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VC-DIMENSION AND DISTANCE CHAINS IN IFZ
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ABSTRACT. Given a domain X and a collection H of functions h : X — {0,1}, the
Vapnik-Chervonenkis (VC) dimension of H measures its complexity in an appropri-
ate sense. In particular, the fundamental theorem of statistical learning says that a
hypothesis class with finite VC-dimension is PAC learnable. Recent work by Fitz-
patrick, Wyman, the fourth and seventh named authors studied the VC-dimension
of a natural family of functions ’H;Q (E) : ]Fﬁ — {0,1}, corresponding to indicator
functions of circles centered at points in a subset E C IF?I. They showed that when
|E| is large enough, the VC-dimension of H,2(E) is the same as in the case that
FE = Fg. We study a related hypothesis class, H{(E), corresponding to intersections
of spheres in Fg, and ask how large £ C ]Fg needs to be to ensure the maximum
possible VC-dimension. We resolve this problem in all dimensions, proving that
whenever |E| > Cyq?1/@=1 for d > 3, the VC-dimension of H{(E) is as large as
possible. We get a slightly stronger result if d = 3: this result holds as long as
|E| > C3q"/3. Furthermore, when d = 2 the result holds when |E| > Caq™/*.

1. Introduction

Recent work has emerged studying the Vapnik-Chervonenkis (VC) dimension of
certain classes of functions on vector spaces in finite fields, notably [3] and [6]. For a
collection H of functions h : F¢ — {0,1}, the VC-dimension measures the complexity
of the system from the point of view of learning theory. We give a brief overview of
the connection with PAC learning in Section 2. For an introduction to the subject,
see for example [11].

DEFINITION 1.1 (Shattering). Let X be a set, and let H be a collection of functions
from X to {0,1}. Then, H shatters a finite set C' C X if the restriction of H to C
yields all possible functions from C' to {0, 1}.
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DEFINITION 1.2 (VC-dimension). Let X be a set, and let H be a collection of
functions from X to {0,1}. Then, H has VC-dimension n if there exists a set C C X
of size n that is shattered by H, and no subset of size n 4+ 1 of X is shattered by H.
That is, the VC-dimension of H is the maximal size of a set it can shatter.

For a domain X, we will refer to the functions h : X — {0, 1} as classifiers, and a
collection H of such functions as a hypothesis class.

Let ¢ be a power of an odd prime, and let IFZ be the d-dimensional vector space
over the finite field with ¢ elements. Throughout this paper, for x € IFZ, we use ||z||
to mean 2% + ... + 2. We do not take a square root since not every element F, is a
square. Consider the distance graph G;(E), whose vertices are points in £ C Fg with
an edge x ~ y whenever ||z —y|| = t. There has been extensive work on configuration
problems over finite fields in the following sense: given a graph G, one seeks to find
an exponent o < d and a constant C' > 0 so that for any £ C Iﬁ‘g with |E| > Cq®, q
sufficiently large, there is an embedding of G in G,(FE).

For the simplest case, where G is just one edge, the fourth author and Rudnev
established the exponent o = % in [8]. Since then such results have been achieved
for many other graphs; for example, Bennett, Chapman, Covert, Hart, the fourth
author, and Pakianathan achieved the same exponent di; for paths of arbitrary length
in [1]. In [5], the fourth and seventh authors and Jardine obtained cycles of length
n > 4 when d > 3, and cycles of length n > 5 when d > 2, with exponent ranging
from % to % depending on the length of the cycle. These graphs discussed so
far are all rather sparse, and indeed these problems are generally harder for graphs
with many edges. On the other end of the spectrum, in [7] the fourth author and
Parshall obtained a general result for any graph G, with exponent % +t, where t is
the maximum edge degree of G. So for example if G = K, is the complete graph on
n vertices, then in order for this to yield a nontrivial result, the dimension must be
at least 2n — 2.

In the hypothesis class we define below, showing that the VC-dimension of H(E)
is equal to d is equivalent to constructing a particular graph G embedded in G;(E).
However, since the graph G that we need to construct depends on the dimension d,
and in particular the maximum vertex degree is also d, we cannot apply the result
from [7] because %! + ¢ will never be small enough. This leads to a configuration
problem requiring a new approach.

