LocIn: Inferring Semantic Location from Spatial Maps in Mixed Reality

Habiba Farrukh, Reham Mohamed, Aniket Nare, Antonio Bianchi, and Z. Berkay Celik

Purdue University
{hfarrukh, raburas, anare, antoniob, zcelik} @ purdue.edu

Abstract

Mixed reality (MR) devices capture 3D spatial maps of users’
surroundings to integrate virtual content into their physical
environment. Existing permission models implemented in
popular MR platforms allow all MR apps to access these 3D
spatial maps without explicit permission. Unmonitored access
of MR apps to these 3D spatial maps poses serious privacy
threats to users as these maps capture detailed geometric
and semantic characteristics of users’ environments. In this
paper, we present LOCIN, a new location inference attack
that exploits these detailed characteristics embedded in 3D
spatial maps to infer a user’s indoor location type. LOCIN
develops a multi-task approach to train an end-to-end encoder-
decoder network that extracts a spatial feature representation
for capturing contextual patterns of the user’s environment.
LocIN leverages this representation to detect 3D objects and
surfaces and integrates them into a classification network
with a novel unified optimization function to predict the user’s
indoor location. We demonstrate LocCIN attack on spatial maps
collected from three popular MR devices. We show that LocIN
infers a user’s location type with an average 84.1% accuracy.

1 Introduction

Mobile mixed reality (MR)' has become increasingly popular
over the last decade with the release of dedicated headsets
and apps that blend virtual content into users’ real-world
environments. Apart from gaming and entertainment, mo-
bile MR applications have recently found utility in enabling
interactive healthcare, education, and e-commerce experi-
ences [20, 30, 34]. For instance, e-commerce apps like IKEA
place [31] allow customers to experience how a product fits
in their environment before purchasing.

MR apps require an elaborate description of the user’s sur-
roundings in three dimensions (3D) to localize the MR device
and enable realistic assimilation of virtual content in the user’s
environment. To capture the user’s 3D environment, common

'We use MR as an umbrella term for augmented and virtual reality.

MR devices, including dedicated headsets and even off-the-
shelf smartphones, are equipped with specialized sensors such
as depth cameras and LiDAR sensors. For instance, HoloLens
2 equips a depth camera, and Apple’s latest iPhone and iPad
Pro employ a LiDAR sensor to capture the real-time depth of
the surrounding space and objects [3]. These sensors capture
the distance between the device and physical points in the
environment to generate a 3D spatial map of the environment.

As mobile MR adoption grows [49], there is increasing
concern about the security implications of 3D spatial maps ac-
cessed by mobile apps [21,73]. All MR apps require explicit
user permission for camera access to deliver their function-
ality, i.e., integrate virtual content in the user’s environment.
Once camera permission is granted, MR apps on popular MR
platforms [5,7,50] have access to the 3D spatial maps. MR
apps’ access to 3D spatial maps opens doors to a new type
of reconnaissance attack where an adversary-controlled mali-
cious app exploits the 3D spatial map of the user’s environ-
ment to infer user’s indoor locations (i.e., semantic location).

An adversary’s ability to locate users enables them to
launch physical attacks and case a target’s environment for
burglary and assault. With mobile MR use cases in entertain-
ment, education, and retail, such threat broadly applies to our
homes, businesses, educational facilities, and many others.
Moreover, an adversary can combine the user’s indoor loca-
tion information along with the object and semantic properties
of the user’s environment to build a profile for delivering per-
sonalized ads and recommendations. An adversary can also
exploit this to understand users’ socio-economic status, ac-
cessibility requirements, and product preferences, as well as
their identity, routines, and activities.

In this paper, we study how an adversary can exploit 3D
spatial maps from MR devices to infer a user’s indoor loca-
tion. Prior work has explored indoor location inference from
2D and RGB-D images [16,24,42,70,76,77]. However, the
direct application of existing approaches to spatial maps is
impractical because location inference from spatial maps re-
quires a different type of feature extraction and optimization
process due to its sparse, non-uniform, and dynamic nature.

To achieve this, a recent work [22] built a location classifier
from spatial maps. This approach, however, suffers from two
main limitations. First, it only uses the high-level geometric
features of spatial maps without leveraging their semantic
context. The lack of such semantics leads to poor accuracy in
inferring different indoor environments. Second, it compares
a given location of a user with a labeled database of that user’s
previously visited locations with the goal of finding whether
the user has been in that location before. From an attack per-
spective, it fails to infer the location of users without knowing
a priori the spatial maps of their indoor environments. These
limit its attack practicability, ultimately making it infeasible
to conduct a location inference attack in practice.

To this end, we present LocCIN, a location inference attack
on mobile MR devices which exploits 3D spatial maps to infer
a user’s location. We observe that indoor environments are
uniquely characterized by their semantic context (e.g., objects
and surfaces in the environment). Yet, unlike pixel arrays in
images, a 3D spatial map is a set of unordered points with
non-uniform density, making detecting objects and surfaces in
the environment challenging. Therefore, we introduce a new
location inference learning representation that composites the
geometric and contextual patterns embedded in the spatial
map to infer a user’s location. We design a multi-task learning
approach and build an end-to-end encoder-decoder network
that can successfully infer the user’s location from spatial
maps captured by various MR devices.

LoclIN first preprocesses the 3D points in a 3D spatial
map through farthest point sampling [47] to remove outlier
points and subsample the map to a fixed number of points.
The preprocessed map is then fed as input to LOCIN’s spatial
encoder, which extends a hierarchical neural network [59] to
extract a spatial feature representation of the map. This feature
representation embeds geometric and contextual patterns of
the user’s environment. This representation is invariant to
dynamic changes (e.g., changes in viewing angle or size of
the map) in spatial maps as users interact with the MR apps.
Lastly, LocIN’s encoder output is fed to LocIN’s multi-task
location decoder. The multi-task decoder performs 3D object
detection and semantic segmentation to generate 3D bounding
boxes of objects and point-wise labels for objects and surfaces
in the environment. It then integrates the object and semantic
context into a classification network to predict the location
type (e.g., bedroom, office) of the input spatial map.

We present three studies to evaluate LOCIN’s effectiveness.
In a first study, we evaluated LocCIN on a dataset [13] con-
sisting of ~1,500 spatial maps collected via an iPad Air 2
equipped with a depth sensor belonging to 13 unique in-
door location types where MR devices are typically used.
To demonstrate LocCIN’s effectiveness on MR devices with
different depth sensing techniques, in a second study, we eval-
uated LocIN on a dataset [8] collected through an iPad Pro
equipped with a LiDAR scanner consisting of ~5,000 spatial
maps. The spatial maps belonged to 9 unique indoor location

types in real-world homes. Finally, to show LocIN attack’s
practicality on dedicated headsets, we evaluated LOCIN on
our dataset of spatial maps collected via HoloLens 2. LocIN
correctly predicted the location types from the spatial maps
with an average accuracy of 84.1%. We also show the LocCIN
attack is robust against varying sparsity (number of points)
and size of the 3D spatial maps.
In summary, we make the following contributions:

* We present a location inference attack on mobile mixed
reality devices that exploits the 3D spatial maps captured
from users’ environments to predict their location type.

* We design LocIN, a multi-task learning framework that
leverages an encoder-decoder architecture to infer the
user’s location by integrating the geometric and contex-
tual patterns embedded in the spatial maps.

* We evaluate LocCIN on 3D spatial maps captured using
three MR devices from 13 unique location types. We
demonstrate that LOCIN can infer a user’s location with
an average accuracy of 84.1%, and it is robust against
varying sizes and sparsity of the spatial maps.

2 Background

Mixed Reality. The influx of reality-altering headsets and ap-
plications has brought mixed reality (MR) to the spotlight in
recent years. Consequently, mobile industry has been striving
to enable comfortable and realistic MR experiences for users.
For instance, Google and Apple released ARCore [5] and
ARKit [7] to enable MR app development for smartphones
and tablets. Moreover, dedicated standalone headsets, such as
HoloLens, have recently emerged with their own MR devel-
opment platforms, e.g., Windows Mixed Reality Toolkit [50].

MR devices integrate virtual reality (VR) and augmented
reality (AR) to allow users to visualize and interact with both
real and virtual content in their own physical environment.
MR use-cases range from social media apps (e.g., Snapchat fil-
ters [66]) and games (e.g., Pokemon Go [56]) to e-commerce
(e.g., IKEAPIace [31]) and educational apps (e.g., chemical
molecular structures [10], human anatomy [26]).

To enable mixed reality experiences, MR devices embed
multiple sensors, such as RGB cameras and microphones that
capture input from the user’s surroundings. These devices are
often equipped with an inertial measurement unit (IMU) to
enable tracking of users’ head and body movements. Some
recent MR devices are also equipped with specialized depth
sensors. For instance, HoloLens 2 uses a depth camera while
the latest iPhones and iPads employ a LiDAR sensor to build
an understanding of their surroundings [3,27].
3D Spatial Maps. MR devices need to accurately locate them-
selves in relation to the physical world and understand the
objects and surfaces in the environment to seamlessly super-
impose digital content in the user’s surroundings. Most MR

(b)
Figure 1: An example of a spatial map captured with an MR
device in an office (a) without and (b) with color.

devices rely on camera and sensing-based localization tech-
niques to locate themselves in the user’s environment [64].
These techniques require access to a detailed 3D digital repre-
sentation of the user’s environment, which is used by MR apps
to overlay virtual content in the user’s surroundings. To this
end, commonly available MR devices - dedicated headsets
and even off-the-shelf smartphones - are equipped with depth
sensors that measure the distance between the device and
points in the real environment. These depth sensors include
Time-of-Flight (ToF) cameras (e.g., HoloLens), and LiDAR
scanners (e.g., on iPhone 13 and iPad Pro).

The 3D mapping of the user’s environment is shared with
MR apps to allow virtual or augmented content to interact with
the physical world, e.g., anchoring a virtual object on user’s
desk. MR devices provide the 3D representation of the users’
environment to MR apps as a 3D spatial map. The 3D spatial
map is represented by a set of 3D points {P = pi,...,pn},
where each point p; is a vector of its (x,y,z) coordinate in
space. Figure | shows an example of a 3D spatial map cap-
tured by iPad Pro, with and without the color information.
Some MR devices also include color and normal vectors
(e.g., HoloLens [67]) representing orientation for each point
in the 3D spatial map.

3 Problem Statement and Threat Model

3.1 Motivation

MR Permission Models. The MR devices leverage the same
permission models as traditional mobile operating systems
e.g., i0S and Android, to control apps’ access to sensitive
data [4, 6, 28]. Since access to the camera is essential for MR
apps to visually integrate virtual content in the user’s envi-
ronment, users must grant camera permission to allow MR
apps to function as intended. Prior works have highlighted
that sensitive data such as credit cards details, sensitive docu-
ments, or bystanders’ facial identities could be revealed from
images and videos, captured by MR devices [14, 33,60, 68].
Consequently, several works have attempted to protect visual
privacy by only sharing user-defined privacy-preserving visual
features with apps [33,37, 68], augmenting privacy markers

(e.g., QR codes, RFID tags) into the real world to avoid sensi-
tive content [60,61], and defining fine-grained permissions
for app’s access to visual data [32,63].

