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Abstract

Reliable automatic hate speech (HS) detection
systems must adapt to the in-flow of diverse
new data to curtail hate speech. However, hate
speech detection systems commonly lack gener-
alizability in identifying hate speech dissimilar
to data used in training, impeding their robust-
ness in real-world deployments. In this work,
we propose a hate speech generalization frame-
work that leverages emotion knowledge in a
multitask architecture to improve the general-
izability of hate speech detection in a cross-
domain setting. We investigate emotion cor-
pora with varying emotion categorical scopes
to determine the best corpus scope for supply-
ing emotion knowledge to foster generalized
hate speech detection. We further assess the re-
lationship between using pretrained Transform-
ers models adapted for hate speech and its ef-
fect on our emotion-enriched hate speech gener-
alization model. We perform extensive experi-
ments on six publicly available datasets sourced
from different online domains and show that
our emotion-enriched HS detection generaliza-
tion method demonstrates consistent general-
ization improvement in cross-domain evalu-
ation, increasing generalization performance
up to 18.1% and average cross-domain perfor-
mance up to 8.5%, according to the F1 mea-
sure!.

1 Introduction

Hate speech (HS) possesses justified regulatory
grounds since it inflicts harm toward a targeted indi-
vidual or group based on perceived characteristics
(Gelber, 2021). The social obstruction imposed by
the pervasive online HS thus ignites counteraction
from the natural language processing (NLP) com-
munity to create machine learning-based systems
to automate the HS identification process (Poletto
et al., 2021; Alkomah and Ma, 2022). Despite ef-
forts dedicated to the goal in the past decade, HS

!Code and resources are available at https://github.
com/sy-hong/ek-hs-generalizability

detection remains a challenging task to conquer
(Fortuna et al., 2022; Wiegand et al., 2021). No-
tably, the lack of generalizability is a prevalent
issue with current HS models (Yin and Zubiaga,
2021).

HS models that suffer from generalizability show
a discrepancy in their performance across HS
datasets (Wiegand et al., 2019). Such models are
competitive in detecting HS on the data from the
same source as the data they are trained with but
show a significant performance gap when detect-
ing HS from varied HS sources. The mainstream
approach addressing the issue utilizes knowledge
from the HS domain to improve HS generalization.
Observations on the semantic distribution of the
data (e.g., implicit or explicit HS) serve as the ba-
sis for counteractive augmentation, synthetic data
generative, and sampling techniques to bridge lin-
guistic gaps observed in HS (Ilan and Vilenchik,
2022; Arango et al., 2022; Wullach et al., 2021;
Ludwig et al., 2022). Furthermore, datasets may
be re-annotated, combined, or created to meet the
generalization task by topics (Yoder et al., 2022;
Nejadgholi et al., 2022; Toraman et al., 2022).

In real-world applications, howeyver, it is unreal-
istic to conduct retrospective HS analysis with the
constant inflow of new and changing data. Further,
HS is the byproduct of the evolving social context,
culture, and linguistic interpretation (Hilte et al.,
2023), which elevates the challenge of using static
criteria in assessing hate speech. HS models that
cannot demonstrate robust generalizability cannot
reliably carry out their high-stake social responsi-
bility in safeguarding vulnerable groups from the
multifarious HS reflected in diverse online plat-
forms. The lack of generalizability of HS models
can even unintentionally exacerbate the prolifera-
tion of online HS by allowing out-of-domain hate-
ful speech to evade its consequences while curtail-
ing free speech when sanctioning unhateful speech
(Bianchi et al., 2022).



Dataset Original Size Domain

Founta (Founta et al., 2018) 99,799 Twitter

Kaggle (Peller, 2014) 312,737 Wikipedia

Kumar (Kumar et al., 2018) 15,000 Facebook

Offensive Reddit (Qian et al., 2019) 5,020 Reddit

Razavi (Razavi et al., 2010) 1,525 Natural Semantic Modules, Usenet
Waseem and Hovy (Waseem and Hovy, 2016) 16,907 Twitter

GoEmotions (Demszky et al., 2020) 58,009 Reddit

Table 1: Datasets used in the cross-domain cross-dataset generalization evaluation. The GoEmotions (Demszky
et al., 2020) dataset supplies the auxiliary emotion knowledge in our multitask HS generalization framework.

