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RECURRENCE RELATIONS FOR S-LEGAL INDEX DIFFERENCE
SEQUENCES
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STEVEN J. MILLER, MATTHEW PHANG, AND SANTIAGO VELAZQUEZ TANNUZZELLI

ABSTRACT. Zeckendorf’s Theorem implies that the Fibonacci number F,, is the smallest pos-
itive integer that cannot be written as a sum of non-consecutive previous Fibonacci numbers.
Catral et al. studied a variation of the Fibonacci sequence, the Fibonacci Quilt sequence: the
plane is tiled using the Fibonacci spiral, and integers are assigned to the squares of the spiral
such that each square contains the smallest positive integer that cannot be expressed as the
sum of non-adjacent previous terms. This adjacency is essentially captured in the differences
of the indices of each square: the i*® and j*® squares are adjacent if and only if |i—j| € {1, 3,4}

or {7,5} = {1,3}.

We consider a generalization of this construction: given a set of positive integers S, the
S-legal index difference (S-LID) sequence (an)ne; is defined by letting a, to be the smallest
positive integer that cannot be written as ), a, for some set L C [n—1] with |i —j| ¢ S for
all 4, 7 € L. We discuss our results governing the growth of S-LID sequences, as well as results
proving that many families of sets S yield S-LID sequences which follow simple recurrence
relations.

1. INTRODUCTION
1.1. Fibonacci numbers and Zeckendorf’s Theorem.
Definition 1.1 (Fibonacci sequence). The Fibonacci sequence Fy, Fy, ... is defined by Fy =
1, Fy =2, and F,, = F,,_1 + F,,_o for all integers n > 3.

Note that the indices are shifted from the standard definition of the Fibonacci sequence.
With this non-standard notation, the statement of Zeckendorf’s Theorem is very beautiful.

Theorem 1.2 (Zeckendorf’s theorem, [1]). Every nonnegative integer is uniquely decomposed
as a sum of distinct Fibonacci numbers without consecutive indices.

A decomposition of a nonnegative integer m into a sum of distinct Fibonacci numbers
without consecutive indices is called a Zeckendorf decomposition of m.
For example, the Zeckendorf decomposition of 2022 is

2022 = F16+F13+F8—|—F6—|-F1. (1.1)

Zeckendorf’s theorem yields a well-known alternate description of the Fibonacci sequence,
as in Proposition 1.3.

Proposition 1.3. For each positive integer n, Fy, is the smallest positive integer which cannot
be decomposed as a sum of distinct numbers in {Fy, Fa, ..., F,_1} without consecutive indices.

Note that Proposition 1.3 uniquely describes the Fibonacci numbers. For example, using
Proposition 1.3, we assert that
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e F} = 1 since no positive integer can be decomposed as a sum of distinct numbers in
the empty set without consecutive indices;

e F5 = 2 since the only positive integer that can be decomposed as a sum of distinct
numbers in {F} } = {1} without consecutive indices is 1;

e F3 = 3 since the positive integers that can be decomposed as a sum of distinct numbers
in {Fy, F5} = {1,2} without consecutive indices are 1 and 2; and

e F; = 5 since the positive integers that can be decomposed as a sum of distinct numbers
in {F1, Fy, F3} = {1,2,3} without consecutive indices are 1, 2, 3, and 4 = 1 + 3.

1.2. Generalizations of the Fibonacci sequence. Several authors have defined general-
izations of the Fibonacci sequence by changing some parameters in the interpretation of the
Fibonacci sequence described in Proposition 1.3. The common theme in many of such gener-
alizations is changing what is an allowed decomposition.

In [3], Ostrowski showed that non-negative integers can be decomposed as integer linear
combinations of terms in the continuant sequence of an irrational number «, and that this
decomposition is unique given some additional constraints. Zeckendorf’s theorem can then be
viewed as the special case of this result with o = ¢. Daykin [4] investigated properties of
sequences of positive integers that admit decompositions of every integer. In [2], Catral, Ford,
Harris, Nelson, and the fifth author defined the (s, b)-Generacci sequence, in which the terms
of the sequence are put into bins of size b, and legal decompositions of integers can contain at-
most one term from each bin. Furthermore, the distance between bins from which numbers are
taken must greater than s. With this notation, the Fibonacci sequence is the (1, 1)-Generacci
sequence, and the authors gave a closed-form expression for the terms of the (1,2)-Generacci
sequence. In a different paper [5], Demontigny, Do, Kulkarni, Moon, Varma, and the fifth
author studied yet another generalization in which the notion of a legal decomposition varies
with index based on some function f. For other examples of related work in this subject, see
6], [7], [8], [9], and [10].

1.3. Quilt sequences. Let’s visualize Proposition 1.3. We arrange a sequence of boxes in an
array that extends infinitely to the right, as seen in as seen in Figure 1. This construction is
called the Fibonacci array of boxes. We assign the Fibonacci number F,, with the n'" box.
We rewrite Proposition 1.3 as Proposition 1.4.

Proposition 1.4. For each positive integer n, F, is the smallest positive integer that cannot
be written as a sum of distinct numbers in {Fy, F, ..., F,_1} without using two summands
for which the correspondent boxes in the Fibonacci array of boxes (Figure 1) share an edge.

Fl F2 F3 F4 F5

FIGURE 1. The (start of the) Fibonacci array of boxes.

Inspired by Proposition 1.4, Catral, Ford, Harris, Nelson, and the fifth author [2] defined
the Fibonacci quilt sequence by changing the 1-dimensional process of the Fibonacci array of
boxes to a 2-dimensional process. The 2-dimensional process that they use is the Fibonacci
spiral (Figure 2). With respect to adjacency, the Fibonacci spiral can be viewed as the log
cabin quilt pattern (Figure 3), i.e., the i®® and j*" boxes in the Fibonacci spiral are adjacent if,
and only if, 7" and j*® boxes in the log cabin quilt pattern are adjacent. This change is purely
aesthetical, since the drawing of the log cabin quilt pattern is more compact to be drawn.
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S-LEGAL INDEX DIFFERENCE SEQUENCES

FIGURE 2. The (start of the) Fibonacci spiral.

