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Abstract

We present several measures of the dynamic coherence of channels and investigate their properties.

1 Introduction

Quantum coherence describes the existence of quantum interference, and it is often used in thermodynamics
[1, 8, 16], transport theory [21, 33], and quantum optics [10, 23], among few applications. Quantum coherence
resource theory starts with free, i.e. incoherent, states, which are diagonal states in a pre-fixed basis. Free
operations are some quantum channels that do not create coherence where it was absent, in other words,
map the set of incoherent states to itself. Problems involving coherence included quantification of coherence
[2, 19, 20, 24, 29, 30, 34], distribution [18], entanglement [5, 26], operational resource theory [4, 5, 9, 32],
correlations [13, 17, 27]. See [25] for a more detailed review.

Relatively recently, static resource theories (i.e. the one mostly concerned with states and their manipula-
tion) have been extended to regard quantum channels as the elementary generalized resource, leading to a wide
open area of research of the dynamical resource theory. Static resource theory has three main components: free
states, free operations and resource measures. In analogue, dynamic resource theory must have free channels,
free superchannels and resource measures. Note that the dynamical theory is a generalization of the statical one
since any state can be regarded as a quantum channel mapping a trivial state to a given one. Much progress
has been focused on the development of the theory of entropic quantifiers of channels and operational resource
theory [6, 12, 15, 22, 28, 35], to name a few references.

In Chapter 2, we start with common notions and notations: relative entropy/divergence of channels, entropy
of channels, static and the dynamic coherence theories. We present a table comparing the building blocks of a
static and a dynamic coherence resource theories.

In Chapter 3, we present a few measures of the dynamic coherence of channels and investigate their prop-
erties.

2 Preliminaries

2.1 Relative entropy of the channels

We consider a class of the following divergences.



2.1 Definition. A function D on a set of pairs of states is a (generalized convex) divergence if
e D(pllo) >0, and D(p|lo) =0 if and only if p = o
e (Data processing/monotonicity). For any quantum channel N, we have D(N(p)|IN (o)) < D(p||o)
e (Stability) D(p ® 7|lc ® 7) = D(pl||o).
e (Joint convexity) For 0 < A < 1, and quantum states p;, oy, we have

D (Ap1+ (1 = A)p2llAor + (1 = A)az) < AD(pilo1) + (1 = A)D(pzl|o2) -
2.2 Example. (Umegaki) Quantum relative entropy, D(p|lo) = Tr(plogp — plog o), and trace-distance, ||p —
o|ly = Tr|p — o|, are examples of a generalized convex divergence.

2.3 Definition. The quantum divergence of channels N'a_,p and M 4_,p is defined as
DN[IM) = rgng(N® I(p)[M & I(p)) - (2.1)

Here the maximization is taken over all sized of a system R and all states par. However, it is sufficient to
consider only pure states par with system R being isomorphic to system A, because of the state purification,
the data-processing inequality, and the Schmidt decomposition theorem.

The relative entropy of channels was first proposed in [7], and generalized in [14]. When divergence is a
trace-distance, then the divergence of channels is called a diamond-distance of channels.
The quantum divergence of channels satisfies the following properties [35]:

e (Non-negativity) D(N||M) > 0 and D(N||M) = 0 if and only if N' = M.
e (Weak monotonicity) For any quantum channels V;, we have

D(VioNoVs|[VioMoVy) < DINM) .

(Strong monotonicity) For any super-channel A,

D(AN)[[AM)) < DIN[IM) .

(Joint convexity) For 0 < A < 1, and quantum channels N;, M;, we have
D (A1 + (1 = NN AM; + (1 — M) Ma) < AD(N1||M1) + (1 — X\)D(Na|Ma) .
e (Stability) DIN @ I||M ® I) = D(N||M).
The properties of the quantum divergence of channels is discussed in Chapter 3.