In this work, we utilize emotion knowledge to
support the generalization of HS detection. We
find that utilizing emotion knowledge in address-
ing HS, which exhibits a greater relative concep-
tual variability, helps to mitigate the variance of
HS language that challenges HS generalization.
Specifically, we adopt the GoEmotions dataset
(Demszky et al., 2020) to provide emotion infor-
mation and investigate the effect of leveraging two
variants of emotion corpora — the dataset’s origi-
nal release with 28 emotions and its Ekman emo-
tion corpus (Ekman, 1971) equivalent — in improv-
ing the HS detection’s generalizability in a multi-
task framework. We utilize BERT (Devlin et al.,
2019) and fBERT (Sarkar et al., 2021) as the base
Transformers models to evaluate their effective-
ness in enhancing emotion-driven HS generaliz-
ability given their varying pre-trained corpora re-
latedness to HS. We assess the proposed model’s
performance in improving the generalizability of
six popular benchmark datasets from different do-
mains with the cross-dataset evaluation method.
Our emotion-enriched HS detection generalization
method demonstrates consistent cross-domain gen-
eralization binary F1 performance, increasing gen-
eralization performance up to 18.1% and average
cross-domain up to 8.5%. Our main contributions
are summarized below:

* We propose an emotion-integrated multi-
task HS generalization framework that uti-
lizes emotion knowledge to strengthen cross-
domain HS generalization.

* We study how the categorical scope of the
emotion corpora — the 28-class GoEmotions
(Demszky et al., 2020) corpus and the six-
class Ekman emotion (Ekman, 1971) corpus
— affects the generalizability of HS detection
with our method.

* We evaluate the effect of the adopted Trans-

formers base models’, BERT and fBERT,
varying adaptiveness to the HS domain on our
cross-domain HS generalization framework.

* We perform extensive evaluations in cross-
domain settings on six publicly available
benchmark datasets with varied HS forms to
show our model improves cross-domain HS
generalization.

2 Related Works

2.1 Generalization of HS Detection

In studies of HS detection’s generalization, some
works aim to identify sources behind the lack of
performance generalization. Fortuna et al. (2020)
analyze the homogeneity of applied categories in
popular public HS datasets and empirically support
the lack of compatibility among the cross-dataset
performance. They suggest an underlying reason
is the lack of consensus on HS’s subjective defi-
nitional concept, leading to varied criteria for HS
categorization. Fortuna et al. (2021) reason that
the low generalization of HS detectors roots to the
imbalance of explicit and implicit distributions of
HS across datasets and encourage HS dataset cre-
ators to identify precise categorization (e.g., sex-
ism, racism) to endow levels of granularity in HS.
Arango et al. (2022) argue for more transparency
behind the user distribution of existing HS datasets
to prevent spurious high performance of HS classi-
fiers overfitted to limited users in data production.
They propose to improve cross-dataset generaliza-
tion by adopting countering sampling techniques
addressing user overfitting.

The dominant method in addressing the gener-
alization of HS detection considers analyzing un-
derlying semantic and topical traits of HS datasets.
Bourgeade et al. (2023) sample from six HS cor-
pora and present a re-annotated dataset version
based on topic-generic and topic-specific levels.



GE GEgy,

Anger Anger, annoyance, disapproval

Disgust  Disgust

Fear Fear, nervousness

Joy Admiration, amusement, approval,
caring, desire, excitement,
gratitude, joy, love,
optimism, pride, relief

Sadness  Sadness, disappointment,
embarrassment, grief, remorse

Surprise  Surprise, realization,

confusion, curiosity

Table 2: Categorical emotion conversion between the
version of the GoEmotions (Demszky et al., 2020)
dataset adopted with the Ekman G E,;, (Ekman, 1971)
corpus and its original GE, corpus.

