That Person Moves Like A Car: Misclassification Attack Detection for Autonomous
Systems Using Spatiotemporal Consistency

Yanmao Man!, Raymond Muller?, Ming Li!, Z. Berkay Celik?, and Ryan Gerdes>

1University of Arizona, {yman, lim}@arizona.edu
2Purdue University, {mullerr, zcelik}@purdue.edu
3Virginia Tech, rgerdes @vt.edu

Abstract

Autonomous systems commonly rely on object detection
and tracking (ODT) to perceive the environment and predict
the trajectory of surrounding objects for planning purposes.
An ODT’s output contains object classes and tracks that are
traditionally predicted independently. Recent studies have
shown that ODT’s output can be falsified by various percep-
tion attacks with well-crafted noise, but existing defenses
are limited to specific noise injection methods and thus fail
to generalize. In this work we propose PercepGuard for the
detection of misclassification attacks against perception mod-
ules regardless of attack methodologies. PercepGuard exploits
the spatiotemporal properties of a detected object (inherent
in the tracks), and cross-checks the consistency between the
track and class predictions. To improve adversarial robust-
ness against defense-aware (adaptive) attacks, we additionally
consider context data (such as ego-vehicle velocity) for con-
textual consistency verification, which dramatically increases
the attack difficulty. Evaluations with both real-world and
simulated datasets produce a FPR of 5% and a TPR of 99%
against adaptive attacks. A baseline comparison confirms the
advantage of leveraging temporal features. Real-world exper-
iments with displayed and projected adversarial patches show
that PercepGuard detects 96% of the attacks on average.

1 Introduction

Object detection and tracking (ODT) is an essential com-
ponent in the perception module of an autonomous system,
such as self-driving cars [1-3], robots [4], drones [5], etc.,
as they need to perceive the environment and understand the
dynamics of surrounding objects (what/where they are and
where they are going) so that actions can be taken accord-
ingly. In Baidu Apollo [1], for example, cameras are used to
capture video frames that are fed to machine learning (ML)
algorithms for ODT, the results of which are then used for
decision-making, e.g. to stop the car for a pedestrian who is,
or is about to, cross the street.

Recent work has explored attacks against perception ap-
proaches/pipelines by physically modifying objects [6-9]

Figure 1: Typically, a person moves slower than a car. Also,
their bounding boxes are more vertically thin than a car’s.

or by manipulating the sensing mechanisms (e.g., noise pro-
duced by (in)visible light [10—12], acoustic signals [13], radio-
frequency electromagnetic waves [14, 15], etc.) such that the
subsequent ML algorithms using the output of the sensor pro-
duces results that are intended by the attacker. The attack goal
of these perception attacks against object detection algorithms
can be generally categorized into three types: object disappear-
ance [7], object creation [9], and misclassification of detected
objects [6]. As a consequence of a particular false perception
result, inappropriate decisions/actions may be taken by the
planning module of an autonomous system that could impact
safety; e.g., a car stops on a highway because it recognizes
the car in front of it as a person [16].

Among these aforementioned attacks, this work is focused
on misclassification attacks against the vision-based object
detectors and trackers of autonomous systems. In particular,
we consider an attacker who has white-box knowledge of
the system, and aims to change the classification result of
the target object by inducing physically-realizable adversarial
noise to video frames. E.g., an attacker may place an LCD
monitor on the back of a car and display the noise so that the
following car recognizes it (the predecessor) as a person [17].

Most existing defenses against these attacks are either spe-
cific to the sensing modality (e.g., LIDAR [11], GPS [18],
IMU [19]) or, for those that do consider vision, often assume
threat models that are specific to one particular attack method-
ology, e.g., norm-bounded attacks [20] or adversarial patch

attacks [21]. The root cause of such specificity is that these de-
fenses focus on the sensing input to the ML models, therefore
once a new type of attack appears, a new defense is required.

Instead of focusing on the input, in this work we aim to
develop a more general defense approach by validating the
output of the ODT algorithms in order to detect misclassifica-
tion attacks. For each detected object the ODT system outputs
predictions for both the class and trajectory (represented by a
track in the form of a sequence of bounding boxes over time).
Our main idea is to verify the spatiotemporal components of
the track by cross-checking with the class prediction; i.e., the
perceived spatial and temporal attributes of different object
types are unique. For example, for an object to be classified
as a person, it has to not only look like a person but also move
like a person. In other words, there is an inherent connection
between classes and tracks but existing ODT systems pre-
dict them separately. Our approach, on the other hand, fuses
both together in order to verify the consistency between them;
when the consistency is lacking, an attack is indicated.

As a motivating example, we consider a self-driving car
that uses a vision-based perception system (Fig. 1). When
considering a single frame, we note the shape and location
(spatial property) of an object class can be fingerprinted. For
instance, the bounding box of a person is usually more verti-
cally thin than of a car, and when the ego-vehicle is driving
the box typically appears on the edges of the frame (on the
sidewalks) rather than at the center. Furthermore, when con-
sidering multiple frames over time, the temporal property of
bounding box dynamics is distinctive among different ob-
ject classes. For example, a car driving across an intersection
typically moves faster than a pedestrian does.

Although such empirical knowledge seems intuitive to hu-
mans, in order to build an effective defense, several key chal-
lenges/research questions need to be resolved. First, we must
determine which spatiotemporal attributes/features of an ob-
ject are statistically-sufficient to distinguish between object
classes. Second, we need to effectively and efficiently learn
the spatiotemporal properties of these features in order to pro-
duce low false positive and negative rates for attack detection.
Lastly, the defense needs to be evaluated against practically
realizable attacks, under real-world scenarios, assuming a
strong threat model with adaptive attacks.

We propose PercepGuard to detect perception-based mis-
classification attacks. In PercepGuard a recurrent neural net-
work (RNN) is used as a sequence classifier to classify a
track into an object class. During training the RNN learns the
spatiotemporal property of bounding box sequences for each
object class. Our detection criterion is that, if the classifica-
tion result of PercepGuard does not match that of the ODT
system, an alarm will be raised (Fig. 2). Our evaluation with
BDDI100K [22], a real-world driving dataset, shows a maxi-
mum false positive rate (FPR) of only 5%, and true positive
rates (TPR) as high as 99% on adversarial patch attacks [23],
a prevalent attack where the patches are generated by solv-

ing an optimization problem and can be realized via printed
stickers [6], TV monitors [17], or projectors [9].

However, for adaptive attackers who also aim to evade
PercepGuard, our TPR drops to 85.6% as it is possible to
construct patches that accomplish not only misclassification
but also detection evasion. For example, to alter a car into
a person, an attacker would need to additionally change the
bounding boxes from horizontal to vertical for the RNN to
classify them as a person. To improve the adversarial robust-
ness, we consider contextual information such as the perceiv-
ing (ego) vehicle’s velocity, its relative velocity with objects,
etc., which are generally available from on-board sensors,
such as speed sensors and LiDARs.

