
Discovering Adversarial Driving Maneuvers against Autonomous Vehicles

Ruoyu Song, Muslum Ozgur Ozmen, Hyungsub Kim, Raymond Muller,
Z. Berkay Celik, and Antonio Bianchi

Purdue University
{song464, mozmen, kim2956, mullerr, zcelik, antoniob}@purdue.edu

Abstract
Over 33% of vehicles sold in 2021 had integrated autonomous
driving (AD) systems. While many adversarial machine learn-
ing attacks have been studied against these systems, they all
require an adversary to perform specific (and often unreal-
istic) actions, such as carefully modifying traffic signs or
projecting malicious images, which may arouse suspicion if
discovered. In this paper, we present ACERO, a robustness-
guided framework to discover adversarial maneuver attacks
against autonomous vehicles (AVs). These maneuvers look
innocent to the outside observer but force the victim vehicle to
violate safety rules for AVs, causing physical consequences,
e.g., crashing with pedestrians and other vehicles. To opti-
mally find adversarial driving maneuvers, we formalize seven
safety requirements for AD systems and use this formalization
to guide our search. We also formalize seven physical con-
straints that ensure the adversary does not place themselves
in danger or violate traffic laws while conducting the attack.
ACERO then leverages trajectory-similarity metrics to cluster
successful attacks into unique groups, enabling AD develop-
ers to analyze the root cause of attacks and mitigate them. We
evaluated ACERO on two open-source AD software, openpilot
and Autoware, running on the CARLA simulator. ACERO dis-
covered 219 attacks against openpilot and 122 attacks against
Autoware. 73.3% of these attacks cause the victim to collide
with a third-party vehicle, pedestrian, or static object.

1 Introduction
Autonomous driving (AD) is becoming increasingly preva-

lent throughout the world. AD systems such as Waymo [34],
Autoware [23], and openpilot [11] are already deployed on
public roads. Unfortunately, previous works have shown that
attackers can spoof/disturb sensors of AVs [6, 36, 54, 58] and
exploit flaws in AD software’s control logic [5, 70].

These attacks, however, may look deliberate to an external
observer (e.g., a traffic law enforcer). Thus, attackers are wary
of using them to avoid legal liabilities. In contrast, while some
maneuvers do not violate any safety or traffic rules, they can
still cause AVs to misbehave, putting AVs and nearby traffic

A vehicle passes
from left

Tesla is forced
driving off road

Figure 1: Real-world driving behavior causing the Tesla au-
topilot to steer off the road, forcing the operator to inter-
vene [49]. While this behavior could be defined as “aggressive”
or “inconsiderate”, it does not look intentionally malicious.

in danger. For example, Fig. 1 shows a case of Tesla autopilot
steering off the road due to a non-malicious maneuver. An
attacker could perform such maneuvers to jeopardize a victim
car’s safety while minimizing their liability.

In this paper, we systematically discover low liability
(i.e., low legal responsibility) adversarial maneuvers. We de-
fine a maneuver as low liability if the adversary does not
violate a set of traffic laws (detailed in Sec. 3). Although such
maneuvers are more attractive to attackers, discovering them
brings two unique challenges.

The first challenge is the large search space for maneuver-
based attacks. An adversary must observe how an AV reacts
in a driving scene, which has many associated variables, in-
cluding traffic, weather, and the behavior of other agents. To
this end, previous work on AV safety testing [30,42,60,61,64]
have used high-fidelity simulators, such as CARLA [15] and
LGSVL [51]. However, using simulators to effectively search
for these attacks in the space of all possible maneuvers re-
quires dedicated search optimizations. Additionally, it re-
quires the implementation of mechanisms to reset a simulator
to restore the variables related to an earlier physical state to
test different adversarial maneuvers.

A second challenge is that, without proper constraints,
maneuver-based attacks may also put the attacker at risk for
physical consequences. This can be seen by considering a
greedy solution to maneuver-based attacks: the attacker sim-
ply hits the victim vehicle. However, by doing so, the attacker

loses both low liability and safety, making such an attack im-
practical. Thus, the search space of the attacks must respect
two principles. First, the attacker and the adversarial vehicle
should not be damaged. Second, traffic laws, such as driving
on the correct side of the road, must be obeyed.

Driving scene generation approaches [18, 30, 42,60, 61, 64]
perturb the environment and traffic behavior to create a safety
violation, as opposed to finding the maneuvers that a vehicle
can make to cause an AV to violate its safety constraints. A
recent work identifies the maneuvers a vehicle can make to
cause safety violations for an AV [30]. Yet, this work does
not ensure the vehicle obeys traffic laws and self-safety con-
straints. Further, it only considers traffic conditions that in-
volve vehicle following and lane changing, which restricts
its application to AVs operating in specific driving scenar-
ios. Another recent work [53] generates adversarial vehicle
trajectories to discover vulnerabilities in collision avoidance
systems (CAS) while maximizing the adversarial vehicle’s
distance from other vehicles to prevent its collisions. Yet, this
work focuses on identifying vulnerabilities specific to CAS
and does not require the adversary to obey traffic laws.

Motivated by the severity of adversarial maneuvers against
AVs and the lack of effective approaches to discover them, we
introduce ACERO, an automated system to identify maneuvers
that induce safety violations in AD systems while ensuring
the adversary’s safety and low liability.

Although safety standards have been established for AVs,
to verify whether or not they are satisfied, they must be an-
alyzed and modeled into a verifiable form. Thus, we first
identify the safety standards for each level of AD capability
and formally represent them as “missions” that can be evalu-
ated to determine whether a standard is violated. ACERO then
initializes an “attack scene” based on a given real-world sce-
nario pertaining to the target AV’s capability. The attack scene
initializes an environment with an AV, an adversarial vehicle,
traffic, and pedestrians. ACERO next iteratively generates a
set of adversarial control commands that an adversary can
execute to cause the victim AV to violate one or more estab-
lished safety standards. To find these commands, it combines
the established technique of robustness-guidance [25, 45, 46]
with novel, formally represented missions, and optimizes the
search process via a hill-climbing approach.

Robustness-guidance alone, however, can lead to self-
sabotaging or obviously-malicious driving behaviors for the
adversary. To address this aspect, we derive seven formal con-
straints on adversarial control commands that ensure both low
liability and safety for the adversary. The system ensures that
these constraints are met during the search process. Lastly,
ACERO clusters geometrically similar attacks into generalized
groups. These groups can be analyzed by AD developers to
reproduce the discovered attacks under different traffic and
environmental conditions and establish defenses against them.

We evaluate ACERO against two AD systems, openpilot [11]
and Autoware [23], running on the CARLA [15] simulator.

We create 14 different driving scenes to rigorously test each
safety requirement. In these scenes, ACERO discovers 219
successful maneuver-based attacks against openpilot and 122
against Autoware. We cluster them into 28 unique attacks
(13 for openpilot and 15 for Autoware) and identify their
root causes. These attacks cause the targeted AV to violate a
safety standard, putting the victim at risk without harming the
attacker. Specifically, 57.8% of the attacks cause the victim
to collide with a third-party vehicle, 8.5% with a pedestrian
or cyclist, and 7% with a static object (e.g., a road sign). In
summary, we make the following contributions:

• Mission Identification and Formalization. We ana-
lyze AD safety standards and formally represent them
using temporal logic. Any testing tool (including ACERO)
can leverage these formalized missions to determine how
close an AV is to violating its safety standards.

• Robustness-guided Adversarial Command Genera-
tion. We combine the robustness-guidance approach
with novel formulas representative of an AV’s safety.
These formulas efficiently identify maneuvers a vehicle
can follow to force an AV to violate its safety standards.

• Enforcing Physical Constraints on the Adversarial
Vehicle. We design seven formally verifiable physical
constraints to enforce on adversarial maneuvers. These
constraints ensure the attacker’s safety, maintain low
liability, and preserve the practicality of the attack.

• Evaluation on two AD Systems. We use ACERO [2] on
two popular AD software (openpilot and Autoware) and
discover 341 attacks causing the targeted AV to hit other
vehicles, pedestrians, cyclists, and static objects.

2 Background
Autonomous Driving (AD) Systems. AD systems consist of
sensing, perception, planning, and actuation modules [56].
AD software takes inputs from multiple sensors capturing
different aspects of the environment, e.g., the camera outputs
RGB video, and the LiDAR outputs 3D point clouds.

The perception module processes the raw sensor data and
generates interpretable data. The AD software often extends
machine learning (ML) models to process the sensor data
in real-time to detect, track, and predict other vehicles and
the environment around the vehicle. For instance, the models
detect objects and track their 3D locations [73], e.g., traffic
signs, surrounding vehicles, and pedestrians, and the moving
agents around the vehicle [71]. These models are often trained
on sensor data collected from millions of vehicles [11].

The planning module enables a vehicle to find a safe route
from a given origin to a destination. It determines the most
feasible trajectory by incorporating path search and maneuver
planning algorithms (e.g., changing lanes and overtaking) [24]
while ensuring the vehicle avoids static obstacles.

Lastly, the AD software issues control commands to the
vehicle, e.g., steering angle, throttle, and brake, so that the
vehicle achieves its intended missions, such as preventing
pedestrian crashes and following the planned travel path.
Levels of Autonomy. The Society of Automotive Engineers
(SAE) has defined levels of autonomy [52]. Level 1 provides
steering (e.g., lane centering) or accelerating (e.g., adaptive
cruise control) support, and Level 2 supports both. Level 3
and 4 autonomous vehicles can drive themselves under certain
conditions, but they require different levels of human input.
Level 3 vehicles require a human driver to be present and
alert at all times, while Level 4 vehicles can operate without
human intervention, but only in defined operational locations.

3 Motivation and Threat Model
We consider an adversary that controls a vehicle (Attackcar)

near an autonomous victim vehicle (Victimcar). We assume
the adversary knows the Victimcar’s control software and has
access to its two physical states: ground speed and relative po-
sition. The adversary can obtain these physical states through
the sensors in the Attackcar (e.g., camera and LiDAR).

The adversary’s goal is to jeopardize the Victimcar’s
safety by causing it to collide with other agents in the traf-
fic (e.g., static objects, pedestrians, cyclists, and other vehi-
cles), while preserving both the Attackcar’s safety and its
low liability. To preserve the Attackcar’s safety, we enforce
that Victimcar does not get physically damaged. To ensure
Attackcar has low liability, in case of Victimcar collides with
other agents, we force Attackcar to observe traffic laws. Specif-
ically, we focus on ensuring Attackcar does not violate the fol-
lowing two traffic laws: (i) obeying the traffic signals (e.g., not
exceeding the speed limits) and (ii) driving in the correct lane.
We focus on these two laws as they are consistent across
countries and states, and their violation is a major cause of
real-world accidents [37].

Concretely, to enforce both the Attackcar’s safety and low
liability, during our simulations, we enforce seven specific
physical constraints on the Attackcar (Sec. 4.3). We note that
by mandating the adversary to respect physical constraints,
our threat model is narrow, and it limits the types of attacks
that our approach can find. Specifically, we only consider valid
attacks in which the Attackcar does not violate any traffic rule
or crash with any car in the traffic scene.

We allow expanding our threat model by disabling physical
constraints, such as by breaking traffic laws, because it may
help discover more adversarial maneuvers, though this will
jeopardize the attacker’s safety and limit the attacker from
denying malicious intent or direct responsibility.

To achieve its goal, the adversary aims to find an adversarial
trajectory that makes the Victimcar violate the safety rules
defined in its SAE Level 2-4 control software (Sec. 4.1). We
assume the adversary finds such adversarial trajectories on AV
simulators that can run diverse AD software. While, in theory,
the adversary could try to find the adversarial trajectories on

VictimCar

t1
30km/h

t2
25km/h t3

10km/h

t1
35km/h

t2
35km/h

t3
15km/h

Att
ack

car
Att

ack
car

VictimCar

Figure 2: Example adversarial maneuvers against openpilot.

real roads, in practice, such trials are unsafe and impractical
compared to the simulated environment. The adversary can
collect other agents in the environment (e.g., other cars on the
road) and use this information to create maneuvers to make
Victimcar collide with them opportunistically.

The resulting adversarial trajectory can either be pro-
grammed into the autonomous Attackcar, or the adversary
can manually drive a non-autonomous Attackcar and follow
the trajectory within an acceptable deviation (Sec. 4.5).
Example. We consider a Victimcar that travels using the open-
pilot’s [11] adaptive cruise control with lane centering at an
initial speed of 36 km/h, as shown in Fig. 2 [2]. The Victimcar
goes straight at a constant speed until the Attackcar brakes in
front of it (t1-t2). This results in the Victimcar also braking
(t2). However, when the Attackcar speeds up and turns right,
the Victimcar’s perception module fails to recognize the road
curve and continues moving straight, eventually driving to the
sidewalk and colliding with a concrete wall (t3).

