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ABSTRACT

Concept-based interpretations of black-box models are often more intuitive than
feature-based counterparts for humans to understand. The most widely adopted
approach for concept-based gradient interpretation is Concept Activation Vector
(CAV). CAV relies on learning linear relations between some latent representa-
tions of a given model and concepts. The premise of meaningful concepts lying
in a linear subspace of model layers is usually implicitly assumed but does not
hold true in general. In this work we proposed Concept Gradients (CG), which
extends concept-based gradient interpretation methods to non-linear concept func-
tions. We showed that for a general (potentially non-linear) concept, we can math-
ematically measure how a small change of concept affects the model’s prediction,
which is an extension of gradient-based interpretation to the concept space. We
demonstrate empirically that CG outperforms CAV in evaluating concept impor-
tance on real world datasets and perform a case study on a medical dataset. The
code is available at github.com/jybai/concept-gradients.

1 INTRODUCTION

Explaining the prediction mechanism of machine learning models is important, not only for debug-
ging and gaining trust, but also for humans to learn and actively interact with them. Many feature
attribution methods have been developed to attribute importance to input features for the prediction
of a model (Sundararajan et al., 2017; Zeiler & Fergus, 2014). However, input feature attribution
may not be ideal in the case where the input features themselves are not intuitive for humans to un-
derstand. It is then desirable to generate explanations with human-understandable concepts instead,
motivating the need for concept-based explanation. For instance, to understand a machine learn-
ing model that classifies bird images into fine-grained species, attributing importance to high-level
concepts such as body color and wing shape explains the predictions better than input features of
raw pixel values (see Figure 1).

The most popular approach for concept-based interpretation is Concept Activation Vector
(CAV) Kim et al. (2018). CAV represents a concept with a vector in some layer of the target model
and evaluates the sensitivity of the target model’s gradient in the concept vector’s direction. Many
followup works are based on CAV and share the same fundamental assumption that concepts can be
represented as a linear function in some layer of the target model (Ghorbani et al., 2019; Schrouff
et al., 2021). This assumption generally does not hold, however, and it limits the application of
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Figure 1: Comparison of feature-based interpretation heatmap (left: Integrated Gradients) and
concept-based importance score (right: Concept Gradients) for the model prediction of “Black
footed Albatross”. Attribution to high-level concepts is more informative to humans than raw pixels.

concept-based attribution to relatively simple concepts. Another problem is the CAV concept im-
portance score. The score is defined as the inner product of CAV and the input gradient of the target
model. Inner product captures correlation, not causation, but the concept importance scores are often
perceived causally and understood as an explanation for the predictions it does.

In this paper, we rethink the problem of concept-based explanation and tackle the two weak points of
CAV. We relax the linear assumption by modeling concepts with more complex, non-linear functions
(e.g. neural networks). To solve the causation problem, we extend the idea of taking gradients
from feature-based interpretation. Gradient-based feature interpretation assigns importance to input
features by estimating input gradients, i.e., taking the derivative of model output with respect to input
features. Input features corresponding to larger input gradients are considered more important. A
question naturally arises: is it possible to extend the notion of input gradients to “concept” gradients?
Can we take the derivative of model output with respect to post-hoc concepts when the model is not
explicitly trained to take concepts as inputs?

We answer this question in affirmative and formulate Concept Gradients (CG). CG measures how
small changes of concept affect the model’s prediction mathematically. Given any target function
and (potentially non-linear) concept function, CG first computes the input gradients of both func-
tions. CG then combines the two input gradients with the chain rule to imitate taking the derivative
of the target with respect to concept through the shared input. The idea is to capture how the target
function changes locally according to the concept. If there exists a unique function that maps the
concept to the target function output, CG exactly recovers the gradient of that function. If the map-
ping is not unique, CG captures the gradient of the mapping function with the minimum gradient
norm, which avoids overestimating concept importance. We discover that when the concept func-
tion is linear, CG recovers CAV (with a slightly different scaling factor), which explains why CAV
works well in linearly separable cases. We showed in real world datasets that the linear separability
assumption of CAV does not always hold and CG consistently outperforms CAV. The average best
local recall@30 of CG is higher than the best of CAV by 7.9%, while the global recall@30 is higher
by 21.7%.

2 PRELIMINARIES

Problem definition In this paper we use f : Rd ! Rk to denote the machine learning model
to be explained, x 2 Rd to denote input, and y 2 Rk to denote the label. For an input sample
x̂ 2 Rd, concept-based explanation aims to explain the prediction f(x̂) based on a set of m concepts
{c1, . . . , cm}. In particular, the goal is to reveal how important is each concept to the prediction.
Concepts can be given in different ways, but in the most general forms, we can consider concepts
as functions mapping from the input space to the concept space, denoted as g : Rd ! R. The
function can be explicit or implicit. For example, morphological concepts such as cell perimeter and
circularity can be given as explicit functions defined for explaining lung nodule prediction models.
On the other hand, many concept-based explanations in the literature consider concepts given as a set
of examples, which are finite observations from the underlying concept function. We further assume
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f and g are differentiable which follows the standard assumption of gradient-based explanation
methods.

We define a local concept relevance score R(x̂; f, g) to represent how concept ĉ affects target class
prediction ŷ = f(x̂) on this particular sample x̂. Local relevance is useful when analyzing individual
data samples (e.g. explain what factors lead to a bank loan application being denied, which may be
different from application to application). Further, by aggregating over all the input instances of
class y, Zy = {(x1, y), . . . , (xn, y)}, we can define a global concept relevance score R(Zy; f, g) to
represent overall how a concept affects the target class prediction y. Global relevance can be utilized
to grasp an overview of what the model considers importance (e.g. good credit score increases bank
loan approval). The goal is to calculate concept relevance scores such that the scores reflect the true
underlying concept importance, possibly aligned with human intuition.

Recap of Concept Activation Vector (CAV) Concept activation vector is a concept-based inter-
pretation method proposed by Kim et al. (2018). The idea is to represent a concept with a vector
and evaluate the alignment between the input gradients of the target model and the vector. In order
for the concept to be represented well by a vector, the concept labels must be linearly separable in
the vector space. The authors implicitly assumed that there exists a layer in the target model where
concept labels can be linearly separated.

Let vc denote the concept activation vector associated with concept c. The authors define the con-
ceptual sensitivity score to measure local concept relevance

RCAV(x; f,vc) := rf(x) · (vc/kvck). (1)

If we view CAV as a linear concept function, RCAV is the (normalized) inner product of the gradients
of the target and concept function. The main caveat with the CAV conceptual sensitivity scores is
that the underlying concept function is not guaranteed to lie in the linear subspace of some neural
activation space. Attempting to fit the concept function with a linear model likely leads to poor
results for non-trivial concepts, leading to inaccurate conceptual sensitivity scores.

GC: extending CAV to non-linear concepts Let us consider modeling concepts with general,
non-linear function g instead to relax the assumption on linear separability. We define the non-linear
generalization of inner product concept-based interpretation, Gradient Correlation (GC), as follows

RGC(x; f,vc) := rf(x) · (rg(x)/krg(x)k). (2)

GC takes the gradients from the target and concept function and calculates the linear correlation
of gradients in each dimension in the shared input feature space. Intuitively, if gradients magni-
tudes coincide in similar dimensions (large inner product), then the concept is relevant to the target
function. CAV is a special case of GC where g is limited to a linear function.

