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Abstract: Terrain awareness, i.e., the ability to identify and distinguish differ-
ent types of terrain, is a critical ability that robots must have to succeed at au-
tonomous off-road navigation. Current approaches that provide robots with this
awareness either rely on labeled data which is expensive to collect, engineered fea-
tures and cost functions that may not generalize, or expert human demonstrations
which may not be available. Towards endowing robots with terrain awareness
without these limitations, we introduce Self-supervised TErrain Representation
LearnING (STERLING), a novel approach for learning terrain representations that
relies solely on easy-to-collect, unconstrained (e.g., non-expert), and unlabeled
robot experience, with no additional constraints on data collection. STERLING
employs a novel multi-modal self-supervision objective through non-contrastive
representation learning to learn relevant terrain representations for terrain-aware
navigation. Through physical robot experiments in off-road environments, we
evaluate STERLING features on the task of preference-aligned visual navigation
and find that STERLING features perform on par with fully-supervised approaches
and outperform other state-of-the-art methods with respect to preference align-
ment. Additionally, we perform a large-scale experiment of semi-autonomously
hiking a 3-mile long trail which STERLING completes successfully with only two
manual interventions, demonstrating robustness to real-world off-road conditions.
Robot experiment videos and more details can be found in the appendix and the
project website https://hareshkarnan.github.io/sterling/
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1 Introduction

Off-road navigation is emerging as a crucial capability for autonomous mobile robots envisioned
for use in a growing number of outdoor applications such as agricultural operations [1], package
delivery [2], and search and rescue [3]. Endowing robots with this capability has, however, proved
to be challenging and remains an active area of research.

One particularly difficult challenge in off-road autonomous navigation is that of providing the robot
with terrain awareness, i.e., the ability to identify distinct terrain features that are relevant to a wide
variety of downstream tasks (e.g., changing preferences over terrain types) [4, 5, 6, 7, 8, 9, 10,
11]. While a litany of prior work has attempted to address this challenge [12, 13, 14, 15], existing
approaches typically rely on difficult-to-collect curated datasets [16, 17, 18, 19, 20] or has been
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focused on particular tasks [21, 22, 23, 24, 25, 9] and is not amenable to downstream task changes
[26, 25, 7]. These limitations prevent existing approaches from appropriately scaling to the vast
distribution of terrains and navigation tasks in the real world.

Toward overcoming the scalability challenges in terrain awareness, we introduce Self-supervised
TErrain Representation LearnING (STERLING)', a novel approach to learning terrain representa-
tions for off-road navigation. STERLING learns an encoding function that maps high-dimensional,
multi-modal sensor data to low-dimensional, terrain-aware representations that amplify differences
important for navigation and attenuate differences due to extraneous factors such as changes in view-
point and lighting. Importantly, STERLING works with easy-to-collect unconstrained and unlabeled
robot data, thereby providing a scalable pathway to data collection and system improvement for the
wide variety of terrain and downstream tasks that off-road robots must face.

To evaluate STERLING, we apply it to the problem of preference-aligned off-road navigation and
provide a detailed comparison to existing approaches to this problem, including RCA [7], GANav
[19], SE-R [8], and a fully-supervised oracle. We find that STERLING enables performance on par
with or better than these existing approaches without requiring any expert labels or demonstrations.
Additionally, we report the results of a large-scale qualitative experiment in which STERLING en-
abled semi-autonomous robot navigation on a 3-mile long hiking trail.

The key contributions of this paper are— 1) Self-supervised TErrain Representation LearnING
(STERLING), a novel approach that learns terrain representations from easy-to-collect unconstrained
robot experiences, 2) Detailed evaluation of STERLING against baseline methods on the task of op-
erator preference-aligned off-road navigation, and 3) A large-scale qualitative experiment of semi-
autonomously hiking a 3-mile long trail, demonstrating the effectiveness of STERLING-features.

2 Related Work

In this section, we review related work on terrain-aware visual off-road navigation. We specifically
focus on approaches that learn to navigate off-road conditions using supervised and self-supervised
learning.

2.1 Supervised Methods

Several approaches in the past have proposed using supervised learning from large-scale data to
navigate off-road environments. We divide them into two categories as follows.

End-to-End Learning: The initial success of applying learning-based solutions to off-road terrain-
aware navigation was by LeCun et al. [28] who used a convolutional network to learn to drive in
off-road conditions. More recently, Bojarski et al. [21] trained a deep neural network end-to-end
using several miles of driving data collected on a vehicle in the real world. While both approaches
were promising in urban and off-road environments, end-to-end methods require large amounts of
data and are well-known to suffer from domain and covariate shifts [29, 30, 31].

Image Segmentation: Unlike end-to-end approaches that learn behaviors, segmentation-based ap-
proaches seek to characterize terrain using a set of known semantic classes, and the resulting
semantic features are consumed by downstream planning and control techniques for navigation
[32, 19, 33]. Guan et al. [19] propose GANav, a transformer-based architecture to pixel-wise seg-
ment terrains, trained on RELLIS [17] and RUGD [16] datasets, with manually assigned terrain
costs. While effective at terrain awareness, segmentation-based methods are fixed to the specific
terrain types available in the datasets and require additional labeling effort to generalize to novel ter-
rains. In STERLING, we do not require semantically labeled datasets and learn terrain representations
from unconstrained experience collected onboard a mobile robot.