In these maneuvers, the Attackcar (i) does not collide with
any other agents, and (ii) obeys traffic laws. This example
shows that the adversarial trajectory impacts the Victimcar’s
perception in a way that its planner fails to keep it centered in
the lane. In such a scenario, a human driver would drive more
cautiously when the Attackcar blocks its vision and also see
the road curve before the Attackcar blocks its vision and re-
member it. Yet, this attack exploits the fact that openpilot uses
limited historical camera frames and causes a crash by block-
ing the Victimcar’s vision for a short period of time (≈1 sec).

4 ACERO SYSTEM

We introduce ACERO, which systematically discovers the
maneuvers an Attackcar can make to cause the Victimcar to
fail its intended operations while ensuring that the adversary
remains safe and achieves low liability.

Designing ACERO raises several unique system challenges:
(1) Formally identifying the Victimcar’s missions to ensure its
safe driving (Sec. 4.1). (2) Designing and implementing an
algorithm to generate realistic attack scenes for the behavior
of other traffic agents and weather conditions (Sec. 4.2). (3)
Developing a trajectory generation algorithm that identifies
the trajectories the Attackcar can follow to force the Victimcar

Table 1: Missions that AVs should adhere to for their correct and safe operation.

ID Mission Description SAE Level LTL Formula†

StayLane The Victimcar should not move out of its lane. 2 �(Dist(vv,current-lane)> 0)
DriveAllowed The Victimcar should not enter restricted areas. 3,4 �(Dist(vv,ra)> 0)
FollowCar The Victimcar should perform car-following. 2 �(TTC(vv,fc)> τ)
ReactSO The Victimcar should respond to static obstacles in the roadway. 3,4 �(TTC(vv,obj)> τ)
ReactLC The Victimcar should respond to intended lane changes or cut-ins. 3,4 �(TTC(vv,cut-in)> τ)
ReactEV The Victimcar should respond to encroaching oncoming vehicles. 3,4 �(TTC(vv,on-coming)> τ)

ReactMO
The Victimcar should respond to bicycles, 3,4 �(TTC(vv,bic)> τ∧TTC(vv,ped)> τ∧TTC(vv,ani)> τ)pedestrians, animals, or other moving objects.

† Dist() and TTC () are detailed in Sec. 4.1.1. ra:= restricted areas Victimcar should not enter (e.g., one-way streets), τ:= TTC threshold, cut-in: vehicles that change
lanes in front of the victim, on-coming: vehicles coming towards the victim from the opposite direction, obj: objects, bic: bicycles, ped: pedestrians, ani: animals.

to fail its intended missions (Sec. 4.4). (4) Developing a clus-
tering approach to group similar adversarial trajectories for
root cause analysis, which can help developers reproduce the
attacks and strengthen the AD software (Sec. 4.5.1).

4.1 Identification of Target Driving Missions
Driving missions define the functional requirements that

AD software must follow for safe AV operation. To identify
the missions, we use the standards developed by National
Highway Traffic Safety Administration (NHTSA) [38].

4.1.1 Mission Metrics and Definitions

We converted the relevant NHTSA standards into seven for-
mally verifiable missions that can be used to check whether
an AV satisfies the safety requirements of its stated SAE
level. As shown in Table 1, position-based missions (StayLane
and DriveAllowed) define the areas that the Victimcar must
not drive in (e.g., pedestrian sidewalks, one-way streets).
Collision-based missions (FollowCar, ReactSO, ReactLC,
ReactEV, ReactMO) define the conditions where the Victimcar
must respond and prevent possible collisions.

To formally express the missions, we define two metrics:
distance (Dist) for position-based missions and time to colli-
sion (TTC) for collision-based missions.
Distance (Dist). With the Dist metric, we evaluate the cor-
rect execution of StayLane and DriveAllowed missions. Dist
measures the shortest distance from the Victimcar to an area

that it must not enter. For StayLane, the area is the locations
outside the Victimcar’s lane. For DriveAllowed, the area is
any location restricted for the Victimcar to enter. These areas
include one-way streets and sidewalks that are banned by
law enforcement [44]. We compute the distance between the
Victimcar (VV) and an area as:

Dist(VV,area) = min{
√

(VV.x−area.x)2+(VV.y−area.y)2} (1)

where Victimcar.x,Victimcar.y are the coordinates of the
Victimcar, and area.x,area.y represent the coordinates of
the position in the restricted area closest to the Victimcar.

Fig. 3- 1 illustrates our computation of the shortest distance
(the solid purple arrow) from the Victimcar to the restricted
area (sidewalk) and to the lane (blue dashed arrow).
Time to Collision (TTC). TTC defines the remaining time be-
fore the Victimcar and another object (e.g., vehicle or pedes-
trian) collide if their current velocities are maintained [42,69].

Victim
Vehicle

Minimal Distance
to Restricted Area

Restricted
Area TTC = 𝑻𝑻𝑪	𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝑽𝟏.𝑽𝟐

V1 (km/h)
TTC

Distance (m) V2 (km/h)

z

Another
Lane

Minimal Distance to
Another Lane

Figure 3: Illustration of computing Distance (Dist) and Time
to Collision (TTC) metrics in an attack scene.

We compute the TTC between the Victimcar and an agent
(a), where pos is the position of the Victimcar and the agent,
and v is their velocity, as follows:

TTC(Victimcar,a) =
pos(Victimcar)−pos(a)

v(Victimcar)−v(a)
(2)

Fig. 3- 2 shows our TTC computation between Victimcar
(yellow, on the left) and another vehicle (red, on the right). If
TTC becomes lower than a predetermined threshold value, a
traffic crash will likely occur, as detailed below.

4.1.2 Formal Representation of Missions

We encode Dist and TTC metrics in the linear temporal
logic (LTL) formulas of the missions as conditions, as shown
in the “LTL Formula” column of Table 1. We leverage LTL for
formalization because it (1) is a well-established specification
language [48], (2) enables using various tools for parsing
the formulas and checking if they are satisfied or violated on
the AV’s behavior [66], and (3) allows our formulas to be
generalized to other testing frameworks (e.g., [65]).

To illustrate, we define �(Dist(av,current-lane)> 0)
for StayLane and �(TTC(vv,fc)> τh+ τv) for FollowCar,
where: � means “always”, τh is the threshold for human
reaction time, and τv is the time it takes for a vehicle to
stop when it applies full brake. Dist(vv,current-lane)
defines the minimum distance from the Victimcar (vv) to its
lane marks (current-lane). When the Dist becomes 0, it
means the Victimcar has moved out of its lane. TTC(vv,fc)
quantifies the time it would take for the Victimcar (vv)
to collide with the front car (fc) if both vehicles keep
their current velocity. If TTC(vv,fc) is less than τh + τv, a
collision is likely to happen even if the driver reacts as soon
as possible by applying full brake. We define τh based on
prior work [27, 41, 64], and τv based on the vehicle’s official
documentation on its braking performance (Sec. 6).

Table 2: Physical constraints that the adversary should comply with.

Physical constraint ID Explanation LTL Formula

Obey_Signals Obey the traffic signals and signs. �(¬break(traffic_signal))
NoWrong_Way Do not drive on the wrong side of the road. �(direction(AV) == direction(road))
NoTwo_Feet Do not brake and increase throttle at the same time. �¬(throttle∧brake)
NoExceeding_Operations Do not issue excessively high commands �(throttle< 0.6∧brake< 0.6∧|steer|< 0.6)
NoCrash_Traffic Avoid accidents with the other vehicles in traffic. �(TTC†(AV,obj)> 0)
SafeDist_FollowVehicle Keep safe distance while following the front vehicle. �(TTC(AV,front-car)> τ

∗)
SafeDist_LaneChange Keep safe distance while lane changing. �(TTC(AV,cut-in-car)> τ)

† as defined TTC threshold in Section 4.1.2, ∗ as defined in Table 1.

4.2 Attack Scene Initialization
We initialize an attack scene that we use to generate ad-

versarial commands and evaluate the Victimcar’s missions. In
each attack scene, Victimcar and Attackcar travel on a map
modeled after a real-world environment (e.g., a specific city
street). Initializing different attack scenes allows ACERO to
define scenes specific to a mission and assess whether a dis-
covered adversarial trajectory causes mission violations in
different weather and traffic conditions.
Traffic Conditions. The traffic conditions and the behavior of
other agents, such as vehicles, pedestrians, cyclists, and static
objects, are critical factors in creating realistic attack scenes.
We create such agents based on the Victimcar’s missions. If
a mission specifies a set of specific agents, we spawn such
agents at appropriate locations while evaluating the missions;
otherwise, they are omitted. For example, ReactMO requires
the Victimcar to respond to pedestrians. Therefore, we spawn
pedestrians in reasonable locations, such as on sidewalks or
within a marked crosswalk.
Weather Conditions. Weather conditions are critical for the
Victimcar’s missions as they affect the feature space of AD
software’s perception module. Unfavorable weather condi-
tions may increase the likelihood of specific attack maneuvers
to be successful. For example, a lower sun altitude may dis-
turb the vehicle’s front camera and cause an accident. Thus, to
generate weather conditions, we use preset weather conditions
(e.g., rainy, sunny) and data-driven distributions [42] based on
four parameters: (a) sun altitude, (b) cloudiness, (c) ground
precipitation, and (d) air precipitation (See Appendix A).

4.3 Adversarial Commands
Adversarial commands define the control directives ACERO

issues to the Attackcar in an attack scene. These commands
are: (i) throttle (th), (ii) brake (b), and (iii) steering angle (s).
We represent each command with Com= {th,b,s}.

4.3.1 Physical Constraints on Adversarial Commands

Table 2 presents the seven constraints that we formally
define to ensure the Attackcar’s safety and low liability.
The Obey_Signals and NoWrong_Way constraints ensure
the Attackcar obeys common traffic laws and drives at
the correct side of the road. The NoTwo_Feet constraint
prevents the Attackcar from applying brake and throttle

simultaneously as it can cause the Attackcar to lose control.
NoExceeding_Operations ensures the Attackcar does
not apply excessive commands (e.g., hard brakes and
full throttle), preventing the brake-checking behavior and
ensuring Attackcar’s safety. NoCrash_Traffic prevents
the Attackcar from colliding with the Victimcar and other
traffic agents. Lastly, SafeDist_FollowVehicle and
SafeDist_LaneChange ensure the Attackcar keeps a safe
distance with nearby vehicles, minimizing the collision risk.

We note we include two universal constraints for traffic
rules (Obey_Signals and NoWrong_Way). These constraints
can be easily extended based on the local traffic regulations.
Additionally, disabling one or more physical constraints can
result in discovering more adversarial maneuvers. However,
this could jeopardize the attacker’s safety and prevent them
from denying malicious intent and avoiding responsibility.

4.3.2 Enforcing Physical Constraints

We enforce NoExceeding_Operations by sampling
throttle, brake, and steer values from [−0.6,0.6], where 1 is
the highest value one can issue. To enforce NoTwo_Feet, we
sample a single value for throttle and brake commands (th/b),
where negative values of th/b indicate braking and its pos-
itive values indicate increasing throttle. For Obey_Signals,
we monitor the Attackcar’s physical states (i.e., speed, local
position, and global position) and ensure that generated com-
mands respect the relevant traffic laws. For example, if the
Attackcar’s speed exceeds the speed limit, we do not increase
the throttle. For NoWrong_Way, we monitor the Attackcar’s
position and lane information to prevent constraint violations.

To enforce the remaining physical constraints, we compute
the simulation’s state after issuing a command and ensure that
the constraints are maintained. For example, we check that a
safe distance has been maintained and the Attackcar has not
crashed. To achieve this, one might consider a position-based
algorithm to enable Attackcar to move to valid locations that
comply with the constraints before issuing adversarial com-
mands. Yet, this is a challenging task since it requires complex
physical modeling of both the Attackcar and all other agents in
the scene. Therefore, to address this challenge, we design and
implement a rewind function (Detailed in Sec. 4.4.4), which
restores the scene to the last prior state before the constraint-
violating command was issued. From there, a new command
is generated that adheres to the constraints.

Algorithm 1 Adversarial Trajectory Generation
Input: Attackcar (av), Victimcar (vv), Max number of commands (maxr)
Output: Adversarial Trajectory (AT)
1: function ADVTRAJGEN(av, vv, maxr)
2: AT = [], counter= 0, AGV= (0,0)
3: currRob = CALC_ROB (current_tick) . current simulation state
4: while currRob ≥ 0 do
5: AGV,Vav = ADVCOMMANDGEN(AGV,av,vv)
6: av.APPLY_COMMANDS(Vav) . Run adv. command
7: currRob = CALC_ROB (current_tick)
8: AT.append(vv), counter= counter+1
9: if counter> maxr then break

10: end if
11: end while
12: return AT
13: end function

4.4 Adversarial Trajectory Generation
ACERO generates a set of adversarial commands to guide the

Attackcar’s maneuvers and cause the Victimcar violate its mis-
sions. We refer to the set of executed adversarial commands
as the adversarial trajectory. The trajectory includes a set of
positions, P= {pos1, . . .posk}, where posi is the Attackcar’s
position after executing ith command, and k is the number of
commands required to cause the Victimcar violate its mission.

