Control: To han-

dle the combinatoric complexity of choosing hybrid contact

modes, previous work [17], [18] use pre-defined sequence of

modes to achieve real-time multi-contact control on legged

locomotion [19] and manipulation [20]. To achieve contact-

implicit control, the work [3] proposed to relax contact mode

boundaries with smoothing approximation. Concurrently, our

work [11] introduced an approach that preserves the hybrid

structures while decoupling the combinatorial complexity

from planning depth. However, rather than operating with an

accessible ground-truth multi-contact model, we incorporate

a hybrid model adaptation module into the MPC controller.

This module operates continuously, updating the hybrid

model with data collected from real-world interactions. Con-

sequently, the MPC controller can consistently improve its

performance for multi-contact tasks.

3) Task-Oriented Multi-Contact Model Learning: A rel-

evant body of recent research is task-driven multi-contact

model learning, which aims to find a model that can be

used to (derive a policy and) accomplish given tasks. This

line of work shares the same idea as deep model-based

reinforcement learning [21], although the latter typically

suffers from huge data demand. The most recent work

focuses on learning a task-driven computationally affordable

models, which have been shown requiring a small amount

of data to successfully solve deleterious manipulation [4]

and bipedal locomotion [5]. It is important to note that the

above existing methods predominantly rely on offline model

learning. This means that the model undergoes episodic

updates after accumulating a buffer of historical policy data.

In contrast, the approach presented in this paper emphasizes

continuous and online updates to the hybrid residual model.

This innovative method facilitates real-time improvements

in the multi-contact hybrid model, consequently improving

performance during the deployment of the MPC policy.

Additionally, this adaptation framework holds the potential

to reduce data consumption when compared to offline model

learning methodologies.

4) Adaptive MPC: The most relevant theme of this work

is adaptive control, which focuses on control of uncertain

systems through real-time model adaptation and learning

[22] and has long been an ongoing research direction [23].

Researchers have developed robust (adaptive) MPC methods

[24]±[27], which are successfully applied to electric vehicles

[28], climate control [29], quadrotors [30]. Similarly, there

are multiple recent methods that perform adaptive MPC

under unknown noise distributions [31] or incorporate com-

ponents from adaptive control into learning-based MPC [32].

Also, the recent work [33] presents an adaptive MPC variant

that automatically estimates control and model parameters

by leveraging ideas from Bayesian optimization performing

manipulation tasks. Unlike our approach, which focuses on

real-time adaptive MPC for systems that make and break

contact, the authors focus on reaching tasks, avoiding any

contact interaction.

III. BACKGROUND

A. Multi-Contact Dynamics

A common model for the multi-contact dynamics of a rigid

manipulator is

M(q)v̇ + C(q, v) = Bu+ J(q)Tλ, (1)

0 ≤ λ ⊥ ψ(q, v, u, λ) ≥ 0. (2)

where q and v are vectors of the generalized positions and

velocities, respectively, and λ represents the contact forces.

The complementarity constraint (2) defines the hybrid rella-

tionship between the contact forces and the generalized po-

sitions, velocities, and inputs (see [34]±[36] for full details).

We note that one might equivalently explicitly represent (1)

as ẋ = f(x, λ, u) with x =
[

qT , vT
]T

.

B. Linear Complementarity Problem

While contact dynamics are represented via nonlinear

complementarity constraints (2) (ψ nonlinear in λ), local

models frequently use linear complementarity problems

(LCPs) as a means to depict contact forces [35]±[37].

Definition 1: Given a vector q ∈ R
m, and a matrix

F ∈ R
m×m, the LCP(q, F ) describes the following program:

find λ ∈ R
m

subject to y = Fλ+ q,

0 ≤ λ ⊥ y ≥ 0.

C. Linear Complementarity Systems

Linear complementarity systems (LCS) embed LCPs into

dynamical systems, which we employ as localized models

for multi-contact systems [11], [38], [39].



Definition 2: An LCS describes the trajectories (xk)k∈N0

and (λk)k∈N0
for an input sequence (uk)k∈N0

such that

xk+1 = Axk +Buk +Dλk + d,

0 ≤ λk ⊥ Exk + Fλk +Huk + c ≥ 0,
(3)

for a given x0 where xk ∈ R
nx , λk ∈ R

nλ , uk ∈ R
nu .