The main caveat of GC is the inner product of gradients between the target and concept only yields
correlation. In some applications correlation is already sufficient for interpretation, which explains
the success of CAV. However, one may be tempted to ask: if a mapping from the concept to the target
function output exists, can we retrieve the gradient of the target function output with respect to con-
cepts to evaluate “causal” interpretation? This is an extension of typical input gradient approaches
for feature-based interpretations (Ancona et al., 2017; Shrikumar et al., 2017; Sundararajan et al.,
2017). Is it possible to calculate this concept gradient given only access to the gradients rf(x)
and rg(x)? The answer lies in the shared input feature space of f and g where gradients can be
propagated with chain rule.

3 PROPOSED METHOD

3.1 DEFINITION OF CONCEPT GRADIENTS (CG)

We define the Concept Gradients (CG) to measure how small perturbations on a concept g affect
the target function output f through gradients:

RCG(x; f, g) := rg(x)†rf(x) =
rg(x)T

krg(x)k2 ·rf(x) (3)
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where rg(x)† is the Moore–Penrose inverse (pseudo-inverse) of rg(x). Pseudo-inverse is a gen-
eralized version of matrix inversion—when the inverse does not exist, it forms the (unique) inverse
mapping from the column space to the row space of the original matrix, while leaving all the other
spaces untouched. Using pseudo-inverse prevents mis-attribution of importance from other spaces
irrelevant to rg(x). Conveniently, the pseudo-inverse of rg(x) is just its normalized transpose
since rg(x) is a d-dimensional vector. Suppose a function h that maps the concept c to target
function uniquely exists,

f(x) = h(c) = h(g(x))

then CG exactly recovers the derivative of h which is the importance attribution of the target function
with respect to concept

h
0(c) =

dh(c)
dc

=
dh(g(x))

dg(x)
= RCG(x; f, g).

Let us illustrate the intuition CG with a simplified case where x, y and c are all scalars (k = d = 1).
Our goal is to represent y as a function of c to obtain the derivative dy

dc . We can expand the expression
with chain rule:

dy
dc

=
dy
dx

· dx
dc

= f
0(x) · dx

dc
The derivative dx

dc is the remaining term to resolve. Notice that since x and c are scalars, dx
dc is simply

the inverse of dc
dx = g

0(x) assuming dc
dx 6= 0. Thus, concept gradients exactly recovers dy

dc :

dy
dc

= f
0(x) · ( dc

dx
)�1 = f

0(x) · g0(x)�1 = f
0(x) · g0(x)† = RCG(x). (4)

The pseudo-inverse in (3) extends this derivation to the general case when x, y, and c have arbitrary
dimensions. Details can be found in Appendix B.

3.2 IMPLEMENTATION OF CG

Implementing CG is rather simple in practice. Given a target model f to interpret, CG can be
calculated if the concept model g is also provided by the user. When concepts are given in the
form of positive and negative samples by users, instead of an explicit concept function, we can learn
the concept function from the given samples. Generally, any concept model g sharing the same
input representation as f would suffice. Empirically, we discovered that the more similar f and
g is (in terms of both model architecture and weight), the better the attribution performance. Our
hypothesis is since there might be redundant information in the input representation to perform the
target prediction, many solutions exist (i.e. many f can perform the prediction equally well). The
more similar g utilizes the input information as f , the more aligned the propagation of gradient
through the share input representation is.

We propose a simple and straightforward strategy for training concept models g similar to f . We
train g to predict concepts by finetuning from the pretrained model f . The weight initialization
from f allows the final converged solution of g to be closer to f . We can further constrain g by
freezing certain layers during finetuning. The similarity between f and g leads to similar utilization
of input representation, which benefits importance attribution via gradients. More details regarding
the importance of the similarity between f and g can be found in Section 3.3.

CG can be used to evaluate per-sample (local) and per-class (global) concept relevance score. Fol-
lowing TCAV (Kim et al., 2018), we evaluated global CG by relevance score calculating the propor-
tion of positive local CG relevance over a set of same-class samples Zy = {(x1, y), . . . (xn, y)}.

RCG(Zy; f, g) :=
|{(x, y) 2 Zy : RCG(x; f, g) > 0}|

|Zy|
Global CG relevance score can also be aggregated differently, suitable to the specific use case.

3.3 SELECTING LAYER FOR ATTRIBUTION

Similar to CAV, CG can be computed at any layer of a neural network by setting x as the hidden
state of neurons in a particular layer. The representation of input x is relevant to attribution, as the
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information contained differs between representations. Both methods face the challenge of properly
selecting a layer to perform calculation.

For a feed-forward neural network model, information irrelevant to the target task is removed when
propagating through the layers (i.e. feature extraction). Let us denote the representation of x in
the l

th layer of the target model f as xfl . We hypothesized that the optimal layer l⇤ for performing
CG is where the representation xfl⇤ contains minimally necessary and sufficient information to
predict concept labels. Intuitively, the representation of xfl needs to contain sufficient information
to correctly predict concepts to ensure the concept gradients rg(x) are accurate. On the other hand,
if there is redundant information in xfl that can be utilized to predict the target y and concept c, then
g may not rely on the same information as f , which causes misalignment in gradients rg(x) and
rf(x) leading to underestimation of concept importance.

The algorithm for selecting the optimal layer to perform CG is simple. The model g is initialized
with weights from f and all the weights are initially frozen. Starting from the last layer, we unfreeze
the layer weights and finetune g to predict concepts. We train until the model converges and evaluate
the concept prediction accuracy on a holdout validation set. The next step is to unfreeze the previous
layer and repeat the whole process until the concept prediction accuracy saturates and no longer
improves as more layers are unfrozen. We have then found the optimal layer for CG as well as the
concept model g.

3.4 CONNECTIONS BETWEEN CAV, GC, AND CG

In the special case when g(x) = vC · x is a linear function (the assumption of CAV), we have
RCG(x) = v

T
Crf(x)/kvCk2. This is almost identical to conceptual sensitivity score in Eq 1 except

a slightly different normalization term where CAV normalizes the inner product by 1/kvCk. Fur-
thermore, the sign of CG and CAV will be identical which explains why CAV is capable of retrieving
important concepts under the linearly separable case.

Here we use a simple example to demonstrate that the normalization term could be important in
some special cases. Consider f as the following network with two-dimensional input [x0, x1]:

y = 0.1z0 + z1,


z0

z1

�
=


100 0
0 1

� 
h0

h1

�
,


h0

h1

�
=


0.01 0
0 1

� 
x0

x1

�
, (5)

and c0 = x0, c1 = x1. Then we know since y = 0.1z0 + z1 = 0.1x0 + x1, the contribution of c1
should be 10 times larger than c0. In fact, dy

dc0
= 0.1, dy

dc1
= 1 and it’s easy to verify that CG will

correctly obtain the gradient no matter which layer is chosen for computing (3). However, the results
will be wrong when a different normalization term is used when computing concept explanation on
the hidden layer h. Since c0 = 100h0, c1 = h1, y = 10h0 + h1, we have

For concept c0: v =
dc0

dh
= [100, 0]T , u =

dy

dh
= [10, 1], vTu/kvk = 10, vTu/kvk2 = 0.1

For concept c1: v =
dc1

dh
= [0, 1]T ,

dy

dh
= [10, 1], vTu/kvk = 1, vTu/kvk2 = 1. (6)

Therefore, the normalization term used in CAV (in red color) will lead to a conclusion that c0 > c1,
while CG (in blue color) will correctly get the actual gradient and conclude c1 > c0. This is mainly
because CG is formally derived from the actual gradient, as we will discuss below. In contrast,
CAV is based on the intuition of correlation in the form of gradient inner product and not the exact
chain-rule gradient, so its attribution is subject to per-dimension scaling.