Algorithm 1 details the adversarial trajectory generation
process. It takes three inputs: (1) the Attackcar’s physical
states (speed, position, orientation), (2) the Victimcar’s phys-
ical states, and (3) the max number of commands. It first
calculates the Victimcar’s robustness value at the initial scene
(Line 3). The robustness quantifies how well the Victimcar
satisfies its intended missions, as detailed in Sec. 4.4.1. Until
the Victimcar’s robustness value reaches 0, it calls ADVCOM-
MANDGEN (Line 5) to generate the adversarial trajectory. If
the number of adversarial commands reaches the user-defined
limit before Victimcar’s robustness becomes 0, ACERO restarts
the algorithm (Line 9-10) with different initial positions and
velocities for the Attackcar and Victimcar.

4.4.1 Attack Robustness Computation

To guide adversarial trajectory generation, we provide at-
tack robustness metrics that define how well the Victimcar’s
physical states (velocity and location) satisfy its safety mis-
sions. The negative robustness values indicate the victim’s
mission has failed, and positive values indicate the mission is
satisfied. We define two different methods for computing ro-
bustness metrics, one for collision-based missions and another
for position-based missions.

We use TTC - τ to compute the Victimcar’s robustness in
satisfying its collision-based missions. TTC - τ computes if
the time to collision is higher than the threshold τ, which
defines the time to react to hazards based on AD software’s
SAE level [27, 41, 64] (as detailed in Sec. 4.1.2). If the TTC
value becomes lower than the reaction time, the robustness be-
comes negative, indicating that a collision will likely happen.
Depending on the safety mission, we define τ based on τh,
the threshold for human reaction time, and τv, the amount of

Algorithm 2 Adversarial Command Generation
Input: Attack Guidance Vector (AGV), Attackcar (av), Victimcar (vv)
Output: New AGV (AGVn), Adversarial Command (Vav)
1: function ADVCOMMANDGEN(AGV, av, vv)
2: robs = {}, dists = {}, prev_rob = 0
3: RPprev(vv,av,tn) = pos(a,tn) - pos(v,tn)
4: commands = CANDIDATE_GENERATION(AGV)
5: for command ∈ commands do
6: SIM.EXECUTE(av, command)
7: if PC_VIOLATION(current_tick) == 0 then
8: robs.APPEND(CALC_ROB(current_tick))
9: dists.APPEND(DIST(av,vv))

10: end if
11: REWINDSCENE()
12: end for
13: min_rob= MIN(robs)
14: if COUNT(min_rob ∈ robs) = 1 then
15: Vav = commands[argminrobs]
16: else
17: min_rob_commands = commands[argminrobs]
18: min_rob_dists = dists[argminrobs]
19: Vav = min_rob_commands[argmin min_rob_dists]
20: end if
21: SIM.EXECUTE(av, vav)
22: RPnew(vv,av,tn+1) = pos(av,tn+1) - pos(vv,tn+1)
23: AGVn = RPnew(av,vv,tn+1) - RPprev(av,vv,tn)
24: return AGVn,Vav
25: end function

time for the Victimcar to come to a complete stop when it ap-
plies full brake. Thus, for FollowCar, τ= τh+τv. For ReactSO,
ReactLC, ReactEV, and ReactMO, τ = τv.

We use Dist(Victimcar, area) to compute the robustness
of position-based missions, where area represents the set of
positions the Victimcar should avoid. For StayLane, it is the
area outside of the Victimcar’s lane, while for DriveAllowed, it
represents the legally forbidden areas (e.g., sidewalks). When
Dist becomes 0, it indicates that the Victimcar entered an
area it should avoid, and thus, the mission is violated.

ACERO assesses Victimcar’s each mission separately by
leveraging guidance from the collision- or position-based
robustness metric. This prevents ACERO from creating con-
flicting guidance on the adversarial commands. For instance,
if we evaluate multiple missions simultaneously, the TTC met-
ric would attempt to optimize a trajectory for the Attackcar to
make the Victimcar collide (e.g., with a third-party vehicle);
while the Dist metric would guide the Attackcar to make the
Victimcar to steer towards restricted areas. Therefore, these
goals are mutually exclusive, making it counterproductive to
attempt to achieve both of them at once.

4.4.2 Adversarial Command Generation

Algorithm 2 details the ADVCOMMANDGEN process. It first
generates an initial command for the Attackcar by conducting
a grid search on an attack region that includes the areas it
can reach by executing physically feasible control commands.
Fig. 4- 1 shows this process. The left-most region is the result
of max left steer, the right-most region is the result of max
right steer, the top region is the result of a max throttle, and
the bottom region is the result of a max brake. ACERO divides
the attack region to n×n grids, where n is a system parameter.

Figure 4: An illustration of adversarial trajectory generation.
1 shows the candidate area on the reachable region for the

initial adversarial command. 2 shows the candidate area
selected with an attack guidance vector guided by robustness.

Higher values of n lead to a fine-grained search but incur a
higher computation time and its lower values lead to a more
computationally efficient but coarse-grained search.

ACERO then randomly selects a position from each grid and
generates a candidate adversarial commands set that includes
commands steering the Attackcar to these positions (Line 4).
After sending each command, ACERO checks if Attackcar’s
physical constraints are violated (Line 7). If a constraint is
violated, that command is removed from the candidate set.
Otherwise, it computes the attack robustness and the distance
between the Attackcar and Victimcar (Lines 8-9). It then re-
stores the simulation to the previous state and sends the next
command in the candidate set (Line 11).

After iterating through all commands, ACERO selects the
one that minimizes the attack robustness as the Attackcar’s
initial command (Line 13). If multiple commands reduce
the Victimcar’s robustness in the same amount, it chooses the
command that minimizes the distance between the Attackcar
and Victimcar (Line 17-19) to place the Attackcar in a better
position for further robustness reduction.

4.4.3 Attack Guidance Vector Generation

ACERO computes an attack guidance vector (AGV), which
is the relative position change between the Attackcar and
Victimcar that causes the Victimcar to have a maximum de-
crease in robustness (Lines 21-24). The attack guidance vector
guides the Attackcar to move to the locations that cause simi-
lar relative position changes with the Victimcar as those that
have previously decreased robustness. To represent the AGV,
we first define relative position (RP) as follows:

RP(vv,av,t) = pos(av,t)−pos(vv,t) (3)

The RP is computed as the Victimcar’s position vector at
time t subtracted from the Attackcar’s position vector. We
next define the AGV as the change between two consequent
relative positions (at time t and t−1):

AGV(t) = RP(vv,av,t)−RP(vv,av,t−1) (4)

Particularly, ACERO first computes the relative position vec-
tors at time t−1 and t. It then subtracts the relative position
vector at time t−1 from the vector at time t to obtain the

Figure 5: One-step rewinding and reset-rewinding illustration.

attack guidance vector. To generate the next adversarial com-
mand, instead of sampling from every grid, ACERO samples its
next candidate adversarial commands from the grids that the
AGV’s direction points to (Line 4). For instance, in Fig. 4- 2 ,
the AGV is (-1, 1), indicating turning left and throttling. There-
fore, ACERO samples the candidate adversarial commands
only from the grids that include turning left and throttling
(marked with black color in Fig. 4- 2).

4.4.4 Rewinding the Scene

Rewinding is the process of restoring the Victimcar’s and
Attackcar’s physical states to their condition before the last
adversarial command was executed.

ACERO conducts rewinding for two purposes. First, after
each adversarial command, it rewinds the scene to send the
next command while searching for the one that minimizes
the Victimcar’s robustness. Second, it rewinds the scene to
eliminate the cases when one of the Attackcar’s physical con-
straints is violated. For example, in Fig. 5, ACERO detects a
physical constraint violation on the Attackcar at time 5 , and
rewinds the scene to time 4 to sample another command.

One potential method is one-step rewinding, where one
rewinds directly to the scene when the last command has
not been executed (black dashed arrow in Fig. 5). Although
simple to implement, this technique causes inconsistencies
in the perception modules (sensor buffers) of AD software in
specific simulators and disrupts the decision of ML models
(e.g., RNNs) that take multiple perception frames as input.

To address this issue, we implement reset-rewinding, in
which ACERO resets the scene to the initial one and repeats the
historical commands until the previous scene (blue solid arrow
in Fig. 5). This technique restarts the simulator to clear any
prior input frames from the AD software’s memory, ensuring
consistent AD behavior.

4.5 Attack Guide and Clustering
ACERO outputs an attack guide, which contains the com-

plete information to launch an attack (a sample attack guide
is given in Appendix B).

4.5.1 Attack Clustering

After each attack guide for a mission is obtained, we cluster
adversarial trajectories of successful attacks to group trajec-
tories sharing similar adversarial maneuvers. Clustering the
trajectories (1) quantifies the diversity of discovered attacks,

Algorithm 3 Unique Attack Path Discovery
Input: Path 1 (P1), Path 2 (P2), Initial Position of the Victimcar (ξ)
Output: Path Similarity (δ)
1: function PATHSIM(P1, P2, ξ)
2: windowsize = len(P1)−len(P2), simset = []
3: for i in range(0, windowsize) do
4: P1′ = P1[i : i+len(P2)]
5: δ = COSINESIM(P1′,P2,ξ)
6: simset.append(δ)
7: end for
8: return min(simset)
9: end function

10: function COSINESIM(P1, P2, ξ)
11: T1, T2 = TRAJECTORY(P1,P2, SIZE(P1)), δ = 0
12: for i in range(0, size(T1)) do
13: δ += (cos(T1[i],(P1[i]−ξ)) - cos(T2[i],(P2[i]−ξ))
14: end for
15: return δ

16: end function

and (2) helps identify the root cause of attacks, which is often
the same for attacks in the same cluster (Sec. 6), to guide
developers to strengthen the AD software.
Computing Trajectory Similarity. Algorithm 3 shows our
approach to computing the path similarity between two
successful attacks. We cluster adversarial trajectories into
groups based on their similarity score. Our algorithm takes
two attack trajectories (P1 and P2) as input. If the trajectories
have different lengths, we compare the trajectories in same-
length segments. Thus, we first compute a window size as the
difference between trajectory lengths (Line 2). We use cosine
similarity (COSINESIM) to compute the distance between the
shorter path and longer trajectory’s every sub-path, which has
the same length as the shorter trajectory (Line 3-7). Cosine
similarity measures the similarity of trajectories irrespective
of their lengths [31]. We offset each path based on the relative
position between the Victimcar’s initial position to account
for Attackcar’s different initial positions (Line 11).

We then compute the similarity between the Victimcar’s
initial position and each position of the Attackcar’s path (Line
12-14). Lastly, we output the minimum similarity value as the
trajectory similarity from the set of similarities computed for
each sub-path in the sliding window. We group the successful
attacks with a given threshold, i.e., paths with a distance lower
than the threshold are assigned to the same group.

4.5.2 Determining Attack Reproducibility

To verify an attack’s reproducibility, we evaluate whether
an attack can be conducted in different weather conditions
and whether ACERO’s attack guide is successful with a margin
of error in the adversarial trajectory.
Weather Conditions. Weather conditions can play a ma-
jor factor in causing the Victimcar to fail its mission when
exposed to Attackcar’s driving patterns. For instance, re-
cent works showed that direct sunlight or heavy rain affects
the AV’s perception inputs and changes its control deci-
sions [42, 64]. While an attack that is reproducible under
certain weather conditions is reasonable, successful attacks

in any weather condition are more attractive for adversaries.
Therefore, we replay a successful attack from each clus-

ter using random weather conditions generated from a data-
driven model to see whether the attack is successful in each
condition. We consider a variety of weather conditions, such
as daytime, different rainfall amount, sunshine, and cloud
cover, as detailed in Appendix A.
Trajectory Replication Error. While we consider the at-
tacker can control the Attackcar with digital inputs (e.g., steer-
ing and throttle), a human operator may make mistakes in
repeating the exact trajectory outputted by ACERO.

Therefore, we introduce errors to the adversarial trajectory
and check whether the attack is still successful. For each attack
command that consists of throttle (th), break (b), and steer (s),
we add a uniformly distributed error to the command. Particu-
larly, we sample the errors from the ranges [−th∗ ε,th∗ ε],
[−b∗ ε,b∗ ε], and [−s∗ ε,s∗ ε], where ε represents the error
rate. We set ε to realistic values in our evaluation based on
the expected errors of a human driver (See Sec. 6.2.2).