:r

FIGURE 3. The (start of the) log cabin quilt pattern.

Definition 1.5 (Fibonacci quilt sequence). The Fibonacci quilt sequence is the sequence
q,q2,--. of positive integers such that, for each positive integer n, q, is the smallest positive
integer that cannot be written as a sum of distinct numbers in {q1,q2, - .., qn—1} without using
two summands for which the correspondent boxes in the log quilt pattern (Figure 3) share an
edge.

The first ten terms of the Fibonacci quilt sequence are 1,2,3,4,5,7,9,12,16,21. Except on
initial terms, the Fibonacci quilt sequence agrees with the Padovan sequence, OEIS sequence
A000931 [11]. In particular, the Fibonacci quilt sequence satisfies simple recurrence relations,
shown in Theorem 1.6.

Theorem 1.6 (Recurrence relations, [2]). Let g, denote the n' term in the Fibonacci quilt
sequence. Then

fOT’ n 6, Gn+1 = qn + Gn—4, (12)
5 Gntl = Gn-1+ qn-2. (1.3)

We define a similar sequence that arises from another 2-dimensional process: the Padovan
triangle spiral, depicted in Figure 4. The Padovan triangle spiral is also called the triangular
quilt.

P
forn >

Definition 1.7 (Triangular quilt sequence). The triangular quilt sequence is the sequence
t1,to,... of positive integers such that, for each positive integer n, t, is the smallest positive
integer that cannot be written as a sum of distinct numbers in {t1,ta, ..., tn—1} without using
two summands for which the correspondent triangles the triangular quilt (Figure /) share an
edge.

The first few terms of the triangular quilt sequence are'
1,2,3,5,6,11,12, 20, 23, 40,46, 80,92, 152, 175, 295, 341, 573, 665, 1164, 1339, 2219, 2560. (1.4)

IRefer to the GitHub repository at https://github.com/ZeusDM/S-LID-sequences for the algorithm we
used to generate these terms.



FIGURE 4. The (start of the) Padovan triangle spiral, or triangular quilt.

Since the definition of the triangular quilt sequence is very similar to definition of the Fi-
bonacci quilt sequence, we expect to find a recurrence relation for the triangular quilt sequence,
similar to Theorem 1.6. However, further calculations fail to reveal such a recurrence. Never-
theless, Proposition 1.8 displays a natural generalization of Equation (1.2) that mysteriously
holds for some, but not all, values of n.

Proposition 1.8. Let 6 < n < 50 be an integer. Then,
thy1 = tp+tn—s (1.5)
if, and only if, n € {6,8,10,12,14, 16, 18, 20, 22, 24, 26, 31, 33, 35,37, 39,41, 43, 46, 48}.

Proposition 1.8 was verified using computer code.? We conjecture that Equation (1.5) holds
for infinitely many indices n.

1.4. S-legal index difference sequences. Intrigued by the apparent lack of a simple re-
currence relation for the triangular quilt sequence, we decided to simplify and generalize the
definition of the quilt sequences.

We observe that the boxes corresponding to ¢; and ¢; share an edge in the log cabin quilt
pattern (Figure 3) if, and only if, |¢ — j| € {1,3,4} or {i,j} = {1,3}. Similarly, the triangles
corresponding to t; and t; share an edge in the Padovan triangle spiral (Figure 4) if, and only
if, |i — j| € {1,5} or {i,j} = {1,4}.

In Definition 1.9, we create the S-legal index difference sequences, S-LID sequence for
short. We disregard the initial edge cases of the adjacency of the log cabin quilt pattern and
the Padovan triangle spiral (respectively, {i,j} = {1,3} and {i,j} = {1,4}) and focus on the
fact that adjacency means that the index difference is in a fixed set (respectively, the sets
{1,3,4} and {1,5}).

Definition 1.9 (S-legal index difference sequences). Let S be a set of positive integers. The
S-legal index difference sequence (or S-LID sequence) is the sequence a1, asg, ... of positive
integers such that, for each positive integer n, a, is the smallest positive integer that cannot
be written as a sum of distinct numbers in {ay,az,...,a,—1} without using two summands a;
and a; such that |i —j| € S.

Note that for any set S of positive integers, the first and second terms of the S-LID sequence
are 1 and 2. Also, note that the S-LID sequence is increasing.

2Refer to the GitHub repository at https://github.com/ZeusDM/S-LID-sequences for the details of this
verification.
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S-LEGAL INDEX DIFFERENCE SEQUENCES

Definition 1.10 (S-legal index difference decomposition). Let S be a finite set of positive
integers. Let ai,as,... be the S-LID sequence. A S-legal index difference decomposition
(or S-LID decomposition) of a nonnegative integer m is a sum of the form

m = Zag, (1.6)

in which L C Zso and |i —j| ¢ S for alli,j € L.

The definitions 1.9 and 1.10 imply that, for every subset S C Z~(, each nonnegative integer
has at least one S-LID decomposition. Also, the n'" term of the S-LID sequence is the smallest
integer that does not have a S-LID decomposition using the first n — 1 terms of the S-LID
sequence.

Refer to Section 2 in order to see examples of S-LID sequences. In addition to examples,
we believe that Proposition 1.11 is very useful in understanding the S-LID sequences.

Proposition 1.11 (Fundamental lower bound of S-LID sequences). Let S be a finite non-
empty set of positive integers. Let k = maxS. Let ai,as,... be the S-LID sequence. Then,
foralln>k+1,

An+1 Z ap+ Gp_k- (17)

Proof. Since a,,+1 is the smallest number that does not have a S-LID decomposition using the
first n terms, it suffices to show that every r < a,, + a,,_ has an S-LID decomposition using
the first n terms.

If 0 < r < ay, then, by definition of a,,, there exists an S-LID decomposition of r using the
first n — 1 terms; therefore, the same decomposition is also an S-LID decomposition of 7 using
the first n terms.

