Bounds on 10th moments of (z,23) for ellipsephic sets
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ABSTRACT. Let A be an ellipsephic set which satisfies digital restrictions in
a given base. Using the method developed by Hughes and Wooley, we bound

the number of integer solutions to the system of equations
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with x,y € A5. The fact that ellipsephic sets with small digit sumsets have
fewer solutions of linear equations allows us to improve the general bounds ob-
tained by Hughes and Wooley and also the corresponding efficient congruencing
estimates. We also generalize our result from the curve (z,z3) to (z, ¢(z)),

where ¢ is a polynomial with integer coefficients and deg(¢) > 3.

1. introduction

The discrete restriction conjecture has recently been of wide interest for re-

searchers in both harmonic analysis and number theory (for example, see [8], [9]
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and [10]). To recall the conjecture for the cuve (z,2?), let a = {a(n)},ez and
Fa(a,p) := Z a(n)e (om3 + Bn) with «,f € R.
[n|<N

A weaker version of the conjecture can be stated as follows.

CONJECTURE 1.1. For each p € [1,00] and € > 0, there exists a constant
Cp,e > 0, such that for all N € N and all sequence a = {a(n)}, o, € (*(Z), one has
|Ball o ey < CpeN* (14 N273) [z

By proving the bound for p = 6, Bourgain [5] established Conjecture 1.1 for the
cases 1 < p < 6. Little further progress was made before Hu and Li [8] proved the
case p = 14. Lai and Ding [10] extended the range to p > 12. Recently, Hughes and
Wooley [9] proved the bound for p = 10 and hence established the conjecture for
p > 10. For more details about the discrete restriction conjecture and its relation
to KdV equations, we refer interested readers to [8], [9] and [10].

Given a set S C Z, let S(N) = SN [-N,N] and S = |S(N)|. For s €
N = {1,2,---}, we denote by Js(S(N)) the number of solutions to the system of

equations

S

Yo (@l —yl)=0
i=1

S

> (@i —yi) =0,

i=1
with x,y € S(IV)*. In order to prove Conjecture 1.1 with p = 10, Hughes and
Wooley studied in [9] the quantity J5(S(N)) for any set S. In particular, they

proved that there exists a positive constant x such that

log N 5
N N —_— .
J5(S(N)) < Nexp (Klog 1ogN>S

The bound for J5(S(N)) can be improved if additional structures are employed on
the set S. In this paper, we consider the cases of ellipsephic sets.
The term ellipsephic set was introduced by Biggs in [3] and [4]. She used

the terminology to mimic the word ellipséphique used in the French mathematical
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literature to denote integers with missing digits (for example, see [1] and [2]). Let
£ be a positive integer and A, C {0,1,--- ,£ — 1} with 2 < |A4Ay] < £ — 1. In other
words, Ay contains at least two elements of {0,1,---,¢ — 1}, but at most (£ — 1)
elements from the set. We say A is an ellipsephic set in the base ¢ if for any n € A,

n= Z a; 0" with a; € A,.

An ellipsephic set A is said to be with small digit sumsets if there exists some
constant K > 0, such that |A,4+.A4,| < K|Ay|. For example, if £ > 3 and A, = {0, 1},
then Ay + Ay € {0,1,2} and we have K = 3/2. In this paper, we will show that if
A is an ellipsephic set with small digit sumsets, then we can obtain the following

bound for J5(A(N)).

THEOREM 1.2. Let A be an ellipsephic set with A, = AN[0,£ — 1]. Write
A(N) = AN[=N, N] with A = |A(N)|. Suppose that | A + Ae| < K|Ag| for some

constant K > 0. Then there exists a positive constant k such that

log N
4 nrdlog, K 6
J5(A(N)) < K*N exp (Hlog og )A .

