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Abstract

In this paper, we tackle a significant challenge in PCA: heterogeneity. When data are
collected from different sources with heterogeneous trends while still sharing some congruency,
it is critical to extract shared knowledge while retaining the unique features of each source.
To this end, we propose personalized PCA (PerPCA), which uses mutually orthogonal global
and local principal components to encode both unique and shared features. We show that,
under mild conditions, both unique and shared features can be identified and recovered by
a constrained optimization problem, even if the covariance matrices are immensely different.
Also, we design a fully federated algorithm inspired by distributed Stiefel gradient descent
to solve the problem. The algorithm introduces a new group of operations called generalized
retractions to handle orthogonality constraints, and only requires global PCs to be shared
across sources. We prove the linear convergence of the algorithm under suitable assumptions.
Comprehensive numerical experiments highlight PerPCA’s superior performance in feature
extraction and prediction from heterogeneous datasets. As a systematic approach to decouple
shared and unique features from heterogeneous datasets, PerPCA finds applications in several
tasks, including video segmentation, topic extraction, and feature clustering.

Keywords: Principal component analysis, personalization, heterogeneity.

1. Introduction

Principal component analysis (PCA) (F.R.S., 1901; Hotelling, 1933) unravels data features
by finding a few principal components (PCs) from high dimensional data that explain the
largest portion of the variance. Due to its effective feature learning and dimension reduction
capability, PCA has seen immense success across various domains, including image processing
(Deledalle et al., 2011; Jégou and Chum, 2012), time series modeling (Yang and Shahabi,
2004; Aguilera et al., 1999), bio-information (Reich et al., 2008; Novembre and Stephens,
2008), condition monitoring (Pozo et al., 2018; Li et al., 2018b), and many more.

However, since all data are equally weighted in standard PCA, an underlying assumption
is that these data come from homogeneous distributions. This assumption, however, is often
challenged in various scenarios, including the Internet of Things (IoT), where data do not
come from a single source but a large number of distinct edge devices (or clients). The edge
devices, from smartphones to connected vehicles, usually operate in different environments
and conditions (Kontar et al., 2017, 2018). The data collected by edge devices are also
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subject to changes in external conditions (Kontar et al., 2021) or user preferences (Kulkarni
et al., 2020). Thus, it is common for the datasets to contain significant heterogeneity and
even conflicting trends while sharing some congruity.

Standard PCA often does not work well when data homogeneity is not guaranteed (Oba
et al., 2007; Hong et al., 2021). Few works have endeavored to extend the PCA philosophy
to incorporate data heterogeneity. For example, Heterogeneous PCA (Oba et al., 2007)
considers the case where data from different sources have different noise levels. They propose
a reweighting technique to alleviate noise heteroscedasticity. Such an approach is shown
to be useful in identifying PCs from heteroscedastic noises. However, simply treating the
discrepancy among datasets as different levels of noise might be inadequate to understand
the intrinsic features within the data and insufficient to encode both unique and shared
features across devices and clients. As such, personalized solutions are needed.

To transmute the heterogeneity from a bane into a blessing, in this work, we propose
personalized PCA (PerPCA) that fits personalized features on each client in addition to
common features shared by all clients. In our model, data are driven by several mutually
orthogonal global (shared) and local (personalized) PCs. The global PCs model the common
patterns among different datasets, while the local PCs model the idiosyncratic features of
one specific dataset. Global and local PCs work together to fit the observations. Figure 1 is
an illustration of using homogeneous PCA and personalized PCA to fit two heterogeneous
datasets. As shown in the figure, simply pooling together all data across datasets using
homogeneous PCA will fail to encode the unique features within each dataset, and the
horizontal PC is a misleading one that is not representative of any source. In contrast,
personalized PCA aims at decoupling unique and shared features so that heterogeneity
across data sources is accounted for.

There are several benefits to personalization. Firstly, employing several local PCs to fit
individual data patterns enables us to describe immensely heterogeneous trends in datasets
accurately. Also, global PCs shared by all data can be estimated more precisely without
being affected by disagreeing drifts from different sources. What’s more, disentangling local
features from global ones provides a systematic and interpretable approach to analyzing the
heterogeneity structure of datasets and leveraging this knowledge for better analytics. These
include: (i) Improving classification and clustering: instead of using raw data, operating
on unique features may yield better performance as differences become more explicit when
removing shared features, (ii) Transforming personalized, predictive analytics: Through
selectively transferring common knowledge from one data source to another, we can reduce
the negative transfer of knowledge and enhance personalized predictive and prescriptive
models, (iii) Anomaly Detection: Through monitoring changes in the unique features, we
envision that anomalies can be better and faster detected.

To enable personalized PCA, we propose an optimization framework to provably recover
both global and local PCs from noisy observations. The objective is to minimize the
empirical reconstruction error under orthogonality constraints. The formulation stands on
solid theoretical ground: We prove that, under an identifiability condition, the optimal
solution can recover the true global and local PCs.