2.4 Definition. Trace-norm of a linear map is defined as
Ml = max [LA(p)[l1 - (2.2)
And a trace-distance of channels (CPTP linear maps) is defined as

W = Ml = max |V (p) = M(p)ll1 - (2.3)



2.2 The diamond norm

The diamond norm (or completely bounded trace-norm) of a linear map (2 is defined as
1Ra-8lo = max 1248 @ IR|l1 = max 19245 ® Ir(par)|1 -

Here again is sufficient to consider only systems isomorphic to the system A .
The diamond-norm satisfies the following properties [31]:

e The diamond norm of a quantum channel (CPTP) is one: if A/ is CPTP map, then [|N |, = 1.

e Since trace-norm is monotone under quantum channels, in particular partial traces, we get that for any
linear map,

120l < 1€2s -

(Sub-multiplicativity) for any linear maps {2 and 3

1920 Xlle < 210

(Multiplicativity under tensor products) for any linear maps €2 and X

12 @ Xlo = I2lo[1%o -

(Monotonicity under superchannels) For any superchannel A there exist two channels M and K [6], such
that the output channel can be written as

AWNasB)csp = MpBEsp o (Nasp ®Ig) o Koo ak -

Then
AN [lo < MV @ I[|o]|Kllo = IN]s ,

since M and K are channels, their diamond norm is one, and since [|N & I||o = [|N o

Taking the diamond-distance as a divergence in (2.4) defines a diamond-distance of channels,
IV = Mllo = max I[N ® I(p) =M@ I(p)]1 - (2.4)

Recall that for the Umegaki relative entropy the Pinsker’s inequality for states holds: for any states p, o,
we have 1
2
D(pllo) = 5llp = ol -

Straight from definition of the quantum divergences of channels, (2.4), and the Pinsker’s inequality, we
obtain Pinsker’s inequality for channels.

2.5 Proposition. For any quantum channels N'; M, the Pinsker’s inequality for channels holds
1 1
DWNIM) > SN = M|iZ = SIN = M .

Here D is the relative entropy of channels based on the Umegaki relative entropy.



2.3 Entropy of the channel

Completely depolarizing/randomizing channel is

Ras(pa) =Tr(pa)ms ,

where mp = Ig/|B]| is the maximally mixed state.
The entropy of a quantum channel is defined as [35]

S(N) = log, |B] = DINV|[R) , (2.5)

here D is the relative entropy of the channels.
The entropy of a quantum channel has the following properties [11, 12]:

e (Additivity) For any two quantum channels, S(N ® M) = S(N) + S(M).

e (Monotonicity) For any uniformity preserving superchannel A (i.e. sending a completely randomizing
channel to a completely randomizing one, A(Ra—,5) = Ro—p), we have S(A(N)) > S(N).

e (Boundedness) The entropy of a channel could be negative, but it is bounded, |S(N)| < log|B|. The
lowest value is achieved for an isometry, and the highest value is achieved for a completely randomizing
channel.

Note that one may take different relative entropies instead of the relative entropy, such as sandwiched Rényi
entropy, the max-relative entropy, generalized divergences of several types [12]. Rényi entropy of channels satisfy
all of the above properties. And if a generalized divergence monotone, then the corresponding entropy of the
channel is monotone under uniformity preserving superchannel.

2.4 Static resource theories of coherence

Consider all Hilbert spaces of the same dimension d. Fix basis & = {|j >}§~l:1 in a Hilbert space H. The set of
incoherent states for a fixed basis £ is Ze = {p = > _; p; |j) (j|}. We drop the subscript £ from now on.
The completely dephasing operator is defined as

A(p) = Z (Jlpli) 1) (Gl = Zijﬂij : (2.6)

J J

There are various choices to consider as free operations. We present only some operations here. See [3, 4, ?]
for a comparison and analysis of various incoherent operations.