Ifa, <r <ap+a,_g, then 0 <r—a, < a,_i. By definition of a,,_j, there exists an S-LID
decomposition of r — a,, using the first n — k — 1 terms, i.e., there exists L C {1,...,n—k—1}
such that [¢; — ¢3| ¢ S for all ¢1,¢5 € L and

r—Qp_1 = Zag. (1.8)
LeL

Since |n — ¢| > k and, consequently, |n — ¢| ¢ S for all £ € L, it follows that L U {n} C
{1,...,n} satisfies [¢(; — lo| ¢ S for all ¢1,¢s € LU {n} and

r o= Z ag; (1.9)

LeLU{n}

therefore, r has an S-LID decomposition using the first n terms. O

We remark that, although the Fibonacci quilt and triangular quilt sequences are not S-LID
sequences, the equality case of Inequation (1.7), explicitly

Gnil = Qp+ ap_g, (1.10)

is related to them as well. For the Fibonacci quilt sequence, the equality (with &k = 4) holds
for all n > 6 (refer to Theorem 1.6); and for the triangular quilt sequence, the equality (with
k = 5) holds for some values of n (refer to Proposition 1.8).

The problem that this article partially solves is to determine, given a set S, if the Equa-
tion (1.10), applied to the S-LID sequence, holds for all sufficiently large positive integers n. In
Section 2, we understand some examples of S-LID sequences and we state some propositions
similar to Proposition 1.8 that show that this problem is interesting. In Section 3, we display
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an infinite family of sets S for which Equation (1.10) holds for all sufficiently large positive
integers n. More explicitly, we prove the following theorem:

Theorem 1.12. Let T be a finite set of positive integers. Let ¢ = maxT. For all sufficiently
large k, the ([k]\ (k —T))-LID sequence (an);, satisfies

pi1 = Qp+ Gp_k. (1.11)
for allm >k +c.

Refer to Theorem 3.10 for the explicit meaning of “sufficiently large k.”

2. EXAMPLES OF S-LEGAL INDEX DIFFERENCE SEQUENCES

The S-LID sequences are natural generalizations of the 2-dimensional processes that yield
the Fibonacci quilt and triangular quilt sequences. Furthermore, this family of sequences also
provides generalizations to important and standard sequences, such as the Fibonacci sequence
and the sequence of powers of 2. In this section, we explore some examples of S-LID sequences
and understand their structures.

2.1. “Sparse” sets S. In this subsection, we discuss the @-LID, {1}-LID, {2}-LID, and
{3}-LID sequences.

Example 2.1 (The @-LID sequence). The @-LID sequence is the sequence of powers of 2.
Let a1,a9,... be the @-LID sequence, i.c., the sequence of positive integers such that, for
each positive integer n, a, is the smallest positive integer that cannot be written as a sum of
distinct numbers in {ay, a9, ... ,ap_1}.
Note that the sequence 2°,21, ... of powers of 2 has the property that every number can be
uniquely written as a sum of distinct terms. It follows that the sequence of powers of 2 satisfies
the definition of the @-LID sequence, thus a, = 2"~ for all positive integers n.

Example 2.2 (The {1}-LID sequence). The {1}-LID is the Fibonacci sequence.

Let ay,aq9,... be the {1}-LID sequence, i.e., the sequence of positive integers such that, for
each positive integer n, a, is the smallest positive integer that cannot be written as a sum
of distinct numbers in {a1,a2,...,an—1} without using two summands a; and a; such that
i~ jl = 1.

This definition is equivalent to the alternative definition of Fibonacci numbers presented in
Definition 1.3. Hence, a, = F,, for all positive integers n.

We remark that the {1}-LID sequence satisfies the equality case of Inequation (1.7) for
k = max{1} = 1, explicitly
Ap+1 = Qp + Ap—1, (21)
for all integers n > 2.

Proposition 2.3 (The {2}-LID sequence). Let ay,as,... be the {2}-LID sequence. Then,
a1 =1,a9 =2,a3 =4, and

pt1 = ap+ ap—2, and (2.2)
n—2

Qpi1 > Zai (2.3)
i=1

for all integers n > 3.
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S-LEGAL INDEX DIFFERENCE SEQUENCES

Proof. We use induction on n. Note that a1 = 1, as = 2, ag = 4, a4 = 5, a5 = 7. Hence, the
statement is true for n € {3,4}.
Let n > 5. Assume that a1 = ay + a2 and a1 > Z'z;f a; for all 3 <t < n. From
Proposition 1.11, it follows that
Ap+1 2 Ap + Ap—2. (24)

Suppose a,, + ap—2 has a {2}-LID decomposition using the first n terms of the {2}-LID
sequence, i.e., there exists L C [n] such that

U +any = Y a (2.5)

lel

and |[i —j| #2 for all 7,5 € L.

Suppose n € L. Then,

Ap—92 — Z Qy. (26)
teL\{n}

Note that n — 1 ¢ L, otherwise a,_s = ZZEL\{n} ag = ap—1 > ap—2. Also note that n —2 ¢ L,
since |n — (n — 2)| = 2. Hence, L C [n — 3]. Therefore, a,_9 has a {2}-LID decomposition
using the first n — 3 terms of the S-LID sequence, a contradiction.

Suppose n ¢ L and n — 1 € L. Then,

Uny+n-3 = Gn—an_1+any = Y ag. (2.7)
teL\{n—1}
Since |[(n—1)—(n—3)] = 2, it follows that n — 3 ¢ L. If n —2 € L, then a,_-3 =

eI\ {n—1,n—2} Ot hence a,,_3 has a {2}-LID decomposition using the first n — 4 terms of the
S-LID sequence, a contradiction. If n — 2 ¢ L, then

n—4 n—4
Zai < Gp-1 = ap2+apg4 < Gp_2+tan_3 = Z ap < Zai, (2.8)
i—1 LeL\{n—1} =1

a contradiction.
Suppose n,n — 1 ¢ L. Then,

n—3 n—2
Z a;+ an_o9 < an+ap_o = Z ay < Z a;, (2.9)
i=1 =1

el

a contradiction.
Therefore, a, + a,—2 does not have a {2}-LID decomposition using the first n terms of
the {2}-LID sequence. Then, a,t+1 < an + ap—2, and consequently, with Equation (2.4),

(p+1 = Ap + Gp_o. Moreover, ani1 = ap + Ap—2 > ap—2 + Z?:_f’ a; = Z?:_f a;.
Therefore, by induction, Equations (2.2) and (2.3) hold for all integers n > 3. O

We remark that the {2}-LID sequence is the OEIS sequence A164316 [12].
For k € {1,2}, the {k}-LID sequence satisfies a,+1 = a,, + a,_i for all n > k + 1. However,
this fact is not true for k = 3.