Not only can the PCs be solved, but they can also be solved efficiently. We design an
algorithm based on Stiefel manifold gradient descent that can be proved to converge linearly
into the global optimum under mild conditions. The algorithm relies on a new operation



PERsoNALIZED PCA

—— global component 1 —— global component
— global component 2 dataset 1's local component
—— dataset 2's local component

c
|

-1.0

~1.0
2 s 2 s

Homogeneous PCA Personalized PCA

Figure 1: Comparison between homogeneous PCA (standard PCA) and personalized PCA
(PerPCA). There are two datasets, one colored blue and the other pink. Dots
represent the observations. Observations from one dataset are on a 2-dimensional
plane. The black arrows represent the global PCs learned, and the colored arrows
represent learned local PCs. Homogeneous PCA is a standard PCA on the pooled
dataset. We will revisit the example in Section 7.

called generalized retraction to handle the orthogonality constraints. It is worth noting that
our algorithm is designed in a federated manner, as the need to share raw data or place all
data in a central location is circumvented, and only the updates of global PCs need to be
shared across clients. Compared with centralized PCA, where all datasets are uploaded to
a central server where PCA is learned on the aggregated dataset, our algorithm reaps the
benefits of distributed and federated analytics. Those include communication, cost, storage,
and privacy benefits (Kontar et al., 2021). We will show the advantages of PerPCA over
existing distributed PCA methods in Section 2.1.

Furthermore, PerPCA proposes a novel provable paradigm of decoupling shared and
unique features. Its applications go beyond simple data dimension reduction. We show
that PerPCA has remarkable performance in video segmentation and topic extraction tasks.
Hence PerPCA opens up new possibilities for broader applications.

Moving forward, we will use client, edge device, data source, and local dataset interchange-
ably to represent the entities of interest. Here, entities are broadly defined, encompassing
various levels of granularity. For instance, we can extract shared and unique features across
dispersed datasets, output classes within a dataset, or even among observations (such as
images) within a single dataset.

1.1 Main contributions

We summarize our contributions in the following:
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e Modeling: We propose a personalized PCA model that learns both global and local
features from distributed datasets. These features can be recovered from observations
by solving a nonconvex optimization problem designed to minimize reconstruction
error.

e Consistency: We find that there exists a simple sufficient condition based on the
“misalignment” of local PCs to ensure the identifiability of the global and local PCs:
the maximum eigenvalue of the average of projections into local subspaces should be
smaller than 1. We show that, under the identifiability condition, both global and local
PCs can be estimated from noisy observations with an error that is upper bounded by
O(%), where n is the number of observations on each client. As the error decreases to
0 when n approaches infinity, the error bound essentially implies the consistency of
PerPCA. The analysis extends conventional matrix perturbation bounds (Bhatia, 1997;
Vu et al., 2013) into personalized settings where the change in one client’s covariance
matrix can affect the PC estimates on all clients. We also use a minimax statistical
lower bound to show that the statistical error upper bound is almost tight in terms of
the eigengap and misalignment parameter.

e Algorithm: We design an algorithm based on Stiefel manifold gradient descent (St-
GD hereon) to obtain global and local PC estimates. The major difficulty for the
algorithm is handling the orthogonality constraints. To tackle it, we introduce a
correction step that relies on a group of operations called generalized retractions. A
generalized retraction extends retraction in literature (Edelman et al., 1998) as it is
defined on the entire R¥" rather than the tangent bundle of the Stiefel manifold
St(d,r). In our algorithm, clients only need to share iterates of global PCs, thus
preserving privacy and minimizing communication costs.

e Convergence: The proposed algorithm has a local linear convergence rate. To our best
knowledge, this is the first theoretical guarantee for an algorithm that simultaneously
learns global and local PCs. Interestingly, the convergence is faster when local
PCs are more heterogeneous, a result that lies in sharp contrast to conventional
predictive federated or transfer learning (Zhuang et al., 2020) theory as it highlights
that heterogeneity can be a blessing in disguise. On the technical side, we introduce a
novel Lyapunov function to study distributed St-GD with generalized retractions.

e Numerical results: Empirical evidence on both synthetic and real-life datasets
confirms PerPCA’s ability to decouple shared and unique features. Also, PerPCA has
exciting applications in video segmentation and topic extraction. For instance, on
video segmentation tasks, PerPCA has significant advantages over the popular Robust
PCA (Candes et al., 2011) when heterogeneity patterns are not sparse.

1.2 Organization

The paper is organized as follows: We review related work and introduce notations in
Section 2. In Section 3, we propose the formulation of PerPCA and link it with constrained
optimization. Section 4 includes the theoretical analysis on identifiability and consistency. A
federated algorithm to solve PerPCA is developed in Section 5, and its convergence guarantee
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is established in Section 6. Numerical experimentation results are demonstrated in Section
7. Finally, Section 8 concludes the paper with a brief discussion. Readers mainly interested
in the implementation and applications of PerPCA can focus on Sections 3, 5, and 7. An
implementation of the proposed method is in the linked Github repository.

2. Preliminaries

In this section, we will review related work in the literature and introduce needed notations.

2.1 Related work

Structural PCA Structural PCA attempts to build structural models for data and noise.
Research on structural PCA abounds. A seminal algorithm along this line is Robust PCA
(Candes et al., 2011). The authors point out that traditional PCA is sensitive to noise
in the observations and tackle this issue by decomposing an observation matrix Y into a
low-rank part L and a sparse noise part S: Y = L+ S. The low-rank matrix L corresponds
to the signal, and S represents the noise. It turns out that the two parts can be exactly
identified under regularity conditions with carefully designed algorithms. Robust PCA has
become a useful technique in image denoising and video processing (Bouwmans et al., 2018),
collaborative filtering (Xu et al., 2012), and many more. Sparse PCA (Zou et al., 2006) adds
sparse constraints on the PCs, encouraging each PC to depend on a minimal number of
variables. While these methods are powerful in handling large noise or high dimensional
data, they mainly analyze homogeneous data.