Specifically, we augment the feature space of the RNN so
that it learns the relation among these features during training.
As a result, for the example above, the RNN still classifies
those altered bounding boxes as a car even though they are
vertical, because a person would not move as fast as the ego
vehicle (i.e., with a low relative velocity) when the latter
moves at a high velocity. Evaluation using a Carla-simulated
dataset [24] shows that with only these two contexts, the TPR
increases to 99% from 85.6%. A baseline comparison with
NIC [25] and SCEME [26] shows that PercepGuard does
carry additional value for considering the consistency in the
temporal domain. In real-world experiments, we successfully
demonstrate adversarial patch attacks (using an LCD monitor
or a projector on a moving vehicle), but fortunately Percep-
Guard is able to detect 43 out of 45 attack instances, including
adaptive attacks. Our contributions are:

* We propose PercepGuard to detect misclassification attacks
against vision-based object detection and tracking (ODT)
systems. PercepGuard is agnostic to attack methodology
because it relies on ODT output (e.g., object classes and
tracks) instead of the input (image pixels).

* An RNN is used to classify the spatiotemporal fingerprint,
inherent in a detected object’s track, into an object class.
We compare the result with ODT’s classification result for
attack detection. To improve the adversarial robustness, we
adopt contextual information as additional features.

* We evaluate PercepGuard using a real-world dataset and
a simulation dataset. It produces FPRs as low as 5% and
TPRs as high as 99% against adaptive attackers. Real-world
experiments where adversarial patches are realized using a
TV and a projector yield a TPR of 96% on average.

* PercepGuard outperforms two baselines, NIC [25] and
SCEME [26], in terms of the TP and FP trade-off. We
demonstrate its extensibility by incorporating SCEME’s
context features. Sensitivity analysis also shows our RNN
is not vulnerable to small, direct perturbation to its input.

Optional |

Contexts |
ODT System '

Figure 2: High level idea of PercepGuard

2 Background and Related Work

In this section, we introduce the background of object detec-
tion and tracking systems and their vulnerabilities.

2.1 Object Detection and Object Tracking

To perceive the environment, an autonomous system needs
to locate the surrounding objects, classify them, and finally
track their trajectories. Modern object detection is typically
achieved via a two-stage NN (e.g., Faster-RCNN [27]) that is
comprised of a region proposal network (RPN) and a detection
network, or one-stage (e.g., YOLOV3 [28]) that achieves both
at the same time. For object tracking, two-stage algorithms
rely on an object detector for bounding box predictions of
each frame, then they associate identical objects across frames
based on their momentum [29], while a one-stage algorithm
utilizes one single NN [30] to achieve both tasks. Both types
of methods eventually output a track for each object’s trajec-
tory, i.e., a sequence of bounding boxes. PercepGuard aims
to analyze the track (optionally with contexts) to verify the
object’s class prediction (Fig. 2) that may have been tampered
by an adversary. As a proof-of-concept, we evaluate Percep-
Guard using vision-based, two-stage tracking systems as they
are the most common and developed systems [1,31,32].

2.2 Perception Attacks

Although the state-of-the-art object detection and tracking
algorithms have shown promising results in non-adversarial
scenarios, they are however vulnerable to various perception
attacks. There are object creation [10, 13,33], removal [7, 8,
12,13,33], and tracker hijacking attacks [32, 34], but in this
paper we focus on misclassification attacks that are equally
severe, where the attacker alters the video frames so that the
victim object is classified as an attacker-specified class.

The alteration may occur in either of the three domains: (1)
Physical domain, where an attacker can place a sticker on a
stop sign which will then be misclassified as a yield sign [35],
or mount a TV on the back of the preceding vehicle so that
it is recognized as a person [17], or simply project a person
on the ground or wall [9], etc. (2) Perception domain, for
example, against camera-based vision, an attacker may shine
light into the camera to create adversarial ghosts [10,36], use

acoustic waves to disrupt the stabilizer of the camera [13], or
exploit the rolling shutter effect [12], etc. (3) Digital domain,
which is the strongest threat as the attacker has access to the
sensing output (e.g., image) and can arbitrarily modify an
image/video at the pixel level. Traditional digital domain ad-
versarial examples [37] assume that the attacker induced noise
is norm-bounded, to avoid being detected by human users.
However, in the context of autonomous system applications,
this constraint is no longer relevant since the images/videos
are not examined by human users. We do not consider digi-
tal domain attacks in this paper, because if the attacker can
gain direct access to the sensing output, they can also have
the ability to directly modify, for instance, the outcome of
perception module/decisions, and detecting such attacks falls
into the goal of intrusion detection systems [38].

2.3 Existing Defenses

Traditional defenses against adversarial examples (e.g., [39])
are not applicable to perception attacks as they have a general
assumption of norm-bounded perturbation which cannot apply
to physical/perceptional attacks where typically the noise are
not bounded by a small norm, otherwise they would be nearly
impossible to realize. Defenses that do not have such an as-
sumption limit themselves to a particular attack methodology,
e.g., adversarial patch attacks [21,40] or physically-realizable
attacks [41]. Because PercepGuard verifies only the output
of ODT systems (Fig. 2), it is agnostic to different attack
methodologies and object detection algorithms.

Here, we focus more on consistency-based defenses for
vision systems; they can be categorized into two types: sensor
fusion-based and single sensor-based. Consistency checks can
be done across multiple sensors, be they heterogeneous [19]
or homogeneous [42]. For example, model-based methods
such as Savior [19] verify physical invariants across multiple,
heterogeneous sensors which requires sophisticated physical
models, while we take a data-driven approach that is eas-
ier to deal with uncertainty and consider additional contexts.
Zhang et al. [42] propose to fuse different views from multi-
ple cameras to detect DoS attacks on cameras [43] but they
are vulnerable to non-DoS camera attacks [10,36].

On the other hand, one can use a single sensor’s output, but
with empirical/semantic knowledge that verifies the integrity
of the sensory data. For example, AdvIT [20] detects adver-
sarial noise from videos based on optical flow consistency,
however it is limited to norm-bounded perturbation, thus vul-
nerable to universal adversarial patches [23] which are able
to maintain the flow consistency across multiple frames. Co-
existence consistency among multiple objects can also be
utilized (e.g., traffic signs more likely co-exist with cars than
a sink), thus incoherent objects can be detected [26,44], al-
though these methods do require multi-object scenes and may
be subject to the richness of context and adaptive attacks [45].

For a single object, recently Gurel et al. proposed a
knowledge-enhanced ML pipeline that verifies the consis-

tency of a static object’s (e.g., a traffic sign) attributes, such
as color, text, and shape [46], while Wang et al. applied a
similar idea to person re-identification [47]. However, their
methodology is inapplicable to modeling the spatiotempo-
ral consistency of moving objects, because the semantic at-
tributes of static objects are discrete and finite, which can be
fully specified by domain experts. However, spatiotemporal
features are much more complex as they are continuous and
high-dimensional, and involve more uncertainty. For example,
having an octagon shape is a necessary condition for a STOP
sign [46], but the movement of a vehicle cannot be described
in such a deterministic manner.