Example 2.4 (The {3}-LID sequence). The first twenty terms of the {3}-LID sequence are
1,2,4,8,9,11,15, 23,32, 64,79, 134, 166, 244, 355, 489, 679, 1011, 1485, 2163. (2.10)
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Proposition 2.5. Let 4 < n < 40 be an integer. Let aj,as,... be the {3}-LID sequence.
Then,

Apt1 = Gp+ Q-3 (2.11)
holds if, and only if, n € {4,5,6,7,8,10,12,15}.
Proposition 2.5 was verified using computer code.”
2.2. “Dense” sets S. In this subsection, we discuss the S-LID sequences for S = [k]\ (k—T),

for some relatively small sets T: T = @, T' = {1}, and T' = {2}. In Section 3, we deal with
arbitrary sets 1" and sufficiently large k.

Lemma 2.6. Let k,n be integers. Let ay,as,... be the [k]-LID sequence. The largest integer
with a [k]-LID decomposition using {a1,...,an} is

Nezd

Z Un—i(k+1)- (2.12)
i=0

Moreover,
Fzzd
an+1 < 1+ Ap—i(k+1)- (213)
i=0
Proof. Suppose m has a [k]-LID decomposition using {ai,...,a,}, i.e, there exists L C [n]
such that

m o= a (2.14)

leL

and |i — j| > k + 1 for all distinct 7, j € L. Let £1 > f5 > f3 > --- < {|| be the elements of L.
We know that ¢; < n and ¢, — f;41 > k + 1 for all positive integers ¢ < |L|. Hence, since the
S-LID sequence is increasing, it follows that

L] Ezsd
m =Y a, < A —i(kt1)- (2.15)
t=1

7

[

Il
=)

Therefore, the first claim follows. Since a,1; is the smallest positive integer with no [k]-LID
decomposition using {a1,...,ay}, the second claim follows. O

Proposition 2.7. Let k be an integer. Let a, denote the n'™ term of the S-LID sequence.
Then, for all nonnegative integers n,

ant1 = 1+ Ap—i(k+1) (2.16)
and

an+1 = n+1 ifn <k,

) 2.17
An+l = Gp+ap_p ifn>=>k+1. ( )

3Refer to the GitHub repository at https://github.com/ZeusDM/S-LID-sequences for the details of this
verification.
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S-LEGAL INDEX DIFFERENCE SEQUENCES

Proof. We use induction on n. Recall that a; = 1. There are no [k]-LID decompositions with
more than 2 summands using the first n terms of the [k]-LID sequence, for all nonnegative
integers n < k. Therefore, a,+1 = a, + 1 for all nonnegative integers n < k. By induction, it
follows that a,+1 = n + 1 for all nonnegative integers n < k.

Now, let n > k+1. Assume, by induction hypothesis, that equation (2.16) holds for n—k—1,
ie.,

n—k n+41
71 Nad
an = 1+ Z Up—k-1=i(k+1) = 1+ Z U (i+1) (k+1)- (2.18)
i=0 i=1
Lemma 2.6 implies that
Rzl
any1 < 1+ Z An—i(k+1) = n + Qn—k, (2.19)
i=0

and Proposition 1.11 implies that
pt1 2 Qp + Ap_g. (220)

Therefore, equality holds in Equations (2.19) and (2.20), as desired for the induction. O

For sets S of the form [k]\ {k — 1} and [k]\ {k — 2}, we have Conjectures 2.8 and 2.9, based

on computational experimen‘cs.’1

Conjecture 2.8. Let k > 2. Let S = [k] \ {k — 1}. Let ay,as9,... be the S-LID sequence.
Then,

Gni1 = ap + Gp_k (2.21)
for all integers n >k + 1.

Conjecture 2.9. Let k > 8. Let S = [k] \ {k —2}. Let ay,aq,... be the S-LID sequence.
Then,

Apt1 = Qp + Qg (2.22)
for all integers n > k + 2.

<20 and all k+1 < n <40.

Equation (2.21) holds for all integers k and n satisfying k
<20and all k+1 < n <62

2<
Equation (2.22) holds for all integers k and n satisfying 2 < k

3. RECURRENCE RELATIONS FOR S-LID SEQUENCES

In this section, we prove Theorem 1.12, which is a natural generalization of Proposition 2.7,
Conjecture 2.8 and Conjecture 2.9. The version of Theorem 1.12 we prove by the end of this
section is Theorem 3.10, in which we explicitly define what “sufficiently large k£” means.

The proof is split into two parts. In Subsection 3.1, we describe a condition that, if a
set S satisfies, then the Equation (1.11) holds for the S-LID sequence for all suitable n. In
Subsection 3.2, we show that for all finite sets 7', for all sufficiently large k, the set [k]\ (k—T)
satisfies the condition from Subsection 3.1, hence Equation (1.11) holds for the ([k]\ (k —T'))-
LID sequence for all suitable n.

4Refer to the GitHub repository at https://github.com/ZeusDM/S-LID-sequences for the details of these
verifications.



3.1. Finite check to prove recurrence. We now prove some preliminary results about S-
LID sequences that outline a finite check that can be used to show that certain S-LID sequences
satisfy the recurrence relation given in Equation (1.11). Fix (a,)52; to be the S-LID sequence
corresponding to a set .S with largest element k such that the smallest positive integer not in
S is k — ¢ for some ¢ > 0. Note from Proposition 1.11 that the recurrence always gives a lower
bound for the next term in the sequence.