'A preliminary version of this work was presented at the PT4R workshop at ICRA 2023 [27]



2.2 Self-Supervised Learning

To alleviate the need for extensive human labeling, self-supervised learning methods have been
proposed to either learn terrain representations or costs from data gathered onboard a mobile robot.

Representation Learning: Brooks et al. [34] utilize contact vibrations and visual sensors to clas-
sify terrains via self-supervision. Loquercio et al. [35] use proprioceptive supervision to predict
extrinsic representations [36] of terrain geometry from vision, used as inputs to drive a Reinforce-
ment Learning-based locomotion policy. In this work, we do not learn a robot-specific locomotion
policy and instead learn relevant representations for off-road terrain awareness. Ziirn et al. [8]
introduce SE-R which utilizes acoustic and visual sensors on the robot to segment terrains using
a self-supervised triplet-contrastive learning framework. Using triplet-based contrastive learning
methods requires negative samples which may not be available when learning using unlabeled data.
In STERLING, we use recently proposed non-contrastive unsupervised learning approaches such as
VICReg [37] that do not require any negative samples and instead rely on correlations between data
modalities to learn relevant terrain representations.

Cost Learning: Several methods have applied self-supervision to assign traversability costs for the
downstream off-road navigation task [7, 38, 26, 39, 40, 41, 42]. Specifically, these methods rely on
inertial spectral features [7], future predictive models [26], inertial-odometry errors [38], or force-
torque values from foothold positions [39, 43] as self-supervision signals to learn a traversability
cost map, used to evaluate candidate actions. More recently, Frey et al. [44] have proposed an
online traversability estimation approach inspired by the above self-supervision schemes. Instead of
inferring costs or rewards using self-supervision for a fixed task, in this work, we focus on learning
relevant visual features from unconstrained robot experiences that could be used in downstream
tasks. This framework allows a designer to reuse features across tasks without retraining entirely
from scratch.

Hybrid Methods: The approach closest to ours is VRL-PAP [6] which requires human expert tele-
operated demonstrations of a particular trajectory pattern to both explicitly learn visual terrain rep-
resentations as well as to infer terrain preference costs. However, in this work, we focus on learning
terrain features from unconstrained robot experiences without requiring human experts in the field
for demonstrations, which is a more general problem than the one considered by VRL-PAP.

3 Approach

In this section, we introduce the self-supervised terrain representation learning approach, STERLING,
proposed in this work. We first describe the offline pre-processing performed on unconstrained robot
data and then summarize the self-supervision objectives. Finally, we describe the problem formu-
lation for preference-aligned off-road navigation and present how features learned using STERLING
can be utilized within a planner for terrain-aware and preference-aligned navigation.

3.1 Data-Collection and Pre-Processing

STERLING learns terrain representations from unconstrained, unlabeled robot experiences collected
using any navigation policy. This policy may be, for instance, non-expert human teleoperation,
curiosity-driven exploration [45], or point-to-point navigation using any underlying planner. Com-
pared to requiring a human expert to provide teleoperated demonstrations and labels, collecting this
type of robot experience is cheap and easy, thereby providing a scalable pathway to data collection
and system improvement. We additionally assume that the robot is equipped with multiple sensors,
e.g., an egocentric RGB camera, odometry sensors, onboard IMU, proprioceptive, and tactile sen-
sors, that together provide rich multi-modal observations as the robot traverses over different terrains
collecting experience. STERLING leverages this multi-modal data by using the correlation between
different modalities to inform the learned terrain representations.



In order to learn terrain representations using STERLING, we begin by pre-processing the visual and
non-visual observations, which are explained in detail below.

Visual Patch Extraction: The egocentric camera
observations are homography-projected into a vir- ﬁ 6464 Terrain Patches
.

tual bird’s eye view (BEV) frame, assuming that the coaony
ground is a flat plane, using the intrinsic and extrin-

sic camera matrices. As shown in Fig. 1, we project

the robot’s trajectory onto the BEV frame and ex- \
tract 64-by-64 pixels (equivalent to the robot’s foot- Sk—2
print of 0.5-by-0.5 meters) square visual patches of

terrain along with the corresponding inertial, pro-

prioceptive, and tactile observations at the same lo-

cation, along the trajectory. Since the terrain at sy

%s .unobservable when the robot itself is at 5;? (i..e., Figure 1: An illustration of the pre-processing
it is underneath the robot), we extract terrain im- performed on unconstrained robot experience.
age patches corresponding to s from BEV obser-  [mage patches of traversed terrain at location
vations at previous locations si_1,sk—2,... along s, are extracted from bird’s eye view observa-
its trajectory. Fig. 1 illustrates the offline patch tions at prior locations s;_1, Sx_o along the
extraction process from two previous viewpoints, trajectory. The corresponding IPT observa-
howgver’ we extract patches from up to 20 previ_ tions at S are transformed from time series to
ous viewpoints within 2 meters. Although just one PSD signals. Note the visual artifacts caused
viewpoint is sufficient to learn the correlation be- by noise in homography transformation from
tween visual and other sensor observations, when viewpoints farther away from sy.

planning to navigate, the robot will need to visu-

ally evaluate terrain at future locations, and therefore STERLING also seeks representations that are
invariant to patch differences due to viewpoint, also known as viewpoint invariance.

.| Inertial
| Proprio
L) Tactile

IPT Pre-Processing: For the inertial, proprioceptive, and tactile (IPT) observations, we retain up to
2-second history and convert the time-series signals into power-spectral density (PSD) representation
in the frequency domain. This ensures the IPT time-series data representations used as input to
STERLING are invariant to differences in length and phase in the recorded signals. Additional details
are provided in Supplementary Section 9.5.