Several algorithms have also been invented to leverage variance heterogeneity in different
samples. Heterogeneous component analysis (HCA) (Oba et al., 2007) assumes data come from
different sources with different levels of noise. To better learn the PCs with heteroscedastic
variance, HCA reweights the empirical loss of each observation according to the inverse of
its variance so that noisier samples contribute less to the total loss. Hong et al. (2021)
calculates the optimal weights in the asymptotic case by considering the signal-to-noise
ratio. Though these methods have superior performance compared to uniform weighting
PCA, heterogeneity among different sources is only modeled by the noise magnitude. A
few heuristic methods also attempt to use low-rank features to characterize heterogeneity,
including joint and individual variance explained (JIVE) (Lock et al., 2013), common and
individual feature extraction (CIFE) (Zhou et al., 2015). However, it is difficult to distribute
these methods for federated learning and provide theoretical guarantees for their outputs.

Distributed PCA There has been a recent push to calculate PCs on distributed devices.
Oftentimes, the clients/edge devices use their local data to estimate PCs and communicate
with a central server to update their estimates. One round of information exchange between
clients and the central server is referred to as a communication round. Based on the number
of communication rounds between edge devices and the server, research can be roughly
divided into two categories (1) those that require only one round of communication and (2)
those that require multiple rounds of communication.

For one-round PCA algorithms, clients estimate PCs from local datasets and send
summary statistics to the server. The server then analyzes the aggregated statistics to
calculate the PCs of the entire dataset. There are several ways for the server to calculate
PCs. Qu et al. (2002) proposes a method to reconstruct the aggregated covariance matrix
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by averaging the clients’ covariance matrices approximated by a few top PCs. Global PCs
can be obtained by learning the top eigenvalues of the averaged covariance matrix. distPCA
(Fan et al., 2019) provides an alternative approach, where the server stacks locally calculated
PCs into a large matrix and runs another PCA on the stacked matrix. Liang et al. (2014)
uses a similar method, where clients calculate a singular value decomposition (SVD) of the
local observation matrix, and then send the singular values and singular vectors to the server.
The server stacks the scaled singular vectors and runs SVD on the stacked matrix. Federated
PCA (Grammenos et al., 2020) considers streaming data applications where edge devices
have limited memory budgets. In their work, locally estimated subspaces are hierarchically
merged to form the global subspace. Feldman et al. (2013) also focuses on streaming data
and reduces large datasets into smaller ones. In spite of the reductions in communication or
memory cost, these algorithms are often not guaranteed to recover true PCs exactly. Also,
they are built upon homogeneity assumptions and neglect statistical heterogeneity among
the distributed datasets.

To obtain more refined estimates of PCs from distributed datasets, a series of works
propose to use multiple rounds of communication (Chen et al., 2020; Garber et al., 2017;
Huang and Pan, 2020; Alimisis et al., 2021). Among them, Chen et al. (2020) and Garber
et al. (2017) design PC updates by shift-and-invert iterations. The shift-and-inverse method
(Garber and Hazan, 2015) reformulates inverse power iteration as an unconstrained convex
optimization problem and uses gradient-based iterative algorithms to solve it. With a
similar rationale, Chen et al. (2020) applies the shift-and-invert formulation to distributed
settings and applies distributed Newton methods to solve for the top eigenvector of the
covariance matrix. Then, the covariance matrix is deflated to calculate the subsequent
eigenvectors. Besides shift-and-invert iterations, manifold optimization is also employed
for PCA. Huang and Pan (2020) uses distributed Riemann optimization to find top PCs
from homogeneous datasets. To further reduce communication costs, Alimisis et al. (2021)
combines quantized distributed optimization and Riemannian gradient descent with an
exponential map to calculate the leading eigenvectors of the covariance matrix. These
methods usually treat the difference among clients’ covariance matrices as errors. Thus,
when datasets are heterogeneous, the errors are large, and these algorithms fail to retrieve
true PCs.

Gradient descent on manifolds The centralized version of gradient descent on mani-
folds, or Riemaniann gradient descent, has been well-studied (Absil et al., 2008; Boumal,
2022). Algorithms based on exponential mappings (Edelman et al., 1998) can achieve
convergence rates comparable to their Euclidean counterparts. Since exponential mappings
are expensive to compute, there are algorithms that replace them with retractions. Tang
(2019) presents an elegant framework for analyzing kPCA by Riemannian gradient descent
with Cayley retraction. This work proves the local linear convergence of Stiefel gradient
descent and also shows that the algorithm can exactly recover the top eigenspaces.