We recall that for a general set S(N) with S = |S(V)|, Hughes and Wooley

proved in [9, Theorem 2.1] that

log N 5

To compare the above result with Theorem 1.2, we first notice that the set S (S,
and S, respectively) in [9] plays the role of A (A, and A, respectively) in our setting.
Write 7 for both |S¢| and |A,| with 2 <7 < ¢ — 1. Then A < ploge N+l = pNlog,r,

It follows that if 4log, K + log,r < 1, i.e., K*r < ¢, then
K4N4logé KA < TK4N410gZ K+logyr _ o K(N)

Hence the bound for ellipsephic sets in Theorem 1.2 is sharper in this case. The
condition K4r < ¢ is often satisfied. For example, if £ > 3 and A, € {0, 1}, then

r =2 and K = 3/2. In this case, K*r < ¢ provided that £ > 2-(3/2)%, i.e., £ > 11.
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Using his efficient congruencing method, Wooley proved in [14] that for a gen-

eral set S,
J3(S(N)) < NS

for any € > 0. By trivially bounding the additional four variables by S*, this gives

us
J5(S(N)) < N€S™.

Let r = |S¢|. Then S < rN':". We notice that the above bound is stronger
than the N1T¢S® bound in [9, Theorem 2.1] provided that S? = o(IV), which holds

if 2log,r < 1, i.e., r?

< (. By noticing the set S (S; and S, respectively) here
plays the role of A (A, and A, respectively) in Theorem 1.2, we can also compare
the nested efficient congruencing bound N¢S7 with the K*N4!°8¢ K+€ A6 hound in

Theorem 1.2. We see that if 4log, K < log, 7, i.e., K* < r, then
K4N4 log, K _ O(TNlogL; r)’

so K*N*leee K — o(S). Hence the bound in Theorem 1.2 is sharper in this case. The
conditions K* < r and 72 < £ are often satisfied. For example, if A = {0,1,---,13},
then A+ A € {0,1,---,26}. We have K = 27/14 and r = 14. By taking ¢ > 142,
we have K* < r < (1/2,

Let ¢(z) be a polynomial with integer coefficients and deg(¢) > 3. We can
generalize Theorem 1.2 from the curve (z, 2%) to the curve (z, ¢(z)). Let J5 »(A(N))

denote the number of solutions to the system of equations

(¢(xi) — ¢(yi)) = 0

.
ol Mcn
=

(r; —yi) =0,

ﬁ
Il
-

with x,y € A(N)>. We will prove the following result.

THEOREM 1.3. Let A be an ellipsephic set with A, = AN [0, — 1]. Write
A(N) = AN[—N, N] with A = |A(N)|. Suppose that |Ag+ A¢| < K| Ag|. Then for
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any € > 0, we have

J5.6(A(N)) < KN o8 e g6,

We assume here and throughout that the implicit constant in the symbol «
may depend on ¢, s, k, and the coefficients of ¢.

Let |Ay = r with 2 < r < ¢ — 1. Similar to the remarks after Theorem
1.2, the result in Theorem 1.3 is sharper than the general bounds in [2, Theorem
3.4] and the corresponding nested efficient congruencing estimates, provided that
K* <r< (/2

We now restrict our attention to the case when £ is a prime. A subset R C

NU {0} is called a Ej-set if for any n € N, we have
(1.1) #{(a1,a2) € R* a1 +az =n} < n°

for any € > 0. Let Ry = RN [0,¢ — 1] and suppose that 2 < |Ry| < ¢ — 1. Given a

prime ¢ and a Ej-set R, a set & = EF is called a (¢, 2)*-ellipsephic set if

5—{n—2ai€i:ai€R5 foralli}.

In this setting, Biggs [4, Theorem 1.2] proved that
J5,6(E(N)) < N°E®,

where E = |£(N)|. Her bound is essentially optimal as we get J5 4(E(N)) > E°
from the diagonal solutions. She also obtained similar bounds for general E;}-sets
with ¢ > 2.