Significant efforts have been made to restrict MR apps from
accessing users’ private data through images and videos [14].
Yet, these apps must access the 3D spatial maps of the user’s
environment to deliver MR content. Hence, once camera per-
mission is granted to an app, it can access the spatial map.

Security and Privacy Implications of Spatial Data. Access
to 3D spatial maps of the user’s environment poses serious
privacy threats as these maps capture privacy-sensitive cues
about the user’s surroundings. For instance, a spatial map
captures detailed characteristics of the environment, such as
its geometric properties (e.g., length and width of the room),
and embeds semantic information about the types of objects
or surfaces present in it. Similar to how humans perceive an
indoor environment based on its layout, objects, and surface
properties [17], an adversary can extract these characteristics
from the 3D spatial map to infer user’s location, i.e., the type
of indoor environment.

Unlike images and videos, 3D spatial maps are not eas-
ily interpretable by average MR users and, therefore, are not
perceived as sensitive data yet, exacerbating their privacy
threat. Moreover, spatial maps, unlike images, are not sen-
sitive to lighting conditions, occlusions, or camera orienta-
tions/viewpoints which allows an adversary to infer private
information about the user in a variety of scenarios.

An adversary can exploit spatial maps to infer a user’s lo-
cation (e.g., user is at their office or home), without explicitly
requesting location permission from the user. The adversary
could exploit this information to launch a physical attack
(e.g., robbery or assault). The adversary could also gain a
fine-grained understanding of the user’s routine (e.g., when
the user wakes up, goes to work) based on the inferred loca-
tions across time. This information can be leveraged by data
brokers aiming at selling detailed user profiles to third parties.

An adversary can also combine the object and semantic
segmentation information embedded in a spatial map with
the inferred location to reveal additional private information
about the user. First, an adversary could leverage the detected
objects and the inferred location to understand users’ socioe-
conomic status, accessibility requirements, and product pref-
erences. For instance, a wheelchair in a bedroom or handles
near a toilet might indicate a user’s accessibility needs. Sim-
ilarly, the type of appliances found in a user’s environment
could reveal their income level. Second, an adversary could
use information about rooms’ and objects’ sizes and timing
of a collected map to distinguish locations visited by a user
(e.g., bed on day-1 vs. day-2) and infer users’ identity, behav-
ior, and activities. For instance, the number of beds in a room
could reveal the familial structure of a user, and the presence
of athletic equipment could indicate a user’s hobbies. Lastly,
with recent permissions for tracking user activities on mobile
OS (e.g., Apple’s app-tracking-permission), access to spatial

User’s
environment with
virtual content

MR Device [\ User-
User’s e.g., smartphone, { LocIn }--- 'A sers
environment HoloLens LU] location:

office

Figure 2: A malicious MR application accesses the 3D spatial
map of a user’s environment to integrate virtual content. The
app can exploit this map to infer the user’s location.

maps aid adversaries in building user profiles for delivering
targeted ads based on their visited locations. This is privacy
critical as users are unaware of their data being collected.
Therefore, in this paper, we set the foundation for uncov-
ering users’ private information inferable from spatial maps.

3.2 Problem Statement

We investigate how an adversary can exploit the 3D spatial
maps captured by MR devices to infer the indoor location of
a user, e.g., a user is in the office or bedroom. We consider
the spatial map of a user’s environment, P = {py, p2,...,Pn}>
where n is the number of points in the map and each p; con-
sists of the 3D coordinates of a point. Given P, our goal is to
infer the indoor location where the spatial map was captured.

To illustrate, consider the scenario in Figure 2 where a
user installs a malicious virtual meeting app on their mixed
reality device (e.g., iPad Pro with LiDAR sensor). The app
requests camera permission from the user to display avatars
of other meeting attendees. The user interacts with the app
in their office to conduct a meeting with their colleagues.
The malicious app accesses the 3D spatial map of the user’s
current surroundings and shares it with a remote server.

A remote adversary can exploit this spatial map to infer
that the user is at their office and leverage this information to
break into the house when the user is not home. The adver-
sary could also exploit this information to gain a fine-grained
understanding of the user’s identity, routine, and preferences
(e.g., when the user wakes up, goes to work, user’s hobbies,
etc.). Additionally, based on the user’s inferred location, an
adversary can create a detailed profile of a user to deliver unso-
licited personalized ads to generate ad revenue. For example,
a virtual meeting app could display ads for office furniture or
work productivity tools while the user is in their office.

3.3 Threat Model

We consider an adversary with the goal of inferring the type
of user’s indoor location (e.g., bedroom, kitchen, office) while
a user is using an MR device. The target device can be any

MR device, capturing a 3D spatial map via the device cam-
era equipped with a depth sensor or LiDAR scanner, e.g., a
smartphone with MR capabilities and HoloLens. We assume
the adversary has no prior knowledge about the target user’s
indoor environment, including its physical location, spatial
maps from prior app usage, and location type. The adver-
sary trains the attack model using publicly available datasets
that include typical indoor location types [8, 13]. We discuss
in Section 8 how the adversary can infer location types not
observed during the training process.

An adversary provides the user with an MR app, which
accesses the 3D spatial map of the user’s surroundings while
the user interacts with the app. The adversary can achieve this
by (1) distributing the MR app on MR platforms’ app stores
and third-party MR forums, and (2) deceiving users into in-
stalling the MR app via phishing and other social engineering
methods. We note that 3D spatial map can be accessed if the
camera permission is granted to an app. As MR apps require
camera access to deliver their basic functionality, camera per-
mission is given to all MR apps. The app does not require any
other permissions, such as permissions for the device location,
or the images and videos recorded by the device; additionally,
the 3D spatial map accessed by the app does not contain any
color or normal vector information. We note that given the
adversary deploys a malicious app on the target user’s de-
vice, it has knowledge of the user’s MR device model and its
depth-sensing technology. Based on this, the adversary trains
an attack model on publicly available datasets collected using
similar depth sensors as the target device.

3.4 Design Challenges

C1: Extracting Location Cues from Spatial Maps. Given
a 3D spatial map, intuitively, an adversary could train a clas-
sifier that extracts high-level features, such as structural and
geometric properties (e.g., length and width or floor map) of
the user’s environment to infer the location. However, this is
a challenging task as indoor environments of the same type
vary significantly in their structural and geometric properties.
For instance, the size of two bedrooms in a user’s house may
differ. Similarly, the geometric features of different locations
may share similarities (e.g., structure of a classroom may
share similarities with that of a conference room).

One potential solution to this problem is leveraging the
semantic context of indoor locations to discriminate them
better. To achieve this, an adversary could train a 3D spatial
map model trained either on objects or 3D surfaces present
in the environment. Yet, solely using objects or 3D surfaces
yields incorrect location inference (demonstrated in Section 7)
because, unlike image pixel arrays, a 3D spatial map is an un-
ordered collection of points with a non-uniform point density,
which makes detecting objects and 3D surfaces challenging.
Therefore, to accurately infer the location, we build a feature
extraction and loss minimization pipeline that simultaneously

Multi-task Point-wise
oLocati&m Decoder | semantic labels

; Voo e M

i Semantic H ! =
—l — .

i Decoder i ! -

i [d

=
=)
5
H
g Spatial 2 i . M !
1 - Understanding™ & a»i Lsiitein ® {——|Location label
3 il Ecoer) | | Deeoder [T T opnce
Mﬂr"’"* an) ler E :
‘ F . Objeet | | L. IFT
Xx3 ! Nx3 é i Decoder [@

,,,,,,,,,,,,,,,,,,,,,,,,,, I’“‘

Object 3D

i i
Input Spatial Map ' oPrcpmccssing ! Location Inference ' bounding boxes

Figure 3: Overview of LocIN attack.

captures both geometric properties and the semantic context
of the user’s environment.

C2: Invariance to App Usage. Spatial maps captured by MR
devices change dynamically in size and viewing angle when
a user interacts with different MR apps. For example, while
playing an MR game, a user may walk around the room, and
while using a shopping MR app, a user may position products
to specific locations in a real-world perspective. Hence, to
infer the user’s location from the captured spatial map, the lo-
cation inference model must be invariant to spatial map trans-
formations. For instance, translating or rotating the spatial
map points should not change the model’s location prediction.
We leverage 3D point subsampling and hierarchical multi-
scale spatial feature learning to overcome this challenge.

C3: Lack of Prior Knowledge and Generalization. To
launch location inference attacks in practice, an adversary
must be able to infer the target users’ location without making
any assumptions or prior information about their environ-
ments. One naive approach would be collecting spatial maps
from a set of users while they are using an MR app and then
manually-label them with a set of location labels. However,
while this approach may yield an acceptable attack success
rate for seen users, it is tedious and time-consuming and may
fail to generalize to unseen users due to the bias to specific lo-
cations, and produce incorrect results (Section 7). To address
this, we use public spatial map datasets with diverse location
labels (in addition to the dataset we collected). Additionally,
to eliminate the sparse, non-uniform, and noisy nature of such
datasets, we leverage a data-driven upsampling method to
generate dense points while improving proximity-to-surface
and distribution uniformity in the 3D point representations.

4 LocIN Attack Overview

We present LoCIN, a location inference attack for mobile
mixed reality devices, which exploits 3D spatial maps to iden-
tify a user’s indoor location. Figure 3 illustrates the overview
of LoclIN attack. Given that the sparsity of spatial maps varies
based on the MR device and device usage duration, we first
preprocess the input map by removing outlier points and sub-
sampling the 3D points in the spatial map (@). Here, we

leverage farthest point sampling [47], resulting in a reduced
size map with N points (addressing C2, C3).

As discussed in Section 3.4, inferring a user’s location
solely from geometric (i.e., structure and appearance of an
environment) or semantic (i.e., objects and surfaces present
in the environment) properties of an indoor environment can
often lead to ambiguous results. To address this issue, we
introduce a new location inference learning representation
by combining the geometric and semantic properties of a 3D
spatial map. For this, we use a multi-task learning approach
and train an end-to-end encoder-decoder [9], which, in turn,
successfully infers the user’s location (addressing C1).

Specifically, we extract the geometric and semantic prop-
erties of the user’s environment by extending a PointNet++-
based hierarchical neural network encoder [59] (@). The
encoder extracts a spatial feature representation of the input
spatial map (Z). Z is then fed to LocIN’s multi-task location
decoder (@). The multi-task decoder is a composite model
consisting of three components: (1) location decoder, (2) ob-
ject decoder, and (3) semantic decoder. The location decoder
consists of a fully-connected neural network classifier trained
to predict the type of input spatial map’s location. The ob-
ject decoder extends a 3D object detection network [57] that
detects the objects in the user’s environment. Lastly, the se-
mantic decoder leverages a segmentation network [59] to
provide fine-grained information about the objects and sur-
faces present in the user’s environment.

To ensure that the location decoder integrates the intrinsic
patterns from object detection and semantic segmentation, we
introduce a unified optimization function that combines the
loss functions of the three decoders to train LOCIN.