3.2 Non-Contrastive Terrain Representation Learning

It is desired for learned representations of terrains to be such that representations of similar terrain
are close together in the embedding space and that representations of different terrains are suffi-
ciently far apart. Although we do not possess privileged information such as semantic labels of
terrains for training, the visual and kinodynamic observations experienced by the robot reflect sim-
ilarities and differences between terrain samples. For instance, traversing a smooth terrain that a
human may refer to as cement sidewalk may lead to relatively smooth motion by the robot’s
joints, whereas a rough terrain such as what might be referred to as marble rocks may correspond
to jerkier motion. STERLING leverages this multi-modal experience observed by the robot and com-
putes a correlation objective between visual and inertial-proprio-tactile signals to learn desired ter-
rain representations. Additionally, STERLING uses viewpoint invariance as an objective unique to
the visual component of the experience to learn viewpoint-invariant terrain representations.

Fig. 2 provides an overview of the self-supervised representation learning framework adopted in
STERLING. A parameterized visual encoder (4-layer CNN with 0.25 million parameters) encodes
terrain image patch observations v and v, of the same location s into visual representations ¢,,, and
¢, , Tespectively, collectively referred to as ¢, , for brevity. Similarly, an inertial-proprio-tactile
encoder (4-layer MLP with 0.25 million parameters) encodes frequency domain IPT observations of
the robot at that location to an inertial-proprio-tactile representation ¢;. We follow the framework
of prior self-supervised representation learning algorithms from the computer vision community
such as VICReg [37], and utilize a parameterized projector network (2-layer MLP with 0.25 million



parameters) that maps encoded visual and non-visual representations independently to a higher-
dimensional feature space v, , and 1); respectively, over which the self-supervision objectives are
computed. The STERLING objective composed of the multi-modal correlation £z (1), ,, ;) and
viewpoint-invariance Ly j(,, , ¥, ) objectives are defined as:

£STERLING = £VI (¢v1 5 7/}1;2) + LMM (wvl,ga 1/11)
ﬁVI(ZZ)vl P 1/)1;2) = EV[CReg (1/1111 P %2)

1
LM]V[ (1%1‘2 5 1/)1) = [Z:VICReg (d)m ) %) + £VICReg (7%2 5 ¢L)]/2 ( )

Lyicreg 18 the VICReg loss that is composed of variance-invariance-covariance representation learn-
ing objectives, as proposed by Bardes et al. [37]. Given two alternate projected representations
Z and Z' of a data sample (in STERLING, Z and Z’ are projected representations of the visual and
non-visual sensor modalities), the VICReg loss is defined as Lyicreq(Z, Z') = As(Z, Z") + pfv(Z) +
v(Z")] + v[e(Z) 4+ ¢(Z")]. Note that while Bardes et al. use VICReg to learn representations from
visual inputs using artificial image augmentations, in this work, we extend VICReg to multi-modal
inputs and use real-world augmentations via multi-viewpoint image patches as described in Sec.
3.1. A, i, and v are hyper-parameters and the functions v, s, and c are the variance, invariance, and
covariance terms computed on a mini-batch of projected features. We refer the reader to Bardes et
al. [37] for additional details on the individual terms and also define them here for completeness.

d .
The variance term v is a hinge function defined as v(Z) = 3 3~ max (0,7 — S(2?,€)), where S is
j=1

the standard deviation, and d is the dimensionality of the projected feature space. c is the covari-

ance term, defined as ¢(Z) = 3 3 [C(2)]3;, where C(Z) is the covariance matrix of Z. s is the
7

invariance term defined as s(Z, Z') = L5 ]z — 2;||. More details on the individual terms in the

7
loss function are provided in Sec. 9.5. We apply an {2 norm on the visual and non-visual features to
ensure they are on a hypersphere, which helped improve the quality of learned representations. On
a mini-batch of data containing paired terrain image patches and IPT observations, we compute the
LsrerLing loss and update parameters of the two encoder networks and the shared projector network
together using Adam optimizer.

3.3 Preference-Aligned Off-Road Navigation

In this subsection, we describe the downstream navigation task of preference-aligned visual naviga-
tion that we focus on when evaluating STERLING.

Preliminaries: We formulate the task of preference-aligned terrain-aware navigation as a local
path-planning problem, where the robot operates within a state space S, action space 4, and a
deterministic transition function 7 : S x A — S in the environment. The state space consists
of s = [z,y,0, ¢, where [z,y, 0] denote the robot’s position in SE(2) space, and ¢, denotes
the visual features of the terrain at this location. Given a goal location G, the preference-aligned
navigation task is to reach this goal while adhering to operator preferences over terrains. We assume
access to a sampling-based planner, the details of which are provided in Supplementary Sec. 8.

Learning the preference utility: Following Zucker et al. [46], we learn the utility function u :
®, — R using human queries. From the predicted terrain features on data samples in our training
set, we cluster the terrain representations using k-means with silhouette-score elbow criterion, and
sample candidate terrain patches from each cluster, which is presented to the human operator using
a GUI The human operator then provides a full-order ranking of terrain preferences over clusters,
which is utilized to learn the utility function u(.), represented by a 2-layer MLP. While recovering
absolute cost values from ranked preference orders is an under-constrained problem, we find that
this approximation provided by Zucker et al. [46] works well in practice.