The optimal result of Biggs and Theorem 1.3 are applied to sets of different
nature. To illustrate their difference, we first notice that the set £ (£, and E,
respectively) in [4] plays the role of A (Ay and A, respectively) in our setting. In
[11], Landau proved that the set of squares satisfies the condition (1.1). Write r
for both |&| and |A,|. Since the set of squares is sparse, the set & + & could
be of size r? for sufficiently large /. On the other hand, if an ellipsephic set A

satisfies | A, + A¢| < Kr, then Theorem 1.3 provides meaningful improvement only



6 THERESA C. ANDERSON, BINGYANG HU, YU-RU LIU, AND ALAN TALMAGE

if K* < r. This condition K < r'/* is not always satisfied for large r if we take an
ellipsephic set £ with square digits since & + & could be of size 2. Thus one can
say the result of Biggs provides useful estimates for “large K,” while Theorem 1.3
is meaningful for “small K.”

We will prove Theorem 1.2 in Section 2 and Theorem 1.3 in Section 3. The key
idea of our paper is to make use of the fact that ellipsephic sets with small digit
sumsets have fewer solutions of linear equations. More precisely, we can bound
elements of the form 24 — 2A for ellipsephic sets A with small digit sumsets more
efficiently than general sets (see Lemma 2.1). We will highlight this idea with vari-

ations of Theorem 1.3 at the end of the paper.

2. Proof of Theorem 1.2

To prove Theorem 1.2, we need the following lemma.

LEMMA 2.1. Let A be an ellipsephic set with Ay = AN[0,£—1]. Write A(N) =
AN [=N,N] with A = |A(N)|. Suppose that |A;+ A¢| < K| Ag|. Then

|24 — 24| < KAN*4lec K 4,

Proof: Since A, C [0,£—1], by viewing A, as a subset of the abelian group Z4,—3 =
{2—-2¢,---,-1,0,1,--- ,2¢ — 2}, we have Ay + Ay C Z4¢—3. By the Pliinnecke-
Ruzsa inequality [12], [13], we have |24, — 24, < K*|A,|. Since A C [-N,N],
each element of A is formed of < log, N + 1 digits, each of which is in A,. Hence,
N+1

each element of 2.4 — 2.4 corresponds to at least one element of (2.4, —2.4;)'°%¢

Thus we have
|24 — 24| < |24, — 24,18 N+

S K4(10gz N+1) ‘.Af|10gz N+1

_ K4N4 log, KA.
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Remark Let A be an ellipsephic set satisfying the conditions in Lemma 2.1. For
m,n € N, using the same argument as the above proof, we can show that

\mA o TL.A‘ < Km+nN(m+n) log, KA

Let
El 4ny(a, B) == Z e (an® + pn).

neA(N)

By the orthogonal relation of the exponential function, we see that

J5(A(N)) = /11‘2 |E]1A(N)(Oé,l3)|w dodf,

where T = [0,1). Hence to prove Theorem 1, it is equivalent to show that there

exists a positive constant x such that

log N
El 0 JadB <« KN s K _ 087 ) 48,
[ 1L 0.9)[* dods < oxp (o

Proof of Theorem 1.2 Write a = 1 4(n). The tenth moment ||Eal|{§ counts the

number of solutions to the system of equations

with x,y € A(N)5. By the second equation above, we let
hi=x1—y1 +22 —Yo =73 — Y3+ T4 —ya + 5 — Y5 € 24 - 2A.

We now write ||Eal) as

Z //|Ea(a1,a2)\4e(—a2h)da2/|Ea(a1,a3)|6e(—agh)dagdal.
TJT T

he2A-2A

By the triangle inequality and Lemma 2.1, this gives
(2.1) | Eall1d < K4N41°g"«KA/ |Ea(on, 0)|* |Ba(or, as)|® doy dogdas.
T3

Let ¢;(k) denote the number of solutions of the simultaneous equations

t t

Z(J?? - yf) =k and Z(%‘ —yi) = 0.

i=1 i=1
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In the proof of [9, Theorem 2.1], Hughes and Wooley proved that

/ |Ea(er, a2)[* |Fa(as, a5)[* dardasdas < 3 ealb)es(k)
” k| <4N3

log N >A5.

