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Abstract: Terrain awareness, i.e., the ability to identify and distinguish differ-

ent types of terrain, is a critical ability that robots must have to succeed at au-

tonomous off-road navigation. Current approaches that provide robots with this

awareness either rely on labeled data which is expensive to collect, engineered fea-

tures and cost functions that may not generalize, or expert human demonstrations

which may not be available. Towards endowing robots with terrain awareness

without these limitations, we introduce Self-supervised TErrain Representation

LearnING (STERLING), a novel approach for learning terrain representations that

relies solely on easy-to-collect, unconstrained (e.g., non-expert), and unlabeled

robot experience, with no additional constraints on data collection. STERLING

employs a novel multi-modal self-supervision objective through non-contrastive

representation learning to learn relevant terrain representations for terrain-aware

navigation. Through physical robot experiments in off-road environments, we

evaluate STERLING features on the task of preference-aligned visual navigation

and find that STERLING features perform on par with fully-supervised approaches

and outperform other state-of-the-art methods with respect to preference align-

ment. Additionally, we perform a large-scale experiment of semi-autonomously

hiking a 3-mile long trail which STERLING completes successfully with only two

manual interventions, demonstrating robustness to real-world off-road conditions.

Robot experiment videos and more details can be found in the appendix and the

project website https://hareshkarnan.github.io/sterling/

Keywords: Vision-Based Navigation, Representation Learning.

1 Introduction

Off-road navigation is emerging as a crucial capability for autonomous mobile robots envisioned

for use in a growing number of outdoor applications such as agricultural operations [1], package

delivery [2], and search and rescue [3]. Endowing robots with this capability has, however, proved

to be challenging and remains an active area of research.

One particularly difficult challenge in off-road autonomous navigation is that of providing the robot

with terrain awareness, i.e., the ability to identify distinct terrain features that are relevant to a wide

variety of downstream tasks (e.g., changing preferences over terrain types) [4, 5, 6, 7, 8, 9, 10,

11]. While a litany of prior work has attempted to address this challenge [12, 13, 14, 15], existing

approaches typically rely on difficult-to-collect curated datasets [16, 17, 18, 19, 20] or has been
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focused on particular tasks [21, 22, 23, 24, 25, 9] and is not amenable to downstream task changes

[26, 25, 7]. These limitations prevent existing approaches from appropriately scaling to the vast

distribution of terrains and navigation tasks in the real world.

Toward overcoming the scalability challenges in terrain awareness, we introduce Self-supervised

TErrain Representation LearnING (STERLING)1, a novel approach to learning terrain representa-

tions for off-road navigation. STERLING learns an encoding function that maps high-dimensional,

multi-modal sensor data to low-dimensional, terrain-aware representations that amplify differences

important for navigation and attenuate differences due to extraneous factors such as changes in view-

point and lighting. Importantly, STERLING works with easy-to-collect unconstrained and unlabeled

robot data, thereby providing a scalable pathway to data collection and system improvement for the

wide variety of terrain and downstream tasks that off-road robots must face.

To evaluate STERLING, we apply it to the problem of preference-aligned off-road navigation and

provide a detailed comparison to existing approaches to this problem, including RCA [7], GANav

[19], SE-R [8], and a fully-supervised oracle. We find that STERLING enables performance on par

with or better than these existing approaches without requiring any expert labels or demonstrations.

Additionally, we report the results of a large-scale qualitative experiment in which STERLING en-

abled semi-autonomous robot navigation on a 3-mile long hiking trail.

The key contributions of this paper are— 1) Self-supervised TErrain Representation LearnING

(STERLING), a novel approach that learns terrain representations from easy-to-collect unconstrained

robot experiences, 2) Detailed evaluation of STERLING against baseline methods on the task of op-

erator preference-aligned off-road navigation, and 3) A large-scale qualitative experiment of semi-

autonomously hiking a 3-mile long trail, demonstrating the effectiveness of STERLING-features.