The proof of our finite check follows by simultaneous induction on the following statements,
where d is a positive integer:

A(n) Y Gpyl = Qp +Qp—g,
B(’I’L) Yontapg > Z Ap—1—i(k—c) = On—1 + Ap—1—(k—c) + Ap—1-2(k—c) +o
0<i(k—c)<n—1

Cy(n): apt1+an > apie+ an_g.

In particular, we will show that if A(n), B(n), and C4(n) all hold for certain intervals of
base cases (for a certain value of d), then A(n) holds for n > k + ¢. We first prove a series of
lemmas showing how these statements relate to each other.

Lemma 3.1. B(n) implies A(n).

Proof. Assume A(n) does not hold. By Proposition 1.11, a,,+a,—r has an S-LID decomposition
using (ai,...,ap), i.e., there exists L C [n] such that [¢; — ¢3] ¢ S for all ¢1,¢5 € L and

Ap + Qp_p = Zag. (3.1)
lel

If n € L, we would have

Ap_f = Z ay. (3.2)

teL\{n}
If this was the case, n — k ¢ L because |n — (n — k)| =k € S. Since (a;){2, is increasing, this
would yield an S-LID decomposition of a,_j using (aq,... ,an_(k+1)), which cannot occur.

Therefore, n ¢ L.
Given that n ¢ L, the value for ), ; ay is at most

Z Ap—1—i(k—c) = OGn—1 + Ap—1—(k—c) + Ap—1-2(k—c) +oee (33)
0<i(k—c)<n—1

This is because because k — ¢ is the smallest positive integer not in .S, and thus the smallest
legal index gap in any S-LID decomposition. Because (a,)5% is increasing, beginning with
an—1 and choosing the smallest gap for each term yields an upper bound for the value for this
sum. Therefore,

U+ pp = Zaz S -1+ A 1-(k—¢) T An_1-2(k—c) + " » (3.4)
lel
Therefore, B(n) also does not hold. Thus, B(n) implies A(n). O

Lemma 3.2. Let ¢ be a positive integer satisfying k > 2(¢' +1). Then, for alln > 1,

an > Zan—i(k—c’) = U (k—c/) T An2(k—c) T - (3.5)
k—c'<i(k—c')<n
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Proof. Induct on n. For a base case, for all 1 < n < 2(k — ¢’), the right hand side has at most
one summand of index strictly smaller than n. Now take n > 2(k — ¢/) and suppose as an
induction hypothesis Equation (3.5) for n — 2(k — ¢), that is

Ap—2(k—c') > Ap—3(k—c') + An—4(k—c) +oee (36)
Applying Proposition 1.11 k — ¢’ times, we have

WV

Qnp, Ap—1+ ap_1-k
(an—2 + an—2—k) + An—1—k

((an—?) + an—3—k) + an—2—k) + an-1-k

VoWV

(3.7)

n—1—k

Z Qp_(k—c) T Z a;,
i=n—(k—c)—k

where we say a; = 0 if i < 0, which is relevant only for n < 2k — ¢. Because k > 2(¢' + 1), we
have n — (k —¢) —k<n—2(k—c)andn—2(k =) +1<n—1—k, s0 a,_op—c)41 and
Ap_o(k—¢y are both in the summation in Equation (3.7). Removing all other summands but
these two gives

an = Ap—(k—c') + Ap—2(k—c') + Op—2(k—c')+1 =~ On—(k—c') + Ap—2(k—c) + Ap—2(k—c)- (38)
Using Equation (3.6) to rewrite the second a,_s(x—) gives

an > Ap—(k—c') + An—2(k—c') + An—3(k—c') + QAn—4(k—c) T+ (39)

which completes the inductive proof. O

Corollary 3.3. For alln > 1,
Ut (k—c') > Z Ap—i(k—c) = On + Ap—(k—c) + An—2(k—c) +- (310)

0<i(k—c)<n
foralld = ¢ >0 with k > 2(d +1).
Proof. Because ¢’ > ¢ and the sequence is increasing
g+ Qp_(p—ery + G_g(h—ey T Z A0+ (g T Qg (p—c) (3.11)
The result then follows from applying Lemma 3.2 to the left hand side. U
Lemma 3.4. Cy(n — k — 1) implies B(n) for k > 2d — 4c + 2.

Proof. By Proposition 1.11, we have a,, —an—1 2 @y (x41), S0 to prove B(n) it suffices to show
that

Un—k + n—(kt1) > Ano1—(k—c) T Gn_1-2(k—c) + " - (3.12)
Assuming Cy(n — k — 1), we have
pk + Q-1 — Qp—k—1tc > Op_k_1-d (3.13)
so it suffices to show that
Up—k—1-d > Ap_1-2(k—c) T On_1-3(k—c) T " - (3.14)

By Corollary 3.3, the right hand side is bounded above by
Ap—1-2(k—c)+(k—c') — On—k—1—2c—c (315)
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forall > cand k > 2(¢ +1). Wehaven—k—1—d >n—k—1—2c— ¢ if and only if
d > d—2c, sofor k>2(d—2c+1) =2d — 4c + 2 we obtain the desired inequation. (]

Lemma 3.5. Cy(n), Cy(n — k), A(n + 1), A(n), A(n + ¢), and A(n — d) together imply
Cy(n+1).

Proof. Cyq(n) and Cy(n — k) imply that

pt1 + G > Gpye+ Gp_g, (3.16)
Apt1—k tQn—k > Gpnge—k + Ap—d—k- (3.17)

Adding these inequations together and applying the recursion relations A(n+1), A(n), A(n+c),
and A(n — d) gives

ap+2 + Apt1 > Gpyetl + Gn—d+1, (3-18)

which is precisely Cy(n + 1). O

We now put these results together.