5 LoCIN Design

5.1 Spatial Map Preprocessing

LocIN attack aims to infer the location of the user without any
prior knowledge about the user’s MR device. As different MR
devices use different sensors to generate the 3D spatial map
of the user’s surroundings, the number of points in the 3D
spatial map varies from one device to another. For example,
the spatial map’s point density captured via a HoloLens 2
with depth cameras is different from the spatial map obtained
through the iPad’s LiDAR scanner. Moreover, spatial maps’
point density is largely dependent on the user’s app usage. For
instance, if the user moves quickly in their environment while
interacting with the app, the spatial map has fewer points.
To infer location from spatial maps with varying densities,
we transform the input spatial map to a fixed number of 3D
points. Given an input map (P) of size X x 3, with a 3D coordi-
nate for each X point, we apply farthest point sampling [47] to
the map to generate a transformed map of size N x 3. Specif-
ically, we select a random point and then iteratively sample
points that are farthest from the selected samples. This en-

Sampling PointNet Sampling PointNet

Input Spatial Map M3 MxD Mx3 MxD
1 2 N 1 Z 2

Grouping h Grouping
M xKx3 MxKx3

Spatial Feature Representation, MxD

Figure 4: LocIN’s spatial understanding encoder architecture
based on a hierarchical neural network (PointNet++).

sures that the input spatial map is subsampled to a fixed size
for efficient processing while providing sufficient coverage.

5.2 Spatial Understanding Encoder

To infer the user’s location, a method is needed to understand
the geometric properties and semantic context from the pre-
processed spatial map. For this, we convert the input spatial
map, P, into a high-level spatial feature representation Z that
only encodes information relevant for uniquely identifying the
user’s location. For instance, for the spatial map of a bedroom,
Z could represent features of objects or surfaces in the map
that can help differentiate its location from others, e.g., 3D
points of a bed and nightstand placed close to a wall.

To learn the spatial feature representation, instead of relying
on hand-crafted geometric and semantic features, we leverage
network architecture for learning point-wise features from
3D point clouds [58,59,72]. While LocIN’s approach is not
limited to a specific network, we extend PointNet++ [59] as
an encoder to learn hierarchical features that preserve spatial
localities in the spatial map at different contextual scales

Figure 4 illustrates the architecture of LoCIN’s encoder. The
encoder’s PointNet++-based hierarchical structure consists of
multiple set abstraction levels with skip connections. At each
abstraction level, a subset of points from the input spatial map
is selected to ensure efficient computation and processed into
a feature vector that represents the local context of the selected
points. The set abstraction consists of three main operations:
(1) sampling, (2) grouping and (3) PointNet feature extraction.
Iterative Spatial Sampling. The sampling operation in each
set abstraction level leverages iterative farthest-point sampling
to select a subset of the spatial map’s points such that each
point in the subset is the most distant from the remaining
points in the subset. Therefore, given an input set of points of
size N x 3, the sampling operation generates a set of points
of size M x 3. In contrast to random sampling, the farthest
point sampling ensures that the sampled points provide better
coverage of the entire spatial map. This sampling operation is
similar to LOCIN’s preprocessing step (Section 5.1). Yet, it is
repeated at each set abstraction level with a decreasing number
of samples, followed by the spatial grouping operation.
Spatial Locality Grouping. With the grouping operation, we
generate groups of neighboring points for each point selected

during the sampling operation. These groups represent local
regions of the input spatial map used for feature extraction via
PointNet [58]. To identify the neighboring points, we extend
ball query algorithm [36] for the grouping operation to find
all points within a specified radius of a given point. Ball query
algorithm uses a divide-and-conquer approach to build a ball-
tree i.e., a binary tree in which each node of the tree represents
the set of neighboring points within a specific radius. Starting
from the set of 3D points from the sampling layer as its root
node, we iteratively build the ball-tree by selecting the farthest
point from the centroid of root node points as the left child
and the farthest point from this left child as the right child of
the root node. The points in the root node are then assigned
to the children nodes based on their distance from the node.
The grouping operation transforms the input spatial map
of size N x 3 into a set of groups of points of size M x K x 3.
Here, M is the number of groups centered around the points
selected via sampling operation, and K is the number of neigh-
boring points found for each selected point. We note that K
varies across groups, but the spatial feature vector extraction
layer converts variable length groups to a fixed vector size.

Spatial Feature Vector Extraction. For each of the local
spatial map regions (groups) extracted via the sampling and
grouping operations, we extract a spatial feature vector that
encodes the context of the local region through PointNet [58].
We first extract the coordinates of points in each of the M local
regions relative to the centroid of the region. The resulting
groups of coordinates are then fed as input to PointNet.
Given the set of points for a specific region, PointNet maps
the points to a D-dimensional feature vector through a multi-
layer perceptron (MLP) network and a max-pooling function
Thus, the feature extraction layer of LOCIN’s encoder returns
a spatial feature representation (Z) of size M x D, capturing
the local context of various parts of the input spatial map.

5.3 Multi-Task Location Decoder

We translate the problem of inferring location from the feature
encoding of the spatial map into a classification task. Given
the encoding Z of the user’s environment obtained from the
spatial encoder, LOCIN’s location decoder predicts the user’s
indoor location. For this, LoCIN first extracts the high-level
geometric features of the user’s environment to infer its loca-
tion. It then combines these geometric features with the map’s
contextual patterns through object and semantic decoders.

We consider pairs of spatial feature encodings and their
location label,

{(zi,y) Yoy ~ P'(2),z € RP,y; € A° (1)

where c¢ is the number of location classes, and A€ is the set of
c-dimensional probability vectors. Given this data, our goal
is to learn a location decoder

1 n
fi =argmin—Y" Liye (vi,0 (f (z) +QIfI) @
fer iz

where 7 is a class of functions from RP to R¢, the function
G : R — A® is the softmax operation, the function Lio : A€ X
A° — R is the cross-entropy loss

C
Lioc(,9) = = Y yelogi 3
k=1
and Q : R — R is an increasing function as a regularizer.

To infer the location from the spatial encoding, f; can be
implemented as a deep neural network that extracts high-level
features of the spatial map useful for predicting its location.
However, these features often lack distinctive local or global
semantic patterns necessary for uniquely identifying a loca-
tion (See our evaluation in Section 7). Moreover, the lack
of labeled data (i.e., pairs of spatial maps and their location
label) makes learning a generalized location classification
model for various users challenging.

We observe that indoor environments are uniquely charac-
terized by their semantic context i.e., the types of objects and
fine-grained details about surfaces present in the environment.
For instance, a bedroom can be uniquely identified because
of the presence of a bed, and a kitchen can be identified if a
stove is detected in the spatial map.

To integrate contextual information into our learning repre-
sentation for location decoding, we propose a new composite
learning representation for location decoding by leveraging
the multi-task learning paradigm in transfer learning [9]:

n
fs= argminl Z [(XLloc + BLobj + 'YLsem] 4)
fex iz

Here Lop; and Lgem are the loss functions for detecting
objects and extracting semantic patterns from the input spatial
encoding (detailed in Sections 5.3.1 and 5.3.2).

Through this learning representation, we learn a model to
classify the location of a given spatial map while concurrently
learning the contextual patterns from objects and surfaces in
the map. Our representation is inspired by the teacher-student
networks in knowledge distillation where the learning of a
student model is guided by the teacher networks [25]. In our
case, the location decoder is the student network, while the
object and semantic decoders act as teacher networks. Ob-
ject and semantic decoders benefit from stronger supervision
during learning as the labeled data for these tasks includes
ground truth for multiple objects and point-wise semantic
class labels.We show in Section 7 that this composite learning
representation helps improve LOCIN’s overall accuracy.

5.3.1 3D Object Decoder

The goal of LocCIN’s object decoder is to localize and rec-
ognize 3D objects present in the user’s environment as in-
door environments are characterized by the objects present
within them. This process involves detecting the orientated
3D bounding box for each object from the spatial map as well
as predicting the semantic class of each detected object.

Voting Object Proposal & Classification
™ {“Sampling &

3D Object
Bounding
Boxes
B

=i

J—-;..h

Spatial Encoder

Votes 4
MxD /A KxD

Figure 5: LocIN’s object decoder architecture with a deep
Hough voting, object proposal, and classification module.

To this end, we extend VoteNet [57], a voting-based net-
work for object detection Figure 5 illustrates the architecture
of LocIN’s object decoder, consisting of two modules: a vot-
ing module and an object proposal and classification module.

Object Voting. The voting module adapts Hough trans-
form [51] to generate votes for points in a 3D spatial map
based on their distance to objects’ centers. Since depth sensors
used by MR devices typically only capture object surfaces,
3D object centers may not be close to any point. For accurate
bounding box generation around object centers, VoteNet lever-
ages the Hough voting to sample seed points which are close
to object centers and generate votes based on their features.

We use the spatial encoding Z of size M x D as the input to
the voting module. To ensure significant coverage of spatial
map points for object detection, we first perform upsampling
on the M points via multiple feature propagation layers and
obtain spatial feature representation for M’ points in the origi-
nal map. The feature propagation layer interpolates the point
features of the input points to output points by computing the
weighted average of their three nearest input points’ features
and concatenates features from LocIN’s encoder (forwarded
through skip-connections) through an MLP network.

Given the set of upsampled points and their features,
M’ x D, we generate votes for each point via a shared MLP
with fully connected layers. The MLP computes the vote for
each point p; by predicting its offset from an object’s center
Ap; through the following regression loss minimization:

1 " .
Lyoe = 37 Y l[Api — Ap;|[1[p; on object surface] (5)

o g

where M, is the total number of points lying on the object
surface, Ap* is the ground truth displacement of the point
pi from the object’s center it belongs to and 1[p; on object
surface] indicates whether the point lies on an object surface.

The resulting votes represent the semantics of different
parts of the objects in the environment.

Object Proposal and Classification. The object proposal and
classification module groups and aggregates the votes gener-
ated by the voting module to generate object bounding box
proposals. It first clusters the votes via uniform sampling and

(b)

Figure 6: An illustration of (a) object detection and (b) se-
mantic segmentation output. The color in (b) represents the
semantic label for points in that region.

grouping according to spatial proximity and then processes
them through a series of MLP and max-pool layers to generate
the bounding box proposals. This generates a set of bounding
boxes, B, for various objects in the input spatial map. These
bounding boxes are represented as a multi-dimensional vector,
including the center coordinates and size of the bounding box.

Object Detection Loss. The object decoder generates the
bounding boxes for the detected objects and assigns the se-
mantic class label to each object. Therefore, we train it by opti-
mizing a multi-task loss function consisting of the vote (Lyote),
objectness (Lobj-cls), 3D bounding box estimation (Lpox), and
semantic classification (Lgem_c1s) losses.

Lobj = Lyote + 7\'1L0bj—cls + 7\-2Lb0x + 7\'3Lsem—cls (6)

Objectness loss gauges whether the detected box proposals
indeed belong to an object. For this, we categorize the detected
object proposals based on their distance from the ground truth
object center into positive (< 0.3m) and negative proposals (>
0.6m). Objectness loss is then computed via a cross-entropy
loss normalized by the total number of proposals.