Moving target defenses were proposed against traditional
adversarial examples [37] where slightly different ML mod-
els are randomly selected from a model pool for deployment
which makes the attack optimization problems more diffi-
cult to solve [48], however these methods do assume norm-
bounded noise. Occluding relations among objects can be
used to detect LiDAR attacks [11,49], but such approaches
are only applicable to LiDAR-based systems.

The idea of using temporal consistency and multimodal
classifiers has been applied to other domains, such as
biometrics-based user authentication/identification [50-54]
and human activity/emotion recognition [55]. For example,
to authenticate users, one can learn the time-series data from
multimodal sensors available on a mobile phone, including
the pressure sensor when they are entering their PIN [53],
or the accelerometer and the gyroscope [51] whose data can
also be classified using an RNN model [50]. Wearables such
as smartwatches equipped with similar sensors can also help
authenticate users [56], e.g., by their keystroke dynamics [52].
Driver stress detection can be performed by fusing eye move-
ment, ego-vehicle dynamics, and the environmental context
by utilizing the CNN-LSTM models [55]. Blood flow from
retina scanning can be used for liveness detection [54]. How-
ever, it is infeasible to directly apply these methods, since our
goal is to detect misclassification attacks in autonomous sys-
tem’s perception considering adaptive attacks, which involves
unique technical challenges in the system design.

3 System and Threat Model
3.1 System Model

‘We consider an object detection and tracking system (Fig. 3)
for autonomous vehicle applications, that are equipped with
vision-based perception modules. The vision input is mainly
provided by images/videos captured by an on-board camera
as the main sensor. We assume that the on-vehicle camera
is placed at a fixed location (e.g., dashboard) with a fixed
orientation as is typical for existing systems [2,3,31]. The
images are fed to a NN for object detection [28]. The object
detection result of each frame will be integrated for object
tracking. Other optional sensors may also be included to
provide auxiliary input, such as lidar/radar, and vehicle speed

sensors (VSS). Their corresponding sensory data processing
algorithms can also be part of the system. The planning and
actuating modules are out of the scope of this work, as are
sensor fusion algorithms [18, 19].

3.2 Threat Model

We consider perception attacks where the adversary’s objec-
tive is to alter an existing object’s classification result into a
target class, thus jeopardizing the behavior of the autonomous
vehicle (e.g., forcing it to stop on a highway because it recog-
nizes the front car as a person). We assume the attacker is able
to cause misclassification for multiple frames consecutively
in order to affect the decision-making of the autonomous
system [32]. The attacks can be realized via physical modi-
fications to the objects [9, 17] e.g., adversarial patches [23]
which we will use for demonstration, or tampering sensors
themselves [10, 13]. Therefore, the attacker must consider the
physical constraints such as the limited patch size, location,
and magnitude to make it realizable in the real world. Instead
of bounding the noise norm, they minimize the patch magni-
tude to reduce attack cost. We do not consider digital domain
attacks that alter the sensory data digitally', since it requires
access to the internal network (e.g., the CAN bus) which can
potentially take over the whole system [38].

We assume the adversary possesses white-box knowledge
of the sensory data processing algorithms, e.g., (hyper) pa-
rameters of the NNs, as well as the raw video frames taken
by the camera. We consider two types of adversaries:

e Detection-unaware attackers, who are not aware of our de-
fense and only tries to cause misclassification. To do that,
they can either inject adversarial noise opportunistically, or
solve an optimization problem for the optimal perturbation
(to the benign video frames), in which they aim at minimiz-
ing the magnitude of the perturbation subject to succeeding
in targeted misclassification.

» Detection-aware attackers, a.k.a. adaptive attackers, who
know the existence of our defense, possess the parameters of
it, and try to evade the detection. To do so, they additionally
add a constraint for detection evasion to the formulation.

When more than one sensor is used, we assume the adver-
sary can obtain and modify the data from any combination
of sensors. Finally, we assume the autonomous system (in-
cluding PercepGuard) runs on trusted/tamper-proof hardware,
firmware, and software (i.e., a trusted computing base [58]);
that is, we do not consider internal threats that directly hack
the CAN bus [38] or the operating system of a vehicle.

4 The Design of PercepGuard

In this section, we first state the problem of attack detec-
tion, and then give an overview of our approach with main

! Although PercepGuard can also detect norm-bounded adversarial exam-
ples that span multiple video frames in the digital domain [37,57].

. [car nf...

n

Planning

Control and
Actuation

car] E

s mimiimimmmm s | Object Benign
[I 3 Detection Result
s TLOT e

! ! - Tracking

| ol X

‘ L] E.g., [10,13]

i O oD i

: ©—=0 | E.g. [6,9,17] Attacked
: P : l Result
: &> ' Physical World

Safe or
Attacked
n
. |1 person [%]... PR Optional
Contexts

perrson] Ty
person]

Figure 3: System and Threat Model. In the perception module of an autonomous system, vision sensors (e.g., cameras) perceive
the environment and convert it into video frames for object detection and tracking, which labels an object with class and bounding
boxes. The planning module takes these labels (among other inputs) for decision-making, and finally the control module executes
these decisions. When the perception module is compromised, either by physical attacks (e.g., using an LCD monitor [17], or a
sticker [6]), or camera sensor attacks (e.g., [10, 12, 13,36]), the perception module outputs falsified labels which may mislead the
planning and control modules. PercepGuard verifies these labels and alarms the system when an attack is detected.

challenges identified. Later, we introduce the basic method
using bounding boxes only, and then the context-augmented
detection which enhances the adversarial robustness.

4.1 Problem Statement and Challenges

Given a series of consecutive frames captured by a vision sen-
sor (e.g., camera), for each detected object, the ODT system
returns the class prediction of the object ¢, as well as a track,
which is a sequence of bounding boxes B={b;: 1 <i < N}
where b; is the bounding box at time 7, and N is the number of
frames in which this object is detected. A 2-D bounding box
b is described by a vector (x,y,h,w) ", representing its center
coordinates (x,y), height 2 and width w. Given (B,c), our
goal is to verify whether ¢ = ¢, where ¢, is the ground-truth
class. To achieve the detection goal, we propose to classify
B into a category ¢’ that shares the same domain of ¢ (i.e., ¢’
can take any value that c can). If ¢ # ¢/, we regard the video
frames as adversarial input (Sec. 4.2). Moreover, we consider
strong attackers with white-box knowledge of our detection
algorithm. They manipulate the frames for both ¢ and B to
make ¢ = ¢’. We incorporate additional context information
to enhance the adversarial robustness (Sec. 4.3).

There are several challenges involved. First, the existence
of such a classifier is unknown. In other words, does B provide
sufficient information to distinguish one object class from an-
other? Second, if such a classifier exists, it is non-trivial to
design it in a way that it achieves high-accuracy, and can be
trained, tested, and extended efficiently. Third, it is equally im-
portant for an attack detector to ensure low FPRs as to ensure
high TPRs. Finally, it is challenging to defend against adap-
tive attackers who are aware of the defense and try to evade
it, and are able to compromise multiple, even heterogeneous
sensors simultaneously.