1.1. Main results.

DEFINITION 1.3. We define the following hypothesis class with respect to a set
E C F4:
q

(1) Hf(E) = {hup(z) : (u,v) € EX E,u# v},
where hy, : E — {0,1} is defined by

it |z — ] = flo — ol =1
(2) hu,v(x) = .

0 otherwise.

In the case where £ = Fg we use H¢ rather than "Hf(Fg).

These classifiers are directly inspired by those studied in [3]. In that paper Fitz-
patrick, Wyman, and the fourth and seventh authors studied an analogous set of
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classifiers with only one parameter, namely
(3) M= {hy(z) 1y €Fy},

where

() hy<x>={“f”"’”‘y”_t

0 otherwise,

with an analogous definition of H,%(E). Since d+ 1 points determine a d-dimensional
sphere the VC-dimension of H,%(E) is at most d + 1. They showed in the case of
d = 2 that whenever |E| > Cq'*/8, for some constant C, the VC-dimension of H,?(E)
is equal to 3, the largest it could be. However, they were unable to extend this result
to higher dimensions, and even the d = 3 case is an open problem. For the classifiers
we study, however, we obtain results for all dimensions d > 2. Our main result is as
follows:

THEOREM 1.4. If E C F}, d > 2, and

C’qg d
(5) E|>{ C¢5 d
Cq=1 d

2
3
4

v

for a constant C' depending only on d, then the VC-dimension of He(E) is equal to d.

It is easy to see that the VC-dimension of H(FE) cannot be greater than d. This
is because d + 1 points determine a unique d-dimensional sphere, so it is not possible
to find d 4+ 1 points such that there are two distinct points distance ¢ away from all
of them.

2. Motivation: Connections to Learning Theory

The study of the VC-dimension of the classifiers over Fg introduced here (as well
as those corresponding to spheres in IFg and hyperplanes in Fg, as studied in [3]
and [6], respectively) can be motivated from the perspective of computational learning
theory, where one is broadly interested in learning concepts with low error with high
probability. We begin by introducing the relevant notions more generally, then discuss
them specifically within the present context; see [9,11] for a more thorough treatment
of VC-dimension and its relevance to PAC theory.

For what follows, fix a set F' and a hypothesis class of functions H from F to {0, 1},
and consider the learning task associated with H. Fix a classifier ¢ € H, which is
the classifier the learner would like to learn, and a probability distribution D over
E, which is unknown to the learner. The learner is incrementally given access to
values of the function ¢(z), with input € E drawn i.i.d. from the distribution D.
Generally one desires an algorithm which takes these sampled values of ¢(z) as input,
and returns a classifier h € H which is close to the true classifier ¢ in an appropriate
sense, with high probability.

More precisely, define the loss function Lp.: H — [0,1] by

(6) Lp,c(h) = Pyop [c(z) # h(z)]
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where x ~ D denotes that x is drawn from the distribution D. The notion of learn-
ability illustrated above is captured precisely by the following definition.

DEFINITION 2.1. The hypothesis class H is PAC learnable if there exists a func-
tion
my ¢ (0,1)> = N
and an algorithm A such that given any €,d € (0, 1), distribution D over E, and

classifier ¢ € H, A chooses h € H satisfying Lp .(h) < e with probability at least 1 —§
when given m > my/(e,0) i.i.d. samples from D and their mappings under c.

The following theorem is a quantitative version of the fundamental theorem of
machine learning, and provides the link between VC-dimension and learnability.

THEOREM A. The hypothesis class H has finite VC-dimension if and only if H is
PAC learnable. Furthermore, if the VC-dimension of ‘H is equal to n, then there exist
constants C7, Cy such that

log (1 log (1) +1log (1
ntlog(3) s < opmor () Hlos ()
€ €
in an algorithm with respect to which ‘H is PAC learnable.