Theorem 3.6. Let S be a finite set of positive integers with largest element k, and let k — ¢
be the smallest positive integer not in S (so S is not [k]). Let (an)32 be the S-LID sequence.
Suppose that there exists d > 0 such that

o k>2d—4c+2,
e Cy(n) holds forc+d+1<n<k+c+1+d, and
e B(n) holds fork+c+1<n<2k+c+d+2.

Then
pil = Ap+ ap_k (3.19)
for all integers n > k + c.

Proof. Suppose first that k +c¢+ 1 < n < 2k + ¢+ d+ 2. Then by Lemma 3.1, A(n) holds
because B(n) holds. Now take n > 2k + ¢+ d + 2, and suppose for induction that A(m) and
B(m) hold for k +c+1<m <nand Cy(m —k—1) holds for k+c+d+2<m<n.

Note that, because n > 2k +c+d+ 3 and k > c,

k+c=1<n—-k-2-d<n-k-2<n—-k-1<n-k—-2+c < n, (3.20)

therefore A(n —k—2), Aln—k—1), A(n—k—2+c¢), and A(n —k — 2 — d) hold. Moreover,
Cyq(n—k—2) and Cy(n—2k—2) both hold because n—2k—2 > c+d+1, and n—k—2 < n—k—1.
Therefore, Cy(n — k — 1) also holds by Lemma 3.5.

By Lemma 3.4, we then have B(n) as k > 2d—4c¢+2, which then implies A(n) by Lemma 3.1.
We have thus increased by 1 the values of n such that A(n), B(n), and Cy(n —k — 1) all hold.
By induction, we conclude that A(n) and B(n) hold for all n > k+c+ 1 and Cy(n — k — 1)
holds for all n > k + ¢ + d + 2. In particular, Equation (3.19) holds for all n > k + c. O

Given any fixed S, there are only finitely many d > 0 such that k > 2d — 4c¢ + 2, so this
theorem gives a finite check to show that any S-LID sequence satisfies the expected recurrence
relation. Although these conditions need not occur in every sequence satisfying the recurrence,
the next section gives many families of S-LID sequences for which this check is sufficient to
prove the result.

12



S-LEGAL INDEX DIFFERENCE SEQUENCES

3.2. Removing fixed fringes. In this section we use Theorem 3.6 to prove recurrence rela-
tions for S-LID sequences (a,)52; when S = [k] \ (k — T'), where T is a fixed non-empty set
of positive integers with largest element ¢ and k > 0.

Lemma 3.7. The S-LID sequence satisfies ap, =n for 1 < n < k—c+ 1. Moreover, for any
integer i > —k there exists an integer fp(i) such that axy; =k + fr(i) for all k > i+ 2¢—1.

Proof. The first claim follows from the fact that there are no S-LID decompositions using more

than one summand from the collection (aq,...,ax_.). This immediately implies the second
claim with fp(i) = ¢ for —k < i < —c+ 1. Note that the only S-LID decomposition using
more than one summand using the collection (aq,...,ak_c+1) 1S a1 + ap—cr1 =k — c.

Fix i > —c + 1, and suppose for induction that we have the desired constant fp(i — 1)
holding for k£ > (i—1)+2c—1. Suppose moreover that, for all such k, every element of the set
of S-LID decompositions with more than one summand using the collection (ay,...,ax1;—2)
is of the form k + (constant independent of k). Finally, fix k > ¢ + 2¢ — 1, which in particular
implies that we are in a case where the inductive hypothesis applies. Then we would like to
show that every element of the set of S-LID decompositions with more than one summand
using the collection (ay, ..., ar1;—1) is also of the form k + (constant independent of k), which
will immediately imply that fr(i) == axy; — k is independent of k.

By the inductive hypothesis, we only need to consider the S-LID decompositions that con-
tain agy;_1. The decompositions with exactly two summands are of the form

Uil + Cgici—(hgr) = K+ fr@i—1)+a;1- (3.21)

for —r € T or r > 0 such that i—1—r > 0. Note that the possible choices for r are independent
of k: either —r € T or 1 < r < i—1. Moreover, the values of each a;_1_, are also independent
of k: we have a;_1_, =i — 1 —r for all » we consider because the largest possible value for
1—1—ris
i—14c < (k—2c+1)—14¢ < k—c+ 1. (3.22)
Finally, note that the closest summand that can be added to ayi; 1 in an S-LID de-
composition IS apyi_1_(k—c) = @i—1+c, 10 which nothing smaller can legally be added as
i—14+c¢—(k—c¢) < 0. Hence, we do not need to consider S-LID decompositions with
more than 2 summands, and we are done by induction. O

Lemma 3.8. For any d > 0, A(n) and B(n) are true fork+c+1<n<2k+c+d+2 for
allk > 4c+d+ 1 such that

ho> o omax o {fr(i= 14 e) = fr(i—1) = fr(i) +i+2c— 1} (3.23)

Proof. Fix a value of k as in the lemma statement. By Lemma 3.1 it suffices to just prove
B(n). Suppose first that £ +c+ 1 < n < 2k —2c+ 1. The upper bound on n implies that
n—1—2(k—c) <0, so the only terms in the desired inequation are

Op + Qp—f > Gp—1+ Ap—1—(k—c)- (324)
By Proposition 1.11, we have a, — an—1 = an_k_1, S0 it suffices to show that
On—k—1+ Qn—f > Ap—1—(k—c)- (325)

The largest index represented in this inequation is n — 1 — (k — ¢), and as n < 2k — 2c + 2 we
have n — 1 — (k — ¢) < k — ¢+ 1. Thus, by Lemma 3.7, each of the above a; can be replaced
by 4, and it suffices to prove that

m—k—-1)+n—-k >n—-1—(k—c), (3.26)
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which is true for n > k + c.