Although the normalization term can be important in some special cases, in practice we do not find
the attribution results to be much different with different normalization terms in empirical studies.
We compared different methods of calculating CG (including different normalization schemes) em-
pirically in Section 4.1. We hypothesis such extreme per-dimensional scaling in input features are
less common in well-trained neural networks. Thus, in practice if the concept can be accurately
modeled by a linear function, CAV might be a good approximation for concept gradients. When
linear separability assumption does not hold, GC might be a good approximation for concept gradi-
ents. But in general only CG recovers the concept gradients when feature scaling conditions are not
ideal.
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Figure 2: CUB concept recalls for different input representations in various layers and architectures
(left to right, deep to shallow layers). CG consistently performs better than CAV locally and globally.

4 EXPERIMENTAL RESULTS

4.1 QUANTITATIVE ANALYSIS

In this experiment, our goal is to quantitatively benchmark how well CG is capable of correctly
retrieving relevant concepts in a setting where the ground truth concept importance is available.
In this case, the ground truth concept importance consists of human annotations of how relevant a
concept is to the model prediction. We can evaluate the quality of concept importance attribution
by treating the task as a retrieval problem. Specifically given a data sample and its target class
prediction, the concept importance given by CG is used to retrieve the most relevant concepts to
the prediction. A good importance attribution method should assign highest concept importance to
concepts relevant to the class.

We benchmarked local (per-sample) and global (per-class) concept importance attribution sepa-
rately. Given an input sample (xi, yi), its ground truth relevant concept set Ĉi and the top k attributed
local important concept set Ci, the local recall@k is defined as |Ĉi\Ci|

k .

Given a set of data samples from the same class Zy = {(x1, y), . . . , (xn, y)} and their ground truth
relevant concept sets {Ĉ1, . . . , Ĉn}, we can obtain the class-wise ground truth concept set Ĉy by
majority voting. We can also obtain the top k attributed global important concept set Cy . The global
recall@k is then defined as |Ĉy\Cy|

k .

The local attribution performance is measured by the average local recall@k (over samples) on a
holdout testing set. The global attribution performance is measured by the average global recall@k
(over classes) on a holdout testing set.

Dataset. We experimented on CUB-200-2011 (Wah et al., 2011), a dataset for fine-grained bird im-
age classification. It consists of 11k bird images, 200 bird classes, and 312 binary attributes. These
attributes are descriptors of bird parts (e.g. bill shape, breast pattern, eye color) that can be used
for classification. We followed experimental setting and preprocessing in (Koh et al., 2020) where
attributes with few samples are filtered out leaving 112 attributes as concepts for interpretation.

Evaluation. For CG, we finetuned the target model f for fine-grained bird classification on the
concept labels to obtain the concept model g. We also evaluated CAV on the corresponding model
layers for comparison. All the details regarding model training for reproducibility can be found in
Appendix J.2. The local and global recalls for all models and layers are plotted in Fig 2. The layers
in the x-axis are shallow to deep from left to right.

Tables 1 and 2 compares the best result of CAV and CG of the three different model architectures.
CG consistently outperforms CAV in concept importance attribution (recall) since the non-linearity
in CG captures concepts better (higher concept accuracy).
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Table 1: Local concept importance attribution comparison on CUB

Model Method Concept Local (per-sample)
Accuracy R@30 R@40 R@50

Inception v3 CAV 0.709 0.556 0.664 0.745
local-CG 0.791 0.612 0.718 0.790

Resnet50 CAV 0.727 0.557 0.663 0.740
local-CG 0.793 0.627 0.726 0.794

Vgg16 bn CAV 0.703 0.525 0.628 0.708
local-CG 0.793 0.637 0.733 0.800

Table 2: Global concept importance attribution comparison on CUB

Model Method Concept Global (per-class)
Accuracy R@30 R@40 R@50

Inception v3 TCAV 0.709 0.619 0.742 0.822
global-CG 0.791 0.790 0.894 0.944

Resnet50 TCAV 0.727 0.592 0.692 0.775
global-CG 0.793 0.827 0.915 0.951

Vgg16 bn TCAV 0.703 0.628 0.747 0.832
global-CG 0.793 0.872 0.935 0.961

Ablation study on model layers. We performed an ablation study on performing attribution with
different input representations, as given by different model layers. We observe that for every input
representation in every model, CG consistently outperforms CAV in concept importance attribution,
both locally and globally. For CG, the performance trend peaks in the penultimate layer represen-
tation. While finetuning more layers may lead to better concept prediction, it does not necessarily
translate into better attribution. There is a trade-off between the concept model g capturing the con-
cept well (finetuning more layers better) and utilizing the input more similarly to the target model f
(finetuning less layers better). In this case, the input representation in the penultimate layer retains
sufficient information to capture the concept labels. For CAV, the performance is generally better in
deeper layers since concepts are more linearly separable in the latter layers. Unlike the non-linearity
of CG, CAV is unable to exploit the more concept information contained in the representation of
earlier layers.

Ablation study on normalization schemes. We compared different methods of calculating the
concept gradients with various gradient normalization schemes. We ran all experiments on Incep-
tion v3 with finetuned layers Mixed 7b+. The results are presented in Table 3. Recall that CG
is exactly inner product normalized with squared concept norm, IP represents pure inner product
between rf(x) and rg(x) without normalization, GC with normalized rg(x), and cosine with
both normalized rf(x) and rg(x). We observe that all methods performs equally well. This sup-
ports the argument that the gradient norms in trained neural network are well-behaved and it is less
common to encounter cases where normalization influences the attribution results significantly.

Table 3: Comparison of CG with different normalization schemes

Scheme Formula Local Global
R@30 R@40 R@50 R@30 R@40 R@50

CG rg(x)T

krg(x)k2 ·rf(x) 0.612 0.718 0.790 0.783 0.907 0.949
IP rg(x)T ·rf(x) 0.601 0.718 0.801 0.783 0.907 0.949
GC rg(x)T

krg(x)k ·rf(x) 0.610 0.720 0.799 0.783 0.907 0.949

Cosine rg(x)T

krg(x)k · rf(x)
krf(x)k 0.610 0.720 0.799 0.783 0.907 0.949

4.2 QUALITATIVE ANALYSIS

The purpose of this experiment is to provide intuition and serve as a sanity check by visualizing
instances and how CG works.

Dataset. We conducted the experiment on the Animals with Attributes 2 (AwA2) dataset (Xian et al.,
2018), an image classification dataset with 37k animal images, 50 animal classes, and 85 binary
attributes for each class. These concepts cover a wide range of semantics, from low-level colors and
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Figure 3: Visualization of instances with highest CG attributed importance (AwA2 validation set)
for each concept (top 1 instance in the top 3 classes per concept). CG is capable of handling low
level (colors), middle level (textures), and high level (body components) concepts simultaneously.

textures, to high-level abstract descriptions (e.g. “smart”, “domestic”). We further filtered out 60
concepts that are visible in the input images to perform interpretation.