They find that adopting a mixture of topic-generic
and topic-specific tweets in the model fine-tuning
step enhances the generalization of HS classifiers.
Nejadgholi et al. (2022) show the weakness of
HS classifiers at generalizing implicit racism from
topic-centric HS datasets and propose a model
based on concept activation vector to improve the
interpretability of the model in performing general-
ization. Ludwig et al. (2022) adopt unsupervised
domain adaptation to improve HS models’ abil-
ity to perform generalization across HS targeting
toward a subset of categorized target groups en-
compassed by the HateXExplain dataset (Mathew
et al., 2021). Wullach et al. (2021) adopt a GPT-
based language model to generate synthetic HS via
sequence generation using existing HS datasets as
an augmentation technique to improve the quality
of HS generalization.

2.2 Multitask HS Detection With Emotions

Multitask learning is a training methodology that
has recently gained popularity in NLP due to its
power to integrate knowledge from related tasks in
modeling a target task (Zhang et al., 2023; Turcan
et al., 2021). In the context of this study, emotion
classification is the auxiliary task modeled jointly
with the main task of binary hate speech classifi-
cation to improve hate speech detection general-
ization leveraging the integrated emotion knowl-
edge. Present works that consider emotion fea-
tures in related studies focus more on the abusive
language detection domain without considering
the model’s generalizability. Rajamanickam et al.
(2020) investigate abusive language detection by

incorporating emotion detection into MLP-based
and BiLSTM-based networks with a hard-sharing
multitask framework. Samghabadi et al. (2019)
employ pre-trained DeepEmoji to assign textual
data with relevant emotions in capturing offensive
language. Plaza-del-Arco et al. (2021) and Plaza-
del Arco et al. (2022) incorporated sentiment in-
formation in addressing HS domain-related tasks,
offensive and abusive language detections, with
emotion information. In the HS domain, Chiril
et al. (2022) adopt emotion lexicons such as Sentic-
Net and EmoSenticNet to detect hate speech with
multi-targets from topic-generic datasets and con-
clude that the utilization of affective knowledge
enhances hate speech detection categorized by tar-
gets and topics. Mnassri et al. (2023) perform hate
and offensive language detection using emotion
information in a multitask setting involving cross-
lingual settings.

Diverging from previous works, we utilize emo-
tion knowledge with varying categorical scopes to
uplift cross-domain generalizability. We further ex-
amine Transformers models’ relative domain adapt-
ability to the HS in cross-domain generalizability.

3 Methodology

3.1 Experimental Datasets

We adopted the six datasets and the processing
procedures used by Ilan and Vilenchik (2022),
a recent hate speech generalization work, to as-
sess our model’s ability to improve hate speech
detection generalizability in a cross-domain set-
ting. These datasets are: Founta (Founta et al.,
2018), Kaggle (Peller, 2014), Kumar (Kumar et al.,
2018), Waseem and Hovy (W&H) (Waseem and
Hovy, 2016), Offensive Reddit (Qian et al., 2019),
and Razavi (Razavi et al., 2010). For larger
datasets such as Founta, Kaggle, and Kumar, posi-
tive and negative HS samples were randomly sam-
pled for 5,000 entries, totaling 10,000 samples per
dataset. Negative samples in smaller datasets such
as Razavi and W&H were downsampled to the
sizes of positive samples, 482 and 795, respec-
tively, to control the source of variance in gener-
alization study (Swamy et al., 2019). For the Of-
fensive Reddit dataset, the 3,230 positive samples
were balanced with 3,230 negative samples from
Washam (2019). User mentions, hashtags, URLs,
and emojis were removed for text preprocessing.
Table 1 shows an overview of the datasets and their
respective domains used in our cross-domain HS
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Figure 1: Abstract architecture for the emotion

knowledge-enriched HS generalization framework.

generalizability study.