2 Related Work

In this section, we review related work on terrain-aware visual off-road navigation. We specifically

focus on approaches that learn to navigate off-road conditions using supervised and self-supervised

learning.

2.1 Supervised Methods

Several approaches in the past have proposed using supervised learning from large-scale data to

navigate off-road environments. We divide them into two categories as follows.

End-to-End Learning: The initial success of applying learning-based solutions to off-road terrain-

aware navigation was by LeCun et al. [28] who used a convolutional network to learn to drive in

off-road conditions. More recently, Bojarski et al. [21] trained a deep neural network end-to-end

using several miles of driving data collected on a vehicle in the real world. While both approaches

were promising in urban and off-road environments, end-to-end methods require large amounts of

data and are well-known to suffer from domain and covariate shifts [29, 30, 31].

Image Segmentation: Unlike end-to-end approaches that learn behaviors, segmentation-based ap-

proaches seek to characterize terrain using a set of known semantic classes, and the resulting

semantic features are consumed by downstream planning and control techniques for navigation

[32, 19, 33]. Guan et al. [19] propose GANav, a transformer-based architecture to pixel-wise seg-

ment terrains, trained on RELLIS [17] and RUGD [16] datasets, with manually assigned terrain

costs. While effective at terrain awareness, segmentation-based methods are fixed to the specific

terrain types available in the datasets and require additional labeling effort to generalize to novel ter-

rains. In STERLING, we do not require semantically labeled datasets and learn terrain representations

from unconstrained experience collected onboard a mobile robot.

1A preliminary version of this work was presented at the PT4R workshop at ICRA 2023 [27]
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2.2 Self-Supervised Learning

To alleviate the need for extensive human labeling, self-supervised learning methods have been

proposed to either learn terrain representations or costs from data gathered onboard a mobile robot.

Representation Learning: Brooks et al. [34] utilize contact vibrations and visual sensors to clas-

sify terrains via self-supervision. Loquercio et al. [35] use proprioceptive supervision to predict

extrinsic representations [36] of terrain geometry from vision, used as inputs to drive a Reinforce-

ment Learning-based locomotion policy. In this work, we do not learn a robot-specific locomotion

policy and instead learn relevant representations for off-road terrain awareness. Zürn et al. [8]

introduce SE-R which utilizes acoustic and visual sensors on the robot to segment terrains using

a self-supervised triplet-contrastive learning framework. Using triplet-based contrastive learning

methods requires negative samples which may not be available when learning using unlabeled data.

In STERLING, we use recently proposed non-contrastive unsupervised learning approaches such as

VICReg [37] that do not require any negative samples and instead rely on correlations between data

modalities to learn relevant terrain representations.

Cost Learning: Several methods have applied self-supervision to assign traversability costs for the

downstream off-road navigation task [7, 38, 26, 39, 40, 41, 42]. Specifically, these methods rely on

inertial spectral features [7], future predictive models [26], inertial-odometry errors [38], or force-

torque values from foothold positions [39, 43] as self-supervision signals to learn a traversability

cost map, used to evaluate candidate actions. More recently, Frey et al. [44] have proposed an

online traversability estimation approach inspired by the above self-supervision schemes. Instead of

inferring costs or rewards using self-supervision for a fixed task, in this work, we focus on learning

relevant visual features from unconstrained robot experiences that could be used in downstream

tasks. This framework allows a designer to reuse features across tasks without retraining entirely

from scratch.

Hybrid Methods: The approach closest to ours is VRL-PAP [6] which requires human expert tele-

operated demonstrations of a particular trajectory pattern to both explicitly learn visual terrain rep-

resentations as well as to infer terrain preference costs. However, in this work, we focus on learning

terrain features from unconstrained robot experiences without requiring human experts in the field

for demonstrations, which is a more general problem than the one considered by VRL-PAP.