(7) ¢4

We now consider the learning task associated with our classifiers H¢(E) for d > 3.
For a fixed nonzero ¢t € F, and a distribution D over £ C Fg, the learner aims to
construct a classifier h : E — {0,1} that maps € E to 1 if = is on the intersection
of two fixed spheres of radius ¢ centered at points u # v unknown to the learner.
Theorem A tells us that since the VC-dimension of H¢(E) is finite H(E) is PAC
learnable. Towards a stronger understanding, let us assume E = Fg, that is, we
consider ’Hg, and let D be the uniform distribution over Fg. The intersection of two
spheres of non-zero radius in F? has size ¢~ + o(¢*?) [4], so we have that for all
h € HY,

0 L) < = (1+o(1)

so one must choose € < q% for meaningful results; choosing 6 = € < q% and referring to
Theorem A yields that we must consider random samples of size at most C'q® log (¢?),
for some constant C' > 0. Furthermore, since d — 1 points determine a (d — 2)-
dimensional sphere (i.e. the intersection of two spheres in IFZ), for large ¢, we only
need e slightly less than (12_2 to get Lp.(h) = 0.

3. Preliminaries

The authors of [3] noted that the problem they were studying was most productively
thought of in the context of point configurations. Recall that their classifiers were the
functions {h, : y € E} where hy(z) = 1 if ||y — z|| = t and h,(z) otherwise. Thus
shattering a set of size n means finding sets A, B C E such that |A| = n and for each
S C A we can find a bg € B such that for each a € A we have ||a — bg|| = t if and
only if @ € S. These points taken together form a point configuration which can be
thought as a subgraph of the distance graph G;(E). They leverage the estimate on
the number of edges in G;(F) from [8], along with an argument pigeonholing on the
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directions of such edges, to construct the desired configuration. These theorems have
a geometric flavor to them: the similarity of || - || to the standard norm on Euclidean
space means many familiar results concerning the geometry of R? carry over to ]Fg.
In particular, the spheres defined by our notion of distance have similar intersection
properties to spheres in R".

DEFINITION 3.1. Let S; = {2 € F? : ||z|| = t} For notational convenience, we often
identify a set with its indicator function, so that S;(x) = 1 precisely when ||z|| = ¢.

Since our work concerns a variant of the problem in [3], we will follow a similar
approach. First note that to shatter n points it is necessary to find points {z!, ..., 2"}
and points {y, z} such that ||z° — y|| = ||z* — z|| = ¢ for 1 < i < n'. This leads us to
the following natural definitions.

DEFINITION 3.2 (Prism). The (n 4 2)-tuple P = (y,z,2',...,2") € (F4)"*? is an
n-prism if for all i < n, ||z° —y|| = ||2* — z|| = t. The tail of P, denoted T (P), is the
set {y,z}. The center of P, denoted C(P), is the set {z!,z? ..., 2"}. We may also
write P = (T,C).

Below we have an n-prism? (y,z,a',...,2"), as seen in the distance graph of F¢.
.Tl
z
DEFINITION 3.3 (Non-Degenerate Prism). We call an n-prism P = (y, z,z', ..., 2")

non-degenerate if all of its components are distinct points.

Since our goal is specifically to show that the VC-dimension of H¢(E) is d, we are
only interested in d-prisms and thus will henceforth use term “prism” to refer to a
“d-prism” interchangeably.

We also frequently find it useful to refer to all the points that are distance ¢ away
from some given set A, for instance when looking for a classifier that can specify A.

DEFINITION 3.4 (Pole). We say a point y € E is a pole of the set A C E if

(9) ye )(Si+a).

z€A
We denote the set of poles of A as Pole(A).

'We use the notation ' instead of z; following the convention in [3]. This superscript should be
read as a kind of index, not an exponent.
ZNote that this distance graph is isomorphic to the complete bipartite graph K .
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These definitions give us a way to attack our central problem of shattering d points.
In particular:

OBSERVATION. If we can find a nondegenerate d-prism P in E such that for each
A C C(P) we can find a point y(A) € Pole(A) with the property that y(A) is not
distance ¢ from any ¢ € C \ A then the VC-dimension of H{ is d. Specifically, H{(E)
can shatter C(P).

To see why this is true, note that if 7(P) = {z,w}, then we can specify any
A C C(P) with the classifier hy4). Furthermore, we can specify the whole C(P)
with h,,,. We will show that such a prism exists by counting the number of d-prisms
and then applying the Pigeonhole Principle on the number of d-prisms that do not
have this property. We define the following.

DEFINITION 3.5 (P-Bad set). Fix a d-prism P = (7,C) with center C. A subset
A C Cis P-bad, or bad in P, if

(10) (Si+2) < | (Si+v).

z€A yeC\A

We say a set is bad if it is P-bad for some prism. We say that a prism P admits a
bad set if there is some subset A C C(P) that is P-bad. Note that our problem reduces
to finding a nondegenerate prism that does not admit a bad set. As it turns out, our
proof will require us to further restrict ourselves to only considering nondegenerate
prisms with affinely independent centers.

