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Abstract—Similar to bulk Hi-C data, the frequency distribution
of single-cell Hi-C data also adheres to a power law distribution
in relation to the genomic distance between chromatin inter-
action endpoints. In light of this, we introduce an innovative
normalization approach for single-cell Hi-C data that capitalizes
on this power-law distribution. An extensive comparative study,
employing three publicly accessible single-cell Hi-C datasets, un-
derscores the robustness of PLNorm, critically evaluated against
established normalization techniques including BandNorm, scVI-
3D, and scHiCNorm. A diverse range of metrics, including
changes in cell similarities, cell embeddings, and scalability, were
utilized in the assessment. The results highlight the distinct
advantages of PLNorm: it not only mitigates biases but also
adeptly preserves cell-type information, enhances the precision
of clustering outcomes, and demonstrates impressive scalability,
making it a prime choice for large-scale data analysis. PLNorm
is available at https://github.com/bignetworks2019/PLNorm/.

Index Terms—PLNorm, power law, scHi-C, normalization,
scalability

I. INTRODUCTION

The evolution of chromosome conformation capture (3C)-
based technologies [1]-[5], including Hi-C and related meth-
ods [6], has provided crucial insights into 3D genome or-
ganization inside the nucleus. Technologies like Hi-C have
revealed higher-order chromatin structures including A/B com-
partments [6], topologically associating domains (TADs) [7],
and chromatin loops [8]. These 3D features across different
scales are interconnected with vital genome functions like gene
transcription and DNA replication [9], [10]. The emergence
of single-cell Hi-C (scHi-C) assays [11]-[16] has allowed
3D genome structures to be probed at single-cell resolution.
Pioneering scHi-C studies have revealed cell-to-cell variability
in chromatin structures [11], [17], suggesting functional impli-
cations. However, substantial computational challenges remain
due to the high-dimensional yet sparse nature of scHi-C data.

The sparsity and noise characteristic of single-cell data can
obscure important biological signals within and between cells.
Technical biases related to fragment length, GC content, and
mappability also permeate scHi-C experiments [18], [19]. As
the number of cells and resolution increases, the complexity
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intensifies. The surge in data points strains computational
requirements for both memory and time.

Normalization methods for bulk Hi-C data can be broadly
classified into two categories: explicit factor correction and
matrix balancing methods. Explicit factor correction methods,
such as HiCNorm [20] and Hi-Corrector [21], necessitate prior
knowledge of Hi-C systematic biases and use this information
as input for normalization procedures.

On the contrary, matrix balancing algorithms represent the
implicit normalization approaches. Methods such as Iterative
Correction (ICE) [22], Knight-Ruiz Matrix Balancing (KR)
[23], and Vanilla-Coverage (VC) [6] operate under the premise
that the Hi-C matrix should exhibit symmetry and maintain
equal row and column sums after the normalization process.
This fundamental assumption about the characteristics of a
normalized Hi-C matrix drives these implicit normalization
strategies, reducing the requirement for specific bias informa-
tion.

Directly applying bulk normalization methods on scHi-C
data results in sub-optimal results due to noteworthy distinc-
tions stemming from the inherent features of single-cell data.
These differences are predominantly due to the need to account
for the sparsity of single-cell contact maps and the variability
between cells in scHi-C methods.

In the wake of advancing computational methodologies for
scHi-C, several important studies have proposed normalization
techniques for single-cell Hi-C data. The scHiCNorm [19]
implements normalization of scHi-C data using zero-inflated
and hurdle models, while BandNorm [24] offers a fast-scaling
normalization approach that exploits stratified off-diagonals of
the contact matrix and its variants. Additionally, scVI-3D [24]
introduced a generative model structure that systematically
incorporates structural properties.

Despite the innovative strategies and pioneering efforts
demonstrated by methods such as scHiCNorm, BandNorm,
and scVI-3D, these methods fall short of fully capturing the
fundamental properties of single-cell and bulk Hi-C data.
Previous studies on bulk Hi-C data have demonstrated that the
likelihood of observing a contact between two chromosomal
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elements decays linearly with genomic distance, adhering to a
power law regime within a certain distance interval [6], [25].
This property has inspired the development of computational
methods [26], [27] to identify unique chromatin linkages and
statistically significant chromatin interactions. More recent in-
vestigations into a range of scHi-C assays have confirmed that
scHi-C data similarly conform to the power law distribution
[17], [28].