Recent years have also seen advances in distributed manifold optimization. Chen et al.
(2021a,b) introduces a simple distributed St-GD algorithm that minimizes a general objective
on the manifold. In each round, clients use St-GD on the local objectives and send the
updated variables to the server, then the server averages the received update and applies a
retraction. The algorithm is guaranteed to converge into stationary points with a sublinear
rate.
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PerPCA also exploits St-GD to solve PCs. However, our algorithm enhances simple
manifold optimization by simultaneously optimizing local and global PCs, while also incorpo-
rating orthogonality constraints between the global and local PCs. PerPCA thus introduces a
special correction step to handle such constraints. This is done by defining a new retraction
measure we name as a generalized retraction defined on the entire R4*" rather than the
tangent bundle of Stiefel manifold St(d, ).

We should note that among all the distributed algorithms discussed, only PerPCA models
different or distributed datasets by global and local PCs. Thus, it brings unique advantages
in decoupling local and global features from highly heterogeneous datasets. Besides, there
are several additional benefits of PerPCA in convergence and computation compared with
typical existing models. In terms of convergence, PerPCA converges into stationary points of
the empirical reconstruction error and is guaranteed to recover true PCs exactly with proper
initialization. The algorithm does not involve a computationally intensive exponential map
and can solve k PCs at one time. More importantly, PerPCA is fully federated, and different
clients can collaborate by only sharing a few global PCs that encode shared and not unique
features. The comparisons of PerPCA and several typical PCA algorithm is summarized in
Table 1.

Method Source Exact kPCA Federated Personalized
convergence
Robust PCA (Candes et al., 2011) X X
JIVE (Lock et al., 2013) X X
distPCA (Fan et al., 2019) X X
Distri-Eigen (Chen et al., 2020) X X
CEDRE (Huang and Pan, 2020) X X
PCA by St-GD (Tang, 2019) X X
PerPCA ours

Table 1: Comparison of related work. Metrics included and their definitions are: (i) Exact
convergence: the algorithm can recover top subspaces of sample covariance matrix
exactly, (ii) kPCA: the algorithm can calculate the subspace spanned by top k
PCs instead of one single component, (iii) Federated: the algorithm can be done in
a distributed fashion where raw data remains where it is generated on the edge
and only focused updates need to be shared across clients, (iv) Personalized: the
algorithm encodes both shared and unique features across all datasets.

2.2 Notations

We first introduce needed notations in this subsection. For a d-dimensional vector @, we use
|lz|| to denote its 2-norm. The inner product of two vectors is defined as a standard inner
product in Euclidean space: (x,y) = x”y. We use I, to denote the identity matrix in R
We sometimes omit the subscript d if the dimension is clear from the context. For a real

matrix A € R™*", we use ||Al| to denote its Frobenius norm || Al = \/E?:l >y A?j
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and [|A[l,, to denote its operator norm || A,, = max,egn |1 [|[Av||. For two matrices
A, B € R™ ", we define their inner product as (A, B) = > 1, > 71 A;; By = Tr (ATB).

If A € R™"™ is symmetric positive definite (PSD), it has an eigendecomposition A =
UDUT, where D is n by n diagonal matrix whose diagonal entries are all positive, U is a
n by n unitary matrix. Then for p € R, the p-th power of A is defined as AP = UDPU?.
For a square matrix A € R™*", we use Apin(A) and Apaz(A) to denote the minimum and
maximum eigenvalue of A. Similarly, we use A\1(A), A2(A), ... A\,(A) to denote the n
eigenvalues of A in descending order. We use [|A[|,, and Ajqz(A) interchangeably when A
is symmetric PSD.

For a matrix A € R"™*™ we use vec(A) € R™ to denote its vectorization, i.e., the
vector formed by concatenating all the column vectors in A. col(A) is the linear subspace
spanned by all column vectors of A. We use Aj;, ., j,:j, to denote the submatrix of A formed
by picking the 1,41 + 1...io-th row and j1,j1 + 1...jo-th column of A. For two matrices
A € R™*™ and B € R™*"2, [A, B] € R™*("1+72) ig defined as the concatenation of A and
B by column.

Finally, we use the standard O (-), £2(-), and o (-) notations throughout the paper.

3. What is PerPCA?

‘We will establish the formulation of PerPCA in this section.

3.1 Motivation

Suppose we have N clients (i.e. data sources), each with a dataset {Y(i)}ﬁ\;l, where Y(;) is

a d by n; matrix. d is the dimension of data, and n; is the the number of datapoints on
client 7. The datasets {Y(,)}f\il have commonalities but also possess client-level distinctive
features. The task is to find a few low-dimensional common and unique features that best
characterize the observations from the high dimensional data {Y(Z)}f\;l

Standard PCA uses a small number of principal components (PCs) to explain the varia-
tions in {Y(Z)}Z]il Such treatment ignores the client-to-client difference in the observations.
The present IoT system usually consists of distributed edge devices (clients) that operate in
extremely heterogeneous environments. It is thus important to consider the different features
of different clients. As a more capacious description of the data, we consider the model
where local observations are driven by 71 global PCs and 73 ;) local PCs. More specifically,
from data source i, observation y(;) is generated from

2,(4)

1
Yy~ D Biygta T Y P(i)a¥6)a + €G) (1)
q=1 q=1

where ¢;) ,'s and ;) ,'s are coefficients, or scores in PCA terminology. u,’s are global PCs,
v(;),q's are local PCs, and €(;) are i.i.d. noise vectors. rq is the number of global PCs, and
72,(7) 1 the number of local PCs on client i. We allow v(;) ,’s to be client-dependent while
enforcing u,’s to remain the same across all clients. Naturally, u,’s encode the information

shared by all participants, while v(;) ,’s can describe distinctive patterns on each client.
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Similar to standard PCA, different principal components need to be orthonormal:

’U,?I; Ugy = 5111@2 (2)
(v(i)7q1)T’v(i),qg = 5q1,q27 Yqi,q2, Vi=1,--- ,N

where d4, 4, is the Kronecker delta. In addition to (2), we further require that the global
and local features are orthogonal:

ul vy, =0,Vi=1,--- N (3)

The orthogonality of PCs implies that the shared and unique features span different subspaces,
thus describing independent and decoupled patterns in the data sources.