3 Approach

In this section, we introduce the self-supervised terrain representation learning approach, STERLING,

proposed in this work. We first describe the offline pre-processing performed on unconstrained robot

data and then summarize the self-supervision objectives. Finally, we describe the problem formu-

lation for preference-aligned off-road navigation and present how features learned using STERLING

can be utilized within a planner for terrain-aware and preference-aligned navigation.

3.1 Data-Collection and Pre-Processing

STERLING learns terrain representations from unconstrained, unlabeled robot experiences collected

using any navigation policy. This policy may be, for instance, non-expert human teleoperation,

curiosity-driven exploration [45], or point-to-point navigation using any underlying planner. Com-

pared to requiring a human expert to provide teleoperated demonstrations and labels, collecting this

type of robot experience is cheap and easy, thereby providing a scalable pathway to data collection

and system improvement. We additionally assume that the robot is equipped with multiple sensors,

e.g., an egocentric RGB camera, odometry sensors, onboard IMU, proprioceptive, and tactile sen-

sors, that together provide rich multi-modal observations as the robot traverses over different terrains

collecting experience. STERLING leverages this multi-modal data by using the correlation between

different modalities to inform the learned terrain representations.
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In order to learn terrain representations using STERLING, we begin by pre-processing the visual and

non-visual observations, which are explained in detail below.

Figure 1: An illustration of the pre-processing
performed on unconstrained robot experience.
Image patches of traversed terrain at location
sk are extracted from bird’s eye view observa-
tions at prior locations sk−1, sk−2 along the
trajectory. The corresponding IPT observa-
tions at sk are transformed from time series to
PSD signals. Note the visual artifacts caused
by noise in homography transformation from
viewpoints farther away from sk.

Visual Patch Extraction: The egocentric camera

observations are homography-projected into a vir-

tual bird’s eye view (BEV) frame, assuming that the

ground is a flat plane, using the intrinsic and extrin-

sic camera matrices. As shown in Fig. 1, we project

the robot’s trajectory onto the BEV frame and ex-

tract 64-by-64 pixels (equivalent to the robot’s foot-

print of 0.5-by-0.5 meters) square visual patches of

terrain along with the corresponding inertial, pro-

prioceptive, and tactile observations at the same lo-

cation, along the trajectory. Since the terrain at sk
is unobservable when the robot itself is at sk (i.e.,

it is underneath the robot), we extract terrain im-

age patches corresponding to sk from BEV obser-

vations at previous locations sk−1, sk−2, . . . along

its trajectory. Fig. 1 illustrates the offline patch

extraction process from two previous viewpoints,

however, we extract patches from up to 20 previ-

ous viewpoints within 2 meters. Although just one

viewpoint is sufficient to learn the correlation be-

tween visual and other sensor observations, when

planning to navigate, the robot will need to visu-

ally evaluate terrain at future locations, and therefore STERLING also seeks representations that are

invariant to patch differences due to viewpoint, also known as viewpoint invariance.

IPT Pre-Processing: For the inertial, proprioceptive, and tactile (IPT) observations, we retain up to

2-second history and convert the time-series signals into power-spectral density (PSD) representation

in the frequency domain. This ensures the IPT time-series data representations used as input to

STERLING are invariant to differences in length and phase in the recorded signals. Additional details

are provided in Supplementary Section 9.5.

3.2 Non-Contrastive Terrain Representation Learning

It is desired for learned representations of terrains to be such that representations of similar terrain

are close together in the embedding space and that representations of different terrains are suffi-

ciently far apart. Although we do not possess privileged information such as semantic labels of

terrains for training, the visual and kinodynamic observations experienced by the robot reflect sim-

ilarities and differences between terrain samples. For instance, traversing a smooth terrain that a

human may refer to as cement sidewalk may lead to relatively smooth motion by the robot’s

joints, whereas a rough terrain such as what might be referred to as marble rocks may correspond

to jerkier motion. STERLING leverages this multi-modal experience observed by the robot and com-

putes a correlation objective between visual and inertial-proprio-tactile signals to learn desired ter-

rain representations. Additionally, STERLING uses viewpoint invariance as an objective unique to

the visual component of the experience to learn viewpoint-invariant terrain representations.