5 Implementation
Simulator. CARLA [15] and LGSVL [29] are the most pop-
ular AV simulators. We deployed ACERO into CARLA [15]
because LGSVL [29] does not support sending commands to
the Attackcar during simulation (i.e., requires defining all com-
mands in advance) while running the Victimcar with AD soft-
ware. Thus, it is infeasible to generate adversarial commands
and implement an efficient rewinding approach in LGSVL.
Driving Software. We evaluate ACERO on two AD systems,
openpilot 0.8.6 [11] (SAE Level 2) officially integrated into
CARLA 0.9.11 and Autoware 1.14.0 [23] (SAE Level 4)
integrated into CARLA 0.9.1. Apollo [3], however, does not
have an ACERO-compatible implementation. In Appendix C,
we provide implementation details of openpilot and Autoware,
and outline our efforts to integrate Apollo into ACERO.
Attack Scene Initialization and Adversarial Trajectory
Generation. We implement ACERO with CARLA’s Python
APIs [7] that allows us to define attack scenes and directly ob-
tain the physical states of the Victimcar, Attackcar, and other
agents. To create attack scenes, we create template files for
each mission, which can be adapted by any user to suit their
testing purposes. The file contains the scene configuration
parameters, including weather, traffic conditions, and initial
positions/speeds of Victimcar and Attackcar (Sec. 4.2). We
then initialize the attack scenes, configure the Victimcar with
either openpilot or Autoware, and run the adversarial trajec-
tory generation algorithm with physical constraints to output
attack guides. We write 960 lines of code (LoC) for Autoware
and 850 LoC for openpilot in Python to generate attack scenes
and adversarial trajectories.
Clustering Adversarial Trajectories. For attack guide clus-
tering and verifying the attacks are successful under random
weather conditions, we run a worklist-based algorithm to clus-

Figure 6: Three types of roads in real life (Top) vs. in CARLA
(Bottom) 1 Highway; 2 Roundabout; 3 Intersection.

ter the adversarial trajectories to different groups. We then
randomly select an attack from each group and use 14 preset
weather conditions (see Appendix A) to determine whether
the attack trajectory is successful in causing the vehicle to fail
its mission. We write 178 LoC for attack clustering and 124
LoC for verifying weather reproducibility.
Mission Identification. We measure the time required by a
knowledgeable user to identify the missions in Table 1 and
express them as LTL formulas. Particularly, two authors spent
a total of 2.5 hours identifying Level 2-4 AD missions.

6 Evaluation
We evaluate ACERO’s effectiveness in identifying attacks

against the safety missions (Table 1) of openpilot and Au-
toware. For openpilot (SAE Level 2 AD), we use ACERO

to find attacks against the StayLane and FollowCar mis-
sions. For Autoware (SAE Level 4 AD), we evaluate its
DriveAllowed, ReactSO, ReactLC, ReactEV, and ReactMO mis-
sions. We present our results by focusing on the following
research questions.
RQ1 What is the attack success rate (i.e., the percentage of

the number of mission violations on the number of test
cases) for each mission? (Sec. 6.2)

RQ2 What is the percentage of attacks that are reproducible
in different weather conditions? (Sec. 6.2.1)

RQ3 What is the reproducibility rate of the attacks when the
attack trajectory is not strictly followed? (Sec. 6.2.2)

RQ4 What are the root causes of the attacks? (Sec. 6.3)
RQ5 What is the attack success rate without using the ro-

bustness guidance? (Sec. 6.4.1)
RQ6 How does ACERO perform against other AV testing

systems? (Sec. 6.4.2)
RQ7 What is ACERO’s execution time? (Sec. 6.5)

We perform our experiments on three desktops with Intel
i7-10700K CPU, 32 GB RAM, GeForce RTX 2080 Ti GPU,
running Ubuntu 20.04.

6.1 Experiment Setup
We generate a set of scenes for the Attackcar to conduct

attacks and evaluate Victimcar’s each mission. Creating attack
scenes requires: (1) determining the road type, (2) includ-
ing other traffic agents on the map, and (3) setting weather

conditions. We achieve these steps via ACERO’s attack scene
initialization component introduced in Sec. 4.2.

The first step for attack scene initialization is to configure
realistic maps to serve as a location appropriate for evalu-
ating each mission. We use three different maps (provided
by CARLA [8]), representative of common real-world sce-
narios, as shown in Fig. 6. These maps include a highway, a
roundabout, and a T-intersection.

We evaluate the position-based missions (StayLane,
DriveAllowed) on roundabouts, since lane changes are not
allowed in them [21] and a mission violation can cause more
severe consequences (e.g., collisions with traffic or the center
island) compared to other maps. We evaluate three collision-
based missions (ReactSO, ReactEV, ReactMO) on intersections
because this road type enables simulating the behavior of a
greater variety of traffic agents, e.g., pedestrians, traffic signs,
stopped vehicles/obstacles, and encroaching vehicles. Lastly,
we evaluate FollowCar and ReactLC missions on the high-
way because the missions for car-following and responding
to cut-in vehicles are critical in high-speed traffic.

We next configure the behavior of other traffic agents and
the weather conditions on each map in two different ways. In
Exp- a , we initialize the scene with only the traffic agents
strictly required to evaluate a mission (e.g., another vehicle for
FollowCar) and the default CARLA weather parameters. In
Exp- b , we initialize the scene with additional traffic agents
(i.e., a road sign, a pedestrian, a vehicle, and a cyclist) and
sample the weather conditions from a set of real-world data-
driven distributions. We present two example attack scenes in
Fig. 12 in Appendix D.

6.2 Effectiveness
We run 500 test cases for each mission using the generated

attack scenes and evaluate the Victimcar’s missions (RQ1).
In each test case, we randomly select the Attackcar from 27
different models with 3 car types: sedan, SUV, and truck. We
also randomly select the Attackcar’s and Victimcar’s initial
positions and speeds in each test case to discover different ad-
versarial trajectories. We note that, for the Victimcar, we use
the vehicle configuration that openpilot (Tesla M3) and Auto-
ware (Toyota Prius) official implementations provide. This is
because, although it is possible to integrate different Victimcar
types and models into CARLA, openpilot and Autoware is-
sue commands specifically for their default vehicle, based on
the car model’s physical properties (e.g., mass, horsepower,
height), which are hardcoded in these two software packages.

Table 3 details the number of violations for each mission
and the physical consequences the adversary achieves with
Exp- a and Exp- b . The “Mission Violation” column shows
the number of attack cases where the Attackcar causes the
Victimcar to violate its mission listed in the “Mission ID”
column. We observe three physical consequences when the
Victimcar violates its missions, as shown in the “Physical
Consequence” column: (1) hitting another vehicle, (2) hit-

Table 3: Percentages of the Victimcar’s mission violations identified by ACERO and their physical consequences.

Mission ID Mission Physical Consequence Attack Vehicle Type Number of
Violation Hitting Another Vehicle Hitting a Pedestrian/Cyclist Hitting Static Objects Sedan SUV Truck Attack Clusters

Exp- a : Attack scene without additional traffic and default weather conditions
StayLane 63 (12.6%)∗ n/a† n/a 6 (1.2%) 28 (44.4%) 20 (31.7%) 15 (23.8%) 2

DriveAllowed 0 (0%) n/a n/a 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0
FollowCar 40 (8%) 40 (8%) n/a 0 (0%) 4 (10%) 3 (7.5%) 33 (82.5%) 4
ReactSO 8 (1.6%) n/a n/a 8 (1.6%) 1 (12.5%) 3 (37.5%) 4 (0.5%) 2
ReactLC 42 (8.4%) 42 (8.4%) n/a 0 (0%) 21 (50%) 17 (40.5%) 4 (9.5%) 2
ReactEV 9 (1.8%) 9 (1.8%) n/a 0 (0%) 1 (11.1%) 2 (22.2%) 6 (66.7%) 3
ReactMO 17 (3.4%) n/a 17 (3.4%) 0 (0%) 0 (0%) 0 (0%) 17 (100%) 1

Exp- b : Attack scene with additional traffic and sampled weather conditions
StayLane 38 (7.6%) 0 (0%) 0 (0%) 4(0.8%) 11 (29%) 20 (52.6%) 7 (18.4%) 3

DriveAllowed 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0
FollowCar 78 (15.6%) 78 (15.6%) 0 (0%) 0 (0%) 13 (16.7%) 46 (59%) 19 (24.3%) 4
ReactSO 6 (1.2%) 6 (1.2%) 0 (0%) 0 (0%) 0 (0%) 1 (16.7%) 5 (83.3%) 1
ReactLC 15 (3%) 15 (3%) 0 (0%) 0 (0%) 3 (20%) 5 (33.3%) 7 (46.7%) 2
ReactEV 13 (2.6%) 12 (2.4%) 1 (0.2%) 0 (0%) 2 (15.4%) 3 (23.1%) 8 (61.5%) 2
ReactMO 12 (2.4%) 1 (0.2%) 11 (2.2%) 0 (0%) 8 (66.7%) 0 (0%) 4 (33.3%) 2

† n/a indicates the physical consequence cannot occur as the required traffic agents are not in the attack scene. ∗ Percentages in parentheses are relative to the total number of experiments.

ting a pedestrian or cyclist, and (3) hitting static objects.
For instance, in Exp- a , ACERO discovers 8 cases where the
Attackcar causes the Victimcar to crash to static objects, violat-
ing ReactSO. Overall, ACERO discovered 341 safety violations
by the Victimcar (4.87% out of 7000). Out of these, 57.8% of
the violations result in the Victimcar colliding with a third-
party vehicle, 8.5% cause it to hit a pedestrian or cyclist, 7%
cause it to hit a static object (e.g., road sign).

We note that not all mission violations lead to physical
consequences. For instance, In Exp- a , we found 63 StayLane
mission violations where the Attackcar causes the Victimcar
to move out of its lane. Yet, only 6 of those cases resulted in
a physical consequence (hitting a static object).

ACERO could not find any safety violations for Autoware’s
DriveAllowed mission. This is because Autoware’s planning
module creates the route (a set of waypoints) to the destination
before departure and does not change the route except when
a new destination is set.

Impact of Initial Attack Setup on Attack Success Rate.
We analyze how the initial attack setup (initial speed, position,
and Attackcar model) impacts the attack success rate. We find
that the attack success rate becomes higher in specific attack
setups depending on the mission the Attackcar targets. For
instance, in ReactLC Exp- a , 69.8% of successful attacks (30
out of 42) had Attackcar’s initial position within 12 and 17 me-
ters from the Victimcar, and 64.3% of the successful attacks
(27 out of 42) have an initial speed difference between the
Attackcar and Victimcar within 0 to 10.8 km/h. This is because
the Attackcar crashes with the Victimcar if they are initialized
too close, leading to a NoCrash_Traffic constraint viola-
tion. In contrast, if the Attackcar is initialized too far away
from the Victimcar, it does not impact the Victimcar’s maneu-
vers. Similarly, for the initial speed, if the Attackcar’s initial
speed is too high or too low from the Victimcar’s initial speed,
it becomes very difficult for the Attackcar to maintain a close
distance with the Victimcar to impact its movements.

Attack Clustering. The “Number of Attack Clusters” column
in Table 3 shows the number of unique adversarial trajectories

identified for each mission. ACERO discovered a total of 28
attack clusters. For instance, while assessing the ReactSO mis-
sion in Exp- b , we identified 4 clusters from the 78 mission
violations discovered, indicating there are 4 unique trajecto-
ries an adversary can take to cause a violation.

We note that we use different path similarity thresholds for
different missions when grouping the attack trajectories, be-
cause the attack scene setup is different for each mission. For
example, when ACERO runs attacks on ReactLC in a highway
scene, the traffic speed is faster than the attack scene in the
city street. Thus, we need to consider the different scale of
the adversarial trajectories, by using different thresholds.
Comparison of Attacks in Exp- a and Exp- b . We com-
pare successful attacks in Exp- a and Exp- b to understand
the impact of the additional traffic conditions. We found that
the number of violations decreases by 9.4% in Exp- b . This
is because the other vehicles in the attack scenes prevent the
Attackcar’s ability to perform different maneuvers while it
complies with the physical constraints.

We additionally observe a wider variety of physical conse-
quences in Exp- b because there exist road signs, pedestrians,
vehicles, and cyclists in the attack scenes that Victimcar col-
lides. For instance, while running ACERO on the ReactMO
mission, in Exp- a , the Victimcar only collides with pedestri-
ans and cyclists as only these agents are present in the scene.
When we include additional traffic agents for Exp- b , the
Victimcar crashes to the other vehicles as well.

6.2.1 Impact of Weather on Attack Reproducibility

We study whether the discovered attacks are reproducible
under different weather conditions (RQ2). To do so, we ran-
domly choose an attack from each cluster and use its attack
guide to replay the same commands in 14 preset weather
conditions available in CARLA (see Appendix A for details).