4.2 Basic Attack Detection Approach

Intuitively, spatiotemporal characteristics of different object
types are distinctive. By visually examining the empirical dis-
tributions of several objects from a real-world traffic dataset
BDD100K [22] (details of them are plotted in Appendix A.1),
we verify that their bounding boxes indeed have statistically
distinctive behaviors. We propose to use long short-term mem-
ory (LSTM)-based [59] recurrent neural networks (RNNs)
to learn the spatiotemporal property of bounding boxes, as
they are well-known in sequence classification [60] (e.g., to
see whether an English sentence is positive or negative). Note
that, our RNN model is not intended to be used as a stan-
dalone object classifier but as a cross validation for an object
detector’s classification result.

An RNN-based sequence classifier takes a sequence of
features as input and outputs the class of the sequence. It is
composed of two steps: feature extraction and feature classifi-
cation. For feature extraction, a typical recurrent operation is
a feedback loop (Fig. 4), which can be described as

gt:Re(ﬁ»gifl)a (1)

where f; is the i-th raw feature vector from the sequence, g;—|
is the hidden feature vector calculated from all the previous
vectors. Parameter 0 is identical for all recurrent operations.

gl 8i, 8N-, 1 8N person: 5%
}? - }? - -_>car: 78%
bi= x,,y,,h,,w, bike: 1%

Figure 4: RNN-based Sequence Classifier. Bounding boxes
are sequentially, and recurrently fed to the RNN layer, Rg. A
fully-connected layer (FN) is then used for classification, with
a softmax layer (not shown) for normalization.

Algorithm 1: PercepGuard Online Attack Detection
Input: b’s: Bounding boxes (optionally with contexts)
go: Feature initialization vector
0: RNN parameters
c: Object detector’s classification result
Tr: At least T frames are required
Output: Alarm if attack detected
1t+0
285805
3 while a new bounding box b comes do
4 t—t+1;
5 | g« Ro(b,g);
6 | ¢« argmax;C(g)[i];
7
8

if 1 > Tr and ¢’ # c then
‘ Raise an alarm

Once we have gy after the entire sequence has been processed,
we apply a fully connected layer to gy for the class confidence
vector, y = C(gy). Further details of the RNN are omitted as
they are not required to understand the rest of the paper.

For our application, we abstract the entire sequence classi-
fication process as a function L,

y < L(B), where B¢c[0,1]NM,)
Matrix B = {b;}¥_; denotes the sequence of bounding boxes
thus M = 4 for now and f; = b;. Here, N is the length of the
sequence. The features are normalized into [0, 1] for better
classification accuracy. Vector y = {y; : 1 <i < r} is soft-
max’ed therefore };y; = 1, and the classification result is
¢’ = argmax ;y;, and r is the number of object classes the
RNN model can handle. The class domains of our RNN model
and the object detector are identical in principle.

Our actual detection algorithm runs in an online manner
(Alg. 1). Instead of computing (2) after obtaining all the
bounding boxes for multiple frames, for each new frame, once
the object detector outputs a new bounding box for the object
we have been tracking, we only need to execute (1) once to
update the hidden feature g. In this way, we take advantage
of the recurrent property of the model to reduce computa-
tional time with a minimal space cost of saving the previous
g. Finally, we call C(g) to check if its result matches the ob-
ject detector’s classification result. If not, an alarm will be
raised. Our evaluation shows out that as few as five frames
(which means 0.17-second assuming 30 fps) are sufficient for
classification though we do not put an upper bound on it.

4.3 Context-based Enhancement

As we will show in Sec. 5.4, when we assume an adaptive
attacker who also aims to evade PercepGuard, our attack detec-
tion rate drops to 86% (from over 99% against non-adaptive
attacks). This is because the attacker is able to alter the bound-
ing box features such that our RNN model classifies them

into an attacker-intended class. Because the basic model is
trained only based on perceived object movement which is rel-
ative to the measurement platform (ego-vehicle)’s movement,
the model does not possess high differentiability between
cases involving distinct objects that exhibit similar perceived
temporal behavior. We show such an example in Fig. 11 in
Appendix, where two vehicles are following each other at
30 mph (low relative velocity). In order to alter the preceding
car into a person, an attacker can merely change its bounding
boxes’ shapes (from horizontal to vertical) without shifting
their locations (keeping the same speed), such that our RNN
model recognizes them as a person, because there are plausi-
ble cases where the ego-vehicle is moving at a low speed (or
stopped) which leads to a low relative speed with a pedestrian.

Therefore, in order to defend against defense-aware attacks,
we need more reference/context to validate camera’s percep-
tion data. There are mainly two sources of reference. First,
it can be from other perception sensors such as lidars and
radars. Their data can be combined with camera’s data via
sensor fusion. But similar to a camera, these sensors provide
measurement relative to the reference frame (i.e., the sensing
platform, the ego-vehicle). Second, it can be the states of the
ego-vehicle itself, such as its own speed from VSS’, velocity
and location from GPS receivers, pitch-roll-yaw positions
from IMU, or even environmental factors such as road lay-
out/speed limits and surrounding buildings/terrain from maps,
or real-time traffic and weather conditions from live maps
(e.g., Apple Maps [61]), etc. They provide side information
which leads to more accurate measures of an object’s absolute
spatiotemporal behavior (as a result of calibrating the relative
perception by considering the reference frame), unlike rela-
tive measurements output by perception sensors. Interestingly,
we will show in our evaluation that relative contexts do not
contribute as significantly as those absolute contexts in terms
of enhancing adversarial robustness.

To incorporate additional contexts, we extend the feature
space of the RNN model to implicitly learn the relations
among all features. In particular, we concatenate all contextual
features, denoted as a single vector o, to the original bounding
box features, u = b || 0. We use U to denote the sequence of
all these features over time, i.e., U = {u; : 1 <i < N}. Then,
the sequence classification is

y<« L(U), where U €0,1]NM, 3)

which is similar to (2), though M is now larger than four.
For example, if we use the ego-velocity v, = (x,, ye,ze)T as
context, then u = (x,y,h,w,X,,ye,2.) and M =7.
Incorporating additional context information gathered from
other sensors (that provides a more accurate view of the in-
trinsic spatiotemporal behavior of an object) significantly in-
creases the attack difficulty (in searching for the feasible and
optimal perturbation) and the attack cost (in realizing them).
This is because to bypass PercepGuard, the attacker is forced
to either manipulate the absolute spatiotemporal attributes of

the target object (infeasible due to the constraint of overlap-
ping with the perceived location of object), or modify not only
the bounding boxes but also the contexts (by compromising
additional sensors of different modalities).

5 Evaluation

We evaluate PercepGuard under both adversarial and non-
adversarial scenarios with two datasets. We also compare
with two baselines, and conduct real-world experiments.

5.1 Evaluation Methodology and Setup

We report the true negative (TNR), true positive (TPR), attack
misclassification (AMR), and attack success (ASR) rates. The
AMR is defined as the number of misclassified objects divided
by the total number of objects, while the ASR is the number
of misclassified objects that are not detected divided by the
total number of objects, i.e., ASR = AMR x (1 — TPR).