We use two variants of the GoEmotions dataset
(Demszky et al., 2020) to supply the emotion infor-
mation. The first variant is the original version of
the dataset with 27 emotions plus the neutral class,
which we would refer to as GE, in the follow-
ing sections. GE,, serves in our study by provid-
ing fine-grained categorical emotion information
in assessing the generalizability of our emotion-
enriched hate speech detection method. To contrast
the detailed emotion categories supplied by G E,,,
we convert the 28 emotion classes in G Ey, into its
Ekman equivalent with six emotions as detailed in
Demszky et al. (2020). We refer to the GoEmotions
dataset in the form of the traditional six-class emo-
tion corpus as G E,. Table 2 provides the emotion
categorical conversion between G Ey, and GEy.

3.2 Emotion-enriched Hate Speech
Generalization

We implement a multitask architecture as illus-
trated in Figure 1 given a set of disjoint tasks
Q = {Qps,Q}, where Qp, denotes the main
task of hate speech detection and €2, denotes the
auxiliary task of emotion analysis. We let (2
and €. share the same Transformers-based en-
coding layers to promote direct knowledge trans-
fer. This hard parameter-sharing choice prevents
overfitting and overparameterization (Ruder, 2017)
(Liu et al., 2019). The respective dataset Dgq for

each task is D}g:s for Qj,, and D, for €., where
Dq = {(XS),yQZ))}\fL. The input and target out-
put are denoted by XS) and yg), and N is the total
data entry for each task.

Given Dq, we first tokenize w € Dq into their
subword representations, s,,. We obtain the em-
bedding vector v(s,,) via an embedding layer that
transforms [e1 (5w ), €2(5w); -+ €4(5w)]” into their
vectorial representation, where d is the dimension
of the embedding space and ¢;(s,,) denotes the *"
element of the embedding vector. We acquire the
hidden state hg) as follows:

hg) = Encoder(v(sw)(i)’fg) M

where 55 denotes the parameters for the encoder.
We use BERT (Devlin et al., 2019) and fBERT
(Sarkar et al., 2021) for encoding, where BERT is
trained on a general corpus, and fBERT is trained
on an offensive language corpus based on the OLID
dataset (Zampieri et al., 2019). We promote the
joint knowledge exchange between €2, and €2 as
their parameters are shared in the encoder unit. In
the process, €2, functions as a regularizer, introduc-
ing an inductive bias as the two tasks share more
general representations that make the model favors
prediction g),(g that explains both tasks well.

Both tasks €2, and §2. continue to share parame-
ters at the decoding stage but are independent with
separate MLP layers for each task. For each task,

()

the predicted output ,” is obtained as follows:

gjg) = Decoder(hg), 55) 2)

where 55 denotes the parameters of the decoder
for €.

For single-class prediction when modeling €2,
and (), using the GE,; corpus, we minimize the
negative log-likelihood (NLL) loss:

n

Lyrr(Q) = — > (5 10935+
i=1 3)

(1= 5 D)iog(1 — §))

@ denotes the ground truth label, and

where y¢,
gjg) denotes the predicted label for 2. For making
predictions using the multi-labeled GEy, corpus,

we apply the binary cross-entropy (BCE) loss:

N
1 i i
Locp(Q) = = & Y 6 log(p(ye))+ @
i=1

(1 - y)log(1 — p(y))



