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Abstract

Recent breakthroughs in Large Language Models (LLMs) have
spurred interest in their application to hardware design, aiming to
streamline design flows and increase accessibility for non-experts.
However, the effectiveness of current LLMs in hardware design is
limited due to a lack of exposure to hardware-specific data during
training. A significant barrier is the scarcity of high-quality, anno-
tated hardware data available for developers to fine-tune LLMs. To
address this data scarcity, we introduce a set of essential criteria
and insights for the scalable generation of high-quality, annotated
hardware data. Building upon these, we develop Data4AIGChip,
an open-source, automated flow for hardware data generation and
validation. Data4 AIGChip incorporates three key innovations: (1)
a novel flow for generating Pyramid of Thoughts structured data
to enhance LLMs’ capability in hardware code generation; (2) a
Retrieval-Augmented Generation technique to improve generated
data quality; and (3) an automated validation flow to ensure data in-
tegrity. We demonstrate the utility of Data4 AIGChip by fine-tuning
existing pre-trained LLMs with the data it generates. Our experi-
ments show that Data4 AIGChip can reliably produce high-quality
data, significantly enhancing the performance of fine-tuned LLMs
in hardware code generation tasks.
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1 Introduction

The remarkable capability of Large Language Models (LLMs) in
generating high-quality content from natural language prompts
has sparked growing interest in their application to hardware de-
sign [1, 4, 6-8, 14]. This interest is fueled by LLMs’ potential ability
to streamline design flows and enhance hardware design accessibility
for non-experts. Firstly, LLMs may encapsulate the collective wis-
dom of various experts and hardware design communities, allowing
users to tailor their design processes to specific applications and tool-
chain specifications through adjusted prompts. Secondly, LLMs may
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analyze vast data and previous design patterns to suggest optimiza-
tions, simplifying the design flow and democratizing the process
for users at all levels of expertise. Thirdly, LLMs may accelerate
hardware prototyping by automating design aspects, leading to faster
prototype development and more dynamic, interactive environments
with real-time feedback. Recognizing these promising capabilities,
initiatives like Architecture 2.0 [12] aim to transform the hardware
design paradigm, significantly reducing manual design overhead
and leveraging artificial intelligence to create more advanced and
efficient hardware systems.

Despite the significant potential and community excitement, cur-
rent state-of-the-art (SOTA) pretrained LLMs, such as OpenAl’s
GPT-4 [10], still struggle to produce practical hardware designs with-
out extensive human intervention. In hardware code generation, for
example, these models tend to either (1) generate non-synthesizable
or non-functional code, necessitating human correction, or (2) pro-
duce overly simplistic or impractical implementations [4]. This issue
primarily stems from the LLMs’ limited exposure to hardware de-
sign data during pretraining. While the datasets used for pretraining
LLMs are vast [15], only a small fraction comprises code, with
hardware-specific code being even rarer [14]. Therefore, enriching
pretrained LLMs with high-quality, hardware-specific code datasets
through domain-specific fine-tuning [16] is essential for unlocking
the full potential of LLM-assisted hardware design.

However, creating high-quality, hardware-specific code datasets is
challenging due to the complexity and cost of acquiring labeled data
that pairs hardware code implementations with natural language de-
scriptions. The primary methods for obtaining such datasets include
web scraping, manual creation, and synthetic data generation [8, 14],
each with its drawbacks. Firstly, web scraping often yields limited
usable data due to many online code lacking accurate descriptions,
resulting in minimal viable data from open-source repositories. Sec-
ondly, manually creating descriptions for existing code or generating
new code samples by human experts is time-consuming and labor-
intensive, thus not scalable. Creating a single data point could take
hours to days. Thirdly, while some recent studies have explored
using LLMs for synthetic data generation, like auto-generating de-
scriptions for existing code samples [8], the output is often too
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Table 1. Pass rates (Pass@10) of the LLaMA-2-Chat models on
generating RTL code and code descriptions. Generated code is eval-
uated based on the standard testbench in [8] while the generated
descriptions are evaluated as the ability to instruct another LLM
(GPT-4 as an oracle model) to generate correct code.

H LLaMA-2 ‘ LLaMA-2 ‘ LLaMA-2

7B-Chat | 13B-Chat | 70B-Chat
Generated Code Pass@10 (%) [| o®ai) | 02 | 06
Generated Description Pass@10 (%) || 30.1 \ 312 \ 475

high-level and simplistic for intricate hardware design. Addition-

ally, most generated data lacks sufficient hierarchy depth, failing to

leverage advancements in in-context learning for LLMs, such as the

chain of thoughts approach [17].