Given xk and uk, we can determine the associated comple-

mentary variable λk by solving the linear complementarity

problem LCP(Exk + Huk + c, F ) (Definition 1). Moving

forward, we describe the set of matrices in the LCS model (3)

as θ = {A,B,D, d,E, F,H, c}. If the elements depend on

a given nominal (denoted using ∗) state-input pair (x∗, u∗),

we represent them as A∗ = A(x∗, u∗) and the set of such

matrices is denoted as θ∗. With a slight abuse of notation,

we denote the state-contact force pair an LCS generates as

(xk+1, λk) = L(xk, uk, θ
∗).

IV. PROBLEM FORMULATION

In this work, we are interested in solving the following

MPC problem at real-time rates:

min
xk,λk,uk

N−1
∑

k=0

(xTkQkxk + uTkRkuk) + xTNQNxN

s.t. xk+1 = A∗xk +B∗uk +D∗λk + d∗ + rdyn,

0 ≤ λk ⊥ E∗xk + F ∗λk +H∗uk + c∗ + rcomp ≥ 0,
(4)

where N is the planning horizon, Qk, QN are positive

semidefinite matrices, Rk are positive definite matrices, rdyn

and rcomp represents the residuals for the dynamics and

complementarity terms respectively (these could be time or

state dependent). If one has perfect knowledge of the system

matrices, θ∗, then rdyn = rcomp = 0. In our previous work,

we presented a framework for the setting where we relied on

high model accuracy, e.g. rdyn ≈ rcomp ≈ 0. While (4) is

non-convex, we leverage a recent algorithm called Consensus

Complementarity Control (C3) to achieve real-time, albeit

subptimal, solutions (see [11] for details on C3).

In this work, we focus on the setting where we have access

to an imperfect physics-based model, e.g. θ∗ is inaccurate,

and where the error is significant enough to prevent task

completion. Our aim is to collect data online and adaptively

learn a residual (rdyn, rcomp) while simultaneously solving the

MPC problem, both at real-time rates. Our goal is that, over

time, our adaptive model accurately captures the behavior of

the true dynamics, and that u0 well-approximates the solution

of (4) with true dynamics. We highlight that we want to

achieve both goals at real-time rates.

V. PHYSICS-BASED LCS

This section describes the process of converting Anitescu’s

approach for simulating contact dynamics [36] into an

LCS approximation around a given nominal state-input pair

(x∗, u∗) → θ∗. We choose Anitescu’s formulation over other

approaches, such as the Stewart-Trinkle formulation [40],

because it is a convex contact model (i.e. F ∗ as in Section III-

C is positive semi-definite for any (x∗, u∗)) and our proposed

learning algorithm (discussed in Section VI) relies on this

Algorithm 1

Require: rcomp,B, ϵ, γ, ξ
1: Compute θ∗ for each data point and construct BA

2: Compute the gradient ∇rcomp
Lϵ(B

A, rcomp)
3: Update the residual rcomp via Adam [41]

4: return rcomp (updated residual parameter)

assumption. Next, we describe our physics based model

which is a discrete-time approximation of (1), (2):

qk+1 = qk +∆tvk+1,

vk+1 = vk +M−1

(

∆tBuk −∆tC(qk, vk) + Jc(qk)
Tλk

)

,

(5)

with the complementarity constraints:

0 ≤ λk ⊥
ET

t

∆t

(

ϕ+Jn(qk)(qk+1−qk)

)

+µJt(qk)vk+1 ≥ 0.

(6)

Here ϕ represents the distance between rigid body pairs, Jn,

Jt are contact Jacobians for normal and tangential directions,

the contact Jacobian is defined as Jc = ET
t Jn+µJt, µ repre-

sents the coefficient of friction and Et = blkdiag(e, . . . , e)
with e = [1, . . . , 1] ∈ R

1×ne (where ne represents the

number of edges of the polyhedral approximation of the

friction cone).

Given state (x∗)T = [(q∗)T , (v∗)T ] and input u∗, we can

approximate (5) as:

qk+1 = qk +∆tvk+1,

vk+1 = vk +∆tJf
[

qTk vTk uTk
]T

+Dλk + dv,
(7)

where Jf = Jf (q
∗, v∗, u∗) is the Jacobian of f(q, v, u) =

M−1(q)Bu−M−1(q)C(q, v) evaluated at (q∗, v∗, u∗), dv =

f(q∗, v∗, u∗) − Jf
[

(q∗)T (v∗)T (u∗)T
]T

is a constant

vector and D = M−1(q∗)Jc(q
∗)T . Similarly the equation

(6) can be approximated as:

0 ≤ λk ⊥
1

∆t
ET

t

(

ϕ(q∗) + Jn(q
∗)qk − Jn(q

∗)q∗
)

(8)

+ Jc(q
∗)vk+1 + ϵcλk ≥ 0.