Fig. 2 provides an overview of the self-supervised representation learning framework adopted in

STERLING. A parameterized visual encoder (4-layer CNN with 0.25 million parameters) encodes

terrain image patch observations v1 and v2 of the same location s into visual representations φv1 and

φv2
, respectively, collectively referred to as φv1,2

for brevity. Similarly, an inertial-proprio-tactile

encoder (4-layer MLP with 0.25 million parameters) encodes frequency domain IPT observations of

the robot at that location to an inertial-proprio-tactile representation φi. We follow the framework

of prior self-supervised representation learning algorithms from the computer vision community

such as VICReg [37], and utilize a parameterized projector network (2-layer MLP with 0.25 million
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parameters) that maps encoded visual and non-visual representations independently to a higher-

dimensional feature space ψv1,2 and ψi respectively, over which the self-supervision objectives are

computed. The STERLING objective composed of the multi-modal correlation LMM (ψv1,2
, ψi) and

viewpoint-invariance LV I(ψv1 , ψv2
) objectives are defined as:

LSTERLING = LV I(ψv1
, ψv2) + LMM (ψv1,2 , ψi)

LV I(ψv1 , ψv2) = LVICReg(ψv1
, ψv2

)

LMM (ψv1,2
, ψi) = [LVICReg(ψv1

, ψi) + LVICReg(ψv2
, ψi)]/2

(1)

LVICReg is the VICReg loss that is composed of variance-invariance-covariance representation learn-

ing objectives, as proposed by Bardes et al. [37]. Given two alternate projected representations

Z and Z ′ of a data sample (in STERLING, Z and Z ′ are projected representations of the visual and

non-visual sensor modalities), the VICReg loss is defined as LVICReg(Z,Z
′) = λs(Z,Z ′)+µ[v(Z)+

v(Z ′)] + ν[c(Z) + c(Z ′)]. Note that while Bardes et al. use VICReg to learn representations from

visual inputs using artificial image augmentations, in this work, we extend VICReg to multi-modal

inputs and use real-world augmentations via multi-viewpoint image patches as described in Sec.

3.1. λ, µ, and ν are hyper-parameters and the functions v, s, and c are the variance, invariance, and

covariance terms computed on a mini-batch of projected features. We refer the reader to Bardes et

al. [37] for additional details on the individual terms and also define them here for completeness.

The variance term v is a hinge function defined as v(Z) = 1

d

d∑
j=1

max(0, γ − S(zj , ǫ)), where S is

the standard deviation, and d is the dimensionality of the projected feature space. c is the covari-

ance term, defined as c(Z) = 1

d

∑
i 6=j

[C(Z)]2i,j , where C(Z) is the covariance matrix of Z. s is the

invariance term defined as s(Z,Z
′

) = 1

n

∑
i

||zi − z
′

i||. More details on the individual terms in the

loss function are provided in Sec. 9.5. We apply an l2 norm on the visual and non-visual features to

ensure they are on a hypersphere, which helped improve the quality of learned representations. On

a mini-batch of data containing paired terrain image patches and IPT observations, we compute the

LSTERLING loss and update parameters of the two encoder networks and the shared projector network

together using Adam optimizer.

3.3 Preference-Aligned Off-Road Navigation

In this subsection, we describe the downstream navigation task of preference-aligned visual naviga-

tion that we focus on when evaluating STERLING.