< exp <Hlog10g]\[

It follows that

log N
E 10 K4N4 log, KA A5
[Eallip < exp ﬂilog log N

log N
< KAN*lose K oxp KL AS,
loglog N

O
Remark We see in Section 1 a remark after Theorem 1.2 that if K* < r = | Ay,
then the bound of Theorem 1.2 is sharper than the bound derived from the efficient
congruencing method. One can find examples to satisfy K™ < r for all m € N,
provided that r is sufficiently large. For example, for a large ¢, if A ={0,1,--- ,q}
with 2¢g < ¢, then A+ A € {0,1,---,2q}. We have

K=2¢+1)/(g+1)=2-1/(g+1) <2.
Hence by taking g =2™ — 1, we get K™ <r =q+ 1.

3. Proof of Theorem 1.3

Let ¢(x) be a polynomial with integer coefficients and deg(¢) > 3. Let

Flawy(a,8):= > e(ag(n)+ Bn).

neA(N)

By the orthogonal relation of the exponential function, we see that

J5,6(A(N)) = /1;2 ’FIA(N)(Oz,ﬂ)’m dadp.

Hence to prove Theorem 1.3, it is equivalent to show that for any € > 0, we have

|F1.A(N)(Ol,ﬁ)|10 dadﬂ < K4N410gl K+e 46,
T2
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Proof of Theorem 1.8 Write a = 1 4(n). The tenth moment ||Fal/{§ counts the

number of solutions to the system of equations

with x,y € A(N)5. Using the same argument as the one in Theorem 1.2, we get
(3.1) |Fall} < K4N41°gzKA/ |Fa(an, a0)|* |Fa(ay, as)|® dogdasdos.
T3

Let ¢;(k) counts the number of solutions of the simultaneous equations

t

S (@) - 6) =k and 3 (wi—p) =0,

i=1 i=1
with x,y € A?. In the proof of [9, Theorem 3.4], Hughes and Wooley proved that
there exists a constant C, depending on ¢, such that
/ |Fa(on, a0)|* |Fa(ay, as)|® dogdasdas < Z co(k)es(k)
B |kI<ON*

< N€AS,

It follows that
HFa|H8 < [(4]\/'4logz KANEAS < K4N4log[ K+6A6.

O

The improved bounds in Theorem 1.2 and Theorem 1.3 come from the fact

that we can bound elements of the form 2.4 — 2.4 for ellipsephic sets A with small

digit sumsets more efficiently than general sets. To highlight the idea, we consider
a variation of Theorem 1.3.

Given a set S C Z, let S(N) = SN[—N,N] and S = |S(N)|. Suppose that

|28(N) —2S8(N)| < P(S) for some function P of S. Let ¢(x) be a polynomial with

integer coefficients and deg(¢) > 3. Following the proof of Theorem 1.3, we have
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THEOREM 3.1. Let S(N) C Z N [—N,N] with |[S(N)| = S. Suppose that
|28(N) — 28(N)| < P(S) for some function P of S. Then for any ¢ > 0, we

have

Js.0(S(N)) < P(S)N<S®.

For a set S(N) C ZN[—N, N], suppose that |S(N)+S(N)| < K S for some con-
stant K (by Freiman’s theorem [6] [7], sets satisfying this condition are contained
in a generalized arithmetic progression). By the Pliinnecke-Ruzsa inequality [12],
[13], we have [2S(N) — 2S(N)| < K*S. Hence as a direct consequence of Theorem

3.1, we have

COROLLARY 3.2. Let S(N) C Z N [—N,N]| with |S(N)| = S. Suppose that
|IS(N) + S(N)| < KS for some constant K. Then for any € > 0, we have

J5 (S(N)) < K*N<S°.
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