DEFINITION 3.6. We say that a prism is affinely nondegenerate if it is nondegener-
ate and its center is affinely independent. We say that a prism is affinely degenerate
if it is nondegenerate but not affinely nondegenerate.

4. Proof of Theorem 1.4

We wish to find a nondegenerate prism that does not admit a bad set. We begin
by obtaining a lower bound on the total number of nondegenerate prisms. We do this
by noting that a nondegenerate prism is just a choice of d distinct paths of length 2
between two distinct points. The total number of such 2-paths in E is a special case
of Theorem 1.1 in [1]:

THEOREM B. Let E C F¢, where d > 2 and |E| >
Define

(11) Te=H{@&' . a"™ e Ex - xE:|ja' =2 =t, 1 <i<Ek}.
Then,

10g2q . Suppose that t # 0.

E k+1 2k E k
(12) Iy = 1£] + Dy, where |Dg| < —qu £ :
q* g2 q*
In particular, for E satisfying the hypotheses of Theorem 1.4,
S EP
13 r
(13) 2 o0

This allows us to obtain the following theorem.
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THEOREM 4.1. Let E C IFd d > 3. Let N4(E) be the number of non-degenerate
d-prisms in E. If |[E| > ; )q 2, then?

‘E|d+2
q2d ’

(14) Na(E) Za

Proof. Let ki, be the number of paths of length 2 from z to y in the distance
graph of F. Then,

(15) Nd(E) = E : k(w,y)(k(x,y) - 1) T (k (zy) — d+ 1)
I,ZfE
Ty

For each (z,y) € E?, define

(16) = max(k(z,y) — d+1,0).

/
(z.y)
Note that Equation 15 implies that

(17) No(E) = > (ko))"

z,yeE
T#y

Theorem B gives us a lower bound on the total number paths of length 2 in the
d+l

distance graph of £ when |E| > g(Q)q
(18) > kww 2 |EI'
ek

Now note that the number of 2-paths where the endpoints are the same is just twice
the number of 1-paths. By Theorem B, T’y < |E|?¢~!. Thus

(19) > kwy 2 |EPg
zyek
Ay
Then,
(20) Y Ky = D (kpy —d+1) > |EPq? = (d=1D[E] Za [EPq
ryelk ryelk
Y TFY

where we have used |E[3¢™2 > (d — 1)|E|* to bound (d — 1)|E|* by a small constant
times |E|2¢2. Holder’s inequality states that for nonnegative a;, b; and positive r, s,

n r+s n T n s
()= (Se) (5
i=1 =1 =1

3We use the notation A > B to indicate that for some constant ¢, A > cB. We use >4 to indicate
that the constant ¢ may depend on d. Throughout this paper, we assume that d < ¢ — that is, d is
treated as a constant.
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Setting n = |E|?, a; = ki{,,) (where we arbitrarily index the pairs (z,y)), b; = 1,
r=1, ands:d—l we get that
d
/ / d 2\d—1
D K | = | D0 (Rl |- (B
ek zyek
TFY TH#Yy

r (by Equation (20))

d
Z (k/ )d >d <|E|3) . 1 _ |E|d+2
—, (z,y) ~ 2 |E|2d—2 g2
TFY

By Equation (17), the proof is complete. O]

Our goal now is to show that a positive proportion of these prisms are affinely
nondegenerate. We require two intermediary results. The first estimates the number
of points on a sphere in IFZ. See for example the appendix of [2] for a treatment of a
theorem proved by Minkowski [10] at the age of 17. The following is a special case.

THEOREM C. Let the sphere S; C Fg be as defined above. Then
(21) ¢ =gt < |8 < q" T+ b

Note that this result says a d-sphere contains approximately (and asymptotically)
d—1
q points.
We will also need the following lemma:

LEMMA 4.2. Let A be a n-dimensional affine subspace of FY. Then |ANS| < 2¢"".