The box loss optimizes the detected parameters of the 3D
bounding boxes, i.e., their centers (x,y,z coordinates), size
(height, width, and length), and the heading angle along Z-
axis. Thus, the loss is defined as a combined regression loss
of the detected bounding box’s center, heading angle and size.

The semantic classification predicts the object labels
through standard cross-entropy 10ss (Lsem-cls)-

5.3.2 3D Semantic Decoder

The objects in a given location type help distinguish it from
other locations. However, the object decoder is sensitive to
the sparsity of the input spatial map. The object decoder also
does not consider planar surfaces, e.g., walls, floor, or ceiling
of a room, or fails to detect smaller objects (See Figure 6a for
an illustration of the object decoder’s output).

To extract fine-grained contextual patterns from the user’s
environment, LOCIN leverages a semantic decoder that per-
forms semantic segmentation for classifying each point in the
input map to its semantic object class. For instance, all points

Skip Connections

Point-wise Semantic
Labels
Nx1

|

Figure 7: LocIN’s semantic decoder consists of upsampling
and PointNet layers that generate point-wise semantic labels.

belonging to walls are assigned the same label (as shown
in Figure 6b). The semantic decoder’s output is a set of homo-
geneous subsets of 3D points, where each subset represents a
semantically meaningful object or surface.

Figure 7 shows the architecture of LOCIN’s semantic de-
coder. LOCIN first performs feature upsampling on the spatial
encoding, Z, of the input spatial map. This process ensures
that the semantic labels are generated for all points in the
spatial map. We employ a hierarchical feature propagation
strategy, inspired by PointNet++ [59]. The spatial feature
representation from LOCIN’s encoder of size, M x D, is prop-
agated through a series of upsampling layers where each
upsampling layer interpolates feature values, f, for the points
in set abstraction level, [, of the encoder, at the coordinates of
points in set abstraction level, [+ 1.

We perform the interpolation through the inverse distance
weighted average [43] based on the k-nearest neighbors for
each point. Specifically, for a given point p in layer [+ 1, the
interpolated features are computed as:

X S
7’:£W(p) S , where w(p) = 71
X w(p) d(p,pi)

The interpolated features at each layer, f,, are then pro-
cessed through a PointNet layer consisting of convolution,
shared fully connected and rectified linear unit (ReL.U) activa-
tion layers to obtain semantically meaningful features for each
point. The final interpolation layer generates R-dimensional
semantic features for all N points in the input spatial map.
Lastly, we apply a softmax function to the semantic features
to obtain the per-point semantic labels S for the input map.

fr=)

Semantic Segmentation Loss. The semantic segmentation
decoder is inherently a classification network that assigns a
semantic class to all input spatial map points. To train the
semantic decoder, we leverage the cross-entropy loss func-
tion. Given pairs of 3D points and their semantic class label
{(pi,si)}i_,, we compute the semantic loss by minimizing:

J
Leem(s,8) = —) sxlogs (8)
k=1

By minimizing this loss, the semantic decoder assigns the
semantic object label to each of the N points in the map.

5.3.3 3D Location Classifier

LocIN leverages the contextual patterns extracted from its
object and semantic decoders to perform location classifica-
tion. LoCIN’s location classifier predicts the user’s location
based on the composite learned representation of the object
and semantic decoders, as shown in Eq. 4.

The location classifier processes the spatial feature repre-
sentation Z obtained from LoCIN’s encoder through an MLP
network which concatenates the skip-linked features from
the encoder’s intermediary set abstraction layers with Z. The
concatenated features are then fed to a series of fully con-
nected layers followed by a softmax operation that outputs
the probability vectors for the ¢ location classes.

6 Implementation

We implemented LocIN in Python 3.6 with PyTorch 1.2 [53].

LocCIN’s Network Architecture. We implement LOCIN’s spa-
tial understanding encoder with four set abstraction layers
and consider the output of last layer as the encoder’s spa-
tial feature representation (Z). For LOCIN’s object decoder,
we implement two feature propagation layers and concate-
nate the skip-linked features from the encoder’s second, third,
and fourth set abstraction layers to the feature propagation
layers’ output. We use the output of the second feature propa-
gation layer as the input seed points for generating votes and
then process the votes for object proposal and classification
through two MLP networks. We use the smooth-L; loss [62]
for computing the box regression loss (Lpox) and PyTorch’s
CrossEntropyLoss [12] for objectness (Lobj-c1s) and semantic
classification (Lgem-c1s) losses.

LocIN’s semantic decoder consists of four feature up-
sampling layers that upsample the points and features from
LocIN’s spatial encoder to N x R semantic features. Lastly,
LocIN’s location classifier uses three fully connected layers
followed by a drop-out and softmax layer to predict the prob-
ability vectors for all location classes.

LocIN Training and Inference. To train LOCIN’s network,
we subsample the input spatial maps’ 3D points to a fixed
number of N = 4096 points. To address spatial maps’ rotation
and scale variations, we augment our dataset by randomly
flipping the maps in the horizontal direction, rotating the 3D
points by £5° around the map’s z-axis, and scaling the map
by a factor of 0.85 to 1.15. We use the Adam optimizer [38]
with a batch size of 8 and a learning rate of 0.001. We adopt a
grid search to set the optimal values for o, B and yin LocIN’s
optimization function (Eq. 4). We also empirically set the
object decoder’s loss parameters i.e., Aj, A; and A3 such that
each component of the loss function is similar in scale.

At inference time, LOCIN takes a 3D spatial map collected
by an MR app and predicts the user’s location through one
forward pass of its encoder-decoder network. While LOCIN’s
object and semantic decoders generate the bounding boxes for

Table 1: Details of the evaluation dataset.

MR # of Location |# of Object # of Spatial
Dataset . Maps
Device Classes Classes —
Training| Test
ScanNet | [Fad Air2 with 13 18 1201|312
depth sensor
. iPad Pro with
ARKitScenes LiDAR scanner 9 17 4482 | 548
Holo3DMaps| HoloLens 5 8 - 20

objects and semantic segmentation of the input spatial map,
we only consider the location prediction as LOCIN’s output.

7 Evaluation

We describe our experience of applying LocIN attack to 3D
spatial maps collected from three popular MR devices. We
show that LocIN achieves an average accuracy of 84.1% in in-
ferring location on two publicly available spatial map datasets.
We also demonstrate that LOCIN’s attack is generalizable to
other MR devices equipped with different depth sensors.

We additionally show the effectiveness of our multi-task
learning-based location decoding model through an ablation
study and demonstrate LOCIN’s robustness against different
spatial map sizes and point densities. Lastly, we compare
LocIn with various baselines and prior work [22] for recog-
nizing indoor locations and show it achieves higher accuracy.

We present LOCIN’s results by focusing on the following
research questions:

RQ1 How effective is LoCIN in inferring users’ location?

RQ2 How effective is LocIN’s multi-task learning decoder?

RQ3 How does the sparsity of the 3D spatial map affect
LocIN’s performance?

RQ4 What is the impact of a 3D spatial map’s size on
LocIN’s effectiveness?

RQS How generalizable is LocIN attack?

RQ6 How does LocIN compare against baseline methods?

RQ7 How does LocIN compare to other spatial attacks?

7.1 Evaluation Setup and Datasets

We evaluate LocIN’s effectiveness on spatial maps captured
from three MR devices, (1) iPad with depth sensor, (2) iPad
with LiDAR scanner, and (3) HoloLens 2. The spatial maps
from two iPad versions (with depth sensor and LiDAR scan-
ner) are from two publicly available datasets [8, 13] while we
create our dataset of HoloLens 2 spatial maps — Holo3DMaps.
Table | presents the detailed statistics of the three datasets.

ScanNet Dataset. ScanNet [13] is a richly annotated dataset
consisting of 1,513 3D spatial maps captured from 707 dis-
tinct indoor environments via a depth sensor attached to an
iPad Air2. These spatial maps belong to 13 indoor location
types and include annotations for 18 object categories.

ABpatrément Bathroom

athroom

) Bedroom ., Bedroom

5 Library S Dining Rm.

= Conference Rm. S Kitch

3 Mail Rm. T itchen

S Hall\ﬁay S Laundry Rm.

= Kitchen = :

S Laundry Rm. g Living Rm.

2 Living Rm. e Office

- Office = Storage

Storage- 9
Misc. Misc.
50 100 150 200 250 200 400 600 800 100012001400

No. of Samples No. of Samples

(a) (b)
Figure 8: Distribution of the indoor location types across (a)
ScanNet and (b) ARKitScenes datasets.

Figure 8a shows the distribution of the number of samples
for each location type in the dataset. The “Miscellaneous”
location type is assigned to samples that do not distinctively
belong to the other location types. We use 1,201 maps from
the dataset for training while the remaining for testing. Each
spatial map, on average, includes 150K points with a spatial
extent of 5.5m x 5.1m x 2.4m.

ARKitScenes Dataset. ARKitScenes [8] is the first indoor
3D spatial map dataset captured via the Apple LiDAR scanner.
It consists of 5,048 spatial maps from 1,661 unique indoor en-
vironments in real-world homes. The dataset includes ground
truth for the oriented 3D bounding boxes of room-defining ob-
jects belonging to 17 different object categories. However, the
dataset does not contain the ground truth for location labels
and point-wise semantic labels for spatial maps.

We designed a semi-automated approach to generate the
ground truth for location and semantic segmentation labels for
the dataset (Detailed in Appendix A). Figure 8b illustrates the
sample distribution for each location type after labeling. We
use 4,482 maps for training while the remaining for testing.

Holo3DMaps Dataset. To evaluate LocIN’s effectiveness on
various MR devices, we collected our own dataset of spatial
maps using HoloLens 2 (there is no publicly available 3D
scene understanding dataset captured using HoloLens). We
scanned 20 different indoor environments where HoloLens is
typically used. These environments are from 5 location types,
including bedroom, living room, office, conference room,
and kitchen (4 samples per class). We leveraged Microsoft
MRTK’s Spatial Mapping [67] to extract the 3D spatial maps
of these environments. Two authors of this paper manually
annotated the spatial maps to generate the ground truth for
location, object detection, and semantic segmentation labels.

Ethical Considerations. We collected Holo3DMaps from
public places (e.g., labs and common rooms) and a hotel on a
university campus. For each environment, we ensure that no
human subjects are present during the data collection process
and do not collect any personally identifiable information
(PID). For the hotel environment, we received permission from
the hotel management to visit unoccupied hotel rooms and
suites to collect the maps. We contacted our university’s IRB
office and got advised that IRB approval is not required since
our environments do not include any human subjects and we

Table 2: LocIN’s overall attack effectiveness.