4 Experiments

In this section, we describe the experiments
performed to evaluate STERLING. Specifically,
the experiments presented in this section are tai-
lored to address the following questions:

(Q1) How effective are STERLING features
in comparison to baseline approaches
at enabling terrain awareness in off-
road navigation?

(Q2)

How effective are the proposed STER-
LING objectives in learning discrimi-
native terrain features in comparison
to other representation learning objec-
tives?

We investigate (), through physical robot ex-
periments on the task of preference-aligned off-
road navigation. We perform quantitative eval-
uations in six different outdoor environments,
and then further perform a large-scale qualita-
tive evaluation by semi-autonomously hiking a
3-mile long off-road trail using preference costs
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Figure 2: Overview of the training architecture
in STERLING. Terrain patches vy and vy from
different viewpoints of the same location are en-
coded as ¢,, and ¢,, respectively, and mapped
into embeddings %, and %,,. Similarly, iner-
tial, proprio, tactile signals are encoded as ¢;, and
mapped as v;. Self-supervision objectives Ly 1
for viewpoint-invariance and Lj,sy; for multi-
modal correlation are computed on the minibatch
to perform gradient descent.

learned using STERLING features. To compare

various methods, we use the success rate of

preference alignment as a metric. If a trajec-

tory followed by any algorithm fails to reach the goal, or at any time traverses over any terrain that
is less preferred than any traversed by the operator-demonstrated trajectory, we classify the trial as a
failure. We additionally investigate ()2 by comparing STERLING against other unsupervised terrain
representation learning methods and perform an ablation study on the two STERLING objectives.
Additional experiments are provided in Supplementary Sec. 9.2.

Baselines: To perform quantitative evaluations for ()1, we compare STERLING with SE-R [8], RCA
[7], GANav [19], geometric-only planning [47], and a fully-supervised baseline. SE-R and RCA
perform self-supervised learning from unconstrained robot experience to learn terrain representa-
tions and traversability costs respectively, making them relevant baselines for this problem. Since
there is no open-source implementation of RCA, we replicate it to the best of our abilities. The
geometric-only approach ignores terrain costs (Lierrqin) and plans with geometric cost (Lgeom)
only, making it a relevant ablation on the cost formulation for preference-aware planning. GANav>
[19] is a segmentation-based approach trained on the RUGD [16] dataset. We additionally train the
fully-supervised baseline in which the terrain cost function is learned end-to-end using supervised
learning from linear extrapolation of operator preferences. GANav and the fully-supervised baseline
require supervision via terrain labels to learn and hence serve as references for comparison. We
normalize the terrain cost predicted by all methods to be between 0 and 1 for a fair comparison.

4.1 Evaluating Terrain-Awareness via Robot Experiments

In this subsection, we report on experiments to investigate the effectiveness of STERLING features in
enabling terrain awareness during off-road navigation. We quantitatively compare the performance
of STERLING with baselines RCA [7], GANav [19], SE-R [8] and the fully-supervised baseline, on the
task of preference-aligned navigation. We identify six environments within the university campus,
with eight different terrain types, as shown in Fig. 3. For this study, we use the same data col-
lected on the robot to train RCA, SE-R, fully-supervised baseline, and STERLING, and the operator

“https://github.com/ray guan97/GANav-offroad
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Figure 3: Trajectories traced by different approaches in 5 environments containing 8 different
terrains. The operator preferences are shown above. We see that STERLING navigates in an
operator-preference aligned manner, by preferring cement sidewalk, red bricks, pebble
sidewalk, and yellow bricks over mulch, grass, marble rocks, and bush, outper-
forming other baselines and performing on-par with the Fully-Supervised approach.

provides the same rankings for all methods during training. Note that we use the same encoder and
utility function across all environments and do not retrain/finetune to each environment to prevent
environment-specific overfitting.

Fig. 3 shows the operator’s (first author) terrain preferences for all Envs. 1 to 5, and the performance
of baseline approaches, including an operator-demonstrated trajectory for reference. In all environ-
ments, we see that STERLING navigates in a terrain-aware manner while adhering to the operator’s
preferences. Note that although Fully-Supervised also completes the task successfully, it requires
privileged information such as terrain labels during training, whereas STERLING does not require
such supervision, and can potentially be used on large datasets containing unlabeled, unconstrained
robot experiences. GANay, trained on the RUGD dataset fails to generalize to unseen real-world
conditions. RCA uses inertial spectral features to learn terrain traversability costs and hence does
not adhere to operator preference. SE-R does not address viewpoint invariance which is a signifi-
cant problem in vision-based off-road navigation and hence performs poorly in Envs. 1 and 2. We
perform additional experiments in an outdoor environment (Env. 6) to study adherence to operator
preferences, detailed in Supplementary Sec. 9.1.

Table 1 shows the success rate of preference alignment for all approaches in all environments, over
five different trials. STERLING outperforms other self-supervised baselines and performs on par with
the fully-supervised approach. In summary, the physical experiments conducted in six environments
quantitatively demonstrate the effectiveness of STERLING features in enabling terrain awareness
during off-road navigation.