Proof. We can write each element a of A as b+ w where b € A is a fixed basepoint,
and w € V| a n-dimensional linear subspace. Choose a basis vy, ..., v, for V| then any
a € A can be written b+ ¢1v1 + covs + ... + ¢,v,. We show that once ¢, ..., ¢,_1 have
been fixed there are at most two choices for ¢, such that ||a|| = t. Since there are
q" ! choices for (cy, ..., c,_1) it follows that |[A N S| < 2¢"!

For notational convenience let vy = b and ¢y = 1. Furthermore for vectors x,y € IFZ

let -y denote x1y; + z2ys... + x4yq, the bilinear form inducing our “norm” ||-||. Then
we have
n 2 d d
llal| = || § civil| = E E CiVj; | = E E CiCkU;iVjk = E g CiCkV5iVjk
j=1 \i=0 j=1 0<ik<n 0<ki<n j=1
n—1
= E cicr(vi - vr) = El|val| + cn E ci(vp - v;) + g cicr(v; - vg).
0<i,k<n i=0 0<i,k<n—1
We want ||a|| = t, so once ¢y, ..., ¢,—1 have been fixed this is an equation of the form

Ca+ce,f+y=t

for constants a, 3,~. This is quadratic in ¢, and has at most two solutions. O]
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We now show that, under stronger assumptions on the size of E. a positive propor-
tion of nondegenerate prisms are affinely nondegenerate. Here and onward C, denotes
a value that is constant with respect to ¢ but not d. Since we are assuming q¢ > d
such values are essentially constant.

LEMMA 4.3. Let N)(E) be the number of affinely nondegenerate prisms in E C ]Fg,
d > 3, and assume that d =3 or |E| > Caq"71. Then
Na(E) = Ny(E)
Ni(E)

That is, an asymptotically positive proportion of nondegenerate prisms are affinely
nondegenerate. In particular, this means by Theorem 4.1,

(22) <, with C)<1.

(23) Ny > 02—

Proof. First note that if d = 3 all nondegenerate prisms are affinely nondegenerate.
For a prism to be affinely degenerate in d = 3 its center would have to lie on a 1-
dimensional affine subspace A. But then by Lemma 4.2 if y is a pole of this prism
then we have |A N (S; + y)| < 2. But a nondegenerate prism in d = 3 must have 3
distinct center points.

Now consider the d > 3 case. Define k(,,) as in Theorem 4.1. In counting affinely
nondegenerate prisms, it suffices to find an upper bound for the count of nondegenerate
prisms with affinely dependent center. In such a prism P = (y, z, x!, ..., %), fixing the
pair (y, 2), the number of choices for (z!,...,2¢7!) is at most k;é;zl), since each z must
be chosen to be distance ¢ from both y and z. Having chosen (y, z, 2!, ..., z%71), if the

center {x',..., 2%} is affinely dependent, then 2¢ must be on the affine subspace Aq of
IE‘Z generated by {!,...,2971}, which has dimension

x? — xt
3 — gt
rank . <d-2.
S

Therefore, by Lemma 4.2, |[AgN (y +S;)| < 2¢* 3. Now we can bound our total count
of nondegenerate prisms with affinely dependent centers, using the above calculations
and the fact that ki, .) < 2¢*? for any pair (y, z) (which is again by Lemma 4.2):

dl d2
Na(E) = Ny(E) <203 > (k)™ <2072 (207277 ) ki)

y,2€E y,2€E

2 E3 2_ 34—
<dqd 3d+1| | :qd 3d 1|E|3.

By Theorem 4.1, Ny(E) 2, |E‘d+ . Therefore, if |E| > Cyq* = log ¢, then
Nd(E)—NZz(E) ¢ EP g" !
NA(E) <Cy T = 4 Vol <C)<1.
2d

q

]

We now turn our attention to showing one of these affinely nondegenerate prisms does
not admit a bad set. We proceed as follows.
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LEMMA 4.4. Suppose that the set of distinct points {a; }}_, are affinely independent.
That is, the set {a; — a; : 2 < j < k} is a linearly independent set of vectors. Then

k

ﬂ(St + Clz‘)

=1

(24) < 2%,

Proof. Note that the set ﬂle(St + a;) corresponds to the set of vectors x with
||| = t such that |la; + 2 —a;]| =t for 2 < j < k. Let a = a; — a; and write
as = (a1, .., jq). Then any such x = (71, ..., 74) satisfies the system of equations

(21— an1)® + (22 — an2)® + ..(Tg — agq)* =t

(131 — 043,1)2 -+ (372 — &3,2)2 + (Qid — 043’d)2 =1

((El — Oék71)2 + (CL’Q — Oék72)2 + ({L‘d — Oéka)Q =1t.