Fig. 7 shows the attack success rate for each attack clus-
ter against openpilot (FollowCar, StayLane) and Autoware
(ReactSO, ReactLC, ReactEV, ReactMO). For instance, we
show four bars for openpilot’s StayLane mission, each repre-
senting an attack cluster, where the first two are clusters from

6 6

10

1
2

9

6
7

5

3
4

6

2

8 8

2

0 0

2

0

3

0

4

6

2

6

4
3

Attack Cluster ID

A
tta

ck
 S

uc
ce

ss
 R

at
e

(%
)

0.0%

20.0%

40.0%

60.0%

80.0%

St
ay
La
ne
-1

St
ay
La
ne
-2

St
ay
La
ne
-3

St
ay
La
ne
-4

St
ay
La
ne
-5

Fo
llo
wC
ar-
1

Fo
llo
wC
ar-
2

Fo
llo
wC
ar-
3

Fo
llo
wC
ar-
4

Fo
llo
wC
ar-
5

Fo
llo
wC
ar-
6

Fo
llo
wC
ar-
7

Fo
llo
wC
ar-
8

Re
ac
tS
O-
1

Re
ac
tS
O-
2

Re
ac
tS
O-
3

Re
ac
tLC

-1

Re
ac
tLC

-2

Re
ac
tLC

-3

Re
ac
tLC

-4

Re
ac
tE
V-
1

Re
ac
tE
V-
2

Re
ac
tE
V-
3

Re
ac
tE
V-
4

Re
ac
tE
V-
5

Re
ac
tM
O-
1

Re
ac
tM
O-
2

Re
ac
tM
O-
3

Figure 7: Attack success rate in multiple weather conditions.

Weather Conditions

A
tta

ck
 s

uc
ce

ss
 ra

te
 u

nd
er

 d
iff

er
en

t w
he

th
er

 c
on

di
tio

ns

0.0%

20.0%

40.0%

60.0%

Clea
rN

oon

CloudyN
oon

WetN
oon

WetC
loudyN

oon

MidRain
yN

oon

Hard
Rain

Noon

SoftR
ain

Noon

Clea
rS

unse
t

CloudyS
unse

t

WetS
unse

t

WetC
loudyS

unse
t

MidRain
Sunse

t

Hard
Rain

Sunse
t

SoftR
ain

Sunse
t

Figure 8: Attack reproducibility of each weather condition.

Exp- a and the other three are from Exp- b . We find that, on
average, the attacks can be replayed in 36.8% of the weather
conditions for openpilot and 22.9% for Autoware. We note
that ACERO is able to find violations for missions ReactLC-1,
ReactLC-2, ReactLC-4, and ReactEV-2 when the weather pa-
rameters are sampled from data-driven distributions. However,
ACERO is unable to reproduce the same violations when using
the 14 preset weather conditions.

We further analyze the attack reproducibility under specific
weather conditions to observe if their impact is consistent
on the Attackcar and Victimcar. Fig. 8 presents the number of
attack clusters that can be reproduced in each of the 14 preset
weather conditions. For instance, the attack reproducibility
is 21.4% under rainy weather conditions, and it increases to
29.1% in non-rainy conditions. By analyzing the driving logs,
we find that the slight decrease in attack reproducibility under
rainy and sunset weather conditions occurs because these con-
ditions disrupt the Attackcar’s maneuvers, causing it to crash
other vehicles and violate its physical constraints. In contrast,
under non-rainy and noon weather conditions, the Attackcar
performs adversarial maneuvers more precisely, driving close
to the obstacles and Victimcar, without hitting them.

6.2.2 Attack Reproducibility with Operator Error

To assess the reproducibility of attacks with an operator
error, we randomly choose one attack from each cluster and
replay it with a uniformly-distributed deviation added to each
command, with a maximum error of 5% (ε = 0.05) of the orig-
inal command (RQ3). We repeat each attack 10 times with
random command deviations and verify if the attack is still
successful. We consider a case to be reproducible if the com-
mands with deviations applied satisfy the physical constraints
and result in a mission failure. We found attacks with deviated

Table 4: Root causes of the Victimcar’s mission violations.

Mission ID Driving Software
Root Cause

Blocking Perception Planning
Vision Module Errors Module Errors

StayLane Openpilot 2∗ 3 0
FollowCar Openpilot 5 3 0
DriveAllowed Autoware n/a n/a n/a
ReactSO Autoware 1 1 1†

ReactLC Autoware 0 2 2†

ReactEV Autoware 3 0 2
ReactMO Autoware 2 1 0

∗ Number of attack clusters † Due to the parameter misconfiguration

commands are successful, on average, 25.38% of the time for
openpilot and 26.67% for Autoware. This implies that even
human operators unable to precisely follow the exact adversar-
ial trajectories could still successfully conduct these attacks.

6.3 Root Cause Analysis
Four authors of this paper manually investigated the at-

tack guide and driving logs to identify the root cause of the
attacks(RQ4). As shown in Table 4, we identified three cat-
egories of root causes: (1) Blocking vision, (2) perception
module error, and (3) planning module error. Although we
did not observe the same adversarial trajectory causing a crash
in both AV software, we found similar root causes for their
mission violations, e.g., both AV software yield perception
module errors, such as losing track of an obstacle.
Blocking Vision. We consider an attack’s root cause is
“Blocking Vision” if the Victimcar’s perception module output
indicates that it failed to detect an obstacle or detected it close
to the time of the crash (≈ 1 second TTC). Such blocking of the
vision sensor propagates into the Victimcar’s planning module
and causes incorrect decisions, resulting in insufficient time
to react to obstacles and eventually causing a crash.

We found seven attack clusters from openpilot and six clus-
ters from Autoware fall into this root cause category. Since
these attacks occur due to the Victimcar’s perception module
being unable to detect obstacles, they can be prevented by
installing additional vision sensors. For example, it will be
harder for the Attackcar to block both front and side cameras.
Perception Module Error. We consider an attack’s root
cause as “Perception Module Error” if the Victimcar’s per-
ception module (i) misclassifies an object, (ii) loses track of
obstacles, or (iii) incorrectly predicts the driving path of an-
other vehicle. In such errors, although the Victimcar’s vision
sensors are not blocked, the Victimcar’s perception module in-
correctly classifies the Attackcar when it is driving erratically
(See the case studies in Sec. 6.3.1). Such misclassifications
and inaccurate tracking pass wrong inputs to the planner mod-
ule, which triggers the crash.

We found six attack clusters from openpilot and four
clusters from Autoware fall into this root cause category.
Since these attacks occur due to the ML models used in the
Victimcar’s perception module, they might be prevented by
improving their ML models. For example, the object tracker
can be retrained with more smoothing trajectories to mitigate

Listing 1 Code for generating deceleration waypoints. The
default value of deceleration_range is 0.
1 i f (dece l e ra t ion_range > 0 && stop_obs t ac l e < 0) {
2 * o bs t ac l e = de tec tDece l e r a t eObs tac l e (. . .) ;
3 i f (o bs t ac l e < 0) r e t u r n KEEP;
4 e l s e r e t u r n DECELERATE;
5 }

Time t=1 Time t=2 Time t=3 Time t=4

Victim (25km/h) brakes
because attacker is

making a lane change

Victim (30km/h) stops
braking because attacker
stops the lane changing

Victim (35km/h) does
not brake

Victim finally crashes
with the stopped

obstacle

Attacker (30km/h) starts
by steering to right

Attacker (20km/h) steer
straight and brake

Attacker (10km/h)
steers right and brake

Attacker (25km/h)
steers left

Figure 9: Case Study 1: Attackcar causes Autoware to fail at
avoiding a static obstacle, causing a collision for Victimcar.

the impact of Attackcar’s abrupt movements.
Planning Module Error. We consider the root cause is a
“Planning Module Error” when (i) the Victimcar’s vision
sensors are not blocked and (ii) the perception module
outputs are correct, but the Victimcar still crashes. In such
cases, the Attackcar’s adversarial trajectory exploits a bug
in the Victimcar’s planning module. This bug makes the
Victimcar’s planning module fail to generate a collision-free
trajectory, causing it to crash.

We found five clusters from Autoware fall into this root
cause category. For example, the Victimcar is not able to react
to the hard brake of a front vehicle. While we investigated
this case, we noticed that a misconfiguration bug in the plan-
ning module is the root cause. In particular, as shown in the
simplified code snippet in Listing 1, the Autoware planning
module skips adding a deceleration waypoint (Lines 2-4) if
the deceleration_range parameter is set to zero (Line 1).
We then set it to 3 and attack the Victimcar against ReactSO
using the exact same attack guide. With the updated param-
eter value, the Victimcar reacts correctly to the Attackcar’s
movements and prevents the crash.

6.3.1 Case Studies

Case Study 1 (Fig. 9) - Failing to avoid a static object: This
attack [2] makes an Autoware Victimcar violate its ReactSO
mission. Particularly, there is a stopped police vehicle di-
rectly ahead of the Victimcar on a crossroad (Fig. 9-t1). The
Attackcar starts (t1) at the Victimcar’s left front and steers
right to make a fake lane cut-in. The Attackcar then steers
back and brakes at t2. At t3, the Attackcar avoids the poten-
tial collision with the police vehicle and steers left. Victimcar
fails to brake and crashes with the police car (Fig. 9-t4).
Root Cause. We conclude this attack’s root cause is “percep-
tion module error”. We first confirmed that the Victimcar stops
in front of the police vehicle when Attackcar does not exist.
We next investigated the Victimcar’s perception module output

Figure 10: Case Study 2: Attackcar exploits blind spots in
openpilot’s perception to cause the Victimcar to crash.

and noticed that it correctly tags both the Attackcar and police
car. Yet, due to Attackcar’s movements, the Victimcar’s pre-
diction module confuses the Attackcar with the police vehicle
and fails to brake. Particularly, when the Attackcar changes
its steering angle and throttle, the Victimcar presumes the
Attackcar is going to change lanes, and predicts its path as it
will turn right. When the Attackcar passes the police vehicle,
the Victimcar’s prediction module transfers the Attackcar’s
predicted driving path to the police car’s one and assumes the
police vehicle will turn right. Thus, the Victimcar eventually
crashes with the stopped police vehicle.
Case Study 2 (Fig. 10) - Failing to respond to a cutting-in
vehicle on highway: This attack [2] makes the Victimcar vio-
late the FollowCar mission. The attack is conducted on a high-
way with a wet road and overhead sun, when the Victimcar is
travelling the left-most lane, and the Attackcar is driving in
a rightward lane (Fig. 10-left). The Attackcar moves sharply
into a reflective patch of the road (such as a puddle) directly
in front of the Victimcar. This causes the openpilot vehicle to
steer left and crash at high speeds into the highway barrier
(Fig. 10-right). At typical highway speeds between 80 km/h
and 110 km/h, this is fatal for the occupants of the Victimcar.
Root Cause. When replicating the attack under different en-
vironmental conditions, we observed that the attack is suc-
cessful only on a wet and reflective road with the sun shining
overhead but not behind the Victimcar. These environmental
conditions create reflections on the ground, off which sunlight
bounces directly into the Victimcar’s camera. These reflec-
tions act as “blind spots” to openpilot’s perception, register-
ing to the camera as very bright white patches obscuring the
view. The attacker can take advantage of this by cutting into
these blind spots at the proper moment. To the Victimcar, the
Attackcar appears very suddenly at a close range, popping out
of an area where the Victimcar could not see before. As a re-
sult, the Victimcar fails to react properly, causing a fatal crash.

6.4 Baseline Comparisons
6.4.1 ACERO without Robustness-Guidance

We implement a baseline approach where we disable the
robustness guidance component of ACERO while finding ad-
versarial commands (RQ5). In the baseline approach, the
Attackcar does not obtain any feedback from the Victimcar’s
missions as a guide to select control commands and simply
issues commands that maintain all physical constraints. We

Mission ID

A
tta

ck
 S

uc
ce

ss
 R

at
e

(%
)

0.0%

5.0%

10.0%

15.0%

1 2 3 4 5 6 7

Baseline

Acero
1-StayLane
2-DriveAllowed
3-FollowCar
4-ReactSO
5-ReactLC
6-ReactEV
7-ReactMO

Figure 11: The comparison of the percentage of successful
attacks discovered by ACERO vs. baseline approach.

compare the baseline approach with ACERO under 100 test
cases for each mission using the same attack scenes.

Fig. 11 shows the percentage of mission violations discov-
ered by ACERO and the baseline approach (without traffic and
default weather conditions). The baseline only finds attacks in
1.4% of the test cases (16 out of 700), which is 3.5x less than
robustness guidance. We observe ACERO with robustness guid-
ance yields a higher attack success rate in all missions. Only
in the ReactMO mission, the baseline approach gives a similar
success rate with ACERO. We investigated the driving logs
and found that this stems from Autoware’s object-tracking
algorithm, which fails to detect small moving objects, such as
bicycles and pedestrians. Thus, the Attackcar’s movements do
not affect the behavior of Autoware for such objects, causing
it to crash them without robustness guidance.

6.4.2 ACERO vs. AV-Fuzzer

We compare ACERO with AV-Fuzzer [30] because, com-
pared to other works on AV vulnerability discovery [42, 70,
72], it can be extended to search for adversarial maneuvers
(RQ6). AVFuzzer aims to identify the maneuvers surround-
ing vehicles can make to induce safety violations for an AV.
However, it does not constrain the maneuvers such that the
adversary remains unharmed, and obeys traffic and self-safety
constraints. It also only considers traffic conditions that in-
volve vehicle-following and lane-changing, which limits its
scope to specific AVs, operating in specific scenarios.