Preliminaries: We formulate the task of preference-aligned terrain-aware navigation as a local

path-planning problem, where the robot operates within a state space S , action space A, and a

deterministic transition function T : S × A −→ S in the environment. The state space consists

of s = [x, y, θ, φv], where [x, y, θ] denote the robot’s position in SE(2) space, and φv denotes

the visual features of the terrain at this location. Given a goal location G, the preference-aligned

navigation task is to reach this goal while adhering to operator preferences over terrains. We assume

access to a sampling-based planner, the details of which are provided in Supplementary Sec. 8.

Learning the preference utility: Following Zucker et al. [46], we learn the utility function u :
Φv → R

+ using human queries. From the predicted terrain features on data samples in our training

set, we cluster the terrain representations using k-means with silhouette-score elbow criterion, and

sample candidate terrain patches from each cluster, which is presented to the human operator using

a GUI. The human operator then provides a full-order ranking of terrain preferences over clusters,

which is utilized to learn the utility function u(.), represented by a 2-layer MLP. While recovering

absolute cost values from ranked preference orders is an under-constrained problem, we find that

this approximation provided by Zucker et al. [46] works well in practice.
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4 Experiments

Figure 2: Overview of the training architecture
in STERLING. Terrain patches v1 and v2 from
different viewpoints of the same location are en-
coded as φv1

and φv2
respectively, and mapped

into embeddings ψv1
and ψv2

. Similarly, iner-
tial, proprio, tactile signals are encoded as φi, and
mapped as ψi. Self-supervision objectives LV I

for viewpoint-invariance and LMM for multi-
modal correlation are computed on the minibatch
to perform gradient descent.

In this section, we describe the experiments

performed to evaluate STERLING. Specifically,

the experiments presented in this section are tai-

lored to address the following questions:

(Q1) How effective are STERLING features

in comparison to baseline approaches

at enabling terrain awareness in off-

road navigation?

(Q2) How effective are the proposed STER-

LING objectives in learning discrimi-

native terrain features in comparison

to other representation learning objec-

tives?

We investigate Q1 through physical robot ex-

periments on the task of preference-aligned off-

road navigation. We perform quantitative eval-

uations in six different outdoor environments,

and then further perform a large-scale qualita-

tive evaluation by semi-autonomously hiking a

3-mile long off-road trail using preference costs

learned using STERLING features. To compare

various methods, we use the success rate of

preference alignment as a metric. If a trajec-

tory followed by any algorithm fails to reach the goal, or at any time traverses over any terrain that

is less preferred than any traversed by the operator-demonstrated trajectory, we classify the trial as a

failure. We additionally investigate Q2 by comparing STERLING against other unsupervised terrain

representation learning methods and perform an ablation study on the two STERLING objectives.

Additional experiments are provided in Supplementary Sec. 9.2.

Baselines: To perform quantitative evaluations for Q1, we compare STERLING with SE-R [8], RCA

[7], GANav [19], geometric-only planning [47], and a fully-supervised baseline. SE-R and RCA

perform self-supervised learning from unconstrained robot experience to learn terrain representa-

tions and traversability costs respectively, making them relevant baselines for this problem. Since

there is no open-source implementation of RCA, we replicate it to the best of our abilities. The

geometric-only approach ignores terrain costs (Lterrain) and plans with geometric cost (Lgeom)

only, making it a relevant ablation on the cost formulation for preference-aware planning. GANav2

[19] is a segmentation-based approach trained on the RUGD [16] dataset. We additionally train the

fully-supervised baseline in which the terrain cost function is learned end-to-end using supervised

learning from linear extrapolation of operator preferences. GANav and the fully-supervised baseline

require supervision via terrain labels to learn and hence serve as references for comparison. We

normalize the terrain cost predicted by all methods to be between 0 and 1 for a fair comparison.