Expanding and noting that ||z|| = ¢ we obtain the linear system of equations
237105271 + 2%20&272 + ...+ ZdeVQ,d = HCLIQH
2]310&3,1 + 2.7)204372 + ...+ 21’(1043’61 = HCL&H
20101 + 209000 + .. + 2xq0 4 = ||ag]].

Since we assumed the a;s were affinely independent, this system’s corresponding ma-
trix has full rank. Thus its solution space A is an affine subspace of dimension d—k+1.

However we are only interested in those x € A with ||z|| = t. This corresponds to
the intersection A NS, which by Lemma 4.2 has cardinality < 2¢%~*, completing the
proof. O

To complete the proof we will bound the number of prisms that admit a bad set
by counting the number of prisms a given set of size k£ can be bad in.

LEMMA 4.5. Suppose that B is a bad set, with |Pole(B)| > 2¢°~'. For every
y,z € Pole(B), there exists a subset J C Pole(B) such that J U {y, z} are affinely
independent and |J| = a.

Proof. Fix b € B and note that all points in Pole(B) lie on the sphere S; +b. We
build a sequence of sets J; C Jy C .... C J, = J such that |J;] =i and each J; U{y, z}
is affinely independent. Suppose we have chosen J;. Then then we can choose any
point for J;; 1\ J; that does not lie in the (i+1)-dimensional affine subspace A spanned
by {y, z} U J;. Since the points we have to choose from lie on S; + b this rules out the
points in (S; +b)NA=b+ (S, N(A—10)). By Lemma 4.2 this set has size < 2¢'. So
by assumption there is a point in Pole(B) we can choose. O

With all the pieces in place, we can now complete our proof.

LEMMA 4.6. Fix some set B with |B| = k. Then B is bad in at most C’dqu_kd_dJrk_l
affinely nondegenerate prisms.

Note that this would suffice to prove our main result in the case d > 3. To see
why this is true, let My (F) be the number of affine nondegenerate prisms with affinely



VC-Dimension and Distance Chains in Ffll 53

independent centers in £ that admit a bad set of size k, and let M (E) = i: My(E).
Then we have that for |E| > ¢%7 !,

(25)
d—1

M(E) <y Z ‘E|kqd2_kd—d+k—1 < C’d(d _ 1)Ed—1qd2—(d—1)d—d+(d—1) _ Cd(d . I)Ed_lqd_2
k=1

(26)
< CddEdilqdiz

We want to show that N)(E) > M(E). Assuming d = 3 or |E| > Cuq™ ™7 we have

by Lemma 4.3 that N} > C"i‘:jz. So it suffices to show that
|E|d+2 _ B

(27) Z > Cyd| B2,

which is true whenever

(28) |B| > Cag™™5.

In the case of d = 3 this is the strongest bound on | E|. Otherwise it is subsumed under

the stronger constraint of |E| > C’dqdfd%l required for Lemma 4.3. This completes
the proof of Theorem 1.4 when d > 3, and the d = 2 case follows immediately from
techniques in [3]: First prune the set F, obtaining £’ C E with a positive proportion
of the points in F, such that every point in E’ has large vertex degree in G;(F). In [3]
for example, they obtain |E'| > 35|E| where every point in E’ is adjacent to at least
100 points in F, which is more than sufficient here. Then apply Lemma 4.1 from that
paper, and we have constructed the desired configuration in IFZ as long as |F| > qu.
To finish proving Theorem 1.4, it only remains to prove Lemma 4.6.

Proof. Consider an affinely nondegenerate prism P with center C(P) = {z*, ..., 2z}
and tail T(P) = {y,2}. Suppose that B = {x',... 2"} is P-bad. We will count
Mpg(F), the number of choices for other nondegenerate prisms @ for which B is ©-
bad. The key observation of the proof is that the tails of ) must be chosen from
among the poles of B. However, the more poles B has, the more constrained the
choices for center points of () are since the condition of badness requires each pole to
be distance t away from at least one center point.