(1) is an interpretable linear model that naturally incorporates both common and
individual features of different clients. It is useful in applications where disentangling
global and local features is important. The development of IoT and recent advancements
in federated and distributed analytics present numerous such applications, including time
series data, image and video data, and language data. We will show the efficacy of (1) on
several examples.

3.2 Method

The task of PerPCA is to recover global and local PCs from observations {Y(; MY . We can
write global and local PCs into matrix form:

{U = [ula"' 7u7’1]

(4)
V(z‘) = [v(i),la T 7’U(i),r2’(i)]

and solve for U and V(;)’s by minimizing the empirical reconstruction loss:

U,{V(i)nirzll, 2 Z n; HY Y(Z

subject to UTU =1, V(i)V(i) =1, V(Z.T)U =0, Vi

where Y(i) is the statistical fit for client ’s data given PCs U and V(;):
Yi) =UU"Y + Vi) Vi Yo (6)
Intuitively, in (5), we look for the PCs so that the predicted Y(i) can best fit the

distributed datasets. The objective (5) has another interpretation: by some algebra, we can
transform the objective (5) into:

1 N
UVih, sz I (UTSHU) + T (VS Vi )|

subject to UTU = I, V(,L)V() I, Vi)U:O7 Vi

9
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where S;) is defined as the data covariance matrix:
Sy = ~Y, Y7
@)= 5, 076

From (7), it is clear that PerPCA attempts to find global and local low dimensional
subspaces that best align with the data covariance matrix. We will study objective (7) from
here on.

For simplicity, we introduce

1 1
AU Vio) = 3T (U7 SU) + 5T (V80 Vio) (5)
and
N
FUAVHY) =Y iU, Vi) (9)
=1

Then (7) transforms to maximizing f under orthonormality constraints. Notice that though
f and f;’s are convex, the constraint in (7) is nonconvex. Thus, the problem is nonconvex.

The nonconvex formulation (7) appears difficult to analyze and solve. In the following
sections, we will delve into the identifiability and optimization of (7). Fortunately, our
results show that under minimal conditions, (7) can be solved efficiently, and the optimal
solution can recover the true PCs.

4. Are Global and Local PCs Identifiable?

Given the formulation (7), one may ask whether it is possible to identify the true local and
global PCs by solving (7).

Apparently, global and local PCs cannot be decoupled in every case. As a simple
counterexample, if all local PCs are the same, then distinguishing local from global PCs is
impossible, as there are infinite combinations of them that all can maximize the explained
variance in (7). The edifying counterexample poses the fundamental question of model
identifiability. Therefore, we need to find out which data instances are identifiable. In
the following, we will introduce an identifiability condition, then establish the relationship
between the estimated and true PCs.

We restrict our analysis to recovering the subspace spanned by top PCs (Bhatia, 1997).
Therefore we introduce the projection matrix notation Py: if U is a matrix with orthonormal
columns, i.e. UTU = I, then Py is defined as Py = UU”T. We use II, to denote the
projection matrix to the true global eigenspace, i.e., I, = Py, ., where Uiyye are the
true top global PCs. Also, we use Il; to denote the projection matrix to the true local
eigenspace, Il; = Py, .., where V(; 4 are the true top local PCs on client i.

Remember, we model global and local PCs as mutually vertical features; such property
can be formally characterized by the following assumption.

Assumption 4.1 (Orthogonality of global and local PCs) Let I1, be the global projection
matriz, Iy ’s the local projection matrices. We assume that

IL,II;) =0 (10)

10
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In addition, we consider the case where the subspace corresponding to the projection Iy +11 ;)
is indeed an invariant subspace of the population covariance matriz on client i, ¥y , i.e.

(T, + ) By = Xy (I, + ;).

In Assumption 4.1, the requirement (Hg + H(i)) Y =3 (Hg + H(i)) essentially assumes
that Ugrue and V{3 4rye are indeed the eigenvectors of the population covariance matrix ;.

As the counterexample suggests, assumption 4.1 alone is insufficient to guarantee the
identifiability of global and local PCs. To distinguish them, we need another identifiability
condition. To rule out the counterexample, local PCs and accordingly I1(;), should differ
from each other. To this end, we introduce the notion of “misalignment”. Misalignment is
quantified by the parameter 6, which represents the maximum eigenvalue of the average of
the local projection matrices. Assumption 4.2 is a formal statement of the identifiability
condition.