To address the significant data scarcity issue hindering LLM-
assisted hardware design, we propose Data4 AIGChip, an acronym
for “Data for AI (LLM) Generated Chips”. As illustrated in Fig. 1,
it is an automated data generation and validation flow to facilitate
the fine-tuning of LLMs for accelerator code generation. Our main
contributions are summarized as follows:

e We propose an essential insight for generating high-quality and
scalable hardware datasets, which can effectively enhance LLM-
assisted hardware code generation through model fine-tuning.

e To meet the criteria outlined above and address the challenge of
data scarcity in fine-tuning LLMs for hardware accelerator design,
we developed Data4 AIGChip. This automated flow for hardware
code data generation and validation leverages LLMs’ exceptional
capabilities in code description to produce high-quality datasets.

o As the first enabler of Data4 AIGChip, we propose a novel flow for
generating Pyramid of Thoughts (PoT) structured data, which can
largely enhance the capabilities of LLM-assisted code generation,
particularly in the context of complex hardware designs based on
high-level user instructions.

o To further enhance the quality of the generated data, we boost
the potential of the aforementioned PoT data structure by inte-
grating Data4 AIGChip with two additional enablers, including a
Retrieval-Augmented Generation (RAG) technique and an auto-
mated validation flow.

e Extensive experiments show that LLMs fine-tuned with our gen-
erated dataset outperform those trained on datasets from other
sources in both code implementation accuracy and the sophistica-
tion of generated hardware designs.

2 Insights for Scalable Dataset Generation

What Capabilities of LLMs Can We Leverage? A promising and
scalable solution to create a dataset that enhances LL.M-assisted
hardware design is to incorporate LLMs themselves into the data
generation pipeline. However, as observed in prior works [4, 14],
existing LLMs might encounter difficulties when attempting to di-
rectly generate hardware code without any fine-tuning. Therefore,
the research question is how to effectively harness the capabilities
of LLMs to empower the data generation pipeline.

The key insight. In this work, the crucial insight we leverage
is that existing LLLMs excel at generating natural language descrip-
tions for provided hardware code. This proficiency is essential for
automating the creation of more comprehensive datasets, given the
substantial amount of hardware code available on public sources
without accompanying natural language descriptions.
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Figure 2. The overall flow of the proposed Data4 AIGChip.

Validating the insight. To analyze the uneven proficiency be-
tween directly generating hardware code and generating correspond-
ing natural language descriptions, we design a simple experiment
to benchmark the two capabilities of LLMs, as elaborated in Tab. 1.
Specifically, we employ the pretrained LLaMA?2-Chat [15] models
for this purpose. The evaluation comprises two aspects: (1) gen-
erating RTL code from descriptions using the VerilogEval bench-
mark [8], and (2) conversely, creating descriptions for RTL code
based on the same benchmark. We assess the generated code us-
ing pre-built testbenches [8]. To evaluate the generated descriptions
from LLaMA2-7B-Chat, we utilize a more advanced model GPT-4
to generate code from them. If the output code from GPT-4 passes
the RTL testbenches, the description is considered successful. Our
evaluation metric is pass@10 [8]. We can observe that the results
presented in Tab. 1 consistently demonstrate an astonishingly higher
pass rate for generated descriptions compared to code samples (up
to 46.9% higher), underscoring LLMs’ stronger ability to generate
descriptions for hardware code than to generate the code itself.

Leveraging this insight, we can utilize LLMs to generate datasets
containing both hardware code and descriptions. Subsequently, these
datasets can be employed to fine-tune LLMs further, enhancing their
ability to generate hardware code, and thereby facilitating LLM-
assisted hardware design.

3 Data4AIGChip: An Automated Dataset
Generation and Validation Flow

In this section, we introduce Data4 AIGChip, an automated flow for
generating and validating datasets for LLM-assisted hardware design.
The flow is crafted to harness the insights in Sec. 2 to generate high-
quality hardware datasets in a scalable manner.

Framework overview. Data4 AIGChip comprises three primary
components, as depicted in Fig. 2. Our framework takes raw code
collected from public sources as input and generates high-quality
hardware datasets with accurate code-description pairs as output. To
achieve this objective, we develop three key enablers to complete this
pipeline. Specifically, we first process the input raw code using an
RAG technique. This technique accurately generates a set of natural
language descriptions with varying levels of detail corresponding to
the input raw code. These descriptions are then organized within the
proposed PoT data generation flow, encompassing descriptions at
various levels of detail. Finally, the PoT data structure undergoes an
automated validation flow, filtering out low-quality code-description
pairs. Further elaboration on each of these enablers is provided in
the subsequent subsections.