Evaluation. The evaluation is performed on the validation set. Fig 3 visualizes the instances with
the highest CG importance attribution for 6 selected concepts, filtering out samples from the same
class (top 1 instance in the top 3 classes). The concepts are selected to represent different levels
of semantics. The top row contains colors (low-level), the middle row contains textures (medium-
level), and the bottom row contains body components (high-level). Observe that CG is capable of
handling different levels of semantics simultaneously well, owing to the expressiveness of non-linear
concept model g. Additionally, we presented randomly sampled instances from the validation set
and listed top-10 most important concepts as attributed by CG (see the appendix). We intentionally
avoided curating the visualization samples to demonstrate the true importance attribution perfor-
mance of CG. The most important concepts for each instance passed the sanity check. There are no
contradictory concept-class pairings and importance is attributed to concepts existent in the images.

4.3 CASE STUDY ON MORTALITY RISK OF MYOCARDIAL INFARCTION COMPLICATIONS

The purpose of the case study is to demonstrate the effectiveness of CG in critical domain applica-
tions beyond classification tasks on natural-image data.

Dataset. We experimented on the Myocardial infarction complications database. The database con-
sists of 1,700 entries of patient data with 112 fields of input tabular features, 11 complication fields
for prediction, and 1 field of lethal outcome also for prediction. The input features are measurements
taken when the patients were admitted to the hospital due to myocardial infarction as well as past
medical records. The target models predict lethal outcome given the 112 input fields. The concept
models predict the complications given the same 112 input fields.

Evaluation. Our goal is to interpret the lethal outcome with the complications and compare our
interpretation with existing literature regarding how each complication affects the risk of death. We
expect good interpretations to assign high relevance to complications that pose high mortality risk.
Table 4 shows the global CG scores (aggregated by averaging local CG) as well as the excerpted
description of the complication mortality risk in the existing medical literature. The severity of
descriptions in the medical literature is largely aligned with the CG scores. The highest risk compli-
cations are attributed the most importance (e.g. relapse of MI) while the lower risk complications are
attributed the least importance (e.g. post-infarction angina). This supports CG as an effective method
for real-life practical use for interpreting models in critical domains. We also provided TCAV scores
(aggregated by averaging local CAV) for comparison, which is largely aligned with CG with few
exceptions (e.g. chronic heart failure) where the CAV interpretation deviate from literature. The full
table can by found in Appendix J.3.

5 RELATED WORK

Our work belongs to post-hoc concept-based explanations. While training with self-interpretable
models (Bouchacourt & Denoyer, 2019; Chen et al., 2019; Lee et al., 2019; Wang & Rudin, 2015)
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Table 4: Mortality risk attribution with respect to a subset of myocardial infarction complications
and comparison with existing medical literature

Complication CG TCAV Excerpted mortality risk description from medical literature
Relapse of MI 3.47 2.55 Recurrent infarction causes the most deaths following myocar-

dial infarction with left ventricular dysfunction. (Orn et al.,
2005)

Chronic
heart failure

3.27 -1.26 The mortality rate in a group of patients with class III and IV
heart failure is about 40% per year, and half of the deaths are
sudden. (Bigger, 1987)

Myocardial
rupture

1.62 6.52 Myocardial rupture is a relatively rare and usually fatal compli-
cation of myocardial infarction (MI). (Shamshad et al., 2010)

Ventricular
fibrillation

0.91 1.90 Patients developing VF in the setting of acute MI are at higher
risk of in-hospital mortality. (Bougouin et al., 2014)

Dressler
syndrome

0.32 -2.85 The prognosis for patients with DS is typically considered to
be quite good. (Leib et al., 2017)

Post-infarction
angina

-1.40 -2.85 After adjustment, angina was only weakly associated with
cardiovascular death, myocardial infarction, or stroke. (Eisen
et al., 2016)

is recommended if the use case allows, often times concepts are not known beforehand which
makes the practicality of post-hoc explanations more widely adoptable. Other classes of post-
hoc explanations include featured-based explanations (Zintgraf et al., 2017; Petsiuk et al., 2018;
Dabkowski & Gal, 2017; Shrikumar et al., 2017; Sundararajan et al., 2017), counterfactual explana-
tions(Dhurandhar et al., 2018; Hendricks et al., 2018; van der Waa et al., 2018; Goyal et al., 2019b;
Joshi et al., 2019; Poyiadzi et al., 2020; Hsieh et al., 2021), and sample-based explanations (Bien &
Tibshirani, 2011; Kim et al., 2016; Koh & Liang, 2017; Yeh et al., 2018; Pruthi et al., 2020; Khanna
et al., 2018). Our work considers the gradient from prediction to concepts, which is in spirit con-
nected to feature explanations which considers the gradient from prediction to feature inputs (Zeiler
& Fergus, 2014; Ancona et al., 2017).

Concept-based explanations aims to provide human-centered explanations which answer the ques-
tion “does this human understandable concept relates to the model prediction?”. Some follows-up
for concept-based explanations include when are concept sufficient to explain a model (Yeh et al.,
2019), computing interventions on concepts for post-hoc models (Goyal et al., 2019a) and self-
interpretable models (Koh et al., 2020), combining concept with other feature attributions (Schrouff
et al., 2021), unsupervised discovery of concepts (Ghorbani et al., 2019; Yeh et al., 2020; Ghan-
deharioun et al., 2021), and debiasing concepts (Bahadori & Heckerman, 2020). The most similar
work to ours is the work of Chen et al. (2020), which is motivated by the issue of CAV that concept
does not necessarily lie in the linear subspace of some activation layer. They address this problem
by training a self-interpretable model and limits the concepts to be whitened. On the contrary, our
work address the non-linear concept problem of CAV in the post-hoc setting by learning a non-linear
concept component and connects to the activation space via chain rule. Another work that considers
nonlinear modeling of concepts is TCAR (Crabbé & van der Schaar, 2022). They modeled concepts
with non-linear kernel functions and calculate relevance score via the concept function output mag-
nitude. However, merely considering the function output ignores interactions between the target and
concept function and potentially leads to explaining spurious correlations.

6 CONCLUSION

We revisited the fundamental assumptions of CAV, one of the most popular concept-based, gradient
interpretation methods. We tackled the problem from a mathematical standpoint and proposed CG
to directly evaluate the gradient of a given target model with respect to concepts. Our insight ex-
plains the success of CAV, which is a linear special case of CG. Empirical experiments demonstrated
that CG outperforms CAV on real datasets and is useful in interpreting models for critical domain
applications. Currently CG depends on the representation of input. Devising an input representation
invariant method is an interesting future direction. CG also requires user-specified concepts to func-
tion. Integrating automatic novel concepts discovery mechanisms into the method may be useful in
applications with insufficient domain knowledge.
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A LIMITATIONS

CG is a gradient-based interpretation methods, which is can only be applied to differentiable white-
box models. Gradient-based methods convey how small changes in the input affect the output via
gradients. Larger changes in the input requires intervention-based causal analysis to predict how the
output is affected. As a modification upon CAV, CG also requires users to specify concepts with
sufficient representative data samples or close-form concept functions. Sufficient amount of data is
more important for CG to prevent the nonlinear function to overfit. Automatic discovery of novel
concepts requires introducing other tools. Finally, CG requires fitting non-linear concept models if
the concept is provided in the form of representative data samples. This might be computationally
intensive for complex non-linear models (e.g. neural networks). The quality of interpretation highly
depends on how accurately the concept is captured by the concept model.