Assumption 4.2 (Misalignment) Let T1;)’s be the local projection matrices. We assume
there ezists a positive constant 6 € (0,1) such that:

N
1
)\max (N ;H(z)> < 1-6 (11)

The constant 6 characterizes the misalignment between local principal spaces. When 6
is larger, the local eigenspaces are more heterogeneous. When 6 is smaller, the local
eigenspaces are more similar. As an extreme case, if all II(;)’s are identical, % Zf\il IT;) is
still a projection, thus its maximum eigenvalue is 1 and 6 becomes zero.

4.1 Statistical error

It turns out that the identifiability Assumption 4.2 is sufficient to ensure identifiability. The
following perturbation bound shows that when the sample covariance matrix is close to the
population covariance matrix, we can obtain relatively accurate estimates of global and local
eigenspaces through solving (7).

Theorem 1 Under assumption 4.1 and 4.2, and if there exists a constant § > 0, such that
Aritry ((Hg + l_[(l-)) E(i)) — A1 ((I —1II, - H(i)) Z(i)) > 6 for all i, we have:

2 8 1 & 2
J %N;H%) = Sl (12)

N
1
1Py =1, [+ 5 D= || Py, — T
i=1

where U, and V(Z-) ’s are the optimal solutions to the objective in (7).

§ is usually called eigengap in literature (Vu et al., 2013; Huang and Pan, 2020). The §—2
factor on the right-hand side of (12) is standard for matrix perturbation analysis.

Theorem 1 confirms the intuition on identifiability. Specifically, as 6 increases, the right-
hand side of equation (12) decreases, resulting in a smaller estimation error. Consequently,
finding local and global PCs becomes easier. This result critically highlights that heterogeneity
can be a blessing. For the counterexample, § — 0, the right-hand side approaches infinity.
Hence, one cannot accurately recover the PCs.

11
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In addition, Theorem 1 highlights the benefits of collaborative learning across multiple
related clients. The right-hand side of (12) is the average difference between the sample
and population covariance matrix on all clients. For clients with a larger dataset, the
distance is lower, and for clients with a smaller dataset, the distance can be higher. Through
jointly optimizing objective (7), clients learn from each other and obtain PC estimates with
statistical error depending on the average distance.

4.2 Minimax statistical lower bound

Though the statistical error bound provided in Theorem 1 is intuitive, it is not apparent
whether the bound is sharp. To fully understand the statistical difficulty in recovering shared
and unique components from {S(i)}, we will establish a lower bound on the minimax risk of
estimators under the subspace error.

For simplicity, we define the subspace error between {U, {‘7(2)}} and {U,{V[;)}} as

2
)

N
Lsubspace <{U’ {‘A/(Z)}}a {Uv {‘/(z)}}) = HPU - PUH; + % Z HPV(z) N Pv(l)
=1

Additionally, we use © to denote the parameter space specified by Assumption 4.1,
T T T
o= {U,{V(i)}|U U=IV,V,=ILU"V, :o} (14)
The following theorem provides a lower bound for the statistical error.

Theorem 2 If the data generation process satisfies Assumptions 4.1 and 4.2, the eigengap
introduced in Theorem 1 is at least §, and Zf\il HS(i) - E(i)Hi = o(1), then among data
generated by all possible {Utrue, { Vi) srue} } € O, the supremum of the subspace error between

the optimal solution to (7), {ﬁ, {V(Z)}}, and the ground truth, {Utrue, { V(i) true}}, is at least

7T 5 (15)

Lsubspace ({U7 {‘A/(z)}}? {Utrue7 {‘/(i),true}}) 1 1
sup TN 5 =Q < >
{Utruev{‘/(i),true}}ee N Zi:l Hz(z) - S(Z) HF

Theorem 2 measures the subspace error minimax lower bound in terms of misalign-
ment parameter § and eigengap J. Roughly speaking, the lower bound is greater than

Q ((% + 5%) % Zf\il HE(i) — S(i)‘@). This almost matches the upper bound provided in
Theorem 1 as the error scales with % and 5%. Theorem 2 also demonstrates the intrinsic
statistical difficulty of separating global and local PCs. When the local PCs are more aligned
and noise components grow larger, § and § become smaller, and the statistical error of the
subspace estimate becomes larger accordingly.

The proof of Theorem 2 is based on a variant of the “spiked population model” (Birnbaum
et al., 2013). We use perturbation analysis to calculate the leading order of the subspace
error when the sample covariance is close to the population covariance. The full proof is in
Appendix C. There is also a comparison between the theoretical statistical error estimate
and the statistical error obtained from numerical simulations in Appendix C.
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4.3 Sample complexity

In this section, we estimate the statistical error when data are generated by a sub-Gaussian
distribution. A random vector y € R? admits a sub-Gaussian distribution with parameter

o if for each fixed vector v € S* 1, E [e’)‘(”’y)] <e 22 for all A € R. ¢ is a parameter
that denotes the variance level: when o is larger the data are noisier. As a special case,
if y admits a Gaussian distribution with mean zero and covariance X, then o2 = 131,
(Wainwright, 2019). The following corollary gives an upper bound of the estimation error.

Corollary 3 If the dataset on each client {Y(z)}@]il admits an 1.i.d. sub-Gaussian distribu-
tion with parameter o, and the assumptions in Theorem 1 are satisfied, then with probability
at least 1 — § (over the randomness of the data generation process), we have:

d+log2§V)2 d+log%

2 d
1l 3, ] = ey S (5

1

(16)
where C' is a constant.