4.2 Evaluating Self-Supervision Objectives

In this subsection, we investigate the effectiveness of STERLING at learning discriminative terrain
features and compare with baseline unsupervised terrain representation learning methods such as
Regularized Auto-Encoder (RAE) and SE-R [8] and large pretrained networks such as a ResNet-
50 pretrained on ImageNet. STERLING uses multi-modal correlation (Lpz57) and viewpoint in-
variance (Ly 1) objectives for self-supervised representation learning, whereas, SE-R and RAE use
soft-triplet-contrastive loss and pixel-wise reconstruction loss, respectively. Additionally, we also
perform an ablation study on the two objectives in STERLING to understand their contributions to
learning discriminative terrain features. To evaluate different visual representations, we perform



unsupervised classification using k-means clustering and compare their relative classification accu-
racies with manually labeled terrain labels. For this experiment, we train STERLING, SE-R, and RAE
on our training set and evaluate on a held-out validation set. Fig. 4 shows the results of this study.
We see that STERLING-features using both the self-supervision objectives perform the best among
all methods. Additionally, we see that using a non-contrastive representation learning approach such
as VICReg [37] within STERLING performs better than contrastive learning methods such as SE-R,
and reconstruction-based methods such as RAE. This study shows that the proposed self-supervision
objectives in STERLING indeed help learn discriminative terrain features.

Approach Environment
1 2 3 4 5 [6@) | 6()
Geometric-only 0/510/510/5|0/510/5] 0/5 5/5
RCA[7] 2/5 1 4/512/510/5 1 1/5] 5/5 0/5
GANav[19] 5/510/5|0/5|5/510/5] 4/5 5/5
SE-R[8] 1/510/5 |55 1/5] 35| 5/5 4/5
Fully-Supervised | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 5/5

STERLING (Ours) [ 5/5 [ 5/5 [ 5/5[5/5[5/5] 5/5 ] 555
Table 1: Success rates of different algorithms on the task of preference-aligned off-road navigation

5 Limitations and Future Work

STERLING requires traversing over terrains in
order to learn representations, which may be

unsafe in certain situations. Uncertainty-aware s IR
safe exploration and exploration focusing onin- ey g
formative and diverse terrains for data collec- s = R
tion is a promising direction for future work. s o> %
Extending STERLING features to work on un-  msgener 0518 :
structured non-flat environments such as stairs . o254 g
[48] and boulders [49] is another promising di-

rection for future work. Extending STERLING " * Clossification Accuracy e

by pretraining with large-scale off-road datasets
using modern architectures such as transform- Figure 4: Ablation study depicting classification
ers that are known to scale well with large-scale accuracy (value closer to 1.0 is better) from terrain

data is an exciting direction for future work. representations learned using different approaches
and objectives. The combined objective (VI +

. MM) proposed in STERLING achieves the highest

6 Conclusion accuracy, indicating that the learned representa-
tions are sufficiently discriminative of terrains.

In this paper, we introduce Self-supervised TEr-
rain Representation LearnING (STERLING), a
novel framework for learning terrain repre-
sentations from easy-to-collect, unconstrained
(e.g., non-expert), and unlabeled robot experience. STERLING utilizes non-contrastive representa-
tion learning through viewpoint invariance and multi-modal correlation self-supervision objectives
to learn relevant terrain representations for visual navigation. We show how features learned through
STERLING can be utilized to learn operator preferences over terrains and integrated within a plan-
ner for preference-aligned navigation. We evaluate STERLING against state-of-the-art alternatives
on the task of preference-aligned visual navigation on a Spot robot and find that STERLING out-
performs other methods and performs on par with a fully-supervised baseline. We additionally per-
form a qualitative large-scale experiment by successfully hiking a 3-mile-long trail using STERLING,
demonstrating its robustness to off-road conditions in the real world.
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7 Data Collection

In all experiments, we use a legged Boston Dynamics Spot robot and collect robot experi-
ences on eight different types of terrain around the university campus that we labeled as mulch,
pebble sidewalk, cement sidewalk, grass, bushes, marbled rock, yellow bricks, and
red bricks. The data is collected through human teleoperation (by the first and second authors)
such that each trajectory contains a unique terrain throughout, with random trajectory shapes. Note
that STERLING does not require a human expert to teleoperate the robot to collect robot experience
nor does it require the experience to be gathered on a unique terrain per trajectory. We follow this
data collection approach since it is easier to label the terrain for evaluation purposes. STERLING
can also work with random trajectory lengths, with multiple terrains encountered along the same
trajectory, without any semantic labels such as terrain names, and any navigation policy can be used
for data collection. We record 8 trajectories per terrain, each five minutes long, and use 4 trajectories
for training and the remaining for validation.

8 Sampling-based Planning

Sampling-based planning: We assume access

to a receding horizon sampling-based motion

planner with a fixed set of constant-curvature

arcs {T'9,T'1,..., s}, T € SN which solves

for the optimal arc I'* = argmin[J (T, G)],
r

minimizing the objective function J (T, G), J :
(I'G) — RT. For the task of preference-
aligned off-road navigation, we assume the ob-
jective function is composed of two components 2 Representation DU ity valwe L
Tgeom (T, G) and Jierrqin(I'), and can be de- /

A | Ut\lity % Cost Estimate
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Visual
Encoder
(frozen)

@) Jrerrain(I).  Tgeom (', G) is the geometric
cost that deals with progress towards the goal
G and avoiding geometric obstacles, whereas
Jterrain(T) is the terrain cost associated with
preference-alignment. We utilize the geomet-
ric cost as defined in AMRL’s graph navigation
stack ®. The multiplier « € [0,1] trades off
relative contributions of the geometric and ter-
rain preference components of the path planning
objective. A 1D time-optimal controller trans- Figure 5: An overview of the cost infer-
lates the sequence of states in the optimal tra- ©€nce process for local planning at deployment.