Train/Test Founta Kaggle Kumar Off.Red. Razavi W&H CD Avg
Founta 0922  0.800 0.470 0.734 0.672 0543 0.669
Founta + GE,, 0926 0.809 = 0.556 0.739 0.686  0.553 0.697
Founta + GE¢g 0.925 0.805 ~ 0.550 0.736 0.679  0.548 0.683
Kaggle 0.833 0.902  0.581 0.718 0.741 0.632 0.701
Kaggle + GE4o 0.845 0.911 0.592 0.725 0.767  0.677 0.721
Kaggle + GEg 0.839 0916 0.616 0.742 0.777 ~ 0.701  0.735
Kumar 0729  0.645  0.692 0.640 0.669  0.644 0.665
Kumar + GE, 0.764  0.739  0.703 0.670 0.712  0.663 0.709
Kumar + GEg, 0.779 0.746  0.711 0.680 0.741  0.664 0.722
Off. Red. 0.671 0.638  0.530 0.931 0.627 0618 0.617
Off. Red. + GE,y, = 0.727 0.694  0.558 0.932 0.657  0.650 0.657
Off. Red. + GE,,  0.688 0.678 0556 0931 0.651  0.659 0.646
Razavi 0.798 0.829  0.566 0.767 0.866  0.631 0.718
Razavi + GE,, 0.834 0.836 = 0.635 0.773 0.890 0.652 0.746
Razavi + GEg 0.844  0.855 = 0.663 0.770 0.871  0.653 0.757
W&H 0.535 0.500  0.518 0.659 0.545 0.896  0.555
W&H + GEg, 0.597 0.529 ~ 0.570 0.675 0.557  0.899 0.583
W&H + GEgp, 0.603 0.541 0.555 0.684 0.584  0.898 0.591

Table 3: BERT-based in-domain and cross-domain HS generalization performance

where N is the training entry count, yg) denotes

the ground truth label and p(yg)) denotes the pre-
diction probability for true positive prediction for
Q.

4 Cross-Domain Generalization

4.1 Experimental Setup and Implementation
Details

We compare the performance of our approach with
the uncased base version of BERT and fBERT
fine-tuned only with HS datasets as baselines. For
our emotion-integrated HS generalization model,
we adopt BERT and fBERT as the base models
as shown in Table 3 and Table 4, respectively.
Emotion-integrated models are noted with their
respective emotion corpus, +GFEg, or +G Eer. We
perform training on one dataset and evaluation on
all datasets’ separate testing sets. This includes
in-dataset evaluation as we perform training and
testing on the same dataset, which also assesses
the in-domain generalizability. We assess cross-
domain generalizability performance between dif-
ferent training and test sets not from the same do-
main. We further analyze the overall generalizabil-
ity performance by providing the average cross-
domain binary F1 for individual experiments as
shown in the last column (CD Avg) of Table 3 and
Table 4.

All models were implemented using PyTorch

(Paszke et al., 2019), and all experiments were con-
ducted on NVIDIA Quadro RTX 4000. We trained
all models with 5 epochs with early stopping as we
often observed that the best validation performance
is obtained in the first three epochs. We employed
a batch size of § and an Adam optimizer with 1E-4
as the learning rate. The average binary F1 per-
formance of three separate trails using seeds {0,
1, 3} are reported. The best in-domain and cross-
domain average scores are in bold. Results that
show improvement from baselines are highlighted
in gradients of purple for in-domain settings and
blue for cross-domain settings based on their rela-
tive strength of improvement.

4.2 Results

Table 3 shows the performance of our evalua-
tion using BERT as the base model. From the
baseline model, we observe a general decline
in performance when models are evaluated in a
cross-domain setting compared to an in-domain
setting, which supports our motivation to im-
prove cross-domain generalizability. The dispar-
ity in performance is the greatest for the Offen-
sive Reddit, W&H, and Kaggle datasets, which
show a cross-domain performance decline of 33.7%
(% x 100), 22.4%, and 22.2%, respec-
tively, when average cross-domain performance
is compared with the respective in-domain perfor-