2.6 Definition. Consider a quantum channel (CPTP map) ¢ with the following Kraus operators ®(p) =
>, KnpK}. Then @ is

e the maximal incoherent operation (MIO) if ®(Z) C T.
e the incoherent operation (10) if K, TK} C Z, for all n.
e the dephasing-covariant incoherent operation (DIO) if ®A = Ad.

e the strictly incoherent operation (SIO) if K,A(p)K: = A (K,pK}), for all n.



2.5 Dynamic resource theory of coherence

Here we start with the set of all bounded linear maps B(#) on a Hilbert space 4. Quantum channels now play
the role of states in the static resource theory. While there is only one commonly agreed set of free incoherent
states (diagonal in the pre-fixed basis), there are multiple way one can consider free channels in the dynamic
resource theory, such as classical channels, or detection/creation/detection-creation(DIO) incoherent [22, 28].

2.7 Definition. A quantum channel A is

e detection incoherent (DI) iff AN = ANA,

e creation incoherent (CI) iff NA = ANA,

e detection-creation incoherent (DCI) or DIO iff AN = NA.
Here A is a completely dephasing operator.

A set of free superoperations also can be defined in multiple ways. Some of these definitions rely on a
definition of a completely dephasing superoperator, which is commonly defined as

AN)=AoNoA. (2.7)

2.8 Definition. Consider a quantum super-channel A with the following Kraus decomoposition A = > €,
where the Choi matrix of each €2, is of rank one. Then ® is

o the mazimal incoherent superchannel (MISC)if AoAoA = AoA. Note that for a set of classical channels
C, A is MISC if and only if A(C) C C.

e the incoherent superchannel (ISC)if Ao, oA =Q, 0 A, for all n.
e the dephasing incoherent superchannel (DISC)if Ao A = Ao A.

e the strictly incoherent superchannel (SISC) if Ao Q, =Q, oA, for all n.

See [22] for a more detailed discussion on these super-channels.
Another way to define a free superchannel is through the decomposition A(N) = Mpp_po(Nap®Ig)o
Kc— ag, taking channels M and K as any of the free ones (MIO/IO/DIO/...) [28, 35].

2.6 Static and dynamic resource theories of coherence

The following table presents a visual correspondence between static and dynamic theory of coherence.



Static

Dynamic

Hilbert space H
state p € B(H) positive, trace-one
ON basis of H is €& = {|j) ;;:1
ON basis of B(H) is {X;; = |4) (j|}i

free incoherent states Z: -, p; Xj;
subset of classical states (trace-one)
completely dephasing operator A(p) € Z
free operations ®(p) = >, K,pK}:
MIO: ®(Z) C T
10: K, IK: CT
DIO: B(A(p)) = A(®(p)

SIO: K,A(p) K} = A(KnpK;)
SIOC(DIO or I0)cMIO

3 Coherence measures

bounded linear operators B(H)
channel N € L(H) : B(H) — B(H) CPTP

ON basis of £ is {©k(p) = (il p |5} [k} (1]}

free channels C
classical/ MIO/IO/. .. /DI/CI

completely dephasing superoperator A(N)

free superoperations

MISC: AocAocA=Aoc A
ISC: Ao, 0c A=Q,0A
DISC: AocA=Aoc A
SISC:A o0, =0Q,0A
SISCc(DISC or ISC)CcMISC

AN) =MprpoNasp®Ig)oKesar
M and K are free channels (MIO/IO/... /DI/CI)

3.1 Definition. Define a function f(N, M) between two channels N, M, viewed as a distance between them,

such that

o f(N,M) >0, and f(N, M) =0 if and only if N' = M.

e (Weak monotonicity) For quantum channels, f(VoN old,VoMold) < f(N, M). It is possible to restrict
this condition for when V,U are free (DI, CI, or DCI) channels only.

e (Joint convexity). For 0 < A <1, we have f (AN + (1 — A)N2, AM1 + (1 = M Ma) < Af(Ni, Mq) + (1 —

A) f(Na, M3).

e (Monotone under tensor product with the identity operator). For quantum channels A, M, we have

JN@IMI) < fIN,M).

e (Monotone under tensor product with the dephasing operator). For quantum channels N, M, and the
completely dephasing operator A, we have f(N @ A, M ® A) < f(N, M).