jectory T'* to a sequence of receding horizon ac- The constant-curvature arcs (yellow) are over-
tions (ag, a1 ay). For a given arc T = layed on the BEV image, and the terrain cost
Sy . =

. (') is computed on patches extracted
{s0,81,...,8N}, such that state s is closest to Jrerrain(L') P P
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the robot, the terrain-preference cost can be com- | "0
puted as follows.
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Predicted CostMap

The function f,(.) maps from RGB space of a visual patch of terrain v; at a specific state s;, to its
visual representation ¢,, € ®,,. For instance, f, can be the visual encoder learned using STERLING,
as described in Section 3.2. The utility function u(.) maps the visual representation ¢,, of a patch of
terrain to a real-valued utility of preferences. We follow the utility function formulation of Zucker et
al. [46] and assume the terrain preference cost follows a multiplicative formulation such that given

3https://github.com/ut-amrl/graph_navigation
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Figure 6: Trajectories traced by different approaches for the task of preference-aligned off-road
navigation. Shown here are two different preferences expressed by the operator in the same
environment—in 6 (a), sidewalk is more preferred than grass which is more preferred than bush,
and in 6 (b), grass and sidewalk are equally preferred and bush is least preferred. We see that
without retraining the terrain features, in both cases (a) and (b), STERLING optimally navigates to
the goal while adhering to operator preferences.

a utility value x € R™, the traversability cost is C'(z) = e *. The discount factor v weighs the
terrain cost proportional to its proximity to the robot. We set v to 0.8, which we find to work well
in practice.

Planning at Deployment: Fig. 5 provides an overview of the cost inference process for local
planning at deployment. To evaluate the terrain cost Jierrqin (L) for the constant-curvature arcs,
we overlay the arcs on the bird’s eye view image, extract terrain patches at states along the arc,
and compute the cost according to Eq. 2. We compute the visual representation, utility value, and
terrain cost of all images at once as a single batch inference. Since the visual encoder and the utility
function are relatively lightweight neural networks with about 0.5 million parameters, we are able
to achieve real-time planning rates of 40 Hz using a laptop-grade Nvidia GPU.

9 Additional Experiments

In this section, we detail additional experiments performed to evaluate STERLING-features against
baseline approaches.

9.1 Preference Alignment Evaluation

In addition to the evaluations of STERLING-features with baseline approaches in five environments
as shown in Sec. 4, we utilize Env. 6 to further study adherence to operator preferences. We hypoth-
esize that the discriminative features learned using STERLING is sufficient to learn the preference
cost for local planning. To test this hypothesis, in Env. 6 containing three terrains as shown in Fig.
6, the operator provides two different preferences 6(a) and 6(b). While bush is the least preferred in
both cases, in 6(a), sidewalk is more preferred than grass and in 6(b), both grass and sidewalk
are equally preferred. We see in Fig. 6 that using STERLING features, the planner is able to suffi-
ciently distinguish the terrains and reach the goal while adhering to operator preferences. Although
SE-R [8] adheres to operator preference in 6(b), it incorrectly maps grass to bush, assigning a
higher cost and taking a longer route to reach the goal. On the other hand, RCA [7] fails to adhere to
operator preferences since it directly assigns traversability costs using inertial features.

9.2 Large-Scale Qualitative Evaluation

In this subsection, we perform a qualitative evaluation of STERLING by reporting a large-scale study
of semi-autonomously hiking a 3-mile-long off-road trail using the Spot robot.

We train STERLING using unconstrained robot experience collected within the university campus
and train the preference utility function using operator-provided preferences: marble rocks <
grass < dirt = cement. The task is to navigate the trail without a global map while adhering
to operator preferences at all times. Since we do not use a global map, visual terrain awareness is
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Figure 7: A large-scale qualitative evaluation of STERLING on a 3-mile outdoor trail. STERLING
features successfully complete the trail with only two manual interventions (shown in red).

necessary to navigate within the trail and avoid catastrophic events such as falling into the river next
to the trail. We set a moving goal of six meters in front of the robot, updated every second. While the
robot navigates autonomously, the operator walks behind the robot and takes manual control only
to correct the robot’s path during forks, or to yield to incoming pedestrians and pets. The attached
supplementary video shows the robot navigating the trail successfully while avoiding less preferred
terrains. The robot needed two manual interventions while traversing along the trail. Fig. 7 shows
the 3-mile trajectory traced by the robot and the two failure cases that required manual intervention.
This large-scale qualitative experiment demonstrates the reliability of STERLING during real-world
off-road deployments.

9.3 Experiments on a Wheeled Mobile Robot

STERLING is intended as a general algorithm to learn relevant terrain representations for off-road
navigation. Towards demonstrating the versatility of STERLING to being applied to robots of differ-
ent morphology, we conduct two additional experiments on the Clearpath Jackal, a wheeled mobile
robot.

Learning Representations on Wheeled Robots: We utilize unconstrained data collected on the
Jackal consisting of multi-modal visual and inertial sensor data and learn terrain representations
using STERLING followed by a utility function of operator preferences. Fig. 8 (STERLING-Jackal)
shows the path traversed by the Jackal in Env. 6, following the human preference sidewalk >
grass > bush. This experiment demonstrates the applicability of STERLING on wheeled robots
with inertial sensors, as against legged robots that have access to additional sensors such as joint
encoders and tactile information.