We implement the LSTM-based RNN model as our se-
quence classifier using Keras [62] with TensorFlow 2.4 [63]
as the backend. We use the default architecture of LSTM
provided by Keras with 50 memory units”. We use Adam op-
timizer [64] for both training the RNN models and solving the
attack optimization problems. We adopt the variable-length
training approach as it outperforms the fix-length setting. We
combine YOLOv3 [28] with SORT [29] as the object detec-
tion and tracking system [32], in which we follow SORT’s
idea for associating objects across frames by matching ground-
truth bounding boxes with YOLO-predicted bounding boxes
based on their Intersection over Union (IoU).

Datasets: Two datasets are used for both scenarios: The
BDDI100K dataset [22], specifically its multi-object track-
ing (MOT) subset, contains 1,400 training videos and 200 test
videos. All videos are 40-second long and recorded in five
frames per second, containing a total of 130K objects with
3.3M of bounding boxes. From the original ten categories, we
select bikes, buses, cars, pedestrians, and trucks, with a total
of 5K instances due to the imbalance of the original dataset.

For contextual data, we create a dataset collected from the
Carla simulator [24], referred as the Carla dataset [65]. In the
simulation, a car is driving around in realistic residential areas
and highways meanwhile recording video frames of the front
scene. There are 1,000 videos, each of which is 200-second
long recorded in five frames per second. For each object in
each frame, in addition to its bounding box and class, we also
recorded contextual data such as the relative velocity and the
ego-vehicle velocity. Three categories of objects were labeled:
vehicles, pedestrian and traffic signs.

5.2 Attack Methodology

In general there are two ways to realize misclassification at-
tacks against the perception component of an autonomous
system. The simplest way is to opportunistically place (e.g.,
via sticker, projection or display) real images of objects that

2Source code: https://github.com/harry1993/percepguard

obscure the victim object [9]. Alternatively, the attacker
can adopt adversarial ML techniques to generate physically-
realizable adversarial patches [23].

The attacker may use an LCD monitor [17] or a projec-
tor [9] to add adversarial patches onto the victim object. Ei-
ther way, they first need to digitally synthesize those patches
that can achieve their attack goals, while making sure that the
patches can be implemented in the physical world, therefore
some physical constraints need to be considered. For example,
if they choose to mount an LCD monitor on the back of a
car, the physical constraints are the location of the patches
(e.g., they cannot be far away from the car), the size (limited
by the screen size and attack distance), and the magnitude
(limited by the monitor’s maximum brightness), etc. We show
that despite these challenges, they are still relatively easy to
launch, thus bringing severe threats to autonomous systems.

Depending on the attacker’s goal, knowledge and capabil-
ity, there are two types of attackers: defense-unaware and
defense-aware attackers (Sec. 3.2). Namely, the latter is aware
of our detection and tries to evade it while achieving their
misclassification goal. From a high level, the adversary aims
to find a perturbation sequence A to the videos that

minignize |All suchthat ¢=¢", ¢=c, (4)
where A = {§;}¥, with N being the number of video frames.
X = {x;}Y, is the benign video, thus the perturbed video is
X" ={x"} | = {x;+&}Y,. When an object detector takes
X" as input, it outputs B” and ¢” which are the sequence of
bounding boxes and the object category, respectively.

The attacker minimizes the ¢, norm of A to reduce attack
cost. The first constraint means that the classification result of
the object ¢” (by the object detector) needs to be the same as
the targeted class ¢, i.e., a successful misclassification attack.
The second constraint means that the attacker also aims to
fool our attack detector to classify the object as ¢ as well. Our
actual implementation of (4) considers the detail of YOLOV3
and transfers the constraint into the objective function [37]:

HlAiIlHA”-‘r‘,UMC'LMC(X”vE)+HST'LST(X/175)7 (5)

where the misclassification (MC) loss measuring how unsuc-
cessful the perturbation A is thus far [37], i.e.,

"o (A p =
Lyve(X ,c)—xr/peaxx/, I????P](x ,6)—Pi(x",0)|. (6)

Pj(x,c) is the confidence of the class ¢ for the frame x reported
by the j-th cell which is the detection cell responsible for the
victim object (similar to [6]). It already considers P;(x), the
confidence that the j-th cell contains an object, but we omit it
for brevity. The stealthiness loss Lgr is defined as

Lst(X",¢) = maxLs(B") — Le(B"). @)

&#£C

https://github.com/harry1993/percepguard

s 100 AEAE g 40
ot ZRZEARY 1%5)
21111
= 0 AV E #* 0
2 34 51020 0 0.5 1
of Frames ToU
(a) (b)

Figure 5: (a) Our RNN needs only 5 frames for classification.
(b) IoU for direct perturbation to bounding box sequences.

Compared with (2) where L(B) returns a confidence vector of
all classes, here L.(B) returns the confidence of Class ¢ for a
given bounding box sequence B. Of course, B can be replaced
with a feature sequence U when context is considered (Eq. 3).
Two losses are balanced by two constants, uyvc and ust. For
defense-unaware attacks, ust = 0 and umc = 100 because
lower values yield low AMRs while higher values do not make
a significant improvement. For defense-aware attacks, we set
ust = 100 due to the same reason. A similar formulation of
adaptive attack has been adopted by [45].

5.3 Non-adversarial Scenarios

In non-adversarial scenarios (no attack), we evaluate Percep-
Guard’s performance in terms of the TNR as too many false
alarms may cause the autonomous system to malfunction.
BDD100K Dataset Results: To test the model, we use
YOLO’s bounding box predictions instead of the manual la-
bels that we used to train the model as there will not be manual
labels in actual deployments. For reference, YOLOvV3’s mean
Average Precision is 55.3. Results show that the test accuracy
is 95%, which means the FPR rate is only 5%. We also evalu-
ate how many frames PercepGuard requires to make accurate
classification. Fig. 5a shows that the TNR saturates at around
four or five frames, which means it needs as few as five frames
(with 30 FPS, it is 0.17-second) to make a decision.
Carla Dataset Results: The 5-fold cross-validation accuracy
is 95%. When testing the model, we run YOLO on Carla’s
simulated images for the bounding box predictions. The test
accuracy of our RNN model on these predictions is 92%,
indicating a FPR of 8% which is higher than the BDD100K;
this is because the official, pre-trained YOLO model was
trained on the COCO dataset [66], a real-world dataset whose
pixel distribution is different than the Carla-simulated pixels.
Since our Carla dataset also provides rich contextual data,
we select two contexts, relative velocity and ego velocity,
along with bounding boxes to train and test our RNN model
to see whether they can help improve the TNRs. We added
random noise drawn from the standard Gaussian distribution,
AL(0,1), to those contextual data in order to simulate natural
sensor errors (compared with 0-60 MPH, the range of those
velocities). Results show that the improvement is minor, with
a test accuracy of also roughly 92% regardless of which veloc-

Table 1: Adversarial patch attacks with BDD100K

Attack Type Patch Size AMR TPR ASR
Def 20 x 20 83.47% 99.63% 0.3%
Ionse: 40 x 40 89.41% 100% 0%
60 x 60 92.94% 100% 0%
Def 20 x 20 7325% 98.74% 0.92%
Trognses 40 x 40 80.49% 90.33% 7.78%
60 x 60 87.6% 85.67% 12.55%

ity/velocities we append to the bounding box features. This
is because those additional features do not provide extra in-
formation for sequence classification; however, we will show
that they become useful in adversarial scenarios where the
consistency among features is more critical.