The following lemma can be obtained from the proof of Theorem 9 in [28].

3.2 Lemma. Trace-one distance of channels, f(N, M) = ||N — M||1, satisfy the above conditions.



The proof of the following lemma is similar to the proof of the lemma above, but we provide it for the
completeness sake below.

3.3 Lemma. Quantum divergence of channels (see Definition 2.3), f(N, M) = D(N| M), satisfy the above
conditions, including strong monotonicity, for any divergence from Definition 2.1. In particular, the relative
entropy of channels and the diamond-distance of channels are such functions.

Proof. We only need to check the monotonicity under tensor product with the dephasing operator, since other
properties are satisfied by [35].
Let N, M be two quantum channels. Then

DNaop ® Ac||Masp @ Ac) = max D(Na,p @ Ac @ Ir(pacr)||[Masp @ Ac ® Ir(pacr)) (3.1)

PACR
= mng([N@I@I][I@A®I](p)||[M RIRI|[I®A®I](p)) (3.2)
= max DINQI@I(o)|MRI®I(0)). (3.3)

oAcrR=IAQAcRIR(p)

Any state pacr can be written as pacr = >, x; Qigab @) (bl4g @ [7) (jlo, where {|i)} (or {|j)}) is the
fixed basis of the operator A. Then

In® Ac ® Ir(pacr)

a) (blag @ |9) (il (3.4)
.5,k

=: sz- o; @ i) (3| , (3.5)

here we denoted states o; such that Tro; = 1, then ), p; = 1.
Therefore,

DIN@T|M®T) = max D (sz N @ 1)(ei)ar @ [i) ile | Yo pilM @ 1)(e0)ar © i) <¢|C> (3.6)

< max > piD(IV @ 1)(03) ar © [i) (i] o [IIM & 1)(05) ar @ [3) (il o) (3.7)
= rgrggl_chiD(N@@ I(o))[|M @ I(07)) (3.8)
< Iglf;(D(NA_)B ® Ir(0AR)[Ma—B @ Ir(0AR)) (3.9)
= D(N|IM) . (3.10)

In the first inequality we used joint convexity of quantum relative entropy. In the second equality we used
stability of the divergence. O

3.4 Theorem. Let f be a function satisfying properties in Definition 3.1. Consider sets DI, CI, and DCI, as

the sets of free operations C (recall Definition 2.7). Define the following coherence measures:

CPIN) = Join f(AN, AQ), (3.11)
CWN) = Jnin. FINA,QA), (3.12)
CPONWN) = Jmin f(N, Q). (3.13)

These coherence norm satisfy the following properties:



I C(N) =0 if and only if N € C.

IT Let AAY(N) = 44 o (NA @ TY) 0 @14 be a superchannel such that ®A4 € C. Also define AM(N) =
Tra o A4 (N). Then the coherence measure is monotone under either A4 or AA4,

CAN)) <CWN) .

IIT For any quantum channels N',K and 0 < \ < 1, the coherence measure is convex

CON + (1= NK) < ACWN) + (1 — NC(K) .

Some particular cases were discussed previously. In [28] it was shown that (3.11) is a coherence measure
when f is a norm that is sub-multiplicative on quantum channels, sub-multiplicative with respect to the tensor
products, and such that ||Q|| < 1 for any Q € DI, in particular, for the diamond norm. Additionally, it was
shown that (3.11) is a coherence measure when f is a trace-one norm. In [35] it was shown that (3.13) is a
coherence measure for relative entropy of channels.