B GENERAL CG FOR MULTIPLE CONCEPTS

Here we derive CG in the general case when the concept function maps x 2 Rd to m concepts
g : Rd ! Rm. Recall the definition of CG:

RCG(x; f, g) = rg(x)†rf(x)

Note that when computing the gradient of a multivariate function such as f , we follow the convention
that rf(x) 2 Rd⇥k where the (rf(x))ij = @fj(x)

@xi
. And rg(x)† 2 Rm⇥d is the pseudo-inverse

of rg(x). RCG(x) will thus be an m⇥ k matrix and its (i, j) element measures the contribution of
concept i to label j.

Let us first consider the scenario where rg(x) is invertible. In this case, there exists an unique
function g

�1(c) mapping c to x locally around ĉ. By chain rule CG(x̂) is equivalent to the derivative
of y with respect to c:

@y

@c

���
c=ĉ

=
@f(g�1(c))

@c

���
c=ĉ

= rg
�1(ĉ)rf(g�1(ĉ)) = (rg(ĉ))�1rf(x̂) = CG(x̂).

Now let us consider the scenario when rg(x) is not invertible. For simplicity, we assume rg(x)
has full column rank, which implies g is surjective (this is always true when m = 1). Otherwise we
can directly constrain c within the row space of rg(x) and the arguments remain valid.

Our goal is to construct a mapping from c to x and analyze the gradient. However, there are infinitely
many functions from c to x that can locally inverse g(x) since the dimension of concept (m) could be
much smaller than input dimension d. Despite an infinite number of choices, we show the gradient
of such function always follows a particular form:
Theorem 1. Consider a particular point x̂ with ĉ = g(x̂). Let h : Rm ! Rd

be a smooth and

differentiable function mapping c to x and satisfy g(h(c)) = c locally within the ✏-ball around ĉ,

then the gradient of h will take the form of

rh(ĉ) = rg(x̂)† +G?, (7)

where any row vector of G? belongs to null(rg(x0)T ) (null space of rg(x0)T ).

The proof of the theorem is deferred to the appendix. Intuitively, this implies the gradient of h will
take a particular form in the space of rg(x)T while being arbitrary in its null space since any change
in the null space cannot locally affect c. We can verify that g(x) is locally unchanged in the null
space of rg(x)T , as

g(x+G?) ⇡ g(x) +rg(x)TG? = g(x).

This is saying there are multiple choices in �x to achieve the same effect on c, since any additional
perturbation in null(rg(x)T ) won’t make any change to c locally. For example, when we want to
change the concept of “color” in an image by �x, we can have �x only including the minimal
change (e.g., only changing the color), or have �x including change of color and any arbitrary
change to another orthogonal factor (e.g., shape). For concept-based attribution, it is natural to
consider the minimal space of x that can cover c, which corresponds to setting G? as 0 in (7).
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If we pick such h then rh(ĉ) = rg(x̂)†, so we can represent y as a function of c locally by
y = p(c) := f(h(c)) near ĉ. By chain rule we then have

rp(ĉ) = rh(ĉ)rf(x̂) = rg(x̂)†rf(x̂) = RCG(x̂).

In summary, although there are infinitely many functions from c to y since the input space has a
larger dimension than the concept space, if we consider a subspace in x such that change of x will
affect c (locally) and ignore the orthogonal space that is irrelevant to c, then any function mapping
from c to y through this space will have gradient equal to Concept Gradients defined in (3).

B.1 SHOULD WE EXPLAIN MULTIPLE CONCEPTS JOINTLY OR INDIVIDUALLY?

When attributing the prediction to multiple concepts, our flexible framework enables two options: 1)
treating each concept independently using single-concept attribution formulation (??) 2) Combining
all the concepts together into c 2 Rm and run CG. Intuitively, option 2 takes the correlations
between concepts into account while option 1 does not. When both concepts A and B are important
for prediction but concept A is slightly more important than concept B, option 1 will identify both
of them to be important while option 2 may attribute the prediction to concept B only. For example,
when y = x0 + x1, c0 = x0, c1 = x0 + 0.1x1, option 1 will identify both concepts to be important,
while option 2 will produce negative score for c0. We further compared these two options on real
datasets. The results are presented in Table 5. We verified that empirically applying pseudo-inverse
individually (independently) for each concept is better aligned with the attributes labeled by humans.

Table 5: Comparison of different CG pseudo-inverse calculations

Method Local Global
R@30 R@40 R@50 R@30 R@40 R@50

Joint 0.345 0.440 0.530 0.409 0.511 0.607
Independent 0.612 0.718 0.790 0.783 0.907 0.949

C EXAMPLE FOR DEMONSTRATING DIFFERENT CG CALCULATION METHODS

We use a simple toy example to explain the difference between option 1 and 2. Assume y = x0+x1

and two concepts c0 = x0, c1 = x0 + 0.1x1. Since these relationships are all linear, concept
gradients will be invariant to reference points. The results computed by option 1 and 2 are

Option 1 (individually apply (??)): Rc0,y = 1, Rc1,y ⇡ 1.01

Option 2 (apply CG jointly by (3)): Rc0,y = �9, Rc1,y = 10

At the first glance, it might be counterintuitive as to why the contribution of c0 is negative to y

with option 2. But in fact there exists a unique function y = �9c0 + 10c1 mapping c to y (when
jointly considering two concepts), which leads to negative contribution of c0. This shows that when
considering two concepts together as a joint function, the gradient is trying to capture the effect of
one concept with respect to others, which may be non-intuitive to human.

D EXAMPLE FOR SELECTING PSEUDO-INVERSE INSTEAD OF OTHER
INVERSE MATRICES

For the calculation of CG, multiple inverse matrices exist when rg(x) is not invertible. We gave a
high level example in Section B of why it makes sense to apply the pseudo-inverse. In this example,
we provide a concrete example with numbers to further elaborate.

Suppose the raw input x has two dimensions: x1 indicates the feature “color” and x2 indicates the
feature “shape”. There’s only one single concept c corresponds to “color”, so c = g(x) = x1. The
target model is y = f(x) = x1 � x2.

Let’s consider a particular input x̂ = [1, 0] and ĉ = 1. Clearly a small perturbation to “color” can
lead to linear change to output with slope 1, so the concept attribution score should be 1. Now let’s
follow the derivation of CG in this example to show why we choose the minimum-norm solution.

14



Published as a conference paper at ICLR 2023

Centered at ĉ, there can be infinite number of (linear) mappings from c to x, but all of them will
follow the form according to Theorem 1:

h(c) = h(ĉ) +rh(ĉ)(c� ĉ)

rh(ĉ) = rg(x̂)† +G?

In our example, h can be written explicitly as follows:

h(c) = [1, 0] + ([1, 0] + [0,↵])(c� 1)

= [c,↵(c� 1)], 8↵

This corresponds to Theorem 1, where rg(x̂)+ = [1, 0] and G? is the set of [0,↵] with any ↵. These
functions all set x1 = c but will set x2 = ↵(c � 1) with arbitrary ↵. Conceptually, this is saying
there are infinite number of ways to form the mapping from “color” (c) to input (x): we always
change “color” according to c but we can arbitrarily change the other orthogonal feature “shape”
(x2) according to color. Concept Gradients is trying to see how the change of c affect output y while
keeping all the other orthogonal factors fixed. Therefore, we want to find the mapping that has
minimal perturbation to x when changing c, corresponding to keeping all other orthogonal factors
fixed. This is the reason to choose the minimal norm solution in pseudo inverse.