Dataset | Avg. Accuracy | Avg. Precision [Avg. Recall
ScanNet 81.6% 82% 81.6%
ARKitScenes 85.6% 85.7% 85.6%
StudiofFg 00060 0 0 0 0 0 0 0 0 0
Bathroom o 0 0 0 0020 0 0 0 0 0 Bathroom[J& 0 0 0 0030.11002 0 0
Bedroom 014 o [fJ 0 0 0 o o 00050030 0 ' Bedroom O [0 0 0 0 009 0 0
& Library o o oo 0 o o 0oomso EoiningRm. o o[o o o oot o o
2 conf.Rm. 0 0 o oo 0 0 00ss0 0 0 2
8 . 3 Office 0 001 o Y 0o o 0o o0 o
8 MailRm. 0 0 0 o ooz 0 0 00110 0 38
; Hallway © 0 00080 0040 0 0 0 0 0 3 Kitchen 0.03 0 0 0 [E0.1101 0 0
5} 2
T Kitchen 0 0 0 00030 uuuuza 0 047 <5 Laundry003 0 0 o ofE§ o0 o o
B 5f o
8 Laundry 0 000 0 0 0 offfc 0020 & LivingRm. 0 0.11 0 041014 0 (§& o o
2 LivingRm. 0 0 0008009016 0 0 o J005 0 0
Office 0 0 002023 0 0.1802 0 0 ﬂmﬂ 047 Storage o 0 0o 0 0 0 001 o
Storage 00050 0 0 0 0005025 0 o [o Misc. 0 0 0 0 0 0 0 nzsm
Misc. © 0 0 00030 0 0 00020 025017 EEEEE’EC‘E%S
° reexcEre QO g 2
SEEEEETEEEE RS ££5685%5%=
20055 EXEE TS £32 T &8 23
DETSEFIE R 208 S o E - =
ER- IR il B = 3
@ o 5 Ground Truth Location
Ground Truth Location

(a) (b)

Figure 9: LocIN’s confusion matrix on (a) ScanNet and (b)
ARKitScenes dataset.

do not collect any sensitive information.

Evaluation Setup. We train the LocIN attack model on the
training samples from the ScanNet and ARKitScenes datasets
separately. We split each dataset into disjoint training and test
sets such that each set’s indoor environments are distinct. This
splitting ensures that LOCIN’s reported results are independent
of users and prior knowledge about their environments. We
subsample each spatial map to 4,096 points through LOCIN’s
preprocessing step. We perform all our experiments on a PC
with 32 GB RAM and dual NVIDIA GTX 1080 Ti SLI GPUs.
We provide LocIN’s implementation details in Appendix 6.

7.2 Overall Effectiveness (RQ1)

We measure the effectiveness of LocIN through three eval-
uation metrics: average accuracy, precision, and recall. We
compute the average accuracy as the number of correctly
predicted location types in the test set. We calculate the pre-
cision for each location type as the average ratio of correctly
predicted spatial maps to the total number of spatial maps
classified to that type. We report recall for each location type
as the average ratio of the number of correctly predicted spa-
tial maps to the total number of spatial maps of the given type.
Table 2 shows LocIN’s results for ScanNet and ARKitScenes.

Evaluation Results with ScanNet. LocIN infers the location
from the spatial maps with an average accuracy of 81.6% with
82% and 81.6% average precision and recall rate. Figure 9a
shows the confusion matrix of the location inference results.

LoclIN classifies indoor environments, including distinct
object types, correctly with high accuracy. For instance, bed-
room, bathroom, and kitchen include unique objects (e.g., bed,
sink, and stove) that provide semantic context to LOCIN’s lo-
cation decoder and are classified with > 90% accuracy. In
contrast, location types that typically lack such distinct ob-

(b)
Figure 10: Examples of spatial maps of the “hallway” location
type misclassified by LOCIN.

jects have comparatively lower accuracy. For example, spatial
maps of “library” type with only chairs and tables are mis-
classified to “office” since “office” spatial maps include the
same object types and share similar geometric structures.

We found that the majority of the spatial maps for loca-
tion types with low accuracy (e.g., “hallway”) included ob-
jects commonly found in other location types or no objects,
causing LocIN to misclassify them. To illustrate, we present
two examples of spatial maps from the “hallway" class in
Figure 10. These spatial maps share similarities with office
environments; thus, they are misclassified.

Evaluation Results with ARKitScenes. LocIN achieves an
average accuracy of 85.6% in inferring the locations of ARK-
itScenes spatial maps. It classifies the 9 location types with
a precision and recall rate of 85.7% and 85.6%. Figure 9b
presents the confusion matrix for ARKitScenes results.

The number of spatial maps per class in ARKitScenes is
hugely imbalanced (as shown in Figure 8). However, because
LoclIN leverages the class weights in the cross-entropy loss
function for its location classifier during training, it accurately
infers the location types with few training samples. Similar to
ScanNet, LocIN accurately detects distinct indoor locations
(e.g., bathroom, bedroom, kitchen) with high accuracy.

LocIN Inference Time. We evaluate LOCIN’s inference time
by measuring the average time taken to predict the user’s lo-
cation type from spatial maps collected through an iPhone 14
equipped with a LiDAR scanner. Overall, given a spatial map
subsampled to 4,096 points, LocIN takes 0.89s on average
to predict the user’s semantic location. Specifically, LOCIN’s
object decoder takes 0.64s on average to generate the bound-
ing boxes for the detected objects and predict their labels.
LocIN’s semantic decoder predicts the semantic labels for
each point in the spatial map within 0.25s on average. The
low inference time of LocIN’s multi-task framework allows
an adversary to infer a user’s location in real-world MR apps.

7.3 Effectiveness of Decoders (RQ2)

To understand how each component of LOCIN contributes to

Table 3: Effect of individual decoders in LocIN’s multi-task
decoder on its performance.

Dataset | LoCINLoc | LoCINggy [LOCINggMm | LOCIN
ScanNet 57% 80.1% 78.4% 81.6%
ARKitScenes 58.6% 83.7% 79.7% 85.6%

its performance, we perform an ablation study by training
three models: (1) location classifier without LocIN’s multi-
task optimization function, (2) LOCIN’s object decoder with
location classifier and (3) LocIN’s semantic decoder with lo-
cation classifier and comparing their performance with LOCIN.
LocIN’s location classifier in (2) and (3) is solely needed to
infer the location labels from the detected objects and seman-
tic features. Table 3 shows the average accuracy of LoCIN
compared to these simplified models.

Location Classification. As discussed in Section 5.3, an ad-
versary could infer a user’s location by training a DNN classi-
fier directly on the spatial maps. We compare LocIN to a loca-
tion classifier (LoCINy oc) trained on the spatial maps solely
with the cross-entropy loss for classification (See Eq. 3).
Table 3 shows that LoCIN; oc without LocIN’s multi-task
learning optimization function can only achieve 57% and
58.6% accuracy on ScanNet and ARKitScenes datasets. This
is because without leveraging context (i.e., object and seman-
tic patterns), the classifier extracts only high-level geometric
features (i.e., structure and appearance of the environment).
These features are unable to distinguish different indoor lo-
cations due to similarities in their structure and appearance,
resulting in lower classification accuracy compared to LOCIN.

Object Detection. We study the impact of object detection
on LocIN’s performance by building a model, LocINopg;j, that
only leverages the LOCIN’s object decoder for classification
i.e., we only consider Lioc and Lgp; (in Eq. 4) for training.
We found that integrating object detection for location clas-
sification significantly improves the accuracy of the location
classifier. With object decoder, LOCINppy can achieve an av-
erage accuracy of 81.9% that is ~24% higher than the model
trained without object detection (LOCINL o). This gain in ac-
curacy shows that objects uniquely characterize indoor loca-
tion types and enable accurate discrimination between them.

Semantic Segmentation. We study how semantic decoder in-
fluences LocIN’s performance by training a model, LOCINsgM,
that combines only Lj,. and Leer, in Eq. 4. It improves accu-
racy by ~22% compared to the location classifier, LOCINL oc.
The semantic decoder helps LoCIN extract fine-grained de-
tails (e.g., planar surfaces, sparse/small objects) about the
environment that help in location classification.

We note that the accuracy gain with LOCINggpy is 2% less
than that from LocINggjy. This is because predicting point-
wise semantic object labels is more prone to errors resulting
from sparse or missing points on an object’s surface. How-
ever, combining the object and semantic decoder in LOCIN’S

Table 4: LocCIN’s results with varying sparsity of spatial map.

Table 5: LocIN’s performance on Holo3DMaps dataset.

Dataset | 512 | 1024 | 2048 | 409

ScanNet 71.7% 75.5% 78.4% 81.6%

ARKitScenes 75.6% 79.7% 83.4% 85.6%
+ ScénNet ‘

©
o

1 =e= ARKitScenes ///

-
o
) g

Avg. Accuracy
o
=}

/
e

0.2 0.3 04 05 0.6 0.7 0.8 0.9
Percentage of Spatial Map Size

u
o

Figure 11: LocIN’s performance with varying map size.

multi-task decoder provides higher accuracy in inferring loca-
tions than using them individually for location classification.
This accuracy gain demonstrates the effectiveness of LOCIN’s
unified multi-task network architecture.

7.4 Parameter Analysis

We evaluate the impact of the input spatial map’s point density
and size on LocCIN’s performance.

Spatial Map Sparsity (RQ3). The results reported in the
previous sections are achieved on spatial maps with N = 4096
points. We now evaluate the impact of varying the number
of points, N, subsampled in LOCIN’s preprocessing module
on its effectiveness. Table 4 shows the accuracy of LOCIN on
spatial maps with varying sparsity.

LocIN achieves more than 70% accuracy on both datasets
even when the input spatial maps have fewer points i.e., N =
512. We note that even with sparse maps, LOCIN’s location
decoder extracts the environment’s structural and semantic
properties, sufficient for accurate location classification. This
ensures that LOCIN infers the user’s location even if the map
is captured while the user quickly scans their environment.

Spatial Map Size (RQ4). An important factor concerning
LocIN’s practicality is the input spatial map’s size since MR
device depth sensors have a limited field of view of the user’s
environment due to object/surface occlusions or their non-
panoramic nature. We define size as the area of the user’s
environment captured by the MR device.

To this end, we evaluated the ScanNet and ARKitScenes
datasets by creating submaps from each spatial map in the test
dataset by randomly selecting a point in the map and cropping
a bounding box around it. The resulting submaps only include
a subset of objects and walls (including the case where no
walls are sampled) present in the user’s environment. The size
of the bounding box is a percentage of the original map’s size.
We discard submaps with less than N = 4096 points.

Training Avg. Avg. Avg.

Depth Senor Accuracy Precision Recall
Indirect ToF (ScanNet) 85% 85% 86%
LiDAR (ARK:itScenes) 45% 45% 60%

Figure 11 presents the average accuracy of LOCIN on
submaps generated from the two datasets as we vary the per-
centage of the indoor environment’s size captured by the MR
device. LoCIN achieves an average accuracy of 69.1% in clas-
sifying the indoor location type when the spatial map captures
only 50% of the environment. The accuracy improves to 77%
as the spatial map size increases to 70%. LocIN effectiveness
deteriorates as the size of the map decreases since the cropped
submaps lack complete semantic and object details necessary
for distinguishing the indoor location (e.g., cropped/missing
bed in a bedroom’s submap).