ACERO can discover the same attacks as AV-Fuzzer
by disabling the NoCrash_Traffic physical constraint of
Attackcar; yet, we do not consider such attacks as successful
(since they jeopardize the attacker’s safety and do not pro-
vide low liability.) To compare ACERO with AV-Fuzzer, we
disabled physical constraints and conducted 100 additional
test cases for FollowCar and ReactLC (without traffic), which
are the only two missions supported by AV-Fuzzer. ACERO

found 24 crashes in FollowCar and 27 crashes in ReactLC
between Attackcar and Victimcar, which are similar to the
safety violations reported in the AV-Fuzzer. In contrast, AV-
Fuzzer identifies seven (three FollowCar and four ReactLC)
of the 28 attacks clusters that ACERO discovers. The seven
attack clusters can be discovered by targeting FollowCar and
ReactLC missions and giving high-level driving commands to
the Attackcar that AV-Fuzzer supports (e.g., changing lanes).
However, the remaining 21 attack clusters require missions

and fine-grained maneuvers that AV-Fuzzer does not support
(e.g., steering within the lane).

6.5 Execution Time Analysis
We measure the time spent to run an attack on each AD

system and the time to verify their reproducibility in random
weather conditions (RQ7). The average time to run an attack
is 541.9 ± 46.1 secs for Autoware and 251.4 ± 31.2 secs
for openpilot. The execution time difference between the AD
systems is mainly due to attack scene initialization. Autoware
initializes sophisticated modules, including localization, per-
ception, object detection & tracking, and motion planning.
Thus, when ACERO rewinds the attack scene, restarting the
Autoware takes a longer time. The average time to reproduce
an attack in random weather conditions takes 164.4 ± 8.3
secs for openpilot and 325.5 ± 3.9 secs for Autoware. We
next analyze the execution time of ACERO’s each component.
ACERO’s test scenario initialization takes on average 8.3 ±
0.06 secs for openpilot and 326.2 ± 18.6 secs for Autoware.
Its adversarial trajectory generation takes on average 243.1 ±
74.7 secs for openpilot and 215.7 ± 31.1 secs for Autoware.

Lastly, we compare ACERO’s execution time with the base-
line approach with robustness guidance disabled (Sec. 6.4.1).
This adversarial trajectory generation for this baseline takes
on average 3.8 ± 1.3 secs for openpilot and 3.9 ± 0.05
secs for Autoware. It requires less time than ACERO because
it generates the adversarial commands without robustness
guidance; thus, the “rewinding phase” is not used to find the
attack command with the least robustness, which incurs the
highest time overhead.

7 Limitations and Discussion
Multiple Adversarial Agents. A resourceful adversary
may leverage multiple adversarial vehicles and/or agents
(e.g., pedestrians or cyclists) to attack the Victimcar. Although
we show that even one Attackcar is enough to make the
Victimcar fail its missions, ACERO can be extended to generate
adversarial trajectories for multiple collaborating adversarial
agents. Particularly, we found that some attacks happen only
when certain traffic agents are included in the attack scene.
Future work will expand our analysis to robustness guidance
that runs on multiple agents to form a collaborative attack.
Attacks against Multiple AVs. ACERO can be extended to
identify adversarial trajectories to conduct attacks against
multiple cooperative AVs (e.g., in a platoon) to make one or
more AVs crash. This requires identifying the missions for
cooperative AVs and representing them with LTL to guide
ACERO with robustness metrics. As future work, we will ex-
pand our formalization on such missions and create scenes to
guide the Attackcar to attack multiple AVs simultaneously.
Real-world Experiments. Due to physical safety consider-
ations in real-world AV tests, simulations have become the
de-facto standard for AV testing. Many approaches from the
industry and academia have leveraged state-of-the-art simula-

tors (e.g., CARLA) to identify safety and security violations
in AVs [42,54,55]. This is because such simulators accurately
reflect the real-world traffic and environmental conditions
with complex physical modeling, and enable testing various
driving scenes without physical risk [15, 29, 33]. To ensure
our attacks can be transferred to the real world, we use maps
from the real-world (Fig. 6) and reproduce the attacks with
different weather conditions and operator errors.

To reproduce an attack with a high success rate in the real
world, the attacker can determine in the simulation the time
(e.g., morning, sunset), location (e.g., crossroad, roundabout,
T-intersection), driving software (e.g., Autoware, Openpilot)
and the vehicle model of the victim (e.g., Tesla Model 3,
Toyota Pirus). The attacker can then perform the maneuvers
generated by ACERO within an operator error (Sec. 6.2.2).
Automatic Emergency Braking. All collision cases in Ta-
ble 3 occur while assuming that Victimcar is not equipped with
automatic emergency braking (AEB) since none of the simu-
lators support AEB. AEB detects a possible collision through
radar and camera, and enables braking from higher speeds to
prevent crashes [39]. Therefore, some collision cases in Ta-
ble 3 might not happen in the real world if the Victimcar is
equipped with AEB.

AEB, however, cannot prevent all possible collisions for the
following reasons. (1) AEB test protocol [17] requires auto-
mobile manufacturers to only test forward-collision scenarios,
which means that AEB cannot be assured of preventing near-
side collision cases. (2) AEB frequently fails to detect small
moving agents on roads (e.g., pedestrians or bicyclists) [40].
Although AEB can detect them through cameras, it might
be ineffective at night [16]. (3) Even if Victimcar avoids a
collision with a front vehicle, the sudden braking may cause
a collision with another vehicle in the back.
Ethical Implications and Benefits to Industry. The adver-
sarial maneuvers are unconventional regarding the safety and
security of AVs. That is, we do not discover traditional soft-
ware bugs but expose AV mission violations that may harm
users, other agents, and the environment. We have thus re-
ported our results to openpilot and Autoware developers and
prepared a technical report that summarizes our findings to
notify other AD companies, AV organizations, and policymak-
ers. Particularly, we shared our report with 11 different AD
companies, three AV organizations, and two policymakers1.

AD software developers can use ACERO to find buggy be-
haviors due to the discovered adversarial maneuvers, patch
or harden AV software depending on their root causes. For
example, knowing that an adversary can exploit an ACERO-
discovered bug in the AV’s perception module, developers
could collect additional data for training or use adversarial tra-

1AV Companies: Waymo, Zoox, Ford AV and Mobility, Nuro, May Mo-
bility, Daimler Truck, Motional, Cruies, and Waabi; AV organizations: Na-
tional Association of City Transportation Officials, The Autonomous Vehicle
Computing Consortium and Autonomous Vehicle Industry Association; Poli-
cymakers: NHTSA and SAE-ITC.

Table 5: A comparison of ACERO with other AV systems.

System
Physical

Constraints
Attack

Car

Multiple
Traffic

Conditions

Random
Weather

Trajectory
Replication

Error

Targets
End-to-End

AVs

Input to
Attack

Car
Black-box
Testing [42]

N/A 7 3 3 N/A 3 N/A

Plan-Fuzz [70] N/A 7 3 7 N/A 7 N/A
Zhang et al. [72] 3 3 7 7 7 7 Position*
AV-Fuzzer [30] Partial** 3 7 7 7 3 Instructions†

Salgado et al. [53] 3 3 7 7 7 7 Braking
ACERO 3 3 3 3 3 3 Maneuvers‡

∗ Positions teleport the AV to concrete road positions (e.g., , a coordinate in the map).
∗∗ Not crashing with the victim car is not considered.
† Instructions give the AV a concrete driving instruction (e.g., , changing to the right lane)
‡ Maneuvers give the AV concrete throttle, brake, and steer values (e.g., , press throttle by 30% maximum)

jectories for adversarial training to build more robust models.
As another example, developers could set the configurations
more conservatively (e.g., set a higher default value for the
deceleration_range parameter in Listing 1) since ACERO

shows that an adversary can exploit misconfigured parame-
ters through specific adversarial maneuvers.

8 Related Work

Driving Scene Generation. A line of prior work has gener-
ated driving scenes with different weather conditions, road
types, and positions of other traffic agents to test the AD soft-
ware components. To generate such scenes, they leverage
diverse methods including reinforcement learning [1, 14, 28],
Monte-Carlo sampling [13, 43], deep learning (e.g., autoen-
coders and RNNs) [50, 62], Markov decision processes [10,
20], and evolutionary algorithms [26].

Most previous works have focused on generating a single
traffic scene in a single map for a specific AV functionality,
such as lane changing [1,10,14,28,43,50]. Additionally, these
works mostly use traffic scenes to generate test cases only
for the AD planners [10, 13, 14, 20, 26, 28, 50]. Furthermore,
none of the above works consider the impact of vehicle type
while generating traffic scenes. In contrast, ACERO’s goal is
to generate driving scenes for discovering adversarial maneu-
vers while integrating physical constraints to ensure both low
liability and safety for the adversary. To achieve this goal, we
test ACERO within 14 traffic scenes with various weather con-
ditions in three maps specifically designed for seven missions.
Vulnerability Discovery in AVs. In Table 5, we compare
ACERO with several recent approaches that differ in focus and
scope. These approaches are the most applicable that run with
open-source AD software in a simulation with the goal of
identifying safety and security violations.

A recent effort uses black-box testing to adapt importance
sampling for finding failure cases in AD systems in rare
weather conditions [42]. This approach does not consider
additional vehicles in the traffic; thus, it cannot generate ad-
versarial driving maneuvers. Another approach, PlanFuzz,
finds DoS vulnerabilities in the behavioral planning module
of AVs [70]. Although it integrates surrounding vehicles, it
does not generate adversarial commands for these vehicles
and only inputs fixed trajectories (with planning constraints).

Another line of work targets finding vulnerabilities in ve-
hicle platooning algorithms to degrade the algorithm perfor-
mance and cause collisions [12, 19]. Yet, they only consider
a single mission (car-following) in platoons; therefore, they
cannot generate adversarial maneuvers.

A recent work generates adversarial trajectories to maxi-
mize the prediction error of AVs with a limited set of physical
constraints [72]. However, it only attacks against the trajec-
tory prediction of AVs, whereas ACERO targets discovering
adversarial maneuvers against full-stack AD software. Lastly,
AV-Fuzzer finds maneuvers that cause safety violations for
an AV. Yet, as quantitatively compared in Sec. 6.4.2, it only
assesses traffic conditions that involve vehicle following and
lane changing and does not ensure the vehicle obeys self-
safety constraints and traffic laws, causing Attackcar to crash.

A line of recent work leverages falsification, a formal
analysis technique that uses optimization algorithms to search
for falsifying inputs, to discover safety and security policy
violations in AVs [26, 53, 67, 68]. Some systems integrate
multi-armed bandit and Halton samplers to search for AV
violations with a cost function that considers the distance
to other vehicles, time-to-collision, progress towards the
destination, and lane violation missions [67, 68]. These ap-
proaches do not define physical constraints for the Attackcar;
thus, they usually find violations where Attackcar is involved
in an accident. A recent work generates adversarial vehicle
trajectories to find vulnerabilities in collision avoidance
systems while enforcing physical constraints [53]. This
work formally defines distance and collision metrics for the
Attackcar and Victimcar to maximize the Attackcar’s distance
to prevent its collisions and minimize the Victimcar’s distance
to other vehicles to cause collisions. Then, it searches for
violations through cross-entropy and Bayesian samplers.
This work successfully identifies AV vulnerabilities in AV’s
collision avoidance component; however, it does not consider
end-to-end vehicle missions (Table 1), and its input space is
limited to braking time, duration, and intensity.

In contrast, we define 7 SAE level 2-4 missions for the
end-to-end safe operation of AVs (Table 1) and introduce 7
physical constraints to ensure the Attackcar’s safety and low
liability (Table 2). We further assess each mission with the
throttle, brake, and steering commands using a robustness
metric to discover adversarial maneuvers and evaluate their
reproducibility while enforcing physical constraints.

Attacks against Perception Components. Another line of
work conducts sensor spoofing and jamming attacks against
AVs [5, 6, 32, 35, 36, 63]. There are also attacks that disturb
the classification of AD components related to environment
sensing, such as Camera, GPS and LiDAR [22, 36, 47, 54,
58, 59, 74, 75]. These attacks differ from ACERO in scope as
they exploit vulnerabilities in specific sensing components of
AVs, whereas ACERO aims to discover adversarial maneuvers
against the full pipeline of AD software.

9 Conclusions
We introduce ACERO, a robustness-guided framework for

discovering adversarial driving maneuvers. ACERO has two
key aspects that distinguish it from other methods: (1) apply-
ing physical constraints on the adversarial vehicle to ensure
the adversary’s safety and low liability, and (2) using the ro-
bustness of the victim vehicle as guidance to optimize the
adversarial command generation. We evaluated ACERO on two
popular AD platforms and discovered 341 attack cases against
them, and clustered the attacks into 28 unique trajectories.