3.1 Enabler-1: Pyramid of Thoughts Dataset Generation Flow

To harmonize design generation accuracy with ease of use, the PoT
data structure is introduced. As shown in Fig. 3, it organizes hard-
ware code descriptions at various levels of detail, ranging from
high-level summaries to line-by-line comments. The PoT dataset
utilizes high-level descriptions to offer users user-friendly interfaces
for their queries to match with, while the paired detailed descriptions
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Figure 3. Illustrating the proposed PoT dataset generation flow.

and line-by-line comments can provide better supervision during
either fine-tuning or in-context learning. Specifically, for the gener-
ation of PoT structured data, we develop a bottom-up approach to
gradually generate natural language descriptions at varying levels
of detail from the input raw code. This approach serves as a founda-
tional version of our RAG technique introduced in Sec. 3.2. To begin,
we generate detailed, line-by-line comments on the input raw code.
These comments are then summarized by LLMs into a more abstract
block summary, which is further consolidated into a comprehensive
global summary. Lastly, we prompt LLMs to abstract a high-level
global summary regarding the code sample’s functionality from the
detailed one.

This bottom-up approach offers two significant advantages. First,
it ensures comprehensive coverage across various levels of detail,
which is crucial for effective LLM-assisted hardware design. Sec-
ond, our approach addresses the challenge of generating high-level
descriptions directly from hardware code, a task that can be prob-
lematic due to LLMs’ limited ability to interpret and relate various
hardware modules. More specifically, in our approach, the genera-
tion of line-by-line comments primarily entails understanding the
local semantics of the code, an area where LLMs demonstrate greater
proficiency. These comments act as intermediaries, translating com-
plex code elements into the natural language domain, thus ensuring
the accurate construction of high-level descriptions.

3.2 Enabler-2: Retrieval-Augmented Generation

To further enhance the accuracy of the generated descriptions at
various levels of detail and leveraging the insights in Sec. 2, it is
essential to supply LLMs with ample contextual information. To do
so, as depicted in Fig. 4, we introduce the RAG technique to enhance
the capabilities of LLMs for the PoT creation process, as described
in Sec. 3.1, by providing few-shot examples as additional prompts.

RAG-aided dataset generation pipeline. Initially, all code sam-
ples, along with any existing descriptions, are converted into vector
embeddings, following [5], which are stored in a database. As new
descriptions are generated, they are also added to this database. Next,
in the generation process for each code sample, we conduct retrieval
from the database, and the retrieved codes and descriptions serve as
few-shot examples appended to the prompts for LLMs. These are
then used to generate each level of the PoT structures, following the
creation process detailed in Sec. 3.1. Specifically, retrieval is based
on the similarity between the vector embeddings of the new content
and those of the existing database entries.

The advantage of our RAG-based approach is to ensure that
the LLM employed in PoT structured dataset generation is well-
informed, thereby resulting in more precise and contextually accu-
rate generation of code descriptions. This approach is particularly
useful (1) when generating line-by-line comments for code with
unknown module instantiations and (2) when summarizing code
blocks with similar descriptions stored in the database.
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3.3 Enabler-3: The Automated Validation Flow

To ensure the quality of our generated dataset, we implement an
automated validation flow to filter out low-quality data. Specifically,
this flow utilizes the generated descriptions to recreate the original
code using another LLM (e.g., GPT-4), as adapted from [8]. We
consider the code-description pair as valid as long as the regenerated
code successfully compiles within a certain number of generation
trials using any level of the descriptions. In cases where the code-
description pair fails this criterion, it is filtered out from the dataset.

4 Experimental Results
4.1 Experiment Setup

Dataset generation. Raw RTL code is sourced and preprocessed
from BigQuery, in line with [8, 14]. The primary model for gener-
ating descriptions is LLaMA2-70B-Chat. GPT-3.5-turbo serves as
an automated backup for scenarios where the maximum token limit
is exceeded. We perform ten completion trials for each description,
aiming to include as many valid descriptions as possible while avoid-
ing excessive time on invalid entries. This process produces ~11k
valid code-description pairs, as detailed in Tab. 2.

Fine-tuning and inference. CodeLLaMA-7B-Instruct is chosen
as the primary model for hardware code generation for its superior
coding performance and small model size. The fine-tuning approach
is based on QLoRA [3], using its default training settings to demon-
strate our delivered dataset’s effectiveness. The fine-tuned model is
evaluated using 143 Verilog coding questions from the benchmark
in [8], excluded from the training set.

Hardware evaluation and metrics. The validity of each gener-
ated design is tested by compiling it and checking against its RTL
simulation results in pre-defined testbench cases. We employ unbi-
ased pass@1, pass@5, and pass@ 10 metrics, calculated from 20
generation runs, as established in [8].