Now suppose that 2k —2c+2 < n < 2k + c+d + 2. Note that the a,_;_3x_) term
and beyond vanish in the desired inequation. This is because n — 1 — 3(k — ¢) < 0 holds for
n = 2k + ¢+ d + 2, which follows from the fact that k¥ > 4c + d + 1. Hence, the desired
inequation is

Gn +ap—f > Gp-1+ Ap—1—(k—c) + Ap—1-2(k—c)- (327)
By Proposition 1.11, a,, — ap—1 = a,_p_1, so it suffices to show that
p—k—1+ On—f > Ap—1—(k—c) + Ap—1-2(k—c)- (328)
Writing n = 2k 4+ ¢ for —2c+ 2 <7 < ¢+ d + 2, this is equivalent to showing that

Apti—1+ Qpti > Appi-lye T Qit2e—1- (3.29)

The maximal index that will occur in all of these inequations is £ + 2¢ + d + 1, so from
Lemma 3.7, we can replace each a1 ; with k+ fr(j) because k > (2c+d+1)+2c—1 = 4c+d.
The desired inequation becomes

(k+ fr(i—1)) + (k+ fr(i) > (k+ fr(i —1+c¢)) + aitac-1, (3.30)

where a;49..1 =i+2c—1lasi+2c—1<(c+d+2)+2c—1<k—c+1fork>4c+d.
Hence, the result holds for

E > frii—1+¢)— fr(i—1) — fr(i) +i+2c—1 (3.31)
which is true for our choice of k. O

Lemma 3.9. Let m be the smallest nonnegative integer such that for all i > m,

1, (3 , 1 3,
- 2 14+c— 2 32
2@4-(2 c>z+<—|—26 26>>0, (3.32)
and let d be the mazimum of 2c+m — 1 and
pepax  Afr(ite) = fr() = fr@i+1) +i+1}. (3.33)
Then Cq(n) is true forc+d+1<n<k+c+1+d for all k > 4c+d+ 1 such that
p— 1 —  — 1) — ) ,+ 2¢ — 1} .34
k> _2C+2H<"1?<Xc+d+2{fT(Z +o) = fr(i—1) = fr(i) +i+2c—1} (3.34)

Proof. Fix such an m, d, and k. Suppose first that c+d+ 1 < n < k —2c+ 1. Then the
maximal possible index appearing in Cy(n) is (k —2c¢+ 1) +¢ =k — ¢+ 1, so by Lemma 3.7
we can replace the sequence terms in Cy(n) with their indices. The desired condition then
becomes

(n+1)4+n > (n+c)+ (n—d), (3.35)
which is true because d > 2c+m —1 > c.

Next, suppose that k —2c+2 < n<k+c+m. Writen=k+1i for —2c+2<i<c+m.
Because d > 2c+m — 1, we have k+i—d < k+ (c+m) — (2c+m —1) =k —c+ 1, so
ak+i—q = k + 1 — d. Moreover, the maximal possible index appearing in Cy(n) is k + 2¢ + m,
so because k > 4c+d+ 1> (2¢+ m) + 2¢ — 1, we can apply Lemma 3.7 to write Cy(n) as

(k+ fri+ 1)+ (k+ fr(@) > (k+ fr(i+¢))+ (k+i—d). (3.36)
This holds because
d > frli+c)— fr(i) — fr@i+1)+i. (3.37)
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Finally, suppose that kK +c+1+4+m <n < k+c+ 1+ d. Note that we have taken k to be
sufficiently large to apply Lemma 3.8. For all 1 <t < ¢+ d, we therefore have

Oftctl+t = Qktett T Qott, (3.38)

where k+c+1 < k+c+t < k+2c+d < 2k+c+d+2 because k > ¢, so we are indeed in the cases
proven in Lemma 3.8. Because, k > 3c = (¢c+1) 4+ 2¢— 1, we may take agicr1 = k+ fr(c+1)
by Lemma 3.7. By the same lemma, because 2c+d < k—c+ 1, we may replace any occurrence
of acyt with ¢ +¢. It then follows from repeated application of the above recursion that

Akyet14t = Qgtetl T Aetl T Aeyo + 0+ Aoty (3.39)
= k+ frc+1)+(c+1)+(c+2)+ -+ (c+1) (3.40)

1 1
= k+ fr(c+1) + §t2 - <§ + c> t, (3.41)

where this clearly extends to ¢t = 0 as well.
Write n =k +c+ 1+ for m <1 < d. To prove Cy(k + ¢+ 1+ 1), we want to show that
Oktc+24i T Qkdet14i > Qk42c+1+i T Cktct1+i—d- (3.42)
We can write agicr14i—q = (k+ fr(c+14+i—d)) because k > 3c—1 > (c+1+i—d)+2c—1.

Applying Equation (3.41) to the remaining terms, the desired inequation becomes

(k+fric+ 1) +36@+ 1%+ (3 +¢) i+ 1) + (k+ fric+1) + 3i* + (3 +¢) 9)

1/- 2 1 . . (343)
> (k+ frc+ 1)+ 3+ + (3+¢) (i+0) + (k+ fr(c+1+i—d)).
Canceling and rearranging, we obtain
1 1
52'2—1- <g—c>i+ (14—56—%02) > fr(c+1+i—d)— fr(c+1). (3.44)

Note that as i < d, we have ¢+ 1+ 4 — d < ¢+ 1. Therefore, because the fr(j) increase as j
increases, it suffices to prove that

1 3 1 3
which is true for ¢ > m by the definition of m. O

We have thus established the base cases for this family of S-LID sequences that can be used
to apply Theorem 3.6.

Theorem 3.10. Let T be a non-empty finite set of positive integers with largest element c,
define d as in Lemma 3.9, and suppose that k > max{2d — 4c +2,4c + d + 1} such that

k> —2c+2H<1?<Xc+d+2{fT(i —1+¢)— fri—1)— fr(i) +i+2c—1}. (3.46)
Then for S = [k]\ (k —T), the S-LID sequence (ay)22 satisfies the recurrence
Apt1 = Ap + Qg (3.47)
forn>k+c.