We note that because simulation considers single-step pre-

dictions, and MPC requires multi-step predictions, (7)-(8)

differs slightly from the LCS presented in previous work

[36]. These equations can be written in the LCS format

(3) and represented as L(θ∗). We have also introduced a

regularizing term ϵcλk in (8) to ensure that F ∗ is positive

definite as Anitescu’s formulation produces a positive semi-

definite F ∗.

VI. ADAPTIVE MPC WITH RESIDUAL LEARNING

In this section, we describe our adaptive MPC framework

shown in Figure 2. First, we describe the residual learning

module (shown in red) in detail. Then we give details about

the interaction of the residual learning module with C3.

Standard residual learning [42] focuses on models:

xk+1 = f(xk, uk) + rdyn(xk, uk), (9)



where the prior model and the learned residual are combined

in an additive manner. If the prior f is an LCS (as in Section

V), (9) is equivalent to:

xk+1 = A∗xk +B∗uk +D∗λk + d∗ + rdyn(xk, uk),

0 ≤ λk ⊥ E∗xk + F ∗λk +H∗uk + c∗ ≥ 0,
(10)

and one can use state-of-the-art residual learning frameworks

[43], [44] to learn rdyn. This form of adaptation is well

studied, and not the focus of this paper. Furthermore, because

(10) does not adapt the hybrid structure encoded in the com-

plementarity constraints, it is doomed to be data inefficient

and will struggle to capture the effects of contact [15], [16].

Unlike in prior methods, our focus is on learning both the

hybrid boundary and the contact dynamics:

xk+1 = A∗xk +B∗uk +D∗λk + d∗,

0 ≤ λk ⊥ E∗xk + F ∗λk +H∗uk + c∗

+ rcomp(xk, uk, λk) ≥ 0,

(11)

where rcomp represents the model error in contact equation,

e.g. (8) and this effect implicitly appears in the dynamics

equation. More generally, one might try to simultaneously

identify residuals for both the continuous and discrete com-

ponents, e.g. rdyn and rcomp. While disambiguation of the

two can be done within this framework [45], it is difficult

in this minimal data regime. Furthermore, we believe that

accurate identification of contact events is key to achieving

dynamic contact-rich tasks, and thus focusing on the contact

residual is critical. This residual, denoted as rcomp, possesses

the ability to capture inaccuracies such as those in normal

distance, tangential friction directions and coefficients of

friction. Hence, we consider:

xk+1 = A∗xk +B∗uk +D∗λk + d∗,

0 ≤ λk ⊥ E∗xk + F ∗λk +H∗uk + c∗ + rcomp ≥ 0,
(12)

where we learn the vector rcomp adaptively at real-time rates

to compensate the error. We note that, as in traditional resid-

ual learning, our learned residual term rcomp might be time-

varying, and thus also capture state-dependent variations

in the complementarity constraints. Equation (12) consists

of physics-based model parameters θ∗, derived (Section

V) from our prior knowledge of the system and also the

residual vector rcomp that is learned by collecting data during

the experiment. We denote (12) as L(xk, uk, θ
∗, rcomp) that

combines the prior model with the learned residual.

Once an experiment starts, we collect data of the form

B = {xk+1, xk, uk}
nct+nb

k=nct
into our buffer where nct

represents the current time-step and nb is the number

of data points stored. For each (xk, uk), we also cal-

culate the corresponding LCS matrices θ∗k (consists of

A∗
k, B

∗
k , . . .)

1 via the method described in Section V and

define the buffer appended with those matrices as BA =
{xk+1, xk, uk, θ

∗
k}

nct+nb

k=nct
. Next, we introduce a variant of

the implicit loss function that was defined in [6]:

Lϵ(B
A, rcomp) =

nct+nb
∑

k=nct

lϵ(xk+1, xk, uk, θ
∗
k, rcomp),

1As in Section III-C, A∗

k
= A(x∗, u∗) where (x∗, u∗) = (xk, uk).