Acknowledgments
We thank our shepherd and the anonymous reviewers for

their valuable suggestions. This work has been partially sup-
ported by the National Science Foundation (NSF) under grant
CNS-2144645 and Office of Naval Research (ONR) under
grant N00014-20-1-2128. Any findings, conclusions and rec-
ommendations expressed in this work are those of the authors
and do not necessarily reflect the views of the NSF or ONR.

References
[1] Yasasa Abeysirigoonawardena, Florian Shkurti, and Gregory Dudek.

Generating adversarial driving scenarios in high-fidelity simulators. In
International Conference on Robotics and Automation (ICRA), 2019.

[2] Acero. https://github.com/purseclab/Acero, 2023. [Online;
accessed 8-June-2023].

[3] Apollo. https://apollo.auto/, 2023. [Online; accessed 8-May-
2022].

[4] AuroAi. Carla apollo bridge. https://github.com/AuroAi/carla_a
pollo_bridge, 2022. [Online; accessed 4-May-2023].

[5] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin Fang,
Ruigang Yang, Qi Alfred Chen, Mingyan Liu, and Bo Li. Invisible
for both camera and lidar: Security of multi-sensor fusion based per-
ception in autonomous driving under physical-world attacks. In IEEE
Symposium on Security and Privacy (S&P), 2021.

[6] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park,
Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and Z Morley Mao. Adver-
sarial sensor attack on lidar-based perception in autonomous driving. In
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2019.

[7] Python api reference. https://carla.readthedocs.io/en/latest

/python_api/, 2023. [Online; accessed 28-April-2023].

[8] CARLA maps. https://carla.readthedocs.io/en/latest/cor

e_map/#carla-maps, 2023. [Online; accessed 10-May-2023].

[9] CARLA weather. https://carla.readthedocs.io/en/latest/cor
e_map/#carla-maps, 2021. [Online; accessed 10-March-2023].

[10] Baiming Chen, Xiang Chen, Qiong Wu, and Liang Li. Adversarial
evaluation of autonomous vehicles in lane-change scenarios. IEEE
Transactions on Intelligent Transportation Systems, 2021.

[11] Commaai. commaai/openpilot. https://github.com/commaai/ope

npilot, 2022. [Online; accessed 28-April-2023].

[12] Soodeh Dadras, Ryan M Gerdes, and Rajnikant Sharma. Vehicular
platooning in an adversarial environment. In ACM Symposium on
Information, Computer and Communications Security, 2015.

[13] Wenhao Ding, Baiming Chen, Bo Li, Kim Ji Eun, and Ding Zhao.
Multimodal safety-critical scenarios generation for decision-making
algorithms evaluation. IEEE Robotics and Automation Letters, 2021.

 https://github.com/purseclab/Acero
https://apollo.auto/
https://github.com/AuroAi/carla_apollo_bridge
https://github.com/AuroAi/carla_apollo_bridge
https://carla.readthedocs.io/en/latest/python_api/
https://carla.readthedocs.io/en/latest/python_api/
https://carla.readthedocs.io/en/latest/core_map/#carla-maps
https://carla.readthedocs.io/en/latest/core_map/#carla-maps
https://carla.readthedocs.io/en/latest/core_map/#carla-maps
https://carla.readthedocs.io/en/latest/core_map/#carla-maps
https://github.com/commaai/openpilot
https://github.com/commaai/openpilot

[14] Wenhao Ding, Baiming Chen, Minjun Xu, and Ding Zhao. Learning
to collide: An adaptive safety-critical scenarios generating method. In
International Conference on Intelligent Robots and Systems (IROS),
2020.

[15] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun. CARLA: An Open Urban Driving Simulator. In
Annual Conference on Robot Learning, 2017.

[16] Ellen Edmonds. AAA warns pedestrian detection systems don’t work
when needed most. https://newsroom.aaa.com/2019/10/aaa-war

ns-pedestrian-detection-systems-dont-work-when-needed-mo

st/, 2019. [Online; accessed 28-April-2023].

[17] NCAP Euro. European new car assessment programme (Euro
NCAP)—test protocol—AEB systems. https://cdn.euroncap.c

om/media/26996/euro-ncap-aeb-c2c-test-protocol-v20.pdf,
2017. [Online; accessed 28-April-2023].

[18] Alessio Gambi, Marc Mueller, and Gordon Fraser. Automatically test-
ing self-driving cars with search-based procedural content generation.
In ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019.

[19] Ryan M Gerdes, Chris Winstead, and Kevin Heaslip. CPS: an efficiency-
motivated attack against autonomous vehicular transportation. In An-
nual Computer Security Applications Conference (ACSAC), 2013.

[20] Zahra Ghodsi, Siva Kumar Sastry Hari, Iuri Frosio, Timothy Tsai,
Alejandro Troccoli, Stephen W Keckler, Siddharth Garg, and Anima
Anandkumar. Generating and characterizing scenarios for safety test-
ing of autonomous vehicles. In IEEE Intelligent Vehicles Symposium,
2021.

[21] Iowa Goverment. How do i drive in a roundabout. https://tinyurl.
com/3ubtwy48. [Online; accessed 10-March-2023].

[22] Pengfei Jing, Qiyi Tang, Yuefeng Du, Lei Xue, Xiapu Luo, Ting Wang,
Sen Nie, and Shi Wu. Too good to be safe: Tricking lane detection in
autonomous driving with crafted perturbations. In USENIX Security
Symposium, 2021.

[23] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Man-
ato Hirabayashi, Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando,
Yusuke Fujii, and Takuya Azumi. Autoware on board: Enabling au-
tonomous vehicles with embedded systems. In ACM/IEEE Interna-
tional Conference on Cyber-Physical Systems (ICCPS), 2018.

[24] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika
Deka. Real-time motion planning methods for autonomous on-road
driving: State-of-the-art and future research directions. Transportation
Research, 2015.

[25] Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi, Z. Berkay
Celik, and Dongyan Xu. PGFUZZ: Policy-Guided Fuzzing for Robotic
Vehicles. In Network and Distributed System Security Symposium
(NDSS), 2021.

[26] Moritz Klischat and Matthias Althoff. Falsifying motion plans of
autonomous vehicles with abstractly specified traffic scenarios. IEEE
Transactions on Intelligent Vehicles, 2022.

[27] Yongbon Koo, Jinwoo Kim, and Wooyong Han. A method for driving
control authority transition for cooperative autonomous vehicle. In
IEEE Intelligent Vehicles Symposium, 2015.

[28] Mark Koren and Mykel J Kochenderfer. Efficient autonomy valida-
tion in simulation with adaptive stress testing. In IEEE Intelligent
Transportation Systems Conference, 2019.

[29] Instructions - LGSVL Simulator. https://www.svlsimulator.com

/docs/archive/2020.06/apollo-master-instructions/, 2023.
[Online; accessed 05-March-2023].

[30] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan,
Siva Kumar Sastry Hari, Zbigniew Kalbarczyk, and Ravishankar Iyer.
AV-Fuzzer: Finding safety violations in autonomous driving systems.
In IEEE International Symposium on Software Reliability Engineering
(ISSRE), 2020.

[31] Hechen Liu and Markus Schneider. Similarity measurement of moving
object trajectories. In ACM SIGSPATIAL International Workshop on
GeoStreaming, 2012.

[32] Yanmao Man, Raymond Muller, Ming Li, Z. Berkay Celik, and Ryan
Gerdes. That person moves like a car: Misclassification attack detection
for autonomous systems using spatiotemporal consistency. In USENIX
Security Symposium, 2023.

[33] Nvidia drive end-to-end platform for software-defined avs. https:

//www.nvidia.com/en-us/self-driving-cars/, 2022.

[34] Waymo’s official website. https://waymo.com/, 2022. [Online;
accessed 8-March-2022].

[35] Raymond Muller, Yanmao Man, Z. Berkay Celik, Ming Li, and Ryan
Gerdes. Physical hijacking attacks against object trackers. In ACM
SIGSAC Conference on Computer and Communications Security, 2022.

[36] Ben Nassi, Yisroel Mirsky, Dudi Nassi, Raz Ben-Netanel, Oleg Drokin,
and Yuval Elovici. Phantom of the adas: Securing advanced driver-
assistance systems from split-second phantom attacks. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2020.

[37] NHTSA. Critical reasons for crashes investigated in the national motor
vehicle crash causation survey. https://crashstats.nhtsa.dot

.gov/Api/Public/Publication/812115, 2018. [Online; accessed
23-May-2023].

[38] National highway traffic safety administration. https://www.nhtsa.
gov/technology-innovation/automated-vehicles-safety, 2020.

[39] NHTSA. Nhtsa proposes automatic emergency braking requirements
for new vehicles. https://www.nhtsa.gov/press-releases/autom
atic-emergency-braking-proposed-rule, 2023. [Online; accessed
12-June-2023].

[40] Nissan’s faulty automatic emergency braking and radar system. https:
//lemonlawexperts.com/nissan-faulty-braking-system/, 2021.
[Online; accessed 28-April-2023].

[41] Samyeul Noh and Woo-Yong Han. Collision avoidance in on-road
environment for autonomous driving. In International Conference on
Control, Automation and Systems (ICCAS), 2014.

[42] Justin Norden, Matthew O’Kelly, and Aman Sinha. Efficient black-
box assessment of autonomous vehicle safety. arXiv preprint
arXiv:1912.03618, 2019.

[43] Matthew O’Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake,
and John C Duchi. Scalable end-to-end autonomous vehicle testing
via rare-event simulation. Advances in neural information processing
systems, 2018.

[44] National Committee on Uniform Traffic Laws. Traffic Laws Annotated.
National Committee on Uniform Traffic Laws and Ordinances, 1972.

[45] Muslum Ozgur Ozmen, Xuansong Li, Andrew Chu, Z. Berkay Celik,
Bardh Hoxha, and Xiangyu Zhang. Discovering IoT physical chan-
nel vulnerabilities. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2022.

[46] Muslum Ozgur Ozmen, Ruoyu Song, Habiba Farrukh, and Z. Berkay
Celik. Evasion attacks and defenses on smart home physical event
verification. In Network and Distributed System Security (NDSS), 2023.

[47] Jonathan Petit, Bas Stottelaar, Michael Feiri, and Frank Kargl. Remote
attacks on automated vehicles sensors: Experiments on camera and
lidar. Black Hat Europe, 2015.

[48] Amir Pnueli. The temporal logic of programs. In Annual Symposium
on Foundations of Computer Science, 1977.

[49] Aggressive driver runs Tesla autopilot off road. https://www.yout

ube.com/watch?v=ayf4somEq8U&ab_channel=TheTechofTech, 2020.
[Online; accessed 23-May-2023].

[50] Davis Rempe, Jonah Philion, Leonidas J Guibas, Sanja Fidler, and
Or Litany. Generating useful accident-prone driving scenarios via a
learned traffic prior. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

https://newsroom.aaa.com/2019/10/aaa-warns-pedestrian-detection-systems-dont-work-when-needed-most/
https://newsroom.aaa.com/2019/10/aaa-warns-pedestrian-detection-systems-dont-work-when-needed-most/
https://newsroom.aaa.com/2019/10/aaa-warns-pedestrian-detection-systems-dont-work-when-needed-most/
https://cdn.euroncap.com/media/26996/euro-ncap-aeb-c2c-test-protocol-v20.pdf
https://cdn.euroncap.com/media/26996/euro-ncap-aeb-c2c-test-protocol-v20.pdf
https://tinyurl.com/3ubtwy48
https://tinyurl.com/3ubtwy48
https://www.svlsimulator.com/docs/archive/2020.06/apollo-master-instructions/
https://www.svlsimulator.com/docs/archive/2020.06/apollo-master-instructions/
https://www.nvidia.com/en-us/self-driving-cars/
https://www.nvidia.com/en-us/self-driving-cars/
https://waymo.com/
https://crashstats.nhtsa.dot.gov/Api/Public/Publication/812115
https://crashstats.nhtsa.dot.gov/Api/Public/Publication/812115
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/press-releases/automatic-emergency-braking-proposed-rule
https://www.nhtsa.gov/press-releases/automatic-emergency-braking-proposed-rule
https://lemonlawexperts.com/nissan-faulty-braking-system/
https://lemonlawexperts.com/nissan-faulty-braking-system/
https://www.youtube.com/watch?v=ayf4somEq8U&ab_channel=TheTechofTech
https://www.youtube.com/watch?v=ayf4somEq8U&ab_channel=TheTechofTech

[51] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve
Lemke, Mārtin, š Možeiko, Eric Boise, Geehoon Uhm, Mark Gerow,
Shalin Mehta, et al. Lgsvl simulator: A high fidelity simulator for
autonomous driving. In IEEE International Conference on Intelligent
Transportation Systems, 2020.