Note that one may think that all three coherence measures (3.11)-(3.13) can be written as the minimal
distance to the free set C, i.e one can define C(N) = mingee F(N,Q), with the distance function defined as
FN, M) = f(AN,AQ) for Q € DI, and similarly for the other two measures. However, the first two measures
are not distance measures: the simplest property, F(N, M) = 0 if and only if N' = M, is not true.

Proof. 1. If N € C, then C(N) = 0. On the other hand, if C(N) = 0, then there exists © € C such that
o for C = DI: AN = AQ = AQA = ANA, therefore N € DI.
o for C=CI: NA = QA = AQA = ANA, therefore N € C1I.
e for C=DCI: N =Q¢e DCI.

2. Note that a composition of two maps in C is in C. Le. if Q1,09 € DI, then Q1Qs € DI since

Ay = AQAQ, (3.14)
= A AQA (3.15)
= AQDLA | (3.16)

The first equality holds since €y € DI, i.e. AQ; = AQ1A. The second equality holds since 29 € DI, i.e.
AQy = AQoA. The last equality holds since again 1 € DI and therefore AQ21A = AQ;.
Similarly, if €4, € CI, then 2,09 € C1I since

U QA = QI AQLA (3.17)
= AQIAQA (3.18)
= AQI LA . (3.19)

The first equality holds since Qo € CI, i.e. QA = AQsA. The second equality holds since Q1 € C1, i.e.
WA = AQ1A. The last equality holds since again Q5 € CI and therefore AQsA = QoA



Similarly, if €4, € DI, then 21Qs € DCI since

AQQy = O AQ, (3.20)
= 0 0A (3.21)

The first equality holds since €y € DCI, i.e. Ay = Q1A. The second equality holds since Q29 € DI, i.e.
AQs = QA
Let ® € CI be any channel in DI. Then

CPH (N o @) = Jnin, F(AN®, AQ) (3.22)
< min [(ANK, AO®) (3.23)

< min (AN, AQ) (3.24)

= cf TN . (3.25)

In the first inequality we used that the composition of DI maps is DI. In the second inequality we used that
the function f is weakly monotone for quantum channels.
Let @ € CI be any channel in CI. Then

C{T(No@) = Jnin. FINDA,QA) (3.26)
< mln FINOA, QDPA) (3.27)

= mln JINADPA QADA) (3.28)

< min f(NA,QA) (3.29)

FIWN) . (3.30)

In the first inequality we used that the composition of CI maps is CI. The last inequality is true, since the

function f is weakly monotone on quantum channels.
Let ® € DCT be any channel in DCI. Then

CPNNo®) = i, JTNe,Q) (3.31)
< min f(N®,QP) (3.32)

<  min V) (3.33)

< CPYNN) . (3.34)

In the first inequality we used that the composition of DCI maps is DCI. The last inequality is true, since the
function f is weakly monotone on quantum channels.



3. Let ® € DI. Then

DI _
Cy'(®oN) —érenj:rjllf ADN, AQ)

(

< mip f(ADN, ADQ)
= mln F(APAN, APAQ)
(

< min f(AN,AQ)
QeDI

_ oPIV)
=0y .

The last inequality is true, since the relative entropy of channels is weakly monotone.

Let ® € CI. Then
@ oN) = min f(ENA,QA)
< min f(NA, 2QA)
< min f(NA,QA)

QeClI

7N

The last inequality is true, since the relative entropy of channels is weakly monotone.

Let ® € DCI. Then

C’DCI(@oN) Inln fq)/\/ Q)

(
mln f(q)/\/ Q)
W, 9)

min
QEDCI f

ﬂﬁmwy

The last inequality is true, since the relative entropy of channels is weakly monotone.

4. Consider
PIN®I) = Juin fAWN @ 1), AQ)
<  min _ fIAW®I),AQ ®1))

T Q=®IeDI

= Qrpln FIAN @ A, AQ @ A)

< QI/Iélll)llf(AN, AQ)
7N -

The last inequality holds since f is monotone under tensor product with the dephasing operator.