In this example, our method sets ↵ = 0 and will lead to h(c) = [1, 0]. If ↵ is set to some non-zero
values in the pseudo-inverse, it will lead to the following score:

@f(h(ĉ))

@c
= h[1,↵], [1,�1]i = 1� ↵

which will give the wrong attribution score for any ↵ 6= 0.

E PROOF

Theorem 2. Let h : Rm ! Rd
be a smooth and differentiable function mapping c to x and satisfy

g(h(c)) = c locally within an ✏-ball around c0. Then the gradient of h will take the form of

rh(c0) = rg(x0)
† + g?, (8)

where g? is in the null space of rg(x0)T .

Proof. Assume h : Rm ! Rd is a function mapping c to x. By Taylor expansion we have

g(x0) = g(x) +rg(x)T (x0 � x) +O(kx0 � xk2) (9)

h(c0) = h(c) +rh(c)T (c0 � c) +O(kc0 � ck2), (10)

where x
0 = h(c0) and x = h(c). Therefore

g(x0) = g(x) +rg(x)T (h(c0)� h(c)) +O(kh(c0)� h(c)k2)
= g(x) +rg(x)Trh(c)T (c0 � c) +O(krg(x)k2kc0 � ck2) +O(kh(c0)� h(c)k2).

The last two terms are both O(kc � c
0k2) since rg(x) is a constant and h is smooth (thus locally

Lipschitz), so
c
0 � c = rg(x)Trh(c)T (c0 � c) +O(kc� ck2). (11)

Therefore, rg(x)Trh(c)T = I , which means rh(c) = rg(x)† + g?.

E.1 DEFINITION OF CONCEPT GRADIENTS

Given input space X and two differentiable functions f : X ! Y and g : X ! C, where Y is the
target label space and C is the concept label space. We define the concept gradients of x 2 X to
attribute the prediction of the model to the concepts:

RCG(x) := rf(x) ·rg(x)†, (12)
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where rg(x)† denotes the pseudo-inverse of rg(x). Let y = f(x) 2 Y and c = g(x) 2 C.
Essentially concept gradients approximate gradient-based saliency of y to c, h0(c), via chain rule.
For the case where X , Y , and C are all scalar fields, the concept gradients exactly recover h0(c) if
g
0(x) 6= 0 for all x 2 X ,

Given input space X and two differentiable functions f : X ! Y and g : X ! C, where Y is the
target label space and C is the concept label space. Suppose there exist an unknown differentiable
function h : C ! Y s.t. f = h � g. Let f 0, g0, and h

0 denote the first-order derivatives. We define
the concept gradients of x 2 X as

RCG(x) := rf(x) ·rg(x)†

where rg(x)† denotes the pseudo-inverse of rg(x). Let y = f(x) 2 Y and c = g(x) 2 C.
Essentially concept gradients approximate gradient-based saliency of y to c, h0(c), via chain rule.
For the case where X , Y , and C are all scalar fields, the concept gradients exactly recover h0(c) if
g
0(x) 6= 0 for all x 2 X ,

h
0(c) =

dy
dc

=
dy
dx

· dx
dc

=
dy
dx

· ( dc
dx

)�1 = f
0(x) · 1

g0(x)
= RCG(x)

We now generalize X to a n-dimensional vector space. Since f , g, and h are differentiable, we can
perform Taylor expansion around x and c

f(x0) = f(x) +rf(x)(x0 � x) +O((x0 � x)2) (13)

g(x0) = g(x) +rg(x)(x0 � x) +O((x0 � x)2) (14)

h(c0) = h(c) + h
0(c)(c0 � c) +O((c0 � c)2) (15)

Let us denote �x = x
0 � x. We can plug Eq 14 into Eq 15

h(g(x0))� h(c) = h
0(c)(g(x0)� c) +O((g(x0)� c)2)

= h
0(c) ·

✓
g(x) +rg(x)�x+O(�x

2)� c

◆
+O((g(x0)� c)2)

= h
0(c) ·

✓
rg(x)�x+O(�x

2)

◆
+O((g(x0)� c)2)

⇡ h
0(c) ·

✓
rg(x)�x

◆

f(x0)� f(x) = rf(x)�x+O(�x
2)

⇡ rf(x)�x

h(g(x0))� h(c) = f(x0)� f(x)

h
0(c) ·

✓
rg(x)�x

◆
⇡ rf(x)�x

Let us denote the set of right inverses for rg(x) as G�1
r (x).

G
�1
r (x) = {rg(x)† + g

T
?, 8g? : hrg(x), g?i = 0}

By definition for all g�1
r 2 G

�1
r (x),

h
0(c) ·�x ⇡ rf(x) · g�1

r ·�x
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If rg(x) is invertible, G�1
r (x) = {rg(x)†} and the equality exactly holds

h
0(c) = rf(x) ·rg(x)† = rf(x) ·rg(x)�1

If rg(x) is not invertible, g�1
r is not unique and infinitely many right inverses exist for rg(x).

In this case, how does the selection of right inverse relate to interpretation? For interpretation, the
goal is to attribute a small change �c via g

�1
r to a small change �x. Non-invertibility of rg(x)

implies there are many ways we could perform the attribution. Consider the alignment between
some g

�1
r = rg(x)† + g

T
? and rg(x),

rg(x)·(rg(x)† + g
T
?)

krg(x)k · krg(x)† + gT?k
=

rg(x)·rg(x)†

krg(x)k · krg(x)† + gT?k
 rg(x)·rg(x)†

krg(x)k · krg(x)†k

We argue that the best interpretation is when the attribution is faithful to the relation g between X
and C, i.e., when g

�1
r is best aligned with rg(x). Observe that rg(x)† is in the same direction as

rg(x). On the other hand, any right inverse with g? 6= 0 is attributing some proportion of dc to dx
in a direction that is orthogonal to rg(x). Thus, the best choice for g�1

r is rg(x)†.

E.2 CONNECTION WITH CAV

CAV is a special case of concept gradients with g restricted to linear functions. Let vc denote the
concept activation vector associated with concept c. CAV defines the conceptual sensitivity S as the
inner product of the input gradient and concept activation vector,

RCAV(x) := rf(x) · vc

kvck
If g is restricted to linear functions,

g(x) = vT
c · x+ bc

for some constant bias bc. Concept gradients is equivalent to CAV conceptual sensitivity normalized
by the norm of the concept activation vector,

RCG(x) = rf(x) ·rg(x)† = rf(x) · (vT
c )

† = rf(x) · vc

kvck2
=

RCAV(x)

kvck
Thus, if the concept can be accurately modeled by a linear function, CAV is capable of retrieving
the concept gradients. However, in general the linear separability assumption does not hold. In
contrast, concept gradients consider general function classes for g, which better captures the relation
between X and C. Given accurately modeling the concept with g is a necessary condition for correct
interpretation, concept gradients is superior to CAV.