4.1 Evaluating Terrain-Awareness via Robot Experiments

In this subsection, we report on experiments to investigate the effectiveness of STERLING features in

enabling terrain awareness during off-road navigation. We quantitatively compare the performance

of STERLING with baselines RCA [7], GANav [19], SE-R [8] and the fully-supervised baseline, on the

task of preference-aligned navigation. We identify six environments within the university campus,

with eight different terrain types, as shown in Fig. 3. For this study, we use the same data col-

lected on the robot to train RCA, SE-R, fully-supervised baseline, and STERLING, and the operator

2https://github.com/rayguan97/GANav-offroad
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unsupervised classification using k-means clustering and compare their relative classification accu-

racies with manually labeled terrain labels. For this experiment, we train STERLING, SE-R, and RAE

on our training set and evaluate on a held-out validation set. Fig. 4 shows the results of this study.

We see that STERLING-features using both the self-supervision objectives perform the best among

all methods. Additionally, we see that using a non-contrastive representation learning approach such

as VICReg [37] within STERLING performs better than contrastive learning methods such as SE-R,

and reconstruction-based methods such as RAE. This study shows that the proposed self-supervision

objectives in STERLING indeed help learn discriminative terrain features.

Approach
Environment

1 2 3 4 5 6 (a) 6 (b)

Geometric-only 0/5 0/5 0/5 0/5 0/5 0/5 5/5

RCA[7] 2/5 4/5 2/5 0/5 1/5 5/5 0/5

GANav[19] 5/5 0/5 0/5 5/5 0/5 4/5 5/5

SE-R[8] 1/5 0/5 5/5 1/5 3/5 5/5 4/5

Fully-Supervised 5/5 5/5 5/5 5/5 5/5 5/5 5/5

STERLING (Ours) 5/5 5/5 5/5 5/5 5/5 5/5 5/5

Table 1: Success rates of different algorithms on the task of preference-aligned off-road navigation

5 Limitations and Future Work

Figure 4: Ablation study depicting classification
accuracy (value closer to 1.0 is better) from terrain
representations learned using different approaches
and objectives. The combined objective (VI +
MM) proposed in STERLING achieves the highest
accuracy, indicating that the learned representa-
tions are sufficiently discriminative of terrains.

STERLING requires traversing over terrains in

order to learn representations, which may be

unsafe in certain situations. Uncertainty-aware

safe exploration and exploration focusing on in-

formative and diverse terrains for data collec-

tion is a promising direction for future work.

Extending STERLING features to work on un-

structured non-flat environments such as stairs

[48] and boulders [49] is another promising di-

rection for future work. Extending STERLING

by pretraining with large-scale off-road datasets

using modern architectures such as transform-

ers that are known to scale well with large-scale

data is an exciting direction for future work.

6 Conclusion

In this paper, we introduce Self-supervised TEr-

rain Representation LearnING (STERLING), a

novel framework for learning terrain repre-

sentations from easy-to-collect, unconstrained

(e.g., non-expert), and unlabeled robot experience. STERLING utilizes non-contrastive representa-

tion learning through viewpoint invariance and multi-modal correlation self-supervision objectives

to learn relevant terrain representations for visual navigation. We show how features learned through

STERLING can be utilized to learn operator preferences over terrains and integrated within a plan-

ner for preference-aligned navigation. We evaluate STERLING against state-of-the-art alternatives

on the task of preference-aligned visual navigation on a Spot robot and find that STERLING out-

performs other methods and performs on par with a fully-supervised baseline. We additionally per-

form a qualitative large-scale experiment by successfully hiking a 3-mile-long trail using STERLING,

demonstrating its robustness to off-road conditions in the real world.
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7 Data Collection

In all experiments, we use a legged Boston Dynamics Spot robot and collect robot experi-

ences on eight different types of terrain around the university campus that we labeled as mulch,

pebble sidewalk, cement sidewalk, grass, bushes, marbled rock, yellow bricks, and

red bricks. The data is collected through human teleoperation (by the first and second authors)

such that each trajectory contains a unique terrain throughout, with random trajectory shapes. Note

that STERLING does not require a human expert to teleoperate the robot to collect robot experience

nor does it require the experience to be gathered on a unique terrain per trajectory. We follow this

data collection approach since it is easier to label the terrain for evaluation purposes. STERLING

can also work with random trajectory lengths, with multiple terrains encountered along the same

trajectory, without any semantic labels such as terrain names, and any navigation policy can be used

for data collection. We record 8 trajectories per terrain, each five minutes long, and use 4 trajectories

for training and the remaining for validation.