The inequality (16) essentially shows the consistency of the solutions U and V. When the
data dimension d is fixed and sample size n; is relatively large, the right hand side of (16)

decreases with O <Z@]\L1 m). As n;’s approach infinity, the subspace error also decreases
to 0, and the estimated eigenspaces approach the true values accordingly.

Equation (16) also highlights the benefits of knowledge sharing. If each client only uses
their own data to estimate the PCs, the estimation error would be O <n%) The error can be
high for clients with few observations (i.e., small n;). However, when N clients collaborate
in learning global and local PCs, the estimation error becomes the average of individual
statistical errors O (Zf\i 1 m
clients to improve the estimates of their PCs.

). Data-poor clients can thus borrow strength from other

The statistical consistency and knowledge-sharing effect will also be examined by numer-
ical experiments in Section 7.

Here, we note that statistical consistency can not be achieved by existing estimates
without personalized modeling. For example, the statistical error of distPCA (Fan et al., 2019)
depends on O (% Zf\i 1 Hz(i)’lHop)7 which does not decrease with number of observations

n; as long as Hz(i)leop > 0. The comparison highlights the advantages of personalization
through our formulation in (7).

Now we present the proof of Corollary 3.
Proof We will adopt the covariance concentration bound in Wainwright (2019) and Rinaldo
(2019). Since data on client 7 admit independent sub-Gaussian distributions, theorem 13.3
in Rinaldo (2019) states that, with probability at least 1 — 1, there exists a constant C' such

that:
d+log 2 d+log2
[=6) — S,y < 0*Cmax § /=20 =B
P n; n;

13
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We can choose §; = %. Then by a union bound, we know that with probability at least

1—90:

d+ log 2N g+ log 2N
< 02C'max . d
P n; n;

126) = Swll

holds for all 7.
Combining this and Theorem 1, we can prove the bound in (16). |

Equation (16) also gives a simple estimate of the sample complexity.

Corollary 4 Under the assumptions of Theorem 1, and assuming that data on client i admits

an i.1.d sub-Gaussian with parameter o, if each client has at least O (%‘g}‘f) observations,

then with high probability, the estimation error is smaller than e.

Proof The proof is quite straightforward. Notice that when n; > d, the right-hand side of
(16) is dominated by n%. Thus if we neglect the logarithm factors on the right-hand side of

(16) and set %O’ZLCQCZ% SV 4 < ¢, the statistical error will also be upper bounded by e.

i=1n,;
It is natural to see that the inequality holds when each client has observations no less
than O (% ";g ) [ |

5. Recovering Local and Global PCs

The statistical consistency proved in Section 4 dwells on the premise that the objective in
(7) can be solved to optimality. An efficient algorithm to solve the problem is not apparent
as the constraints in (7) are nonconvex. In this section, we develop a class of algorithms to
solve (7).

The major difficulty in optimizing (7) lies in the nonconvex constraints: in addition to
the orthonormal constraints on U and V(;)’s, the constraints U TV(Z-) = 0 require global and
local PCs to be mutually orthogonal. The later constraints introduce interaction between
local and global variables, which deems simple distributed Stiefel manifold descent (Chen
et al., 2021b) incompetent.

To handle the orthogonality constraints, we propose a class of algorithms that we call
Personalized PCA (PerPCA). PerPCA adopts Stiefel manifold gradient descent to ensure that
all constraints are satisfied during the algorithm. It is worth noting that PerPCA is naturally
federated as the computation is distributed over clients, and only updates of the global PCs
need to be shared.

In the following of this section, we will build the PerPCA algorithm step by step. But
before delving into the technical details of parallel gradients and retractions, to illustrate
the essence of PerPCA, we will first present a simple instance of PerPCA that exploits polar
projections to maintain the orthonormality of the updates.

14
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5.1 An instance of PerPCA

The polar projection of a general full-column-rank matrix W € R™*"2 where ny > no
returns an orthonormal matrix defined as

Polar (W) =W (WTW)_% (17)

Polar projection can be efficiently implemented via SVD (Breloy et al., 2021). It is shown that
among all the orthonormal matrices, Polar (W) is closest to W (Kahan, 2011). Therefore,
we can combine gradient descent with polar projection to solve problem (7). The pseudocode
is summarized in Algorithm 1.

Algorithm 1 An instance of PerPCA using Polar Projection

Input client covariance matrices {S;)}Y,, stepsize 7.

Initialize U;, and V(l),%, e ,V(N)é.

for Communication rounds 7 =1, ..., R do
for Client 1 =1,--- , N do
‘/(i)ﬂ' = Polar (‘/(i),Tf% - UTUE‘/(i),Tf%)
[Ui),r+1: Vi) ey 2] = Polar ([Ur, Vi) 7] +0-80) [Ur, Viy),-])
Uploads U;) r41 to server.
end for
Server calculates U4 = Polar <% Zf\il U(,»)JH)
Server broadcasts U, 1
end for

In Algorithm 1, at each iteration, client i first deflates V( 1 to make it orthogonal to U.
2

1), T—
This ensures that the updates are feasible as UTTV(I»),T =0,Ul'U, =1, and V(%F)’TV@)’T =1
Then client ¢ uses gradient ascent and polar projection to update U(;) ;41 and V(l-)’T 11 This
step increases the objective while respecting the orthonormal constraints on U and V(;.
After the updates, client i sends the updated U(;) r1; to the server. The server takes the
average of all received U(; r11, orthonormalize it, then broadcast the updated U .