5.4 Adversarial Scenarios

Defense-unaware attacks and defense-aware attacks (a.k.a.
adaptive attacks) are evaluated here. For demonstration pur-
poses, we assume the attacker aims to alter a “car” into a
“person” as a representative, severe case which could result in
a hard brake executed by the victim vehicle on a highway.
We use the Adam optimizer [64] to solve attack optimiza-
tion problems with uyc = 100 and ust = 100, which indi-
cates that the optimizer is to prioritize misclassification and
stealthiness over minimizing perturbation magnitude’. The
optimization process terminates upon convergence or when
it reaches the maximum number of iterations (1,000 steps).
The learning rate is 0.01. After its termination, we check both
losses: If Lyic < Twmce, we mark the object as misclassified; if
Lst < TsT, Wwe mark this attack as stealthy as it has evaded
detection. We let Tpc = 0 and tst = O for the digital domain
(simulated) evaluation as it is easier for the attacker to achieve.
However, we raise them for real-world evaluation (Sec. 5.8)
for higher attack confidence due to the random environmental
factors that make the attack not as stable as in simulation.
BDD100K Results: We first present the results on the
BDD100K dataset (Table 1). We vary the size of adversarial
patches from 20 x 20 to 60 x 60 pixels to emulate various
attack distances and patch display sizes, as compared to the
input image size for YOLOvV3 which is 416 x 416 pixels. As
the patch size increases, the attack performance generally
gets better because there are more pixels upon which the at-
tacker can manipulate. For defense-unaware attacks (Table 1)
specifically, the AMR starts from 83% when the patch size is
only 20 x 20, and approaches 93% at 60 x 60, which means
the attack is considerably effective, indicating a severe threat
to autonomous vehicles. However, when we feed to Percep-
Guard the bounding boxes of those compromised objects that
are misclassified as “person” by YOLOV3, nearly all of them

3Ideally, both constants should be adjusted via binary search in order
for them to be as small as possible [37]; however, that is only for norm-
bounded perturbation, which we do not consider as it is too weak to test
against PercepGuard.

are (correctly) classified into their benign class “car”, i.e., the
TPR is almost 100%. As a result, almost all the attacks are
unsuccessful, i.e., the ASR is nearly zero.

On the other hand, defense-aware attacks (Table 1) yield
lower AMRSs, because in this case the attacker aims for two
objectives: misclassification and stealthiness for which the
noise to achieve each objective does not always intersect
and can be mutually exclusive. The TPRs of PercepGuard
are slightly lower because such an attacker aims to evade
the detection by optimizing the adversarial noise to modify
the object class and bounding box behavior (e.g., shape and
locations) at the same time. Without any additional context,
although the RNN classifier can distinguish different object
classes when the attacker does not intentionally modify the
bounding box behavior, there can be boundary cases where
two objects of different classes appear to have similar behavior
(which is also why there are false positives). For example, a
vehicle that is turning at an intersection may see a person on
a sidewalk (with the bounding box shape being modified by
an attacker) as similar to a car crossing the street, which can
be confused with the case of seeing a real vehicle crossing
the intersection when the ego vehicle is waiting for a red
light. The defense-aware attack may exploit such corner cases
in the confusion matrix, which may only require changes in
bounding box shapes but not their locations. Note that the
latter is more difficult to achieve as the attacker only apply
patches within the region of the victim object. Even with a
slightly lower TPR, we note that for a 416 x 416 image, a
60 x 60 patch is large enough to entirely occlude a car from
the back for most instances in BDD100K.

In summary, the defense-unaware attacks are highly effec-
tive, but PercepGuard is able to detect most of them with a
detection rate as high as 100%. Adaptive attackers are able
to bypass our basic detection approach for at most 12.55% of
their attacks but note that such attacks are fairly impractical
to realize. Nevertheless, next we show that contextual data
can help us strengthen the robustness of PercepGuard.
Carla with Context: We use our Carla dataset with contextual
information to evaluate the same adversaries to show how
context can help enhance PercepGuard. We only consider
defense-aware attacks here as they are stronger.

For demonstration, we select two contexts, ego velocity
and relative velocity, which can be obtained from vehicle
speed sensors (VSS) and LiDAR/radar, respectively. We train
the RNN model following the form of (3), where M = 10
because each velocity is represented in 3-D. Here, we assume
a strong attack model where the attacker can compromise
different sensors simultaneously, and more importantly they
can synchronize each sensor attack precisely.

Table 2 summarizes the attack and defense performance
with different attack capabilities, namely which sensors are
compromised. When comparing the first row of Table 2 with
the last row of Table 1 where only the camera is compromised,
the AMR is similar but TPR is increased from 86% to 99%

Table 2: Differing attack capabilities at 60 x 60 patch size
against RNN trained with contexts

Compromised Sensors AMR TPR ASR
Camera Only 88.76% 99.35% 0.6%
Camera + LiDAR 89.90% 97.88% 1.9%
Camera + VSS 90.47% 85.26% 13.33%

Camera + VSS + LiDAR 90.85% 72.74% 24.76%

which makes the ASR approach zero; this is because the RNN
model has learned the consistency among those ten features
during training thus being able to detect the inconsistency
of the tampered bounding boxes, therefore still classifies the
feature sequence as a car for 99.4% of the cases.

Comparing the second and the third rows of Table 2, where
the attacker can additionally compromise LiDAR or VSS sen-
sors, we observe that our detection rate decreases more when
the VSS is compromised: 85% vs 98% (for compromising
LiDAR), although both velocities have an identical number
of features (three scalars). This suggests that the ego velocity
plays a more important role in PercepGuard’s consistency
verification, because relative velocities can be implicitly in-
ferred from bounding box size changes (e.g., when the front
car gets closer, its bounding box gets larger). In fact, such
size changes have been used to estimate the following dis-
tance [67]. In other words, existing LiDAR attacks [7, 49]
would not have a large impact on PercepGuard’s performance
because LiDAR’s outputs are not as critical as VSS’, and yet
the VSS attack is more difficult to conduct as it requires close
proximity (a few centimeters) to the victim vehicle [68].

Finally, if the attacker can compromise three sensors at the
same time, PercepGuard can still detect 73% of the attacks.
The reason why it yields a lower detection rate is that when
the capacity of a machine learning model (e.g., a neural net-
work in our case) increases, it becomes more susceptible to
adversarial attacks [57]. At a glance, this is worse than not
using contextual data (Table 1). However, we argue that such
an attack is extremely difficult to launch physically as it re-
quires the attacker to gain the white-box knowledge of three
different systems and meanwhile synchronize three separate
attacks precisely. Another way to achieve such a strong attack
would be to remotely hack into the CAN bus of a vehicle,
where an attacker digitally alters the sensor data before or af-
ter the processing algorithms [69]. However, such an attacker
is not considered in our threat model.