8 Sampling-based Planning

Figure 5: An overview of the cost infer-
ence process for local planning at deployment.
The constant-curvature arcs (yellow) are over-
layed on the BEV image, and the terrain cost
Jterrain(Γ) is computed on patches extracted
along all arcs. White is high cost and black is
low cost.

Sampling-based planning: We assume access

to a receding horizon sampling-based motion

planner with a fixed set of constant-curvature

arcs {Γ0,Γ1, . . . ,Γns}, Γ ∈ SN which solves

for the optimal arc Γ∗ = argmin
Γ

[J (Γ, G)],

minimizing the objective function J (Γ, G),J :
(Γ, G) −→ R

+. For the task of preference-

aligned off-road navigation, we assume the ob-

jective function is composed of two components

Jgeom(Γ, G) and Jterrain(Γ), and can be de-

fined as J (Γ, G) = αJgeom(Γ, G) + (1 −
α)Jterrain(Γ). Jgeom(Γ, G) is the geometric

cost that deals with progress towards the goal

G and avoiding geometric obstacles, whereas

Jterrain(Γ) is the terrain cost associated with

preference-alignment. We utilize the geomet-

ric cost as defined in AMRL’s graph navigation

stack 3. The multiplier α ∈ [0, 1] trades off

relative contributions of the geometric and ter-

rain preference components of the path planning

objective. A 1D time-optimal controller trans-

lates the sequence of states in the optimal tra-

jectory Γ∗ to a sequence of receding horizon ac-

tions (a0, a1, . . . , aN ). For a given arc Γ =
{s0, s1, . . . , sN}, such that state s0 is closest to

the robot, the terrain-preference cost can be com-

puted as follows.

Jterrain(Γ) =

N∑

vi∼Γ,i=0

γiC(u(fv(vi)))

N + 1
(2)

The function fv(.) maps from RGB space of a visual patch of terrain vi at a specific state si, to its

visual representation φv ∈ Φv . For instance, fv can be the visual encoder learned using STERLING,

as described in Section 3.2. The utility function u(.) maps the visual representation φv of a patch of

terrain to a real-valued utility of preferences. We follow the utility function formulation of Zucker et

al. [46] and assume the terrain preference cost follows a multiplicative formulation such that given

3https://github.com/ut-amrl/graph navigation
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Figure 6: Trajectories traced by different approaches for the task of preference-aligned off-road
navigation. Shown here are two different preferences expressed by the operator in the same
environment—in 6 (a), sidewalk is more preferred than grass which is more preferred than bush,
and in 6 (b), grass and sidewalk are equally preferred and bush is least preferred. We see that
without retraining the terrain features, in both cases (a) and (b), STERLING optimally navigates to
the goal while adhering to operator preferences.

a utility value x ∈ R
+, the traversability cost is C(x) = e−x. The discount factor γ weighs the

terrain cost proportional to its proximity to the robot. We set γ to 0.8, which we find to work well

in practice.

Planning at Deployment: Fig. 5 provides an overview of the cost inference process for local

planning at deployment. To evaluate the terrain cost Jterrain(Γ) for the constant-curvature arcs,

we overlay the arcs on the bird’s eye view image, extract terrain patches at states along the arc,

and compute the cost according to Eq. 2. We compute the visual representation, utility value, and

terrain cost of all images at once as a single batch inference. Since the visual encoder and the utility

function are relatively lightweight neural networks with about 0.5 million parameters, we are able

to achieve real-time planning rates of 40 Hz using a laptop-grade Nvidia GPU.