Train/Test Founta Kaggle Kumar Off.Red. Razavi W&H CD Avg
Founta 0929  0.7961 0.377 0.743 0.600 0526 0.629
Founta + GE,, 0930 0.805  0.397 0.753 0.609  0.560 0.625
Founta + GE¢g 0.929 0.841 0.411 0.751 0.662 0.576  0.666
Kaggle 0.848 0.922  0.596 0.745 0765 0756 0.742
Kaggle + GE4o 0.854 0925  0.609 0.754 0.775  0.769 0.752
Kaggle + GEg 0.861 0926 0.618 0.757 0.785  0.783  0.761
Kumar 0.848 0.596  0.715 0.596 0765 0756 0.712
Kumar + GE, 0.868 0.619  0.721 0.611 0.797  0.787 0.736
Kumar + GEg, 0.857 0.602  0.733 0.600 0.797  0.787 0.729
Off. Red. 0.644  0.631 0.537 0.936 0.621 0.659 0.618
Off. Red. + GE,  0.682  0.688  0.550 0.933 0.665 0.683 0.653
Off. Red. + GE;,  0.652 0.645  0.553 0.938 0.665 0.700 0.643
Razavi 0.845 0.871 0.642 0.768 0.881 0.790 0.783
Razavi + GE,, 0.877 0.879  0.643 0.771 0.878 0.791  0.792
Razavi + GEg 0.859 0.872  0.644 0.769 0.885 0.795 0.788
W&H 0.607 0.605  0.505 0.729 0.526  0.894 0.526
W&H + GEg, 0.663 0.634 0574 0.742 0.607 0.896 0.638
W&H + GEgp, 0.630  0.630  0.577 0.753 0.603  0.903 0.640

Table 4: fBERT-based in-domain and cross-domain HS generalization performance

mance for each evaluation dataset.

When we include emotion knowledge using the
original GoEmotions dataset with its GE¢, corpus,
the performance of in-domain and cross-domain

generalization improves. The greatest in-domain
0.59740.809 0.5354-0.896

improvement (14.5% = 2 s T ETE X

100) is with the W&H dataset. Addian the emotion
knowledge from the GE|, corpus leads to an av-
erage increase in cross-domain performance from
2.9% (% x 100) to 6.6% (% X
100) observed in the Kaggle and Kumar datasets,
respectively. Experiments that exhibit higher aver-
age out-domain improvement used Kumar (16.6%),
Offensive Reddit (16.6%), and W&H (14.9%) as
training sets. The greatest generalizability uplifts
for individual cross-domain experiments are shown
in Founta — Kumar (i.e., Founta dataset is the
training set for the model that generalizes on the
testing set from the Kumar dataset), Kumar — Kag-
¢le, and Razavi — Kumar experiments, resulting
in generalizability enhancement of 18.1%, 14.5%,
and 12.2%, respectively.

When we adopt the GoEmotions dataset based
on the GE,;, corpus to supply emotion knowledge
in our HS generalization model, both in-domain
and cross-domain performances also show improve-
ments. The in-domain performance increases up to
4.9% with the maximum uplifts corresponding to
the W&H datasets. In cross-domain experiments,

the average increase in binary F1 ranges from 2.1%
to 8.5% with the least and best cross-domain per-
formance average corresponding to experimental
settings where Founta and Kumar datasets are used
as training sets. Integrating emotion knowledge
via the GE,;, corpus also shows competitive cross-
domain generalizability when W&H (16.4%) and
Kaggle (14.8%) datasets. The greatest generaliz-
ability uplifts for individual cross-domain exper-
iments are shown in Razavi — Kumar (117.1%),
Kumar — Kaggle (115.7%), and Kaggle —+ W&H
(110.9%) experiments. Experiments Razavi —
Kumar and Kumar — Kaggle are also the top-
performance individual cross-domain experiments
using the GE,, corpus.

Table 4 shows the performance of our evalu-
ation when we used fBERT as the base model.
We also observe a general decline in performance
when models are evaluated in cross-domain set-
tings compared to in-domain settings with the base-
line model’s performance. The same three datasets
when using the BERT as the baseline show the
greatest difference in in-domain and cross-domain,
resulting in a performance decline of 33.9%, 19.6%,
and 16.0% for the Offensive Reddit, Kaggle, and
W&H datasets, respectively.