We note that we perform this evaluation on LocIN model
trained on the complete spatial maps of the indoor environ-
ments. Hence, one possible approach to improve LOCIN’s
robustness to map size would be to train on cropped submaps.

7.5 Generalizability of LOCIN (RQS5)

We perform LocIN’s main evaluation on the two publicly
available datasets (i.e., ScanNet and ARKitScenes) collected
using iPads with two different depth sensors. To evaluate
LocIN’s generalizability to other MR devices with different
depth-sensing technologies, we collected our own dataset
(Holo3DMaps) of spatial maps from indoor environments
using Microsoft’s HoloLens 2 equipped with indirect Time-
of-Flight (ToF) depth sensor [27]. We evaluate LOCIN’s per-
formance on Holo3DMaps through two models: (a) LoCIN
trained on a dataset collected using indirect Time-of-Flight
depth sensor (ScanNet) and (b) LocIN trained on a dataset
collected using LiDAR scanner (ARKitScenes).

Table 5 shows LocIN’s effectiveness on Holo3DMaps on
the two models. LoCIN achieves 80% accuracy in inferring
user location when trained on the ScanNet dataset. Inter-
estingly, LOCIN’s accuracy deteriorates when evaluated on
the model trained with ARKitScenes dataset. This is due
to the resolution differences in the spatial maps captured
by HoloLens 2 and iPad with LiDAR scanner. HoloLens 2
employs indirect Time-of-Flight (ToF) depth sensor that il-
luminates the observed scene with infrared light and uses
the reflected light to calculate scene depth [75]. In contrast,
iPad’s LiDAR scanner (direct ToF) uses timed light pulses to
measure scene depth, instead of illuminating the whole scene
with modulated light like an indirect ToF sensor [11].

Due to the differences in depth calculation methods, the
spatial maps of two devices have inherent differences in their
3D point cloud sparsity. Thus, if LoCIN is trained on LiDAR

Table 6: LocIN’s comparison with baseline approaches.

Dataset | Base-RF,p; | Base-RFgrouna | Base-DN [LoCIN
ScanNet 29.6% 41.7% 57.1% | 81.6%
ARKitScenes 38.8% 44.2% 58.6% |85.6%

spatial maps (ARKitScenes), the features from spatial maps
in Holo3DMaps are inconsistent with the features observed
during training, causing LocIN to misclassify them. Contrar-
ily, given that both ScanNet and Holo3DMaps are created
using indirect ToF sensors, LOCIN trained on ScanNet dataset
generalizes well to Holo3DMaps. Therefore, an adversary can
leverage LocIN trained on one MR device to attack a different
device with the same depth-sensing technology.

7.6 Comparison with Baseline (RQ6)

We compare LocIN’s effectiveness against three baseline ap-
proaches on ScanNet and ARKitScenes datasets. First, we
compare LOCIN with a naive ML classifier (Base-RFy;) that
leverages the objects in the user’s environment. For this, we
predict the semantic labels for objects using VoteNet [57] and
generate a histogram of the objects present in a given location
type. We then train a Random Forest classifier on these object
class histograms to predict the location. We choose Random
Forest classifier as it classifies the point cloud based on statis-
tical features from the object histogram. Second, we compare
LocIN against another Random Forest classifier trained on
the object class histogram generated from ground-truth object
semantic labels (Base-RFp;). This eliminates the impact of
errors in object detection and evaluate how object information
without spatial information impacts location classification ac-
curacy. Lastly, we compare LocIN with a baseline deep neural
network that takes the spatial representation obtained from
PointNet++ [59] as input and processes it through a series
of fully connected layers followed by a softmax operation to
predict the location class (Base-DN).

Table 6 shows the accuracy of the baseline models in
contrast to LoCIN. Base-RF,p; achieves an accuracy of only
29.6% and 38.8% on ScanNet and ARKitScenes, respectively.
This is because Base-RF,p,; does not consider the spatial and
geometric information in the spatial map. We find that the
accuracy for location types with distinct objects (e.g., bed
in bedroom and toilet in bathroom) is higher than location
types with no distinct objects (e.g., office and living room).
Moreover, the errors in the object detection model contribute
to inaccuracies in the object class histograms and, in turn, the
location inference accuracy.

Base-RFgoung achieves a higher location inference accu-
racy of 41.7% on ScanNet and 44.2% on ARKitScenes. While
this model eliminates the impact of errors in object detection,
it still does not capture the correlation between spatial, ge-
ometric, and semantic features of a spatial map. Similarly,
Base-DN extracts high-level features, such as structural and

geometric properties (e.g., length and width or floor map) of
the user’s environment. However, since indoor environments
of the same type vary significantly in their geometric and
structural properties (e.g., size of two bedrooms in a house),
it is difficult to predict the specific location type, resulting in
a low accuracy of 57.1% and 58.6% on ScanNet and ARK-
itScenes datasets, respectively. In contrast to these models,
LocIN’s multi-task learning framework performs feature ex-
traction and loss minimization that simultaneously capture
both geometric properties and semantic context of the user’s
environment to accurately infer the location.

7.7 Comparison with Prior Work (RQ7)

We compare LocIN with a recent work [22], the only prior
work that leverages 3D spatial maps from an MR device to
infer the user’s indoor location. This work extracts 3D spin
image features [35] from the input spatial map and employs
nearest neighbor distance and deep learning-based 3D place
recognizer (PointNetVLAD) [69] to determine if the map’s
feature vector matches with one of the maps from the user’s
previously visited locations. However, their attack has limited
practicality as it assumes that the attacker has access to a
labeled dataset of 3D spatial maps of the target user’s indoor
locations. Therefore, it only targets a specific user and her
previously visited locations.

To evaluate how this work compares against LOCIN in a
realistic attack scenario (no prior knowledge about a user is
available), we implement its DNN place recognizer [69] to ex-
tract global features from 3D spatial maps. Since our goal is to
infer the location type, we replace its final Euclidean distance-
based feature matching step with our location classifier that
processes the spatial feature vector through an MLP followed
by a softmax operation. We train this model on the ScanNet
dataset with the same training parameters as described in [69].
It achieves an accuracy of 50.1% on ScanNet’s test dataset
which is much lower compared to LoCIN’s 81.6% accuracy.
This significant difference in accuracy shows that LOCIN is
more effective in inferring users’ location from spatial maps
without any prior knowledge about the user’s location.

8 Limitations and Discussion

Inferring Location of Complex Environments. LOCIN can
infer users’ location from 3D spatial maps in various indoor
environments with common objects (Section 7.2). However,
if a user’s environment includes unique objects or very few
objects or planar surfaces, LOCIN’s effectiveness will mainly
rely on its location classification decoder. This is because
LocIN’s object and semantic segmentation decoders cannot
extract meaningful patterns from the input map. We conducted
an additional experiment to evaluate LOCIN’s effectiveness
on spatial maps where no objects are present in the user’s

-

=C= Ail points al
\‘I\‘ =gy Objects only

\\i\

~
o

Avg. Accuracy
o
=}

(S,
o

N
o

0.0 0.1 0.2 0.3 0.4 0.5
Noise Level (o)

Figure 12: LocIN’s performance with varying noise levels.

environment. In this case, LocIN infers the users’ environment
based on its geometric properties with an accuracy of 59.1%.

Generalization to Various MR Devices. We demonstrate
LoclIN attack on three popular MR devices that leverage depth
cameras or LiDAR sensors to capture the spatial map of a
user’s environment. However, spatial maps from different
MR devices have varying sparsity and non-uniform point
density because various MR devices employ different sen-
sors and depth calculation techniques to generate the 3D
spatial maps [58, 75]. For instance, in contrast to LiDAR
scanner-based devices, devices leveraging ToF depth cameras
(e.g., smartphones, HoloLens) build spatial maps based on
the reflection of light pulses emitted by the device. As a re-
sult, they experience difficulty in capturing a complete 3D
representation of reflective surfaces and objects, such as mir-
rors, polished metal, or very dark surfaces, producing more
sparse spatial maps. Although we show that LocIn attack
is transferrable across devices that leverage the same depth
sensor type, this inherent difference in spatial map properties
requires building a specialized model for each MR device.

Predicting Unknown Location Types. We demonstrate in
Section 7 that LocIN can effectively identify 13 indoor lo-
cation types where MR devices are typically used. LocCIN,
however, is limited to inferring location types observed dur-
ing its training process. Thus, if the user interacts with their
MR device in a location not included in the LoCIN’s training,
LocIN cannot correctly infer the location from the spatial
map. An adversary can leverage outlier detection techniques
to detect samples out of distribution from the known location
classes [23,74] and collect a more comprehensive dataset
with diverse labels for training LOCIN.

LocIN Counter Measures. One possible defense against
LoclIN is to limit the MR app’s access to the raw 3D spatial
maps and only share privacy-preserving features (e.g., planar
surfaces or 3D points of a user-defined region) to enable MR
content. Yet, this would affect MR apps’ functionality as they
rely on detailed spatial understanding to enable MR content,
requiring further investigation into its usability for MR apps.

Another possible defense is to inject noise into the 3D
spatial maps shared with the MR apps to force LOCIN to mis-
classify the user’s location. To test this defense, we conducted

two sets of experiments on the ScanNet dataset. First, we ap-
plied random perturbations to all points in the spatial maps in
our test dataset by adding Gaussian noise to their points’ 3D
coordinates and predicted their location using LOCIN trained
on raw spatial maps. Second, we applied random perturba-
tions of varying intensity only to points belonging to objects
present within the spatial maps. In both cases, we change the
noise intensity by changing the standard deviation () of the
added noise. Figure 12 presents the change in accuracy with
varying noise for both experiments. We observe that LOCIN’s
accuracy drops to 61% when all points are perturbed in the
spatial maps by a noise level of ¢ = 0.3. Similarly, when
similar noise is added to only objects, LOCIN’s accuracy de-
teriorates to 49.5%. This decrease in accuracy occurs since
noisy points in the spatial map make it difficult to detect the
objects and semantic features of the user’s environment.
Although noise injection reduces LOCIN’s effectiveness,
its feasibility is limited as the perturbed spatial maps reduce
usability for the MR apps. For instance, MR apps leverage
the spatial map to localize a user in its environment [55]; thus,
a perturbed spatial map may result in erroneous localization
results, affecting the apps’ functionality. Moreover, imple-
menting this defense requires evaluating different spatial map
usage scenarios to ensure app functionality is not affected.

9 Related Work

Privacy Leakage in Mobile Mixed Reality. Recent works
have exposed attacks that leverage the multi-modal sensors
on MR devices, similar to privacy leakages in other mobile
devices [15, 18,48]. For instance, a line of work proposed vir-
tual keystroke detection side-channel attacks on MR devices
by exploiting the channel state information (CSI) of WiFi
signals [41], headset motion sensors [44,45] and IMU sen-
sors on MR device hand controllers [2]. Another work [65]
proposed an eavesdropping attack through motion sensors
on head-mounted MR devices to detect facial movements for
inferring human speech. In this paper, we show a new privacy
leakage from MR devices by exploiting the 3D spatial maps
to infer the user’s location type.