F ALTERNATIVE PERSPECTIVE FOR LAYER SELECTION

We can also view layer selection in a typical bias-variance tradeoff perspective. If we selected a
later layer to evaluate CG, we are biased towards using a representation of x that is optimized for
predicting the target y, not c. However, since the information consists in the representation is less,
we also enjoy the benefit of less variance. On the other hand, if we selected an earlier layer to
evaluate CG, then we suffer less from the bias (towards y) but is penalized with higher variance
due to abundance of information. The optimal layer is where the representation of x is capable
of predicting the concept (minimized bias) while no redundant information is available (minimized
variance).

We verified the bias-variance tradeoff hypothesis with experiments. More bias (with respect to
target labels) in later layers is confirmed with the observation that finetuning more layers yields
higher concept prediction accuracy (see Fig 4). Less variance in later layers is confirmed with the
experiment below. We repeated the CUB experiments on the Inception v3 model with 5 different
random seeds and evaluated the variance of the gradient rg(x) over repeated trials, averaged over
all data points. Specifically, the gradients for models finetuned starting from different layers are
evaluated on the same layer (Mixed 6d) for fair comparison. The results are shown in Fig 5 and
confirmed the variance hypothesis.
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Figure 4: Concept prediction accuracy and concept attribution recall when finetuning starting from
different layers of the model. Finetuning more layers leads to higher concept prediction accuracy.

Figure 5: Variance of gradients finetuning starting from different layers. The variance is higher
when finetuning starting from earlier layers.

G ABLATION STUDY ON CONCEPT MODEL CONFIGURATION

Experiments in Section 4.1 and 4.2 shares the same model architecture for the target and concept
model. The two design choices here are 1) using the same model architecture and 2) warm-starting
the training of concept models with target model weights. The choices are rather straightforward
since both models need to share the same input feature representation for the gradients with respect
to the input layer to be meaningful. Nevertheless, we conducted an ablation study on the CUB
experiment to verify how using different model architectures different weight initialization for the
concept model affects interpretation. In this case, CG needs to be evaluated in the input layer, the
only layer where the feature representation is shared between target and concept models.

The model architecture alabltion study results are presented in Table 6. The CG scores are all evalu-
ated in the input layer. Evidently, using the same model architecture for both the target and concept
models is crucial for good interpretation quality with CG. The degradation of interpretation when
using different architectures may be caused by mismatched usage of input feature representation be-
tween models. The concept model weight initialization results are presented in Table 7. Using target
model weights as initialization outperforms using ImageNet pretrained weights significantly. The
more similar the pretrained task is to the downstream task is, the better the finetuned performance.
In this case, the concept prediction accuracy suggests the target model task of bird classification is
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a better pretraining task for predicting bird concepts, allowing the concepts to be better captured by
the concept function (higher accuracy). This naturally leads to better interpretation results.

Table 6: Ablation study on concept model architecture
Target model Concept model R@30 R@40 R@50.
Inception v3 Inception v3 0.872 0.931 0.957
Inception v3 Resnet50 0.535 0.620 0.684
Inception v3 VGG16 0.486 0.561 0.619

Resnet50 Resnet50 0.933 0.976 0.988
Resnet50 Inception v3 0.623 0.705 0.757
Resnet50 VGG16 0.554 0.631 0.692
VGG16 VGG16 0.955 0.986 0.994
VGG16 Inception v3 0.525 0.606 0.664
VGG16 Resnet50 0.609 0.698 0.758

Table 7: Ablation study on concept model weight initialization
Weight initialization Concept accuracy R@30 R@40 R@50.
ImageNet pretrained 0.916 0.577 0.670 0.739

target model pretrained 0.972 0.872 0.931 0.957

H ABLATION STUDY ON THE EXPRESSIVENESS OF CONCEPT MODEL CLASS

In most of this study, the concept model is implemented by finetuning the target model to predict
the concepts instead. When using an input representation in deeper layers, the portion of finetuned
model would be relatively less, yielding a simpler concept model. Our hypothesis is input repre-
sentation in deeper layers generally contains higher level semantics and thus only requires simpler
models to capture the concept.

To test this hypothesis, we explored whether using a more expressive function class for the concept
model benefits the attribution result. We focused on the ResNet architecture and constructed con-
cept models of different complexities. We experimented on input representations in deeper layers
(layer4.1 and layer4.2) where the original concept model is simpler and may not be ex-
pressiveness enough to capture the concepts. To increase the complexity of a ResNet model, we
duplicated ResNet residual blocks. The more times a block is duplicated, the deeper and more
expressive a model is.

Table 8 shows the results. The number of duplication represents how many time the selected residual
blocks is duplicated for the concept model. As increasing the complexity of the model does not lead
to better concept prediction accuracy, the attribution performance (recall) is not improved. This
confirmed our hypothesis for using a simpler (more complex) models for deeper (shallower) layer
representations.

Table 8: Comparing concept models of different expressiveness. Increasing model expressiveness
does not lead to increase in accuracy and thus does not translate to better attribution performance.

Residual Number of Concept Local (per-sample) Global (per-class)
Block Duplication Accuracy R@30 R@40 R@50 R@30 R@40 R@50

layer4.1

1 0.794 0.614 0.718 0.786 0.808 0.909 0.948
2 0.795 0.605 0.705 0.775 0.810 0.901 0.944
3 0.791 0.597 0.697 0.767 0.811 0.904 0.944
4 0.791 0.594 0.693 0.762 0.820 0.906 0.943

layer4.2

1 0.793 0.627 0.726 0.794 0.827 0.915 0.951
2 0.793 0.622 0.720 0.788 0.838 0.919 0.955
3 0.794 0.613 0.710 0.777 0.838 0.918 0.952
4 0.793 0.613 0.712 0.781 0.857 0.931 0.964
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Figure 6: Comparing CUB concept recalls between CG and SmoothCG (stdev=0.01, n=8) for dif-
ferent input representations in various layers and architectures (left to right, deep to shallow layers).
SmoothCG performs similarly to CG with marginal improvement in shallow layers.

I TO SMOOTH OR NOT TO SMOOTH?

It has been shown that relying on gradient saliency maps may yield misleading interpretation due to
the high non-linearity in deep neural networks. There are many works on improving gradient-based
interpretations with respect to the input features (Smilkov et al., 2017; Sundararajan et al., 2017;
Shrikumar et al., 2017). Since CG also relies on input gradients for calculation, it is important to
examine whether CG suffers from the same issues. In this ablation study, we compared SmoothCG,
a variant of CG, that remedies inaccurate gradients.

Inspired by SmoothGrad (Smilkov et al., 2017), we proposed SmoothCG, where the attribution is
averaged over the neighborhood D near a data sample.

SmoothCG(x) := E
✏⇠D

CG(x+ ✏)

Smoothing over the neighborhood mitigates inaccurate interpretation caused by abrupt changes in
input gradients in highly non-linear functions. It is also shown that randomized smoothing improves
the robustness (Cohen et al., 2019). In practice, we take finite samples near an input instance with a
predetermined perturbation distribution (e.g. Gaussian) and average their CG scores.

Figure 6 shows the concept recall comparison between CG and SmoothCG. SmoothCG is calculated
by smoothing over 8 samples per instance, adding perturbations sampled from N (0, 0.01). In gen-
eral the performances are similar. CG performs marginally better in deeper layers while SmoothCG
in shallower ones, likely because gradients propagating to deeper layers are less accurate and thus
benefit from the smoothing. However, the difference in performance is not consistent nor significant
enough to justify the addition computation cost of SmoothCG.