Therefore, we introduce PLNorm, a method that utilizes
the power law property of scHi-C data. We extensively eval-
uvate PLNorm against leading scHi-C normalization methods
using three public datasets. Various metrics assess changes
in cell similarity, clustering performance, and scalability. The
results showcase PLNorm’s advantages in removing biases
while retaining biological information and clustering accuracy.
Critically, PLNorm also demonstrates excellent scalability.

II. MATERIALS AND METHODS
A. Data Collection and Preprocessing

This study utilized three publicly available scHi-C
datasets: Ramani et al. [12] (Gene Expression Omnibus
(GEO): GSES84920), 4DN sci-Hi-C [29] (4DN Data Por-
tal: ADNES4DSMWEZ, 4ADNESUE2NSGS, 4DNESIKGI39T,
4DNES1BK1RMQ, and 4DNESTVIP977), and Lee et al. [14]
(Gene Expression Omnibus (GEO): GSE130711).

The first two datasets underwent additional processing steps
as described in [30]. For the processing steps of the Lee et al.
dataset, please refer to the corresponding paper. All datasets
were processed to 1 megabases (Mb) resolution from the raw
data to calculate the metrics used in this study.

B. Normalization Methods

This paper evaluated several scHi-C normalization methods,
denoted as BandNorm [24], scVI-3D [24], scHiCNorm [19],
and PLNorm, which is the normalization method we propose
in this study.

BandNorm is a normalization method specifically designed
for scHi-C data. Its main purpose is to eliminate genomic
distance bias within a cell and sequencing depth bias between
cells. Additionally, BandNorm incorporates a common band-
dependent contact decay profile to restore the contact matrices’
overall structure across cells. By applying BandNorm, it is
possible to enhance cell-type clustering, accurately identify
interacting loci, and improve the recovery of cell-type rela-
tionships in single-cell Hi-C data analysis.

scVI-3D is a deep generative modeling framework designed
specifically for scHi-C data analysis. It utilizes parametric
count models, such as Poisson and Negative Binomial distri-
butions, which have been proven effective in bulk chromatin
conformation capture data analysis. By leveraging variational
autoencoders, scVI-3D learns nonlinear mappings and ef-
fectively addresses various biases specific to scHi-C data,
including genomic distance bias, sequencing depth effects,
zero inflation, sparsity impact, and batch effects. One of the
key capabilities of scVI-3D is its ability to impute sparse scHi-
C contacts and accurately recover cell-type relationships.
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scHiCNorm is a specialized software package designed to
address systematic biases in scHi-C data. It employs zero-
inflated and hurdle models to effectively mitigate biases arising
from factors such as cutting sites, GC content, and mappability.
By removing these biases, scHiCNorm enhances the ability
to accurately assess cell-to-cell variances in chromosomal
structures. This allows for a more comprehensive and reliable
characterization of chromosomal interactions and structural
variations in scHi-C data.

PLNorm is a normalization method specifically designed
for scHi-C data. It addresses systematic biases present in scHi-
C data using the power-law distribution.

Power law distributions are frequently found across a range
of natural, social, and biological systems. For instance, the
distribution of connections within a protein-protein interaction
network manifests a power-law degree distribution [31]. This
can be represented by the following equation:

P(k) o k=

In this formula, P(k) stands for the probability of a node
establishing & connections, while o denotes the scaling ex-
ponent. This distribution implies that a small number of
nodes (referred to as hubs) within the network are highly
interconnected, whereas the majority of nodes have only a
few connections.

Prior to the formulation of our PLNorm method, an exten-
sive analysis of the power law characteristics present in single-
cell Hi-C (scHi-C) data was undertaken. This examination
utilized both the Kolmogorov-Smirnov (K-S) test and the
likelihood ratio test to scrutinize the scaling of interaction
frequency with genomic distance. Four scHi-C datasets served
as the focus of this study: those documented by Ramani et al.,
4DN sci-Hi-C, Lee et al., and the additional dataset presented
by Li et al. [13].