Location Inference Attacks. Several works exploit radio fre-
quency (RF) signals emitted by commodity devices to infer
users’ location [1,78]. However, these approaches require a
physically proximate attacker to deploy sniffing devices near
users. In contrast, LOCIN attack operates remotely without
requiring any additional devices or information about the user.
Another line of attacks exploits mobile sensors, e.g., micro-
phone [52] and IMU sensors [39], to infer users’ location. Yet,
these works only localize a user with respect to the mobile
device and require an indoor map of the environment.
Previous approaches have also investigated indoor loca-
tion inference from images and videos through hand-crafted
features and deep learning models [16, 24,70, 76, 77]. Yet,

these attacks are ineffective in various scenarios. First, these
attacks are sensitive to lighting and occlusion, decreasing
their location inference accuracy in low-lighting conditions
or when objects are partially obscured. Second, the accu-
racy of these attacks is influenced by different camera ori-
entations/viewpoints while capturing images/videos. Lastly,
given users’ privacy concerns surrounding apps’ access to
camera images and videos, several privacy-preserving ap-
proaches attempt to eliminate location attacks through visual
data [32,37,63] and various MR devices limit apps’ access
to image and video data. In contrast, LOCIN exploits spatial
maps, shared with apps to enable device localization, to in-
fer locations from different camera orientations/viewpoints
regardless of low lighting and occlusion.

A recent work [22] leveraged spatial data on MR devices to
recognize users’ previously visited locations. While this work,
similar to LOCIN, exploits the spatial data on MR devices to
infer private user information, its practicality is limited as it
only recognizes a specific user’s previously visited indoor
locations. Contrarily, LoCIN infers a user’s location without
any prior information through its semantic aware multi-task
network and generalizes well to unseen users (Section 7.7).

Multi-task Learning on 3D Data. Several prior works have
leveraged multi-task learning for scene understanding tasks
(e.g., object detection, semantic segmentation, object classifi-
cation) on 3D data [29,40,54,57,71]. Previous works [54,71]
simultaneously learned embedded features for 3D object in-
stance segmentation and semantic segmentation through a
combined loss function. A recent work [40] learned the shape
of 3D objects and their labels simultaneously based on objects’
curvature. A line of work [29,46] used multi-task learning
to improve a robot’s ability to recognize a scene by combin-
ing color and geometric properties of 3D data. In contrast,
LoclIn leverages 3D objects and semantic context of a user’s
environment from 3D spatial data to infer its location.

10 Conclusions

In this paper, we present LOCIN, a new location inference
attack on mixed reality (MR) devices via 3D spatial data.
LoclIn exploits the 3D spatial maps accessible to MR apps to
extract contextual patterns from a user’s environment and in-
fer their location. It leverages a multi-task learning approach
to train an end-to-end encoder-decoder architecture that inte-
grates these contextual patterns into a classification network
for predicting users’ location. Our evaluation on spatial maps
collected from three MR devices demonstrates that LocIN
can effectively infer an MR user’s location type.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their
comments and suggestions. This work has been partially sup-

ported by the National Science Foundation (NSF) under grant
CNS-2144645 and Google’s ASPIRE Award. Any findings,
conclusions, and recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of the NSF or Google.

References

[1] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder,
Markus Miettinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi,
and Selcuk Uluagac. Peek-a-boo: I see your smart home activities,
even encrypted! In Conference on Security and Privacy in Wireless
and Mobile Networks, 2020.

Abdullah Al Arafat, Zhishan Guo, and Amro Awad. Vr-spy: A side-
channel attack on virtual key-logging in vr headsets. In IEEE Virtual
Reality and 3D User Interfaces (VR), 2021.

[2

—

[3] Apple unveils new ipad pro with breakthrough lidar scanner. https:
//www.apple.com/newsroom/2020/03/apple-unveils-new-ipad-pro-wi
th-lidar- scanner-and- trackpad- support-in-ipados/, 2023. [Online;
accessed 01-May-2023].

Verifying device support and user permission. https://developer.appl
e.com/documentation/arkit/verifying_device_support_and_user_permi

ssion, 2023. [Online; accessed 01-May-2023].

[5] Arcore. https://developers.google.com/ar/, 2023. [Online; accessed
01-May-2023].

[6] Enable arcore. https://developers.google.com/ar/develop/java/enab
le-arcore, 2023. [Online; accessed 01-May-2023].

[4

=

[7] Arkit. https://developer.apple.com/augmented- reality/, 2023.
[Online; accessed 01-May-2023].

Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Yuri Feigin, Peter Fu,
Thomas Gebauer, Daniel Kurz, et al. Arkitscenes: A diverse real-world
dataset for 3d indoor scene understanding using mobile rgb-d data. In
Conference on Neural Information Processing Systems, 2021.

[8

—

[9] Rich Caruana. Multitask learning. Machine learning, 1997.

[10] School vr subjects: Chemistry science resources. https://www.classv
r.com/vr-ar-resources/science-chemistry-vr-teaching- resources/,

2023. [Online; accessed 01-May-2023].

[11] Ilya Chugunov, Seung-Hwan Baek, Qiang Fu, Wolfgang Heidrich, and
Felix Heide. Mask-tof: Learning microlens masks for flying pixel
correction in time-of-flight imaging. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[12] Cross entropy loss. https://pytorch.org/docs/stable/generated/torch.
nn.CrossEntropyLoss.html, 2023. [Online; accessed 01-May-2023].

[13] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas
Funkhouser, and Matthias Niefiner. Scannet: Richly-annotated 3d
reconstructions of indoor scenes. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[14] Jaybie A De Guzman, Kanchana Thilakarathna, and Aruna Seneviratne.
Security and privacy approaches in mixed reality: A literature survey.
ACM Computing Surveys (CSUR), 2019.

[15] Paula Delgado-Santos, Giuseppe Stragapede, Ruben Tolosana, Richard
Guest, Farzin Deravi, and Ruben Vera-Rodriguez. A survey of privacy
vulnerabilities of mobile device sensors. ACM Computing Surveys
(CSUR), 2022.

[16] Dapeng Du, Limin Wang, Huiling Wang, Kai Zhao, and Gangshan
Wau. Translate-to-recognize networks for rgb-d scene recognition. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

[17] Russell A Epstein and Chris I Baker. Scene perception in the human
brain. Annual review of vision science, 2019.

https://www.apple.com/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/
https://www.apple.com/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/
https://www.apple.com/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/
https://developer.apple.com/documentation/arkit/verifying_device_support_and_user_permission
https://developer.apple.com/documentation/arkit/verifying_device_support_and_user_permission
https://developer.apple.com/documentation/arkit/verifying_device_support_and_user_permission
https://developers.google.com/ar/
https://developers.google.com/ar/develop/java/enable-arcore
https://developers.google.com/ar/develop/java/enable-arcore
https://developer.apple.com/augmented-reality/
https://www.classvr.com/vr-ar-resources/science-chemistry-vr-teaching-resources/
https://www.classvr.com/vr-ar-resources/science-chemistry-vr-teaching-resources/
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

Habiba Farrukh, Tinghan Yang, Hanwen Xu, Yuxuan Yin, He Wang,
and Z Berkay Celik. S3: Side-channel attack on stylus pencil through
sensors. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2021.

Martin A Fischler and Robert C Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 1981.

Jaris Gerup, Camilla B Soerensen, and Peter Dieckmann. Augmented
reality and mixed reality for healthcare education beyond surgery: an
integrative review. International journal of medical education, 2020.

Jaybie A de Guzman, Kanchana Thilakarathna, and Aruna Seneviratne.
A first look into privacy leakage in 3d mixed reality data. In European
Symposium on Research in Computer Security, 2019.

Jaybie Agullo de Guzman, Aruna Seneviratne, and Kanchana Thi-
lakarathna. Unravelling spatial privacy risks of mobile mixed reality
data. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2021.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassi-
fied and out-of-distribution examples in neural networks. International
Conference on Learning Representations (ICLR), 2016.

Luis Herranz, Shuqgiang Jiang, and Xiangyang Li. Scene recognition
with cnns: objects, scales and dataset bias. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowl-
edge in a neural network. In NeurIPS Deep Learning and Representa-
tion Learning Workshop, 2015.

Holoanatomy software suite. https://case.edu/holoanatomy/, 2023.
[Online; accessed 01-May-2023].

Hololens 2 hardware. https://www.microsoft.com/en-us/hololens/har
dware, 2023. [Online; accessed 01-May-2023].

Jinhan Hu, Andrei losifescu, and Robert LiKamWa. Lenscap: split-
process framework for fine-grained visual privacy control for aug-
mented reality apps. In International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2021.

Shengyu Huang, Mikhail Usvyatsov, and Konrad Schindler. Indoor
scene recognition in 3d. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020.

Charles E Hughes, Christopher B Stapleton, Darin E Hughes, and
Eileen M Smith. Mixed reality in education, entertainment, and training.
IEEE computer graphics and applications, 2005.

Tkea place. https://apps.apple.com/us/app/ikea-place/id1279244498,
2023. [Online; accessed 01-May-2023].

Suman Jana, David Molnar, Alexander Moshchuk, Alan Dunn, Ben-
jamin Livshits, Helen J Wang, and Eyal Ofek. Enabling {Fine-Grained}
permissions for augmented reality applications with recognizers. In
USENIX Security Symposium, 2013.

Suman Jana, Arvind Narayanan, and Vitaly Shmatikov. A scanner
darkly: Protecting user privacy from perceptual applications. In IEEE
symposium on security and privacy (S&P), 2013.

Blooma John and Nilmini Wickramasinghe. A review of mixed reality
in health care. Delivering Superior Health and Wellness Management
with IoT and Analytics, 2020.

Andrew E Johnson and Martial Hebert. Using spin images for efficient
object recognition in cluttered 3d scenes. IEEE Transactions on pattern
analysis and machine intelligence, 1999.

Ashraf M Kibriya and Eibe Frank. An empirical comparison of exact
nearest neighbour algorithms. In European conference on principles of
data mining and knowledge discovery, 2007.

Y Kim, S Boorboor, A Rahmati, and A Kaufman. Design of privacy
preservation system in augmented reality. In IEEE Symposium on
Visualization for Cyber Security, 2021.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. International Conference on Learning Representations
(ICLR), 2014.

Swarun Kumar, Stephanie Gil, Dina Katabi, and Daniela Rus. Accurate
indoor localization with zero start-up cost. In Annual international
conference on Mobile computing and networking, 2014.

Jean Lahoud, Bernard Ghanem, Marc Pollefeys, and Martin R Oswald.
3d instance segmentation via multi-task metric learning. In /EEE
International Conference on Computer Vision (CVPR), 2019.

Zhen Ling, Zupei Li, Chen Chen, Junzhou Luo, Wei Yu, and Xinwen
Fu. I know what you enter on gear vr. In IEEE Conference on Commu-
nications and Network Security (CNS), 2019.