Using the GEy, corpus to induce emotion knowl-
edge in our model, we consistently observe cross-
domain generalizability enhancement but not al-
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Figure 2: a. Average binary F1 cross-domain general-
izability performance of the baseline average, GE,-
based model average, and G E.;-based model average.
b. Percentage uplifts compared to the baseline average
of the G E4,-based model average and and G E,;,-based
model average.

ways with in-domain experiments. For the Offen-
sive Reddit and Razavi datasets, the in-domain per-
formance decreases by 0.003 in binary F1. The
greatest in-domain improvement (13.8%) is ob-
served from the W&H dataset. The generalizabil-
ity improvement in average cross-domain perfor-
mance ranges from 1.2% to 8.1%. The minimum
and maximum average cross-domain performances
correspond to Razavi and W&H datasets, respec-
tively. Emotion knowledge provided by the G E,
corpus also distinctly helps average cross-domain
generalizability performance when Offensive Red-
dit (15.7%) and Kumar (13.3%) are used as the
training sets. The individual cross-domain gener-
alizbility enhancement is most pronounced with
the W&H — Razavi (115.4%), W&H — Kumar
(113.6%), and W&H — Founta (19.1%).

When we adopt the G E; corpus with fBERT
as the base model in our emotion-enriched frame-
work, we observe performance improvement in
both in-domain and cross-domain settings. The
greatest performance in-domain uplift is 3.5% with
the Founta dataset. The average increase in bi-
nary F1 ranges from 0.6% to 8.3% in cross-domain
settings with the least and best generalizability cor-
responding to the Razavi and W&H training sets.
Strong average cross-domain generalizability en-
hancement also manifests in experiments where
Founta (15.9%) and Offensive Reddit (14.0%)
datasets are the training sets. The greatest gen-
eralizability uplifts for individual cross-domain ex-
periments are shown in W&H — Razavi (114.6%),
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Figure 3: a. Average binary F1 cross-domain generaliz-
ability performance of the baseline average and emotion-
enriched model average of the BERT-based and fBERT-
based models. b. Percentage uplifts compared to the
baseline average of the BERT-based model average and
fBERT-based model average.

W&H — Kumar (114.1%), and Founta — Razavi
(110.3%). Experiments W&H — Razavi and W&H
— Kumar are also the top-performance individual
cross-domain experiments using the G Ey, corpus.

S Analysis and Discussions

In this section, we study the factors in our frame-
work that affect cross-domain generalizability
based on the experimental results.

5.1 Emotion Corpora and Cross-Domain HS
Generalizability

Observation 1: Adopting emotion corpora with
fewer categorical scopes, such as the GE,., gen-
erally results in more consistent cross-domain HS
generalizability improvement.

To analyze the relationship between the categori-
cal scope of emotion corpus and cross-domain gen-
eralization, we visualize the average performance
of the cross-domain generalization of two variants
of our emotion-enriched models eliminating the
distinction of the employed base models. We take
the average performance of the cross-domain gener-
alizability of BERT-based and fBERT-based base-
lines and emotion-enriched models separated by
the use of different emotion corpora. The average
performance in binary F1 of the baseline, GEy,-
based model, and GE.;-based model are shown
in Figure 2a. Figure 2b shows the percentage of
cross-domain improvement relative to the baseline
average.

We observe that the emotion-enriched model



where the emotion knowledge is introduced by the
G E.;, exhibits better performance in all cases ex-
cept the experiment where the Offensive Reddit
dataset is used as the training set. The highest
generalizability improvement by an increase in per-
centage employed W&H as the training set, result-
ing in an improvement of 7.4%. We note that the
W&H dataset contains relatively the shortest av-
erage sentence length, and the HS samples show
a direct HS style. These characteristics are also
exhibited in experiments when the Founta dataset
is employed as the training set, which shows the
second highest generalizability improvement by
percentage (15.1%). Thus, the emotion knowledge
supplied by the G E,, corpus is generally the better
choice for improving cross-domain generalizability
when a model is trained with short, explicit HS
and is expected to generalize to HS that could be
longer in length where the HS style might also be
more implicit (e.g., Razavi, Kumar). For the case
where the Offensive Reddit dataset is employed
as the training set, we find that the HS samples in
this dataset gear toward explicit sexism, which is
not perceived in other datasets. In this case, the
emotion knowledge supplied by the 28-class emo-
tion corpus G Ey, helps to mitigate the semantic
variance across contrasting HS topics more than
the six-class G E, corpus.