10
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Similarly,
CHIN®I) = Jnin, F(N ®@I)A,QA) (3.53)
< Q:(glirIlEC’If((N @ DA (Q @1)A) (3.54)
= erréiglf(NA QA VAR A) (3.55)

. /
< QI/rélng(NA7 Q'A) (3.56)
=CFI(N) . (3.57)
Also,
DCI o

Cy (N®I)_QIGHDH(1;[f(N®I’Q) (3.58)
< Q:Q%}%DC{JC(N@ LAY ®I) (3.59)
< uin fNV, Q) (3.60)
=CPY' W) . (3.61)

In the last inequality we used that f is monotone under tensor product with the identity operator.

From 2-4, for any quantum superchannel A44 (N) = ®44 o (N4 @ T4) 0 &4 with free ®; € C, all
coherence measures are monotone. Also, since partial trace channel is DI, CI, and DCI, by 3, for any quantum
superchannel A4 = Try o AAA/, all coherence measures are monotone,

CEAW)) < CEN) -
5. Let 0 < A < 1. Denote 1 € CI and 5 € C1I as channels such that
CPIN) = FIAN,AQy) , CPI(K) = f(AK, AQy) .
Then
DI o — m _
C’f (AN + (1 =X)K) %gllr)l]f(A()\./\/'—i— (1-=XNK),Ad)

(3.62)
< FAQW + (1 = N)K), A2 + (1 = N)2)) (3.63)
= (AAN + (1 = N)AK, AAQ; + (1 — N)AQ,) (3.64)
< AF(AN,AQL) + (1 = N F(AK, AQy) (3.65)
= ACPTN) + (1 =N CPH(K) . (3.66)

Here, in the second inequality we used the joint convexity of f.
Similar results are straightforward for CI and DCI. OJ

3.1 Measures defined with the completely dephasing superoperator

While there is one definition of a completely dephasing superoperator (2.7), there could be others. We present
several dynamical coherence measures based on general definitions of a compeltely dephasing operator. A few
examples are considered later.
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3.1.1 Coherence based on a quantum divergence of channels

Let A be a super-channel, such that A(N) is free for any channel N and it preserves free channels. For any
quantum divergence of channels (2.4), define coherence measure as

Cre(N) = DIN[[AWN)) .
Then from the properties of the divergence of channels, we have
1. (Non-negativity) Cr.(N) > 0.
2. If Cre(N) =0, then N = A(N) is free. If N is free, then A(N) =N, and C,.(N) = 0.

3. (Monotonicity) Let free super-channels be the ones that commute with A. Then since the quantum
divergence of channels is monotone under any superchannels, C(A) is monotone.

4. (Convexity) Cy is convex, since quantum divergence of channels is jointly convex.

3.1.2 Coherence based on entropy

Let C be a set of free channels containing randomizing channel and A be a superchannel preserving free channels
and mapping all channels to the free ones. For any divergence of channels (2.4), define coherence measure as

Ce(N) = S(AN)) = SNV) = DINIR) = D(AN)|R) -
Recall that the entropy of channel is monotone under uniformity preserving superchannel. Then we have
1. (Non-negativity) Since A is a uniformity preserving superchannel, then S(A(N)) > S(N) and C.(N') > 0.
2. If the channel N € C is free, then A(N) =N, and Ce(N) = 0.

3. (Monotonicity) Let free superchannels A be the ones that commutes with A and preserve free channels.
Then we have

Ce(N) — Co(A(N)) = S(AN)) = S(NV) — S(A(AWN))) + S(AWN)) (3.67)
= S(AN)) = SNV) + S(AWN)) = S(A(AN))) (3.68)
= S(AN)) = SNV) + S(AWN)) = S(A(AN))) (3.69)
= S(AN)) = S(N) =0 (3.70)

The last inequality is true since A is uniformity preserving.