Model Transferability: Since manual labeling is expensive
but simulated datasets can be scaled easier, we evaluate the
transferability of our RNN model here. In particular, we
train the RNN model using the Carla dataset and test it on
BDDI100K. Results show that the TNR is 83%, and the TPRs
against defense-unaware attacks and defense-aware attacks
are 92%, 87% respectively for 20 x 20 patches in simulation.
Although these rates are not significant compared with Ta-
ble 1, they still suggest that one could train the RNN model

Table 3: Attacks with larger perturbation areas.

Dataset AMR TPR ASR
BDD100K 88.08% 42.35% 62.7%
Carla 90.67% 96.91% 1.9%

on a large-scale, simulated dataset and then fine-tune it with
a small-scale, real-world dataset.

5.5 Sensitivity Analysis

We evaluate PercepGuard’s sensitivity to direct, subtle per-
turbation to its input, i.e., the bounding box sequence, and to
attacks that can perturb much larger areas than the patches.
Bounding Box Perturbation: We directly perturb the input
to the RNN, i.e., bounding box sequences, to see how much
perturbation is needed to change the classification result. The
optimization formulation is

B* =argmin Lgr(B',¢)+ ciou - Liou(B,B'), (8
BI

where B is the benign bounding box sequence, ¢ is the target
class, and L,y is the IoU loss that measures how close B is
to B'. The stealthiness loss Lgr indicates how likely the RNN
classifies B’ as ¢, defined as

Lst(B,¢) = r{l;l;La(B) —Ls(B).
CFC
Recall that L.(B) is the confidence that the RNN classifies
B as c. To find the minimal perturbation to B, we follow the
strategy from [37]: We start cjou = 1 and see if Lg7(B',¢) <0
when the optimization process converges. If not, we increase
crou and try again, until Lgr(B’,¢) falls below zero.

We compute (8) for 181 sequences of bounding box of

length ten, and the IoU histogram (Fig. 5b) of the maximum
IoU between perturbed bounding boxes and the benign ones in
terms of bounding box sequence, shows that over 87% of the
bounding box sequences need to be resized and/or shifted by
an IoU less or equal to 50%, which means in order to change
the classification result of the RNN model, the attacker needs
to alter the bounding boxes significantly.
Larger Perturbation Area: Previously, we evaluated adver-
sarial patch attacks with sizes up to 60 x 60 which is limited
by the size of the monitor. Here, we relax such a limitation by
simulating an attacker that uses a projector to project adver-
sarial noise onto the front scene of the victim vehicle, similar
to [9]. We assume that the projector is powerful enough to
perturb any area other than the sky. In this case, the pertur-
bation area occupies over 50% of the pixels (See Fig. 9 in
Appendix for an example). We use image segmentation to
identify the feasible perturbation areas for BDD100K and use
LiDAR points for our Carla dataset based on distance.

Results from two datasets are shown in Table 3. When com-
paring with the last row of Table 1, the AMR for BDD100K is

slightly higher even the perturbation area is now much larger.
This is because perturbing the pixels that are not on the vehicle
has little impact on altering its classification result. However,
the TPR drops since now the attacker has more room to shift
the bounding boxes in order to bypass PercepGuard. This
result also verifies that our attack is strong. When considering
the ego vehicle velocity and relative velocity provided by the
Carla dataset, our TPR increases to 96.91% because the addi-
tional contexts that are not compromised can provide more
evidence to detect the spatio-temporal inconsistency of the
shifted bounding boxes.

5.6 Baseline Comparison

We experimentally compare PercepGuard with NIC [25] and
SCEME [26] as baselines, since they are both also input-
agnostic, and SCEME also uses contextual consistency.

NIC detects adversarial examples against image classifiers
by checking the network invariant. It produces a binary deci-
sion for each individual video frame. SCEME also works on
individual frames, but it produces a scalar for each object by
verifying its contextual consistency with other objects, back-
grounds, and scenes within the frame. Note that we define
contexts as the data from other sensors which is different
from their definition. See Appendix A.3 for how they work in
detail. A common drawback of both is their limited applica-
bility: NIC is designed for image classification only, which is
not as commonly used in autonomous driving as object detec-
tion. Though its principle may be applied to object detection
models but it needs to be significantly redesigned. SCEME
relies on RPNs thus being fundamentally incompatible with
one-stage algorithms such as YOLO which is more commonly
used in autonomous driving [1,32].

Most importantly, both methods do not consider temporal
features across multiple frames. Let us elaborate conceptually
on why temporal features are useful in object misclassifica-
tion detection. Consider this scenario where an object labeled
“person” is located at the image center, which means it’s in
front of the ego vehicle. SCEME is unable to distinguish
whether the object is a real person walking across the street
with the ego-vehicle waiting for them, or a preceding vehicle
that is misclassified as a person, since it only focuses on indi-
vidual frames. On the other hand, PercepGuard can identify
the difference since it additionally considers temporal features
and contexts. If the object is moving from side to side slowly
while the ego speed is nearly zero, it’s probably a person; If
it stays at the image center while the ego vehicle is driving
(e.g., at 40 MPH), it is very likely a misclassified vehicle.
Methodology: Since both of them output detection scores for
a single frame, we need to first integrate inter-frame scores
into a single score for a sequenc of frames. To address this
issue, given a sequence of detection decisions, {s;;1 <i <N}
with s; being one (adversarial) or zero (benign), we define two
integration criteria: (1) By portion: The percentage of frames
marked adversarial, i.e., ¥, 5;/n, and (2) By the length of the

True Positive Rate

True Positive Rate

00 0.20.40.60.8 1
False Positive Rate

0 0 0.20.40.60.8 1
False Positive Rate

(a) NIC with [37] (b) NIC with DenseNet

Figure 6: Baseline comparison results. Real-image attacks are tested with the portion criterion (

True Positive Rate

—_—
—_—

1
0.8 - @)
Y 2 1 -
0.6 - <
Q
0.4 - 8 09| |
0.2 -
ol 1+ 1+ 0.8 Lo
0 0.20.40.60.8 1 1 2 3 4 5
False Positive Rate Number of Objects

(c) SCEME (d) Varying Object Numbers

). Adversarial patch attacks

are tested with both the portion criterion (- - -) and the consecutive criterion (——). PercepGuard’s performance is marked with
® (binary) and — (soft). (a)(b) NIC’s ROC performance with two different NN architectures. (c) SCEME’s ROC. (d) SCEME’s

performance (

longest consecutive frames marked adversarial. For both cri-
teria, if the integrated score s exceeds some threshold, we
mark the whole sequence as adversarial. We present receiver
operating characteristic (ROC) curves with varying thresh-
olds for NIC and SCEME, to compare with PercepGuard’s
performance which is a single point in the ROC plots (there is
no threshold for PercepGuard because we use binary compar-
isons as the operating point by default except in Fig. 6¢c where
we also test the soft comparison which results in a curve). We
use the official implementations of NIC and SCEME.