5.2 Domain Adaptability of Base Models and
Cross-Domain HS Generalizability

Observation 2: The strength cross-generalizability
enhancement is more pronounced with our emotion-
enriched model when adopting a base model that is
not adapted to the HS domain (e.g., BERT). How-
ever, adopting a base model that is adapted to the
HS domain (e.g., fBERT) using our framework gen-
erally results in the highest cross-domain perfor-
mance.

To analyze the effect of the adopted base models’
domain adaptability on cross-domain generaliza-
tion, we visualize our framework’s performance
on cross-domain generalization using BERT-based
and fBERT-based models eliminating the distinc-
tion of emotion corpora. We take the average per-
formance of the cross-domain generalizability av-
erage of the variant of our model that uses the
GEy, corpus and the variant of our model that
uses the GE,, for each base model. The average
performance in binary F1 for the BERT-based and
fBERT-based model are shown in Figure 3a. Figure
3b shows the percentage of cross-domain improve-

ment relative to the baseline average.

From Figure 3, we note that adopting a non-
HS domain-adapted model as the base model like
BERT with our framework results in the great-
est percentage of generalizability improvement in
most cases. For the two cases where BERT-based
emotion-enriched models show a relatively weaker
generalizability uplift than fBERT-based models,
we note that the training sets, Founta and W&H
datasets, are also the only two datasets that are
sourced from Twitter.

Figure 3a supports that adopting a base model
like fBERT that is adapted to the HS domain leads
to higher performance despite the effect of adding
emotion knowledge in uplifting cross-domain gen-
eralizability might not be as strong as adopting
a non-HS domain adapted base model. For ex-
periments where training sets are Kaggle, Kumar,
Razavi, and W&H, our emotion-enriched model
that utilizes fBERT, which is pre-trained on a
dataset that is in the HS domain, shows the best
performance.

From Figure 3b, the most distinct improvement
is in cross-domain settings with Kumar (17.6%),
Offensive Reddit (15.7%), and W&H (15.6%)
datasets as the training sets. As mentioned, the
Offensive Reddit dataset exhibits a topical con-
trast to other datasets as its HS has a sexism fo-
cus. Hence, adopting a general base model with
emotional knowledge helps to reduce the semantic
variance across contrasting HS topics. We observe
that the Kumar and W&H datasets both exhibit
relatively indirect styles of HS. This suggests that
incorporating emotion knowledge helps to bridge
the gap in allowing an HS model trained with a
general non-HS domain adopted model on implicit
HS to generalize on HS that are relatively more
direct (e.g. Founta, Kaggle).

6 Conclusion

In this work, we investigated cross-domain HS
generalizability integrating emotion analysis. We
presented a multitask HS generalizability frame-
work that utilizes emotion knowledge to enhance
cross-domain HS generalizability. We employed
the 28-class GoEmotions corpus (Demszky et al.,
2020) and the traditional six-class Ekman corpus
(Ekman, 1971) to examine their effects on improv-
ing cross-domain HS generalizability. We found
that incorporating emotion knowledge using the
Ekman corpus leads to more consistent generaliz-
ability performance. We also inspected the role of



HS domain adaptiveness in base models on cross-
domain HS generalizability and noted that the in-
troduction of emotion knowledge has a relatively
stronger strength in bridging the cross-domain gen-
eralization gap of pre-trained models that are not
adapted to the HS domain. Results support that our
emotion-enriched models outperform baselines in
all cross-domain settings.

Limitations

We acknowledge limitations in preserving the con-
ceptual granularity exhibited in public HS datasets
by adopting their varied categorical labels (i.e.
toxic, abusive, sexism) in a binary form. Further-
more, the analyses presented in this work are based
on the chosen datasets corresponding to their do-
main(s) only. Therefore, conclusions drawn from
the limited quantity of datasets from restricted do-
mains are not intended to be comprehensive. We
also noted that more potential insights regarding
HS generalizability may be drawn by comparing
the results from evaluations against more state-of-
the-art baselines with varied domain adaptiveness
to specific aspects of HS (i.e. implicitness, sar-
casm). This is left to future works.
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