The hypotheses for the K-S test and the likelihood ratio test
were formulated as follows:

k-S test:

Hyj : The interaction frequency between genomic regions scales
as a power law with respect to genomic distance

H, : The interaction frequency between genomic regions does
not scale as a power law with respect to genomic distance

Likelihood ratio test:

Hy : The reference model assumes a power-law relationship
between interaction frequency and genomic distance
adequately describes the scHi-C data

H, : The alternative model provides a better fit to the scHi-C
data

The p-values from the K-S tests for the datasets from
Ramani et al., 4DN sci-Hi-C, Li et al., and Lee et al. all
exceeded the 95% confidence threshold, signaling a power
law pattern in these datasets. Conversely, the likelihood ratio
tests yielded p-values significantly below the confidence level,
implying a truncated power law—a variant of the conventional
power law—as a more apt model for these datasets. Notably,
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the Lee et al. dataset appeared to be better characterized by a
stretched exponential distribution.

Supplementary visual analyses of the interaction frequen-
cies against genomic distances corroborated these statistical
outcomes. The data from Ramani et al., 4DN sci-Hi-C, and Li
et al. conformed to power law scaling, whereas the Lee et al.
dataset exhibited certain discrepancies. Nevertheless, the K-S
test results suggest that, while not optimal when compared to
the stretched exponential model, a power law distribution still
provides a commendable fit for the Lee et al. data.

This in-depth investigation substantiates the presence of
power law dynamics within scHi-C datasets. Such evidence
substantiates the exploitation of power law properties in the
development of novel computational methodologies for the
analysis of scHi-C data, thereby underpinning the foundation
of our PLNorm approach.

Specifically, PLNorm performs normalization on the raw
contact matrix X; of cell ¢, resulting in the transformed matrix
X;. This transformation is achieved by estimating the power-
law scaling parameter o by applying Maximum Likelihood
Estimation (MLE) on its probability density function (PDF)
using the following expression:

~ Xixn

i X Q& -
ZlogQ(a:j +1)
j=1

(D

where X is a n-by-n matrix representing the contact fre-
quency, n denotes the chromosome length divided by the
predefined resolution, and x; represents the column sum of
column j within the matrix Xj.

C. Evaluation Criteria

We employed various metrics to assess the performance of
the normalization methods used in this study. These evaluation
tools include HiCRep [32] and cell embeddings.

HiCRep is a method specifically designed for calculating
the correlation between two contact matrices. It applies a
smoothing technique to the contact maps, which enhances con-
tiguity and promotes the identification of domain structures.
Within each genomic distance stratum, HiCRep computes the
Pearson correlation coefficient and aggregates the stratum-
specific correlation coefficients to obtain the Stratum-adjusted
Correlation Coefficient (SCC). In our study, we calculated
SCCs between pairwise single cells and derived the overall
mean SCC as well as cell type-specific mean SCCs using cell
type information. To assess the similarity change between the
normalization methods and the raw data, we computed the
absolute difference between the SCC values obtained from the
different normalization methods and the raw data. A smaller
difference indicates a normalization method can reduce biases
and at the same time does not change the similarity of raw
scHi-C data dramatically. To the contrary, a larger difference
means that a normalization method changes the raw scHi-C
data significantly.
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In the context of this research, cell embeddings refer to
the derived latent vectors of single cells, generated via the
“InterProduct” similarity method encapsulated within scHiC-
Tools [33]. To critically evaluate the performance of different
normalization methods using these embeddings, our study
implemented two distinct evaluation approaches:

1) t-SNE Clustering Evaluation: We procured cell em-
beddings from the scHi-C data normalized by each
respective method. These embeddings were then subject
to dimensionality reduction using t-SNE [34], resulting
in a two-dimensional representation conducive to visual
interpretation. Subsequent clustering via the K-means
algorithm was conducted on these reduced embeddings,
and the concordance with known cell labels was statis-
tically quantified using the Adjusted Rand Index (ARI).
The ARI metric was utilized to gauge the accuracy of
the clustering results in alignment with the ground truth
labeling.