Zero-Shot Cross-Morphology Transfer: In a noteworthy experiment to evaluate the transfer-
able property of terrain representations across robot morphologies, we utilized the visual encoder
trained on data from the legged Spot robot and applied it on the wheeled Jackal robot without
additional fine-tuning. Fig. 8 (STERLING-Spot) showcases the Jackal’s trajectory, leveraging STER-
LING representations learned from Spot’s data, and adhering to the operator’s terrain preference:
sidewalk > grass > bush. Fig. 10 shows costmaps generated using STERLING features, used
by the sampling-based planner to navigate in an operator-aligned manner. This demonstrates STER-
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STERLING-Spot STERLING-Jackal

Figure 8: Experimental study of STERLING on a Clearpath Jackal—a wheeled mobile robot in En-
vironment 6. STERLING-Spot shows the trajectory traced using STERLING trained on data collected
on the Spot, deployed zero-shot on the Jackal robot, whereas STERLING-Jackal shows the trajectory
traced by STERLING trained on data collected on the Jackal, deployed also on the Jackal robot. In
both experiments, we see the robot reach the goal successfully while adhering to human operator’s
preferences over terrains (sidewalk > grass > bush).

Figure 9: Clearpath Jackal, a wheeled robot navigating using STERLING features trained on uncon-
strained data collected on the Jackal robot (STERLING-Jackal). We see here in Env. 6 that the robot
reaches the goal while adhering to operator preferences Sidewalk > Grass > Bush. This experi-
ment demonstrates the versatility of STERLING in being applied to robots of different morphology.

LING’s capability to generalize across diverse robotic platforms, emphasizing its adaptability and
broad applicability.

Fig. 9 shows a third-person view of the deployment of STERLING-Jackal in Env. 6. In both ex-
periments above, we see the Jackal robot reaches the goal successfully while adhering to human
operator preferences, in a terrain-aware manner, highlighting STERLING’s adaptability regardless of
robot morphology.

9.4 On the Efficacy of Multi-Modal Data Over Vision Alone

While it might seem that visual cues are sufficient for distinguishing terrains, as evidenced in Fig.3,
the reality is more complex. Variations in lighting, shadow, color, texture, and other artifacts may
lead to inconsistent representations for the same terrain type and can render visually distinctive
terrains deceptively similar. For instance, while six different visual patches of the terrain “sidewalk™
as shown in Fig. 11 might each exhibit unique visual characteristics because of these variations,
they all denote the same terrain category and evoke similar inertial-prioprio-tactile (IPT) response
on the robot (feel similar to the robot). Solely relying on vision may lead to overlooking underlying
commonalities between terrains, resulting in inconsistent terrain representations.
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Figure 10: Visualizing the costmaps from the Jackal robot when traversing Env 6., trained using
data from the Jackal (STERLING-Jackal).

Figure 11: Six distinct instances of sidewalk terrain, showcasing the variability in visual appear-
ance due to factors such as lighting, texture, shadows, and other artifacts. Despite the visual differ-
ences, each patch represents the same terrain type.

Another concrete example is the scenario of fallen leaves. A sidewalk, a grass patch, and a forest
trail could all be covered with fallen leaves, making them visually similar. However, underneath
those leaves, the actual terrain properties — and the robot’s interaction with them — vary significantly.
While the leaves might visually mask the terrain differences, the robot would feel different terrain
responses when moving over them due to differences in underlying ground properties.

Furthermore, visual similarity is not a conclusive indicator of identical terrains. Consider four im-
ages as a case in point, as shown in Fig. 12. Though the first two and the last two images might
seem visually similar, they represent distinct terrains: the first image depicts “bush”, the second
and third denote “grass”, and the fourth is “sidewalk”. These three terrains induce different inertial,
proprioceptive, and tactile responses in a robot. Thus, the mere semblance of appearance does not
capture the relevant features of a terrain.

STERLING’s approach of integrating additional modalities allows for more precise terrain identifi-
cation by accounting for these subtleties. By considering variations and similarities among terrains
across different modalities, we ensure relevant terrain representations for off-road navigation. In
all examples shown in Figs. 11 and 12, STERLING correctly associates the samples with the right
cluster for each terrain.

9.5 Experimental Setup and Methodological Details

In this subsection, we outline the specifics of our experimental setup, detailing hyperparameters,
architectural decisions, data, and sensory inputs. These insights ensure clarity and reproducibility
of our experiments.

In all experiments in STERLING, including the baselines RCA and SE-R, we use a shallow 4-layer
CNN with a kernel size of 3 and stride of 1. Our choice of a shallow 4-layer CNN was driven
by the specific need for a lightweight and efficient model that could operate in real time at 40Hz
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Figure 12: A collection of four terrain patches, illustrating the challenge of terrain representation
learning based solely on visual cues. From left to right: bush, grass, grass, sidewalk. Despite visual
similarities (and differences), the terrains can elicit different non-visual IPT responses on a robot.

Table 2: Hyperparameter Choices for STERLING Experiments

Hyperparameter | Value/Range
Learning Rate 3x 1071
Batch Size 128

Number of Epochs 50
Optimizer Adam
Weight Decay 5x 1075
Activation Function RelLU
Kernel Size 3
Stride 1

on a laptop GPU, a requirement that was effectively met with this simple architecture of 0.25 M
parameters, which we found was sufficient for the problem. While modern architectures like vision
transformers / Mobile-ViT could be applied with larger scale data, the primary concern was real-time
performance and compatibility with our robot’s hardware. Our experiments and results demonstrate
that the selected architecture was sufficient for the purpose, and we do not find evidence that our
approach’s effectiveness is constrained by this architectural choice.