Shaopeng Liu, Guohui Tian, and Yuan Xu. A novel scene classification
model combining resnet based transfer learning and data augmentation
with a filter. Neurocomputing, 2019.

George Y Lu and David W Wong. An adaptive inverse-distance weight-
ing spatial interpolation technique. Computers & geosciences, 2008.

Shiqing Luo, Xinyu Hu, and Zhisheng Yan. Holologger: Keystroke
inference on mixed reality head mounted displays. In IEEE Conference
on Virtual Reality and 3D User Interfaces (VR), 2022.

Ulkii Meteriz-Yildiran, Necip Fazil Yildiran, Amro Awad, and David
Mohaisen. A keylogging inference attack on air-tapping keyboards in
virtual environments. In IEEE Conference on Virtual Reality and 3D
User Interfaces (VR), 2022.

Yuhang Ming, Xingrui Yang, Guofeng Zhang, and Andrew Calway.
Cgis-net: Aggregating colour, geometry and implicit semantic features
for indoor place recognition. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2022.

Carsten Moenning and Neil A Dodgson. Fast marching farthest point
sampling. Technical report, University of Cambridge, Computer Labo-
ratory, 2003.

Reham Mohamed, Habiba Farrukh, Yidong Lu, He Wang, and Z Berkay
Celik. istelan: Disclosing sensitive user information by mobile mag-
netometer from finger touches. Proceedings on Privacy Enhancing
Technologies, 2023.

Mixed reality market. https://www.fortunebusinessinsights.com/indu
stry- reports/mixed- reality-market-101783, 2023. [Online; accessed
01-May-2023].

Mrtk. https://github.com/Microsoft/MixedRealityToolkit-Unity, 2023.
[Online; accessed 01-May-2023].

Priyanka Mukhopadhyay and Bidyut B Chaudhuri. A survey of hough
transform. Pattern Recognition, 2015.

Rajalakshmi Nandakumar, Alex Takakuwa, Tadayoshi Kohno, and
Shyamnath Gollakota. Covertband: Activity information leakage using
music. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural
information processing systems, 2019.

Quang-Hieu Pham, Thanh Nguyen, Binh-Son Hua, Gemma Roig, and
Sai-Kit Yeung. Jsis3d: Joint semantic-instance segmentation of 3d point
clouds with multi-task pointwise networks and multi-value conditional
random fields. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

Francesco Pittaluga, Sanjeev J Koppal, Sing Bing Kang, and Sudipta N
Sinha. Revealing scenes by inverting structure from motion reconstruc-
tions. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Pokemon go. https://pokemongolive.com/en/, 2016. [Online; accessed
01-May-2023].

https://case.edu/holoanatomy/
https://www.microsoft.com/en-us/hololens/hardware
https://www.microsoft.com/en-us/hololens/hardware
https://apps.apple.com/us/app/ikea-place/id1279244498
https://www.fortunebusinessinsights.com/industry-reports/mixed-reality-market-101783
https://www.fortunebusinessinsights.com/industry-reports/mixed-reality-market-101783
https://github.com/Microsoft/MixedRealityToolkit-Unity
https://pokemongolive.com/en/

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64

[65]

[66]

[67

[68]

[69

[70

[71]

[72]

[73]

[74]

Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas. Deep
hough voting for 3d object detection in point clouds. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2019.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a metric
space. Advances in neural information processing systems, 2017.

Nisarg Raval, Animesh Srivastava, Kiron Lebeck, Landon Cox, and
Ashwin Machanavajjhala. Markit: Privacy markers for protecting
visual secrets. In ACM International joint conference on pervasive and
ubiquitous computing, 2014.

Nisarg Raval, Animesh Srivastava, Ali Razeen, Kiron Lebeck, Ashwin
Machanavajjhala, and Lanodn P Cox. What you mark is what apps
see. In International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: Towards real-time object detection with region proposal networks.
Advances in neural information processing systems, 2015.

Franziska Roesner, David Molnar, Alexander Moshchuk, Tadayoshi
Kohno, and Helen] Wang. World-driven access control for continuous
sensing. In ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2014.

Somaiieh Rokhsaritalemi, Abolghasem Sadeghi-Niaraki, and Soo-Mi
Choi. A review on mixed reality: Current trends, challenges and
prospects. Applied Sciences, 2020.

Cong Shi, Xiangyu Xu, Tianfang Zhang, Payton Walker, Yi Wu, Jian
Liu, Nitesh Saxena, Yingying Chen, and Jiadi Yu. Face-mic: inferring
live speech and speaker identity via subtle facial dynamics captured by
ar/vr motion sensors. In International Conference on Mobile Comput-
ing and Networking (MobiCom), 2021.

Snap ar. https://ar.snap.com/en-US/lens-studio, 2023. [Online;
accessed 01-May-2023].

Spatial mapping. https://learn.microsoft.com/en-us/windows/mixe
d-reality/design/spatial-mapping, 2023. [Online; accessed 01-May-
2023].

Robert Templeman, Mohammed Korayem, David J Crandall, and Apu
Kapadia. Placeavoider: Steering first-person cameras away from sen-
sitive spaces. In Networks and Distributed Systems Security (NDSS),
2014.

Mikaela Angelina Uy and Gim Hee Lee. Pointnetvlad: Deep point
cloud based retrieval for large-scale place recognition. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2018.

Anran Wang, Jianfei Cai, Jiwen Lu, and Tat-Jen Cham. Modality
and component aware feature fusion for rgb-d scene classification. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen, and Jiaya Jia.
Associatively segmenting instances and semantics in point clouds. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bron-
stein, and Justin M Solomon. Dynamic graph cnn for learning on point
clouds. ACM Transactions On Graphics (ToG), 2019.

Nan Wu, Ruizhi Cheng, Songqing Chen, and Bo Han. Preserving
privacy in mobile spatial computing. In Workshop on Network and
Operating Systems Support for Digital Audio and Video, 2022.

Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ah-
madzadeh, Xinyu Xing, and Gang Wang. {CADE}: Detecting and
explaining concept drift samples for security applications. In USENIX
Security Symposium, 2021.

[75] Yunfan Zhang, Tim Scargill, Ashutosh Vaishnav, Gopika Premsankar,
Mario Di Francesco, and Maria Gorlatova. Indepth: Real-time depth
inpainting for mobile augmented reality. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022.

[76] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and
Aude Oliva. Learning deep features for scene recognition using places
database. Advances in neural information processing systems, 2014.

[77] Hongyuan Zhu, Jean-Baptiste Weibel, and Shijian Lu. Discrimina-
tive multi-modal feature fusion for rgbd indoor scene recognition. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[78] Yanzi Zhu, Zhujun Xiao, Yuxin Chen, Zhijing Li, Max Liu, Ben Y Zhao,
and Haitao Zheng. Et tu alexa? when commodity wifi devices turn
into adversarial motion sensors. In Network and Distributed Systems
Security (NDSS), 2020.

A Labeling ARKitScenes Dataset

We describe our approach for generating ground truth labels
for location type and point-wise semantic labels for the ARK-
itScenes dataset [8].

Table 7: Location type to object mapping.

Location Type | Object Type

to : Living Room sofa, fireplace

11 : Bedroom bed

1 : Kitchen stove, dishwasher, oven, refrigerator

t3 : Bathroom bathtub, toilet

Location Type Labels. We adopted a semi-automated an-
notation process to label each spatial map in ARKitScenes
with its location type, Since ARKitScenes includes ground
truth for the objects (including bounding boxes and object
semantic labels), we leverage the fact that objects uniquely
characterize indoor environments to assign an initial location
label to each spatial map. Specifically, two authors of this
paper developed a mapping (M) between typical indoor envi-
ronments and the objects that uniquely identify them (Table 7).
For instance, a bedroom must have a bed, and a kitchen must
have a stove. This mapping includes four location types com-
monly observed in real-world homes where ARKitScenes is
collected and a subset of objects from the 17 objects types in
the ARKitScenes dataset. We assigned an label to each spatial
map through the function / = argmax (o, 1;,%,,#3) where

k
t; = X(ug,uy,...,uy), where uj:U 9)

Here, k is the number of objects of type u; in the spatial
map, m is the number of object types present in the mapping
for location type (¢;), and U is the total number of objects in
the input spatial map that belong to location type ¢; in M.

Two authors then manually inspected and verified the ini-
tial labels by visualizing the spatial map and its associated
images available in the dataset. We found that among 5,048
spatial maps in the dataset, 256 maps did not include any
objects in the location-object type mapping in Table 7 and
hence could not be labeled in the initial labeling process. The

https://ar.snap.com/en-US/lens-studio
https://learn.microsoft.com/en-us/windows/mixed-reality/design/spatial-mapping
https://learn.microsoft.com/en-us/windows/mixed-reality/design/spatial-mapping

two authors manually labeled these 256 samples individually
and assigned them labels following the location types in the
ScanNet dataset. The authors then met to discuss and rec-
oncile differences. We assigned the “Miscellaneous” label
to samples for which no conclusive location type could be
derived from the spatial map and its corresponding images.

Semantic Segmentation Labels. We used the ground truth
for 3D objects in the maps to assign the semantic label to each
point based on the object the point belonged to. For instance,
we assigned the semantic label “bed” to all points within the
bounding box of the bed object in a given spatial map. This
approach, however, only considers points that belong to one
of the 17 object types annotated in the ARKitScenes dataset.
These types do not include planar surfaces such as walls,
floors, and ceilings. Hence, to annotate points on these planar
surfaces, we adopted a semi-automated annotation approach.

We first identified an estimate of all planar surfaces in
a given spatial map through Random Sampling Consensus
(RANSAC) [19] algorithm for plane detection. For this, we
employed an iterative procedure that randomly samples a
subset of points from an input spatial map and fits a plane
equation on these points. The number of points that satisfy the
plane equation (inliers) in each iteration is used to calculate a
confidence score for the plane equation. We then marked the
plane equation, which achieves the highest confidence score
as a planar surface in the spatial map. We used this process
to identify the horizontal and vertical planar surfaces (along
x and y axes of the spatial maps) only because these planes
represent the walls, floors, and ceiling in the spatial maps.

Two authors of the paper manually inspected the plane de-
tection output and corrected errors in the point-wise semantic
labels. Through this procedure, we annotated all spatial maps
in the dataset and assigned the points to one of 20 object types
(17 objects in ARKitScenes and wall, floor and ceiling).

	Introduction
	Background
	Problem Statement and Threat Model
	Motivation
	Problem Statement
	Threat Model
	Design Challenges

	LocIn Attack Overview
	LocIn Design
	Spatial Map Preprocessing
	Spatial Understanding Encoder
	Multi-Task Location Decoder
	3D Object Decoder
	3D Semantic Decoder
	3D Location Classifier

	Implementation
	Evaluation
	Evaluation Setup and Datasets
	Overall Effectiveness (RQ1)
	Effectiveness of Decoders (RQ2)
	Parameter Analysis
	Generalizability of LocIn (RQ5)
	Comparison with Baseline (RQ6)
	Comparison with Prior Work (RQ7)

	Limitations and Discussion
	Related Work
	Conclusions
	Labeling ARKitScenes Dataset