Silhouette Score Assessment: The second approach en-
tailed computing the average Silhouette score directly
from the t-SNE reduced embeddings, eschewing any
clustering. The Silhouette score serves as a measure
of how distinct the clusters are, with higher values
indicating more pronounced separation.

2)

III. RESULTS AND DISCUSSION
A. HiCRep Results

In order to measure the ability to reveal the cell-to-cell
variances, we calculated the SCC values for each method
of the three datasets in this study. Figure 1 illustrates the
absolute difference in the SCC values between the normaliza-
tion methods and the raw data for the Ramani et al. dataset.
It is evident from the plot that PLNorm, BandNorm, and
scHiCNorm exhibit small differences compared to the raw data
across various cell types and the pseudo bulk data. On the
other hand, scVI-3D demonstrates the largest deviation from
the raw data.

Figure 2 presents a similar pattern to Figure 1, demon-
strating the absolute difference in the SCC values between
the normalization methods and the raw data for the Lee
et al. dataset. In this case, PLNorm and BandNorm exhibit
the lowest absolute differences compared to the raw data,
indicating their effectiveness in preserving the correlation
structure. On the other hand, both scHiCNorm and scVI-3D
display some degree of deviation from the raw data.

The 4DN sc-Hi-C dataset, possessing the highest number
of cells, displays a trend in Figure 3 consistent with previous
observations. This trend reaffirms that PLNorm and BandNorm
provide results closest to the raw data, while scVI-3D diverges
the most.

B. Cell Embeddings Results

As described in the methodology section, we obtained latent
cell embeddings for each method across the three datasets
to assess their capacity to enhance cell-to-cell variances and
distinguish between different cell types.
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from the raw data for Lee et al.

Table I demonstrates the superior performance of our
method, PLNorm, compared to other methods in terms of the
ARI and silhouette score for the Ramani et al. dataset, with
an ARI of 0.627 and a silhouette score of 0.373. BandNorm
achieves comparable results to the raw data, with an ARI of
0.450 and a silhouette score of 0.337. On the other hand,
methods such as scVI-3D and scHiCNorm exhibit significantly
poorer performance in clustering cell types compared to the
raw data.

Table II presents the results for the Lee et al. dataset,
which differ slightly from the results in Table I. In this
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Fig. 3. Absolute difference of the SCC value between normalization methods
from the raw data for 4DN sc-Hi-C
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dataset, both PLNorm and scHiCNorm outperform the raw
data in clustering the cell types. However, PLNorm remains
the top-performing method, achieving an ARI of 0.361 and
a silhouette score of 0.125. This indicates the effectiveness
of our method, PLNorm, in preserving cell-type information
and enhancing the clustering performance compared to other
methods.

Table III displays the results for the 4DN sc-Hi-C dataset,
where all methods except scHiCNorm outperform the raw
data in terms of ARI and the silhouette score. The ARI and
silhouette scores for PLNorm, BandNorm, and scVI-3D are
relatively similar. However, it is worth noting that all methods
achieve low ARI values and silhouette scores, indicating the
difficulty of clustering cell types in this dataset due to its larger
size.

TABLE I
CELL EMBEDDINGS RESULTS FOR RAMANI ET AL.
method ARI_K-means | silhouette
raw 0.453 0.343
PLNorm 0.627 0.373
BandNorm 0.450 0.337
scVI-3D 0.162 -0.107
scHiCNorm 0.114 0.069
TABLE 11
CELL EMBEDDINGS RESULTS FOR LEE ET AL.
method ARI_K-means | silhouette
raw 0.006 -0.072
PLNorm 0.361 0.125
BandNorm 0.005 -0.072
scVI-3D -0.001 -0.081
scHiCNorm 0.352 0.120
TABLE III
CELL EMBEDDINGS RESULTS FOR 4DN sc-Hi-C.
method ARI_K-means | silhouette
raw 0.015 -0.097
PLNorm 0.032 -0.088
BandNorm 0.031 -0.089
scVI-3D 0.033 -0.080
scHiCNorm 0.015 -0.158

In Figure 4, we present the cell embeddings for both raw
data and the various scHi-C normalization methods evaluated
in this study across three scHi-C datasets. Notably, our method,
PLNorm, distinctly differentiates various cell lines for the first
two datasets. In contrast, some methods, such as scHiCNorm,
exhibit a suboptimal performance on this same task. This
visualization of the last dataset illustrates the difficulty of
separating a larger scHi-C dataset.