First we bound the size of Pole(B). Each pole of B must also be distance t away
from some other point in C(P). Since C(P) is affinely independent we apply Lemma
4.4 and obtain:

(29) Pole(B) C U ((St +a)N ﬂ Sy + b) < 2(d — k)g® 1.

a€C(P)\B beB

Let ¢ be minimal such that Pole(B) < 2¢‘. Then we have < 4¢* choices of tail for Q.
Fix a choice of tail {y, 2z}, and we will count the number of ways to choose the center.
By assumption Pole(B) > 2¢*~! so by Lemma 4.5 there exists a subset J C Pole(B)
with |J| = ¢ and JU{y, z} affinely independent. Choose any such J. Let ¢ : E\ B —
P(J) be defined by ¢(z) = JNPole(x). Consider A = (a1, as,...,aq_x) € (E\ B)*¥*,
a tuple with distinct elements. Let Ty = (é(ay), d(az), ..., dlag_r)) € (P(J))**.
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Suppose that C(Q) = BU A. If B is Q-bad then

(30) U ola) =

So we can limit the choices of other center points to only those tuples which fulfill the
above condition. That is, we fix ahead of time the values Y; = ¢(a;) and count the
number of choices of center points that realize those values. Noting that J U {y, 2z},
we have by Lemma 4.4 that there are < 2¢%~2-%il choices for a;. Further note that
by Equation (30) we have > |Y;| > ¢. We compute the following:

d—k d—k
(31) Mp(E)<4g® > [ M =ag 3 2" [[o "
(Ylv""Ydfk:) i=1 (Yl,...,Yd,k) =1
uY;=J uY;=J
(32) =Cug® > (2721 (m =)
(Yl,...,Yd,k)
uYi=J
(33) < qu% Z (zqd72)d7kqff
(Y1, Ya—k)
uY;=J
(34) —yor qd2—1mz_2d+2k+e7

where Cy is the number of (Yi,..., Yy x) such that UY; = J, which is a constant
dependent on d. Notice ¢@~#1=2d+2k+ s maximized when ¢ attains its maximum
value. By Equation (29), { = d — k — 1. Therefore,

d—k
(35) MB(E) < 4q2a Z qu*%ai < qd27kd7d+k71'
(Vi Ya_g) i=1
uY;=J
As the number of bad sets of size k is < |E|*, we have that
(36) My(E) < |BfFqf—kd-dth=1,

5. Conclusion

5.1. Connection to the Single-Parameter Case. Note that the construction we
use to shatter d points also suffices to shatter d points using H;d, the single-parameter
classifiers studied in [3]. Indeed if A C C(P) is not P-bad then by definition we can
find a point y that is a pole of A but is not distance ¢t away from any other point of
C(P), and so the classifier h, € H,? restricted to C(P) is the indicator function on A.
And so we have that the VC-dimension of H.! is at least d provided F is large enough.

However, this exact construction cannot work to shatter d + 1 points since doing
so would also involve shattering d + 1 with our two-parameter classifiers, which is
impossible. One might wonder whether a slightly different construction might work,
where instead of looking for prisms we look for sets (z, z!, ..., %*1) where z is the only
common pole of the x?, a sort of “star.” The number of these stars could be counted
using Theorem B and the same technique as Theorem 4.1, just replacing 2-paths with
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1-paths. However, an issue arises comes with counting the number of stars a d-set can
be bad in. Our pigeonholing argument works because the condition of badness reduces
the number of poles a bad k-set can have by a power of ¢, while also restricting the
number of prisms such a set can be bad in if it has many poles. But by Lemma 4.4,
an affinely independent set of size d has at most 2 poles, and thus no such restriction
could exist.

5.2. Future Work. There are a number of possible directions for future work. One
would be attempting to take our results further, in the sense of improving the expo-
nent constraining the size of E. Our proof required showing that a positive proportion
of nondegenerate prisms are affinely nondegenerate, which placed a very strong con-
straint on |E| in the d > 3 case. Were an approach to be found that did away with
this requirement or weakened this constraint, our bound could likely be improved.

Another direction would be trying to obtain similar results for other sets of clas-
sifiers on subsets of F¢. We obtained our classifiers from those in [3] by adding an
additional parameter; one could consider adding even more parameters. We suspect
this case could be fairly easily resolved by similar techniques to those used here, but
the problem could be changed further. Finite field VC-dimension problems such as
this are relatively unexplored, so there are many different avenues to pursue.
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