9 Additional Experiments

In this section, we detail additional experiments performed to evaluate STERLING-features against

baseline approaches.

9.1 Preference Alignment Evaluation

In addition to the evaluations of STERLING-features with baseline approaches in five environments

as shown in Sec. 4, we utilize Env. 6 to further study adherence to operator preferences. We hypoth-

esize that the discriminative features learned using STERLING is sufficient to learn the preference

cost for local planning. To test this hypothesis, in Env. 6 containing three terrains as shown in Fig.

6, the operator provides two different preferences 6(a) and 6(b). While bush is the least preferred in

both cases, in 6(a), sidewalk is more preferred than grass and in 6(b), both grass and sidewalk

are equally preferred. We see in Fig. 6 that using STERLING features, the planner is able to suffi-

ciently distinguish the terrains and reach the goal while adhering to operator preferences. Although

SE-R [8] adheres to operator preference in 6(b), it incorrectly maps grass to bush, assigning a

higher cost and taking a longer route to reach the goal. On the other hand, RCA [7] fails to adhere to

operator preferences since it directly assigns traversability costs using inertial features.

9.2 Large-Scale Qualitative Evaluation

In this subsection, we perform a qualitative evaluation of STERLING by reporting a large-scale study

of semi-autonomously hiking a 3-mile-long off-road trail using the Spot robot.

We train STERLING using unconstrained robot experience collected within the university campus

and train the preference utility function using operator-provided preferences: marble rocks <

grass < dirt = cement. The task is to navigate the trail without a global map while adhering

to operator preferences at all times. Since we do not use a global map, visual terrain awareness is
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Figure 7: A large-scale qualitative evaluation of STERLING on a 3-mile outdoor trail. STERLING

features successfully complete the trail with only two manual interventions (shown in red).

necessary to navigate within the trail and avoid catastrophic events such as falling into the river next

to the trail. We set a moving goal of six meters in front of the robot, updated every second. While the

robot navigates autonomously, the operator walks behind the robot and takes manual control only

to correct the robot’s path during forks, or to yield to incoming pedestrians and pets. The attached

supplementary video shows the robot navigating the trail successfully while avoiding less preferred

terrains. The robot needed two manual interventions while traversing along the trail. Fig. 7 shows

the 3-mile trajectory traced by the robot and the two failure cases that required manual intervention.

This large-scale qualitative experiment demonstrates the reliability of STERLING during real-world

off-road deployments.

9.3 Experiments on a Wheeled Mobile Robot

STERLING is intended as a general algorithm to learn relevant terrain representations for off-road

navigation. Towards demonstrating the versatility of STERLING to being applied to robots of differ-

ent morphology, we conduct two additional experiments on the Clearpath Jackal, a wheeled mobile

robot.

Learning Representations on Wheeled Robots: We utilize unconstrained data collected on the

Jackal consisting of multi-modal visual and inertial sensor data and learn terrain representations

using STERLING followed by a utility function of operator preferences. Fig. 8 (STERLING-Jackal)

shows the path traversed by the Jackal in Env. 6, following the human preference sidewalk >
grass > bush. This experiment demonstrates the applicability of STERLING on wheeled robots

with inertial sensors, as against legged robots that have access to additional sensors such as joint

encoders and tactile information.

Zero-Shot Cross-Morphology Transfer: In a noteworthy experiment to evaluate the transfer-

able property of terrain representations across robot morphologies, we utilized the visual encoder

trained on data from the legged Spot robot and applied it on the wheeled Jackal robot without

additional fine-tuning. Fig. 8 (STERLING-Spot) showcases the Jackal’s trajectory, leveraging STER-

LING representations learned from Spot’s data, and adhering to the operator’s terrain preference:

sidewalk > grass > bush. Fig. 10 shows costmaps generated using STERLING features, used

by the sampling-based planner to navigate in an operator-aligned manner. This demonstrates STER-
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