[52] SAE International. Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles. https://ww
w.sae.org/standards/content/j3016_202104/, 2021. [Online;
accessed 23-March-2023].

[53] Ivan F Salgado, Nicanor Quijano, Daniel J Fremont, and Alvaro A
Cardenas. Fuzzing malicious driving behavior to find vulnerabilities in
collision avoidance systems. In IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), 2022.

[54] Takami Sato, Junjie Shen, Ningfei Wang, Yunhan Jia, Xue Lin, and
Qi Alfred Chen. Dirty Road Can Attack: Security of Deep Learning
based Automated Lane Centering under Physical-World Attack. In
USENIX Security Symposium, 2021.

[55] John M Scanlon, Kristofer D Kusano, Tom Daniel, Christopher Alder-
son, Alexander Ogle, and Trent Victor. Waymo simulated driving
behavior in reconstructed fatal crashes within an autonomous vehicle
operating domain. Accident Analysis & Prevention, 2021.

[56] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and
decision-making for autonomous vehicles. Annual Review of Control,
Robotics, and Autonomous Systems, 2018.

[57] Chengyao Shen. Decoding comma.ai/openpilot: the driving model.
https://medium.com/@chengyao.shen/decoding-comma-ai-openp

ilot-the-driving-model-a1ad3b4a3612, 2019. [Online; accessed
23-March-2023].

[58] Junjie Shen, Jun Yeon Won, Zeyuan Chen, and Qi Alfred Chen. Drift
with Devil: Security of multi-sensor fusion based localization in high-
level autonomous driving under GPS spoofing. In USENIX Security
Symposium, 2020.

[59] Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li,
Amir Rahmati, Florian Tramer, Atul Prakash, and Tadayoshi Kohno.
Physical adversarial examples for object detectors. In USENIX Work-
shop on Offensive Technologies (WOOT), 2018.

[60] Yun Tang, Yuan Zhou, Fenghua Wu, Yang Liu, Jun Sun, Wuling Huang,
and Gang Wang. Route coverage testing for autonomous vehicles via
map modeling. In International Conference on Robotics and Automa-
tion (ICRA), 2021.

[61] Yun Tang, Yuan Zhou, Tianwei Zhang, Fenghua Wu, Yang Liu, and
Gang Wang. Systematic testing of autonomous driving systems using
map topology-based scenario classification. In IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), 2021.

[62] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest:
Automated testing of deep-neural-network-driven autonomous cars. In
International Conference on Software Engineering (ICSE), 2018.

[63] Yazhou Tu, Zhiqiang Lin, Insup Lee, and Xiali Hei. Injected and deliv-
ered: Fabricating implicit control over actuation systems by spoofing
inertial sensors. In USENIX Security Symposium, 2018.

[64] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James
Kapinski. Simulation-based adversarial test generation for autonomous
vehicles with machine learning components. In IEEE Intelligent Vehi-
cles Symposium, 2018.

[65] Cumhur Erkan Tuncali, Theodore P Pavlic, and Georgios Fainekos.
Utilizing s-taliro as an automatic test generation framework for au-
tonomous vehicles. In IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2016.

[66] Marcell Vazquez-Chanlatte. mvcisback/py-metric-temporal-logic:
v0.1.1. https://github.com/mvcisback/py-metric-temporal-

logic, 2019. [Online; accessed 28-April-2023].

[67] Kesav Viswanadha, Francis Indaheng, Justin Wong, Edward Kim, Ellen
Kalvan, Yash Pant, Daniel J Fremont, and Sanjit A Seshia. Addressing
the ieee av test challenge with scenic and verifai. In IEEE International
Conference on Artificial Intelligence Testing, 2021.

[68] Kesav Viswanadha, Edward Kim, Francis Indaheng, Daniel J Fremont,
and Sanjit A Seshia. Parallel and multi-objective falsification with
scenic and verifai. In Runtime Verification, 2021.

[69] Katja Vogel. A comparison of headway and time to collision as safety
indicators. Accident analysis & prevention, 2003.

[70] Ziwen Wan, Junjie Shen, Jalen Chuang, Xin Xia, Joshua Garcia, Jiaqi
Ma, and Qi Alfred Chen. Too Afraid to Drive: Systematic Discovery
of Semantic DoS Vulnerability in Autonomous Driving Planning under
Physical-World Attacks. In Network and Distributed System Security
(NDSS), 2022.

[71] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A
survey. ACM computing surveys (CSUR), 2006.

[72] Qingzhao Zhang, Shengtuo Hu, Jiachen Sun, Qi Alfred Chen, and
Z Morley Mao. On adversarial robustness of trajectory prediction for
autonomous vehicles. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022.

[73] Xiangmo Zhao, Pengpeng Sun, Zhigang Xu, Haigen Min, and Hongkai
Yu. Fusion of 3d lidar and camera data for object detection in au-
tonomous vehicle applications. IEEE Sensors Journal, 2020.

[74] Yue Zhao, Hong Zhu, Ruigang Liang, Qintao Shen, Shengzhi Zhang,
and Kai Chen. Seeing isn’t believing: Towards more robust adversarial
attack against real world object detectors. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2019.

[75] Husheng Zhou, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang,
Bei Yu, Lingming Zhang, and Cong Liu. Deepbillboard: Systematic
physical-world testing of autonomous driving systems. In IEEE/ACM
International Conference on Software Engineering (ICSE), 2020.

A Weather Settings
For the weather conditions we use for the exp- b in Ta-

ble 3, we leverage four weather parameters to sample the
weather from the previous work [42]: Sun altitude angle
(S), Cloudiness (C), Precipitation on the ground (Pg) and
Precipitation in the air (Pa). For sun angle altitude, we use
A∼ 90Uniform(0,1); for precipitation on the ground, we use
Pg ∼ 50Uniform(0,1);

for cloudiness, we use a mixture distribution:
C∼ 30Cb1{Cu < 0.5}+(40Cb+60)1{Cu ≥ 0.5} where
Cb ∼ Beta(2,2) and Cu ∼ Uniform(0,1); The value of Pa is
determined by the cloudiness: Pa = C1{C ≥ 70}. All units
are CARLA units.

For the weather conditions we use for evaluating the attack
reproducibility in Sec. 4.5.2, we use 14 preset weather con-
ditions from CARLA: ClearNoon, CloudyNoon, WetNoon,
WetCloudyNoon, MidRainyNoon, HardRainNoon, SoftRain-
Noon, ClearSunset, CloudySunset, WetSunset, WetCloudy-
Sunset, MidRainSunset, HardRainSunset, SoftRainSunset [9].

B Sample Attack Guide
Listing 2 presents an example of a shortened attack guide,

including the mission ID, the initial speed of vehicles, a de-
tailed adversarial trajectory, an instance of weather conditions
the mission is violated, and the consequence of the attack.

https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/
https://medium.com/@chengyao.shen/decoding-comma-ai-openpilot-the-driving-model-a1ad3b4a3612
https://medium.com/@chengyao.shen/decoding-comma-ai-openpilot-the-driving-model-a1ad3b4a3612
https://github.com/mvcisback/py-metric-temporal-logic
https://github.com/mvcisback/py-metric-temporal-logic

Listing 2 An example of ACERO’s attack guide.
1 {Attack Guide : {
2 Mission ID : C3 ,
3 With T r a f f i c : True ,
4 Attack Scene : City Roadway ,
5 I n i t i a l Speed :
6 [Victim Vehicle : 25−30 km/ h ,
7 Adversa r ia l Vehicle : 25−30 km/ h] ,
8 Example Weather Condi t ions :
9 [Sun Al t i t u de Angle : 0 . 4 .

10 Cloudiness : 0 ,
11 P r e c i p i t a t i o n in the a i r : 0 ,
12 P r e c i p i t a t i o n on the ground : 23] ,
13 Adversa r ia l t r a j e c t o r y (r e l a t i v e to the t a r g e t veh ic l e

p o s i t i o n s) : [
14 [Vector3D (x=−12 . 151794 , y=−7 . 381805)] ,
15 [Vector3D (x=−8 . 3 , y=−5 . 39)] ,
16 [Vector3D (x=3 , y=−5)]] ,
17 Adversa r ia l Command Set : [
18 [Vehicle Command (t h r o t t l e =0 . 5 , s t e e r =0 . 3 , brake=0)] ,
19 [Vehicle Command (t h r o t t l e =0 . 2 , s t e e r =0 . 1 , brake=0)] ,
20 [Vehicle Command (t h r o t t l e =0 . 0 , s t e e r =0 . 3 , brake=0 . 2)] ,] ,
21 Phys ica l Attack Consequence : C o l l i s i o n with
22 another t r a f f i c agent ,
23 Victim Vehicle speed a t acc iden t : 37 km/ h}
24 }

C Implementation Details

Openpilot. Openpilot [11] is an open-source SAE Level 2
DA system, including adaptive cruise control, automatic lane
centering, forward collision, and lane departure warnings. We
test its missions using openpilot 0.8.6, which is officially inte-
grated into CARLA 0.9.11. Openpilot uses a DL-based vision
system that takes camera images and feeds the video sequence
into the vision model and uses a convolutional neural network
(CNN) model with a recurrent neural network (RNN) model
for temporal reasoning [57]. Openpilot then taps into a vehi-
cle’s CAN bus, and links a car’s modules together for control
decisions, i.e., steering angle and braking pressure. In our
experiments, we use openpilot with the camera to perform
its intended missions (as supported in CARLA). However,
we note that it may additionally integrate non-camera sensors
such as radar when it is deployed to real vehicles.

Autoware. Autoware [23] is an open-source SAE Level 4 soft-
ware, aiming to provide fully autonomous driving for users.
We use Autoware 1.14.0 Docker version officially integrated
into CARLA 0.9.10. Autoware uses the LiDAR data for 3D
reasoning and camera data to recognize traffic lights and ex-
tract additional features. 3D objects are extracted from the
point cloud through the Normal Distributions Transform lo-
calization algorithm. This data is augmented by Radar, GNSS,
and IMU sensors. In our experiments, we use all of these
sensors as supported in CARLA in the same way that they are
deployed in real vehicles. CNN models are used to perform
object detection on 2D images, and the Kalman Filter is for
predicting object movements. Given a goal, the positions of
the objects, and their trajectories, Autoware then uses a finite
state machine (FSM) to determine the best routing path.

Porting ACERO to other AD Systems. While attempting to
integrate Apollo into ACERO, we encountered two main chal-
lenges. First, Apollo is officially integrated into the LGSVL

Victim
Vehicle

Adversarial
Vehicle

Traffic
Agent

Pedestrian Cyclist
Static

Obstacles

Figure 12: Illustration of two examples of traffic condition
setup used in evaluating missions. 1 No traffic and preset
weather conditions. 2 With traffic agents and weather condi-
tions sampled from parameter distributions.

simulator, which does not support issuing real-time control
commands, which ACERO requires. Second, the unofficial
bridge [4] allowing Apollo to run in the CARLA simulator
does not properly simulate physics and control inputs. Instead,
it teleports the Victimcar to set waypoints, which makes it an
invalid representation of Apollo’s actual performance. To be
integrated into ACERO, Apollo’s CARLA integration should
provide a stable control module that accounts for physics
and control inputs. Alternatively, the LGSVL implementation
should be updated to support sending run-time commands.

In general, porting ACERO to other AD systems requires the
following steps: (1) implementing robustness metrics based
on the simulator API. (2) implementing the rewinding method
based on the structure of the AD system. We believe these
tasks are not a burden for developers familiar with AD sys-
tems. For instance, when we ported ACERO from openpilot to
Autoware, it took about 20 hours of the two authors’ manual
effort. This includes the time of adding new attack scenes and
implementing rewinding techniques.

D Example Traffic Conditions
In Fig. 12, we illustrate two example traffic conditions

on the intersection map, which contains the Attackcar and
Victimcar 1 , and other traffic agents, including a road sign,
pedestrian, vehicle, and cyclist 2 .

	Introduction
	Background
	Motivation and Threat Model
	Acero System
	Identification of Target Driving Missions
	Mission Metrics and Definitions
	Formal Representation of Missions

	Attack Scene Initialization
	Adversarial Commands
	Physical Constraints on Adversarial Commands
	Enforcing Physical Constraints

	Adversarial Trajectory Generation
	Attack Robustness Computation
	Adversarial Command Generation
	Attack Guidance Vector Generation
	Rewinding the Scene

	Attack Guide and Clustering
	Attack Clustering
	Determining Attack Reproducibility

	Implementation
	Evaluation
	Experiment Setup
	Effectiveness
	Impact of Weather on Attack Reproducibility
	Attack Reproducibility with Operator Error

	Root Cause Analysis
	Case Studies

	Baseline Comparisons
	Acero without Robustness-Guidance
	Acero vs. AV-Fuzzer

	Execution Time Analysis

	Limitations and Discussion
	Related Work
	Conclusions
	Weather Settings
	Sample Attack Guide
	Implementation Details
	Example Traffic Conditions