J EXPERIMENT DETAILS

J.1 ANIMAL WITH ATTRIBUTES 2 (AWA2)

Data preprocessing Since the original task is proposed for zero-shot classification, the class labels
in the default training and validation set is disjoint. To construct a typical classification task, we
combined all data together then performed a 80:20 split for the new training and validation set.
During training, the input images are augmented by random color jittering, horizontal flipping, and
resizing, then cropped to the default input resolution of the model architecture (299 for Inception
v3, 224 for others). During evaluation, the input images are resized and center cropped to the input
resolution.

The attribute labels provided in the dataset contains both concrete and abstract concepts. Some
abstract concepts cannot be identified merely by looking at the input image (e.g. new world vs
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old world). We filtered out 25 attributes that are not identifiable via the input image and used the
remaining 60 attributes for interpretation.

Training We trained the target model f with Inception v3 architecture with ImageNet pretrained
weights (excluding the final fully connected layer). We optimized with Adam (learning rate of
0.001, beta1 of 0.9, and beta2 of 0.999) with weight decay 0.0004 and schedule the learning rate
decay by 0.1 every 15 epochs until the learning rate reaches 0.00001. We trained the model for
a maximum of 200 epochs and early stopped if the validation accuracy had not improved for 50
consecutive epochs. The validation accuracy of the trained target model is 0.947.

We trained the concept model g by finetuning different parts of f (freezing different layer model
weights). We reweighted the loss for positive and negative class to balance class proportions. We
optimized with Adam (learning rate of 0.01, beta1 of 0.9, and beta2 of 0.999) with weight decay
0.00004 and schedule the learning rate decay by 0.1 every 25 epochs until the learning rate reaches
0.00001. We trained the model for a maximum of 200 epochs and early stopped if the validation
accuracy had not improved for 50 consecutive epochs.

Evaluation Visualization is conducted on the validation set. Finetuning from Mixed 7a is the
latest layer that still predicted the concepts well. According to the layer selection guideline, we
selected Mixed 7a to evaluate CG. We computed CG with the individual inverse method (??).
Fig 7 shows random samples from the validation set and their top 10 rated concepts. These samples
are intentionally randomly sampled as opposed to intentionally curated to provide an intuition of
the true effectiveness of CG. In general, the retrieved highest ranked concepts are relevant with the
input image. In terms of sanity check, there are no contradictions in the concepts (e.g. furry is never
assigned to an whales).

Figure 7: Visualization of randomly sampled instances (AwA2 validation set) and the most important
concepts associated with their respective CG attribution (top 10 concept, 60 in total).

J.2 CALTECH-UCSD BIRDS-200-2011 (CUB)

Data preprocessing Similar to the AWA2 experiments, the input images are augmented by random
color jittering, horizontal flipping, and resizing, then cropped to the default input resolution of the
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Table 9: Finetune layers for architectures
Architecture Finetuned layers
Inception v3 fc+, Mixed 7c+, Mixed 7b+, Mixed 7a+,

Mixed 6e+, Mixed 6d+, Mixed 6c+
Resnet50 fc+, layer4.2+, layer4.1+, layer4.0+,

layer3.5+, layer3.4+, layer3.3+
VGG16 classifier.6+, classifier.3+,

classifier.0+, features.34+,
features.24+, features.14+, features.7+

model architecture (299 for Inception v3, 224 for others) during training. During evaluation, the
input images are resized and center cropped to the input resolution. We followed (Koh et al., 2020)
procedure of removing attributes with insufficient data samples. A total of 112 attributes remains for
conducting interpretation. The class attribute labels are assigned as instance labels, i.e., instances
from the same class share the same attribute labels.

Training We trained the target model f with three different CNN architectures: Inception v3,
Resnet50, and VGG16 (with batch normalization), each with ImageNet pretrained weights (exclud-
ing the final fully connected layer). We searched for hyperparameters over a range of learning rates
(0.01, 0.001), learning rate schedules (decaying by 0.1 for every 15, 20, 25 epochs until reaching
0.0001), and weight decay (0.0004, 0.00004). We optimized with the SGD optimizer. We trained
the model for a maximum of 200 epochs and early stopped if the validation accuracy had not im-
proved for 50 consecutive epochs. The validation accuracy of the trained target model is 0.797,
0.764, and 0.782 for the three models, respectively.

We trained the concept model g by finetuning different parts of f (freezing different layer model
weights). The different layers we started to finetuned from for each model architecture is listed in
Table 9. The plus sign in the table represents all layers after the specified layer are all finetuned
while all layers prior to the specified layer have their weights kept frozen. We reweighted the loss
for positive and negative class to balance class proportions. We searched for the hyperparameters
and trained the model same as the target model f .

Evaluation Evaluation is conducted on the testing set. CG and CAV are evaluated in the layer prior
to finetuning. We evaluated the recalls for k = 30, 40, 50 and generally the recall trend is consistent
for all ks. These thresholds are chosen since the number of concepts with positive labels for each
instance is in the range of 30 to 40.

J.3 MYOCARDIAL INFARCTION COMPLICATIONS
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Table 10: Mortality risk attribution with respect to myocardial infarction complications and com-
parison with existing medical literature

Complication CG TCAV Excerpted mortality risk description from medical literature
Relapse of MI 3.47 2.55 Recurrent infarction causes the most deaths following myocar-

dial infarction with left ventricular dysfunction. (Orn et al.,
2005)

Chronic
heart failure

3.27 -1.26 The mortality rate in a group of patients with class III and IV
heart failure is about 40% per year, and half of the deaths are
sudden. (Bigger, 1987)

Atrial
fibrillation

2.29 1.11 AF increases the risk of death by 1.5-fold in men and 1.9-fold
in women. (Benjamin et al., 1998)

Myocardial
rupture

1.62 6.52 Myocardial rupture is a relatively rare and usually fatal compli-
cation of myocardial infarction (MI). (Shamshad et al., 2010)

Pulmonary
edema

1.51 2.21 Pulmonary oedema in patients with acute MI hospitalized in
coronary care units was reported to be associated with a high
mortality of 38–57%. (Roguin et al., 2000)

Ventricular
fibrillation

0.91 1.90 Patients developing VF in the setting of acute MI are at higher
risk of in-hospital mortality. (Bougouin et al., 2014)

Third-degree
AV block

0.69 1.71 In patients with CHB complicating STEMI, there was no
change in risk-adjusted in-hospital mortality during the study
period. (Harikrishnan et al., 2015)

Ventricular
tachycardia

0.51 -0.19 Ventricular tachycardia is most commonly associated with is-
chemic heart disease or other forms of structural heart disease
that are associated with a risk of sudden death. (Koplan &
Stevenson, 2009)

Dressler
syndrome

0.32 -2.85 The prognosis for patients with DS is typically considered to
be quite good. (Leib et al., 2017)

Supraventricular
tachycardia

0.24 -0.36 Although SVT is usually not life-threatening, many patients
suffer recurrent symptoms that have a major impact on their
quality of life. (Medi et al., 2009)

Post-infarction
angina

-1.40 -2.85 After adjustment, angina was only weakly associated with car-
diovascular death, myocardial infarction, or stroke, but signif-
icantly associated with heart failure, cardiovascular hospital-
ization, and coronary revascularization. (Eisen et al., 2016)
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