Fig. 2. Key elements of the adaptive MPC framework. Given proprioception
and visual data, our method learns a residual multi-contact model at 20 Hz,
which we use for real-time control.

where the function lϵ(xk+1, xk, uk, θ
∗
k, rcomp) is defined as

lϵ(·) = min
λk≥0,ηk≥0

1

2
(D∗

kλk + z)TQd(D
∗
kλk + z)

+
1

ϵ

(

λTk ηk +
1

2γ

∣

∣

∣

∣q + F ∗
kλk + rcomp − ηk

∣

∣

∣

∣

2)

,

where z = A∗
kxk + B∗

kuk + d∗k − xk+1 and q = E∗
kxk +

H∗
kuk + c∗k. Here, γ is a constant such that 0 < γ <

σmin

(

(F ∗
k )

T + F ∗
k

)

for all k where σmin(·) denotes the

smallest singular value. It is important to note that based

on our specific formulation using Anitescu’s method, all

F ∗
k are positive definite and we can always find a γ that

satisfies the given equality. Similarly, ϵ is a constant such that

ϵ > 0. Under these conditions, we can calculate the gradient

of the loss function with respect to the residual parameter

rcomp, i.e. ∇rcomp
Lϵ(·) following our previous work [6]. This

approach requires solving a single quadratic program per

data point in the batch (hence is relatively fast). After

gradient calculations, residual parameters are updated with

a simple gradient step (via learning rate ξ > 0). Following

this discussion, Algorithm 1 summarizes how the proposed

learning method works.

Both our residual learning module and C3 run at real-time

rates (Figure 2). The MPC algorithm uses the latest residual

value rcomp, as well as the current state x∗ and computes

the optimal input u0 = C3(x∗,L(x∗, u∗, θ∗, rcomp)). Then,

the desired next state-contact force pair is computed as

(xd, λd) = L(x∗, u0, θ
∗, rcomp). An impedance controller is

used to track the desired values [46], [47].

VII. EXAMPLES

A. Synthetic Example: Cart-pole with Soft Walls

We consider a classical cart-pole underactuated system

which has been augmented with two soft walls (Figure 3).

The pole can contact these walls, requiring contact-aware

control to stabilize the system (for further details, see [38]):

xk+1 = Axk +Buk +Dλk + d,

0 ≤ λk ⊥ Exk + Fλk + c ≥ 0,

where we have perfect knowledge of the parameters except

for c. We write c = ĉ+∆ϕ, where ĉ is our initial guess of



Fig. 3. A ªcontact eventº refers to a situation where actual physical contact is occurring, while ªcontact predictionº pertains to instances where the model
anticipates contact, potentially inaccurately. Our method can produce meaningful gradients, even when there is no actual contact event (yellow region).
The only scenario in which a zero gradient is produced is when the model and data both agree that there is no contact (white region).

the parameter. For the purposes of illustration, we begin with

an initial error of ∆ϕ = [−.15, .15]. Notice that the model

error that is related to each contact (λk) has a different sign.

This initial model error induces both false positives and false

negatives in the model’s predictions of contact. In Figure 3,

it can be seen that our method successfully returns useful

gradient information in all of those scenarios. We highlight

that our approach is capable of adapting even when there

is no actual contact event (Figure 3). We also show that

our framework successfully stabilizes the system as well as

learning the true residual values (Figure 4).

B. Hardware Experiment: Adaptive Trajectory Tracking

Here, we show that our real-time adaptive MPC framework

can reliably be used for multi-contact manipulation tasks

that require high-speed reasoning about contact events. Our

goal is to roll a rigid ball along a circular trajectory using

a Franka Emika Panda Arm (Figure 1). We use PointGrey

cameras to perform vision-based estimation for the ball using

Hough transform [48] and utilize an impedance controller

[46], [47] to track high-level commands that our adaptive

MPC produces (Figure 2). Experiments are conducted on two

desktop computers, one for the adaptive MPC computation

and the other for vision tracking and impedance control. For

adaptive MPC, we simplify the arm as a point contact. For

full details please check Section VII of manuscript [11].

Fig. 4. Stabilization of the cart-pole system and convergence of residual.

In previous work, careful manual identification of model

parameters was required to achieve success [11]. For this

experiment, the actual radius of the ball is 5 mm smaller

than our parameter estimation. The state estimation for the

ball is noisy (vision-based, 80 Hz), and we do not have an

accurate estimation of many model parameters, such as the

coefficient of friction. As a result, MPC with this incorrect

model attempts to push the ball but fails to make contact.

Due to the stiff, hybrid nature of contact dynamics, MPC

is particularly sensitive to modeling errors that affect the

contact/no-contact transition.