C. Computational Performance

We conducted a comparative evaluation of computational
performances under different conditions. The RAM usage and
elapsed time for each method in single-core mode, except
for scVI-3D, the only method supporting multi-core parallel
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computing, for which we tested the performance in the case of
10-core modes, are illustrated in Figure 5 and Table IV, respec-
tively. As anticipated, PLNorm exhibits the highest scalability
(Figure 6), primarily due to its reliance on basic operations
like averaging and multiplication for data scaling. While scVI-
3D matches PLNorm’s speed, it demands significantly more
memory.

Conversely, BandNorm exhibits constraints in scalability.
Although its memory requirements remain relatively modest
among the methods evaluated—around 30 GB for 4,238 cells
as documented in Table V—it demands a significantly ex-
tended duration, taking up to 507 minutes for 16,707 cells. For
more expansive datasets, we foresee BandNorm’s processing
time increasing at a considerably sharper rate than scVI-3D,
a trend evident when comparing results from Ramani et al.
to those from Lee et al. Interestingly, despite the 4DN sc-
Hi-C dataset having fewer memory requirements than Lee
et al.—even with a larger cell count—we surmise this may
be attributed to a substantial reduction in the number of
loci pairs in individual cells. scHiCNorm, though displaying
commendable memory efficiency, emerges as the most time-
intensive method, necessitating a staggering 11,818 minutes
for 16,707 cells, as indicated in Table V. Collectively, PLNorm
stands out for its exceptional scalability, demonstrating both
time and memory efficiency, as illustrated in Figure 5.

TABLE IV
METHOD SCALABILITY IN TERMS OF COMPUTATIONAL TIME (IN
MINUTES) VERSUS NUMBER OF CELLS

Computational cost (m) | Ramani et al. | Lee et al. | 4DN sc-Hi-C
cell num 620 4,238 16,707
loci pairs (median) 6,143 32,923 3,006
PLNorm 13 40 170
BandNorm 15 28 507
scVI-3D 25 170 472
scHiCNorm 226 3,859 11,818
TABLE V
METHOD SCALABILITY IN TERMS OF RAM USAGE VERSUS NUMBER OF
CELLS
RAM (Gb) Ramani et al. | Lee et al. | 4DN sc-Hi-C
cell num 620 4,238 16,707
loci pairs (median) 6,143 32,923 3,006
PLNorm 0.027 0.036 0.036
BandNorm 2.6 29 16.6
scVI-3D 22 42 63
scHiCNorm 0.219 0.232 0.243

D. Discussion and Conclusions

Derived from the Power Law distribution scale parameter
estimate, &, we propose a simple and scalable global normal-
ization method, termed PLNorm. Not only is PLNorm quick,
but it also exhibits remarkable memory efficiency.

As PLNorm does not require a reference and operates
independently for each cell, it allows normalization application
to new out-of-sample data. The ultimate goal of the trans-
formation is to retain and amplify cell-to-cell variances. It is
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noteworthy that our method, like other global scaling methods,
does not eliminate batch effects; these can be addressed with
downstream tools (e.g., [35]-[37]).

We evaluate the performance of several normalization meth-
ods—BandNorm, scVi-3D, scHiCnorm, and our proposed
PLNorm—in terms of cell embeddings (ARI and silhouette
score), changes in cell similarity, and scalability. Among these,
PLNorm exhibits commendable performance across all four
aspects.

In conclusion, normalization for maintaining cell-to-cell
variances appears less critical than normalization for clustering
and cell type discovery. Even rudimentary methods such as
scHiCNorm perform adequately in this metric, despite their
divergence from raw data but a reduction in cell similarities.
Therefore, both the ability in cell embeddings and the scal-
ability of methods become crucial factors to consider when
selecting a normalization technique. Our proposed PLNorm
normalization strikes a favorable balance between clustering
accuracy and scalability, displaying superior performance to
BandNorm with only a minor increase in the elapsed time in
certain cases. This makes PLNorm a promising normalization
approach for very large datasets.
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