Proof. The criteria on d and k guarantee that we are in a situation where Lemmas 3.8 and 3.9
can apply. These lemmas give the base cases for B(n) and Cy(n) respectively in Theorem 3.6,
and taken with the fact that k > 2d — 4c + 2 they allow us to apply that theorem to obtain
the desired recurrence. O
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We note that lower bound on k is only a lower bound needed to prove the recurrence by
this general method, and need not be the smallest k for which the recurrence holds for a given
T. We demonstrate this by the following example:

Example 3.11. Take T = {1}, so that S = [k]\ (k—T) = [k] \ {k — 1} as in Conjecture 2.8.
Then ¢ =1, so Equation (3.32) becomes
1, 1.

which implies that m = 1. From Lemma 3.7 we have fr(i) =1 for —k < i < 0. By computing
all S-legal sums using the initial values of the sequence, we obtain the values of fr(i) for some
small values of i:

fr(1) =2, fr(2) =3, fr(3) =5 fr(4) = 8. (3.49)
We want d to be the mazimum of 2c+m —1 =2 and

max  {fr(i+c) — fr(i) — frli+1) +i+1}

—2c+2<i<e+m

:0n<1a<x{ fr(i) +i+ 1} = max{1,0,0} =1,

(3.50)

so we set d = 2. Finally, to apply Theorem 3.10, we need k to be at least 2d — 4c+ 2 = 2, at
least 4c+d+ 1 =17, and larger than

e {fr(i—14¢) = fr(i = 1) = fr() +i+2c—1}

= max{fr(i—1)+i-2c—1} (3.51)

= max{—4,-2,1,3,6,10} =

Thus, for T = {1}, we need k > 11 for Theorem 3.10 to apply. Therefore, Conjecture 2.8 does
not directly follows from Theorem 3.10.

4. FUTURE WORK

There are many questions that can now be explored for S-LID sequences, even those that
eventually follow a simple recurrence. Below are just a few such questions that we leave for
future work:

Question 1. Is there a general proof of the recurrence relation in Theorem 3.10 that works
for the minimal value of k for which the recurrence holds?

Question 2. Are there infinitely many indices of the triangular quilt sequence for which
Equation (1.5) holds? If yes, does the natural density of the set of these indices exist? If it
exists, what is it? What about the analogous problem for S-LID sequences?

Question 3. The algorithm to generate terms in S-LID sequences’ is very slow. The time

it takes to compute the n'" term given the previous terms grows exponentially on n. For the
choices of S covered in Section 3, using the recurrence relation gives us a very fast algorithm:
given the previous terms, we can compute the next term in constant time. For the choices of
S not covered in Section 3, can one construct an algorithm better than the exponential one?

SRefer to the GitHub repository at https://github.com/ZeusDM/S-LID-sequences for the algorithm we
used to generate these terms.
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Question 4. The greedy algorithm always returns the Zeckendorf decomposition of a number
n; that’s not true for Fibonacci quilt decompositions. In [2, Theorem 1.13] the proportion of
integers [1, g, ) for which the greedy algorithm gives a legal decomposition is shown to converge
to some computable constant. Does an analogous result hold for S-LID sequences?

Question 5. There is a unique legal decomposition of a positive integer into Fibonacci num-
bers, while in [2, Theorem 1.11], it is shown that the average number of ways to legally
decompose an integer in [0, g,,) into terms in the Fibonacci quilt sequence grows exponentially
in n. For various choices of S, how does the average number of S-LID decompositions of
integers in [0, ay,) change with n?

As a first step toward answering Question 5, we have the following lemma, which is an
adaptation of [2, Lemma 3.1].

Lemma 4.1. Let S = [k] \ {k — ¢} with 2c < k, and (a,,)}>_, be the S-LID sequence. Let d,
denote the number of S-LID decompositions that can be formed with {a1,...,an}. Then the
dy,, follow the recurrence relation

dn = dn—l + dn—k—i—c - dn—k—i—c—l + dn—k—l (41)
forn>k+1.

Proof. Let ¢, denote the number of S-LID decompositions that can be formed with {a1,...,a,}
that include a,,. Then

Cp — dn _dn—l (4.2)
because the only decompositions that are counted by d, that are not counted by d,_; are
those that use a,. On the other hand, we have

cn = dp—k—1+ Cnkte (43)

because the S-LID decompositions including a,, partition into those whose next largest sum-
mand is at most a,,_g_1, which is counted by d,,_;_1, and those that include a,,_j., which is
counted by ¢, _r1.. Note that we use the fact that 2c < k in this second case to conclude that
the next largest legal summand after a,,_ 1. 1S @n_2k12c, Which has a strictly smaller index
than a,_; and hence can be included regardless of the fact that we have already included a,.
Using Equation (4.2) to eliminate ¢, and ¢, _g4. from Equation (4.3) gives the lemma. O

We now outline how this lemma could be used to find the average number of S-LID de-
compositions. By Theorem 3.10, for k& > 0, we have a,4+1 — ay, — a,_ = 0 for n > 0. Thus,
for large n we have a,, = Zfill a; A}, where the «; are constants and the A; are the complex
roots of 2t — 2% — 1 (which are all distinct). Assuming one of the \;-terms dominates, say
a1 AT, which will be true if |A;| > |A;| for all other ¢ and «; # 0, then we get the exponential
approximation

an, = aAl(l1+o(1)) (4.4)
for some constant «. Similarly, from Lemma 4.1, we have d,, — dp—1 — dp—gve + dn—kte—1 —
dp—p—1 = 0. If the roots of z*t1 — zF — 2¢+1 4+ 2¢ — 1 are all distinct, and assuming some root
r dominates the behavior of the d,, then we similarly obtain the exponential approximation

d, = pr"(1+o(1)) (4.5)

for some constant 8. In a case where both exponential equations hold, note that r > A because
dn > a, always. When r = A, we have that the average number of S-LID decompositions for
integers in [1,a,) converges to a constant as n — oo, while if » > X this average grows like
some multiple of (r/A)™ (this follows from an argument analogous to the proof of [2, Theorem
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1.11]). Note that all of the assumptions made can easily be checked by computer for any fixed
choice of S = [k] \ {k — ¢}, although the problem of classifying all sets S of this form will be
left for future work.
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