Without adaptation, model-based control with C3 fails,

but our adaptive MPC framework successfully identifies the

contact residual and accomplishes the task. The residual

learning module (Algorithm 1, 20 Hz), in combination

with the C3 module (80 Hz), identifies the discrepancy

at real-time rates. In the supplementary video, it can be

observed that at the beginning the end-effector misses the

ball due to inaccurate radius estimation. The C3 module

then keeps trying to initiate contact. As motivated earlier,

the discrepancy between actual motion and predicted motion

creates a non-zero gradient and therefore the residual values

that correspond to end-effector ball contact pair gradually

increase (shown in Figure 6).

In the end, with the learned residual compensating for the

inaccurate model, our approach is able to make contact with

the ball, push the ball towards the correct direction to initiate

rolling, and roll the ball for 4 successive circles, successfully

accomplishing the task. Figure 6 shows the loss, Lϵ, as well

as the residual, rcomp, for this experiment. The residual for

the end-effector and ball contact shows convergence as the

rolling proceeds and the loss curve shows a decreasing trend,

proving the effectiveness of our method. We note that in this

experiment, the LCP violation rate is ϵ = 10−7, the terms in

Qd related to balls translational velocity are set to 105 (others

are set to zero), learning rate is ξ = 10−3, stiffness parameter

is γ = 10−2 and we have a batch data size of nb = 10. We

demonstrate the trajectories of the ball with respect to the

desired path in Figure 5. Moreover, with extensive tests, we

found that for this experiment, our method with the above-



Fig. 5. Rolling a rigid ball and fruits (left: ball, middle: orange, right: lime) starting with an inaccurate model.

mentioned parameter setting can adapt and compensate well

within around 10 pushing trials for model errors up to 8 mm.

For larger errors, we either need a more aggressive learning

rate or more data (pushing trials) to adapt.

C. Hardware Experiment: Objects of Non-smooth Surface

We repeat the previous hardware experiment (Section VII-

B) with slightly deformable objects that have non-smooth

surface geometries (Figure 1). Still, our goal is to roll the

fruit along the circular path. We do not have accurate initial

estimates of the geometry as our estimate of a fruit’s geome-

try is simply a sphere. For each experiment experiments, we

assign an approximate radius for the given fruit and set the

sphere radius in our prior model accordingly.

Due to the bulges and dents on the fruit’s surface, the

fruit can roll back even after a push in the correct direction.

We consider successful initiation of rolling to be when the

Fig. 6. Hardware Experiment: Residual evolution of end-effector and ball
contact pair, and loss curve of the learning process. The full experiment
lasts for 315 s. We highlight the adaptation process until loss and residual
converge.

fruit has moved for at least one quarter circle. MPC without

adaptation struggles with the roll back motion, gets stuck in

the beginning, and is only able to move the fruit back and

forth within a small region near the starting point. In contrast,

our method quickly adapts and starts making stronger pushes

to roll the fruit (as shown in the supplementary video). In

90% of the 20 experiments, our method successfully initiated

rolling and started tracking the circular path, while MPC

without adaptation was never successful (0%).

In addition, fruits tend to produce unpredictable motions

at times due to their non-smooth surface geometries, but our

method can adapt and accomplish the task. Our approach

has managed to track at least one circle for 70% of the trials

with orange and 50% of trials with lime (20 experiments

for each case). In Figure 5, we also report the long-term

tracking (4 successive circles) performance of our method

with multiple different fruits. The videos of experiments are

in the supplementary material.

VIII. CONCLUSION

We presented an adaptive model predictive control frame-

work for multi-contact systems. The approach uses online

residual updates and adaptively compensates model errors

and uncertainties at real-time rates. The effectiveness of the

method has been shown on multiple hardware experiments,

including high-dimensional manipulation problems that in-

clude objects with non-smooth surface geometries (fruits).

We have further shown examples where pure model-based

control fails but our adaptive strategy leads to success. We

have also demonstrated that our learning module is capable

of learning the contact model accurately even without actual

contact interactions. Also, our parameter estimation can

converge to the true parameter values at real-time rates.

We are interested in exploring a wider range of residual

models in the future. For example, we might extend our

results to include state-dependent terms, or simultaneously

learn the non-contact and contact residuals. Integrating our

framework with tactile sensors is also an interesting future

direction which could speed up our learning process as well

as increase the performance of the low-level controller. [38]
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