3.1.3 Example 1

Define the set of free channels C as N(p) = sz @; 19k k(p), for >, ;) =1 and o, = ag,;. Then, a free
channel A/ € C has the form:

Zazk il pli) |k) (k| = ZTI" Mpp) k) (Kl (3.71)
for Y, i =1and >, i, =1, and My = >, a; 1, |¢) (i|. Note that these channels are unital, N'(I) = I, since

> i = 1. Also, a free channel ' maps any state to an incoherent state, N'(p) € Z.
For example,



13

L. ajp = ﬁ, then NV (p) = ﬁ[ = mp = R(p). So the depolarizing channel is free.
2. For a; , = 0, we have N'(p) = A(p). Therefore, the dephasing operator is free.

These free channels are a subset of what is called detection-creation-incoherent measurement in [35], N'(p) =
> Tr(Myp) |k) (k|, where My, = )", o 1 |4) (i] are such that My, > 0 and ), My = 1.
Recall, the completely dephasing operator is defined as

Alp) = Gilpli) i) ¢ ZX”pX” = ZTr 50X - (3.72)
J
Define a completely dephasing superoperator A as
= Ok NOs ik - (3.73)
ik
Then
= Z 0,k kN Oiiki(p) (3.74)
= Z (il 1) O i N () (K]) (3.75)
—Z ilpliy iIN(Ik) CKI) [i) k) (K| - (3.76)
For unital quantum channels (N (1) = I ), we have
TrAWN)(p) = > (il pli) ([N (k) (k[)|é) (3.77)
ik
= Ailpli) GIN()0) (3.78)
= Trp . (3.79)

Also, for a unital quantum channel A/, which is equal to its adjoint, N' = N*, we have (i| N (k) (k|) |i) =
(BIN(|2) (i]) |k), and >, (| N (k) (k|) |z) = (i] N(I)|i) = 1. Therefore, for any unital quantum channel that is
equal to its adjoint, the output channel A(N) € C is free.

Additionally note that, if N” € C is free, i.e. N(p) = >, aiy(i|pli) 1) (I|, then we have N (|k) (k|) =
Yoo |1 (I], and therefore

AN)(p) = z};mpm (| N(Ik) (K[) [3) [F) (k] (3.80)
= z};akz (il pli) |k) (K| (3.81)
= z};ak (il pl2) k) (k] (3.82)
:/i}(ﬂ) (3.83)

Then A(N) =N for N € C. And R € C, therefore A is uniformity preserving.

In conclusion, let us consider the set D of all unital quantum channels that are equal to their adjoint. Then,
A maps of channels in D into the set of free channels C, and it preserves all free channels.

Thus, C,e and C, of channels in D are good measures of channel coherence.
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3.1.4 Example 2

Define the set of free channels Co as N (p) = >, 1 @i xOiikk(p), for > p i =1 and ), o, = 1, which is a
larger set of free channels than in the Example 1. Therefore, the completely randomizing channel R is free.
Define the completely dephasing superchannel

AN (p) =D (il pli) (kIN(Ji) () k) |k) (Kl (3.84)
ik
= AWN(A(p)) - (3.85)

Then for a free channel N'(p) = 37, , ai (il p i) [k) (K[,

Z ilpli) (KIN(Ji) (i) [R) [F) (K] (3.86)

Z il pli) cviye k) (K] (3.87)
M) . (3.88)

Therefore, A preserves free channels.
Moreover, for any unital channel N, A(N) € C is free, since treating (k| N (|i) (i|) |[k) = ok, we have

> (RN (1) (il) [k) = Te(N(J4) (i) = 1, and 3, (k| N(|2) (i]) k) = (KIN(D) [k) = 1.
Thus, considering the set D of all unital channels, we have that A maps all channels in D into the set of

free channels C, and it preserves all free channels.
Thus, C,. and C. of channels in D are good measures of channel coherence.
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