To train STERLING, SE-R, and RCA, we used a total of 117,604 data samples for all terrains com-
bined. Example raw time-series sensor data is shown in Fig. 14. Each data sample contains a
minimum of 2 visual patches and a maximum of 20 visual patches of the same location from mul-
tiple different viewpoints from which we randomly sample 2 patches per location during training.
We convert the time-series IPT signals into their corresponding Power Spectral Density PSD values.
Power spectral density describes the power of a signal across different frequency components. To
compute this, we perform a fast-fourier transform over the time-series signal (inertial/proprioceptive/
tactile) and compute the PSD defined as PSD(w) = E[| X (w)|?] across each frequency component w.

On the Spot robot, we use a VectorNav IMU to record the inertial signals (angular velocities in the
x and y-axis and linear acceleration in z-axis) at 200Hz, the joint angles and velocities of the legged
robot, referred as proprioceptive feedback in this work are recorded at 25 Hz, and the feet contact
measurements (contact booleans and estimated feet depth from ground) collectively referred to as
tactile feedback in this work are recorded at 25Hz. An Azure kinect camera is mounted on the Spot,
used for visual sensing of the terrain. On the wheeled Clearpath Jackal robot, we use a Zed2 camera
for visual sensing, and utilize the internal IMU sensor for inertial feedback. Fig. 13 depicts the two
robots, sensor mounts, and other sensors used in this work.

Note that in all experiments, to prevent overfitting to a specific environment, we pretrain the visual
encoder and utility function once and deploy them in all environments. The encoders and utility
functions are not being retrained/finetuned per environment, including the large-scale outdoor trail.

More details on the loss function: STERLING extends VICReg algorithm initially proposed by
Bardes et al. [37] for self-supervised learning from vision-only data. While the foundational work
by Bardes et al. uses image augmentations to learn visual representations in a self-supervised way,
we utilize images from multiple viewpoints and multi-modal inputs such as vision, inertial, proprio-
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Figure 13: Figure depicting the legged Spot and the wheeled Jackal robot, along with other sensors
used in this work.
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Figure 14: Visual depiction of 1-second of time-series features of inertial-proprioception-tactile data
and visual patches of three representative terrains (Bush, SideWalk and Grass).

ceptive, tactile using a novel formulation to learn relevant terrain representations in a self-supervised
way. The STERLING loss based on VICReg is defined in Section 3.2. The VICReg loss is defined as
Lyicreg(Z,Z") = Xs(Z, Z") + p[v(Z) +v(Z")] + v]e(Z) + ¢(Z")], where A, 1 and v are hyper-
parameters. We use the values 25.0, 25.0, 1.0 for these hyperparameters respectively, as suggested
by Bardes et al. [37]. s(Z, Z') denotes the invariance between the two inputs. In STERLING, this
is computed across the two image patches from different viewpoints, and also between the visual
and non-visual (IPT) projections. v(Z) denotes the variance across the batch dimension, which we
compute for the projections of individual patches and the IPT signals. ¢(Z) denotes the covariance
across the feature dimension which encourages distinct, non-correlative features which we again
compute for the projections of individual patches and the IPT signals. We refer the reader to Bardes
et al. [37] for additional details regarding individual terms in the loss function. We compute the loss
provided in Eq. | across a mini-batch of samples and use the Adam optimizer for gradient-based
optimization of the visual encoder, IPT encoder and the common projector network.

9.6 Visualizing the terrain representations learned using STERLING

Fig. 15 depicts a t-SNE visualization of terrain representations learned using STERLING. Individual
patches are color-coded by their ground truth semantic terrain label. We see that STERLING learns
relevant features for terrains, given their unique clustering in this latent space.

9.7 Visualizing the costmaps

Fig. 16 shows cost visualizations of baseline approaches - RCA [7], SE-R [8], GANav [19] and Fully-
Supervised in comparison with STERLING. Fig. 16 shows that RCA and SE-R exhibit issues with
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T-SNE plot of terrain representations learned using STERLING
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Figure 15: t-SNE visualization of terrain representations learned using STERLING. Each data point
represents a terrain example, color-coded by its ground truth label. The clustering of colors show-
cases the efficacy of STERLING in capturing meaningful and distinctive terrain features.

visual artifacts due to homography transformations. GANav, trained on the RUGD [16] dataset, fails
to generalize to novel real-world situations. In contrast, costmaps from both the fully-supervised
model and STERLING efficiently guide planning, as demonstrated by quantitative results in Section
4 and results in behaviors that align with operator preferences, prioritizing sidewalks over terrains
like rocks or bushes.

9.8 Generalization to Unseen Terrains

During autonomous off-road navigation, generalization to novel terrains is paramount. Although
difficult to comment on generalizability, we document an instance during the large-scale deployment
where STERLING navigates around an unseen terrain “water puddle”, as shown in Fig. 17.
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Figure 16: Comparative visualization of the costmaps generated by STERLING (this work) and other
baseline algorithms (RCA [7], SE-R [8], GANav [19], Fully-Supervised) for a given scene. Paired
with each costmap is a bird’s-eye view image of the corresponding terrain. In the costmaps, white
regions indicate high traversal cost, black signifies low cost, and areas in red are ignored or non-
observable regions. We see that compared to other approaches, using STERLING features results in
costmaps that align with operator preference of Sidewalk > Rocks > Bush.

Figure 17: STERLING navigating around an unfamiliar terrain, specifically a “water puddle”,
during the qualitative 3-mile off-road deployment.
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