Considering the differences in design and applicability
between NIC and PercepGuard, to compare NIC with Per-
cepGuard we crop out the portion of the object of interest
from the original frame in the BDD100K videos and use the
crop-out images to form a benign dataset that has ten object
classes. We use the dataset to train two image classifiers in
two architectures, DenseNet [70] and the one from [37] (same
as [25]). Both classifiers achieve test accuracy higher than
98%. Then, we train NIC on each of them. We use defense-
unaware attacks (Section 5.1) to perturb 9K objects using
adversarial patches and 7K objects using real images. At test
time, for each perturbed object, we obtain a sequence of crop-
out images {x} : 1 <i < N} from its video frames and feed
each x/ to the classifier and its corresponding NIC for which
we obtain a sequence of binary decision §' = {s}: 1 <i <N}
for TPR. Similarly, for each benign test object we obtain a
benign score sequence S = {s; : | <i < N} to compute FPR.

Because SCEME is incompatible with YOLOV3, in order
to compare it with PercepGuard, we conduct new experiments
to evaluate PercepGuard under Faster-RCNN [27]. We use
the MOT dataset for the evaluation. From each video, for
each “car” or “person” object across the N frames we obtain
a sequence of its context profiles U = {u; : 1 <i < N}, as
well as a sequence of its bounding boxes B={b;: 1 <i <N}.
Then, we use the IFGSM algorithm [26,71] to perturb the “car”
objects in each frame so that classifies them as a “person”.
Similarly, we collect the context profile sequence U’ and the

) depends on the number of objects in the scene, which is consistent with the original paper [26].

bounding box sequence B’ of each successfully misclassified
object. To train the autoencoders, we gather 10K context
profiles u per class of benign objects and divide them into a
training dataset (80%) and a test dataset (20%). We use the
same hyper-parameters as in [26] for the training. We put
together the benign test profiles and the adversarial profiles u’
to get the threshold of the reconstruction loss, Try , at the equal
error rate. With this threshold, we can convert a sequence of
context profiles into a sequence of binary detection.

For PercepGuard, we feed B to our RNN for the FPR and
B’ for the TPR, which produces a point. We also test soft
operating points. When the RNN’s confidence on the class of
interest is lower than a threshold, we mark the sequence as
adversarial. We vary the threshold to obtain an ROC curve.

Results: Following our two inter-frame integration criteria,
we calculate the ROC curves (Fig. 6a) based on benign score
sequences and adversarial score sequences. The threshold
for the portion criterion varies from 0% to 100% and the
threshold for the consecutive criterion is from two to six.
Overall, PercepGuard performs better than NIC in all the
cases since NIC is designed for image classification while the
video frames used at the test time are perturbed against object
detection. Furthermore, NIC is unable to detect real-image
attacks because the noise is not generated via optimization-
based methods, which does not cause the network invariants
to be out-of-distribution for NIC to detect.

From the ROC curves in Fig. 6¢c, we can see that SCEME
works significantly better than NIC (Fig. 6a). This is because
SCEME is designed for object detection, but NIC is for im-
age classification. Also, the proportion criterion outperforms
the consecutive one similar to NIC’s results. PercepGuard
achieves 98% TPR and 5% FPR, which is close to the result
with YOLOV3. This also confirms PercepGuard is agnostic
to the underlying object detection and attack methods (i.e.,
IFGSM [71] and C&W [37]). Soft combination (20 thresholds
within [0, 1]) yields a better TP-FP trade-off than SCEME.

Because SCEME relies on the context of the scene, we an-

ticipate that the richness of the context (e.g., object-object spa-
tial/coexistence relationship) affects its performance; mean-
while PercepGuard’s performance is not subject to such vari-
ation since it mainly relies on the temporal features which
exists for every single object. To verify this, we divide the
profile sequences into groups, and in each group, the aver-
age number of objects across the frames in every sequence
is identical. For each group, we calculate the area under the
ROC curve (AUC), and we plot the AUCs in Fig. 6d. We can
see that SCEME’s performance first drops and then arises as
the number of objects increases, which is consistent with the
result in Fig. 6 from the SCEME paper due to the balance
between object-object context and the rest of contexts [26].
However, PercepGuard performs more stably with varying
numbers of objects, with true positive rates above 98% and
false positive rates around 5%.

5.7 Model Extensibility

Our framework is general such that it can be easily extended to
work with more input modalities and/or additional contextual
features as long as they contain spatiotemporal attributes, e.g.,
3-D bounding boxes, point clouds from LiDAR, shapes from
image segmentation, etc.

We demonstrate PercepGuard’s extensibility by integrating
SCEME. We extend the context profiles output by SCEME to
the temporal domain, and verify the spatial-temporal consis-
tency of each object. Recall that for each object in each frame,
SCEME outputs a context profile u = [r,Y,1,Yu2, Y1, Yr2]- We
run SCEME on the MOT subset of the BDD100K dataset,
and for each object we obtain a sequence of its context profile
U={ri:1<i<N} where N =5 and i refers to the index of
frame. We select four object classes: bike, bus, car, and pedes-
trian (missing truck because the context Faster-RCNN used
by SCEME is trained with the VOC dataset [26] that do not
include trucks). We collect a total of 10K of such sequences
and use 80% of them to train the LSTM with 1000 memory
units (the size of a context profile u is 5 x 4096), and 20% for
testing. The 5-fold cross validation shows the test accuracy is
97% (false positive rate is 3%).

To test the attack detection performance, we feed U’, the
sequences of context profiles of attacked objects, to the RNN
classifier and the true positive rate is 98% based on 200 se-
quences. This means that the framework of PercepGuard is
compatible with features that are extracted automatically by
neural networks instead of being selected manually by human.
We underline that we only use the r part of the entire context
profile u; we test the cases where we either use only one of the
remaining feature vectors (7, the GRU gates), or concatenate
all of them together with r: the test accuracies are all below
40%. This is because r is the final fused result which contains
much richer contextual information than the gates.

Figure 7: Real-world experiment setup. (Left) An LCD mon-
itor is mounted on the back of the front vehicle. (Right) A
dash-cam is mounted on the windshield of the ego vehicle. A
portable projector is taped on the dashboard.

5.8 Real-world Experiments

We conducted a series of real-world experiments to demon-
strate the threat of adversarial patch attacks, and more impor-
tantly, to evaluate PercepGuard’s performance in real-world
environments and under realistic attacks.

Methodology and Setup: To implement the adversarial
patches, we extend the experiments done by Hoory et al. [17],
where we mount a 40-inch LG LCD monitor, on the back of
a vehicle (Fig. 7) using a tailgate TV hitch mount. Hence,
we are able to drive around with the LCD while Hoory et
al. only performed stationary tests, thus being more practi-
cal. We additionally use a portable projector, Optoma LV130,
mounted on the dashboard of the ego vehicle to replace the
LCD monitor as a different noise injection vector. We col-
lected 45 videos in total. The experiments were conducted in
a large campus parking garage during both daytime and night,
and on a campus street only at night because during daytime
both the monitor and the projector would be completely over-
whelmed by the sunlight. We reduced the monitor brightness
at night because otherwise the content would be saturated.

We