4.2 Assessing Fine-tuned Models on DatadAIGChip’s
Delivered PoT Structured Dataset

Setup. We evaluate the effectiveness of our PoT structured dataset in
enhancing RTL code generation. We fine-tune the CodeLLaMA-7B-
Instruct model on this dataset format and compare its performance
with models trained on standard baseline datasets, in terms of the
code generation pass rates, i.e., pass@1, pass@5, and pass@10. The
baseline dataset settings include training solely on three specific



DAC’24, June 23-27, 2024, San Francisco, CA

Table 2. Dataset statistics and features of the proposed
Data4 AIGChip, where the dataset samples are hierarchically or-
ganized into the proposed PoT structure containing varying levels
of code description detail levels, aiming to strike a balance between
dataset user-friendliness and accurate representation of the corre-
sponding hardware design.

Works Number High-level Detailed Block Line-by-line

orks of Designs | Global Summaries Global Summaries Summaries Comments
Thakur et al. [13] || 17 | v | x | X | x
Chip-Chat [1] || 8 | v | x | X | x
Chip-GPT[2] || 8 | v | x | x | x
RTLLM[9] || 30 | v | x | X | x
VerilogEval [8] || 8502 | Partial | v | x | x
DatadAIGChip || 11144 | v | v | v | v

types of descriptions: (1) high-level global summary, (2) detailed
global summary, and (3) detailed block summaries. In contrast, our
approach involves train_ing on a combined dataset that mixes all three
description types. This method aims to fully leverage the unique
structure of the PoT dataset. Note that for ensuring user-friendly
interactions with fine-tuned LLMs, the fine-tuned LLMs are tested
solely using the high-level global summary.

Observations and analysis. The results are detailed in Tab. 3.
We can observe that (1) The model trained on the PoT dataset shows
a consistent improve_rnent over baseline settings, across the pass
rates metrics on the VerilogEval benchmark. For example, the model
trained on our PoT dataset consistently outperforms VeriogEval [8]
across different generation trials, e.g., a 3.4% improvement in the
pass@10 rate. It is worth noting that our method can achieve larger
improvements under more generation trials; (2) The model trained
on block summaries exhibits the lowest perfoﬁance. This is attrib-
uted to the significant disparity between the detailed training data
(finer-grained block summaries) and the more general evaluation
data (high-level summaries); (3) Interestingly, the model trained on
detailed global summaries outperforms the one trained on high-level
global summaries, despite being evaluated on the latter. This is likely
because detailed global summaries provide richer information, aid-
ing the model in understanding code structure and thus generating
more accurate code. The gap in the detail level between detailed
global summaries and high-level summaries is smaller compared to
that between block summaries and high-level summaries, which is
why the detailed summaries’ more comprehensive supervision is not
overshadowed by the detail level gap.

5 Related Work

LLMs, in-context learning, and fine-tuning. A key ability of ex-
isting LLMs is in-context learning, where incorporating just a few
relevant input-output pairs can significantly enhance task perfor-
mance [11]. However, applying in-context learning to hardware
code generation often produces incomplete and erroneous code, as
LLMs lack domain-specific reasoning in hardware [4]. This issue
necessitates further fine-tuning with a meticulously crafted dataset.

LLM-assisted hardware design. LLMs have been used in hard-
ware design for different tasks [2, 4, 8, 14]. However, their perfor-
mance is limited by insufficient exposure to hardware data during
pretraining [2, 4]. Some studies [8, 9, 14] have attempted to address
this by providing more hardware code samples and fine-tuning the
LLMs, but the datasets used are either too small [9] or can be sim-
plistic [8, 14]. The key issue here is the lack of a comprehensive and
scalable approach to creating high-quality hardware code datasets
that encompass a wide range of complexities and precise natural
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Table 3. Pass rates of CodeLLaMA-7B-Instruct models fine-tuned
using different data formats while evaluated on high-level global
code summaries for enhanced user-friendliness.

Iﬁ:;?: -Ft}(::li:ft PoT Hlélllozz},]el DGeltsg:l.d Suilr(;zties
Summaries Summaries

Pass@1 (%) || 452(10.4~74.9) | 424 ‘ 44.8 ‘ 40.3

Pass@5 (%) ‘ ‘ 522(123~738.2) | 48.1 ‘ 49.9 ‘ 44.0

Pass@10 (%) || 552(134~19.6) | 497 | 518 | 456

language descriptions at different levels of detail. Data4 AIGChip
addresses this issue by providing an automated flow for generating
and validating diverse, high-quality hardware code datasets.

6 Conclusion

This work contributes to LLM-assisted hardware design through the
development of Data4 AIGChip. By integrating a novel Pyramid of
Thoughts data structure, a Retrieval-Augmented Generation tech-
nique, and an automated validation flow, Data4 AIGChip provides
an effective and scalable framework for automated hardware data
generation and validation. Various experiments validate the effec-
tiveness of our techniques and the benefits of datasets generated by
Data4 AIGChip in enhancing the performance of LLM models for
hardware code generation. As the demand for efficient and innova-
tive hardware design grows, tools like Data4 AIGChip can pave the
way for more accessible LLM-assisted hardware design.
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