It is intuitively understandable how the iterations in Algorithm 1 maximize the objective
while keeping the updates feasible. In the rest of this section, we will study a broader
class of algorithms through the lens of manifold optimization and show that Algorithm 1 is
actually a special case of such algorithm class. We will begin by reviewing a few concepts
from manifold optimization and then provide our definition for a class of operations called
“generalized retraction”. Then, we will use the techniques from Stiefel gradient descent to
design a class of algorithms that solves (7).

5.2 Generalized retractions

We begin by introducing the Stiefel manifold commonly used in matrix analysis (Edelman
et al., 1998).
The Stiefel manifold St(d,r) is the set of all d by r orthonormal matrices:

St(d,r) = {U e R™*"\UTU = I} (18)
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It is embedded in a d x r dimensional Euclidean space. One can verify that St(d, ) is not
convex in general (Edelman et al., 1998).
For U € St(d,r), the tangent space of St(d,r) at U is defined as:

To = {€ e R*"eTU + UT¢ =0}

It can be derived by differentiating UTU = I. The normal space Ny is defined as the
orthogonal space of the tangent space at U.

Both 7y and N are linear subspaces of R?*". Therefore, we can define the projection
onto them. Pys, denotes the projection onto the normal space:

1
Pry(V) = 5U UV +Vv'D)
Similarly, Pr;, denotes the projection onto the tangent space:
PTU<V) =V - PNU(V)

One can verify that for any matrix V € R¥>", Pr. (V)1 U + UTPr, (V) =0

Next, we introduce the notion of a generalized retraction. The motivation for a generalized
retraction is rather straightforward. For an orthogonal matrix U and a general update matrix
&, the matrix U + & can probably violate the orthonormal constraint: (U + E)T (U+¢&) #1.
The generalized retraction finds an approximation U +& that strictly satisfies the orthonormal
constraint. Ideally, the best approximation can be found via projection. However, the
projection onto a general nonlinear manifold is hard to analyze. Therefore, one can relax

this projection to a generalized retraction. More formally, a generalized retraction can be
defined as:

Definition 5 We call a mapping
GRy () : R™" — St(d, )
a generalized retraction if
1. (Property 1): col(GRy (§)) = col(U + €), YU € St(d,r), V& € R¥*"
2. (Property 2): There exist constants My, My > 0 and Ms > 0 such that:

IGRy (&) — (U + Pr, ()| p < My |Pr, (§)I[7 + M2 1€ = Py (&) o
VU € St(d,r), V& € R, ||€]| » < M3

Figure 2 is an illustration of the Stiefel manifold, tangent space, and generalized retraction.

Notice that the definition of a generalized retraction extends the definition of retraction
in literature (Absil et al., 2008). Retraction is usually defined as a mapping from the tangent
bundle 7y to the Stiefel manifold St(d,r) (Edelman et al., 1998). However, a generalized
retraction is a mapping from a general R%" to the Stiefel manifold St(d,r). This extension
allows us to directly apply the generalized retraction to any matrix, eliminating the need to
project it to the tangent space beforehand.
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Figure 2: An illustration of the Stiefel manifold, tangent space, and generalized retraction.
The red surface represents the Stiefel manifold. The blue plane represents the
tangent space at U € St(d,r). € is a general d by r matrix that represents the
update direction. Py, (§) projects £ to the tangent space on U. Generalized
retraction GRy (§) maps U + & back to the Stiefel manifold.

Property 1 requires that a generalized retraction preserves column spaces. This property
is indispensable in our algorithm development as we use it to ensure the orthogonality of
global and local PCs. The second property requires that GRy (€) be close to the projection
to the tangent space U + P, (€). In the special case of £ € Ty, property 2 reduces to
IGRy (&) — (U + €)||p < M, ||€||%, which coincides with the definition of retraction in
literature (Chen et al., 2021a). When the norm of £ is small, the requirement essentially
implies that the difference between a generalized retraction and the projection to a tangent
space is a higher-order term.

Though Definition 5 looks demanding, we can show that there are several available

choices for a generalized retraction.

Proposition 6 Polar projection is defined as:

_1
GRE™ (€)= (U +& (I +EU+UTE+£7¢) " (19)
is a generalized retraction. The computation complexity is O(dr? + r3).

(19) is consistent with the definition (17), though the notations are slightly different. Notice
that polar projection can be equivalently calculated by the SVD of U + & (Breloy et al.,
2021). We relegate the proof and the implementation details to Appendix F.1. As discussed,
an interesting property of the polar projection is that it is equivalent to the projection of
U + & onto the Stiefel manifold:

olar .
GRY ™ (€) = arg yun U +&~Vp (20)

The proof of (20) can be found in Kahan (2011).
QR decomposition is another influential algorithm in numerical linear algebra. It also
satisfies the requirements of a generalized retraction.
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Proposition 7 For a matriz U + & € R, QR decomposition finds an orthogonal matriz
Q € St(d,r) and a upper triangular matrix R € R™*", such that QR =U + &. As such, a
QR retraction is defined as:

R (&) = Q

is a generalized retraction. The computation complexity is O(dr?).

We relegate the proof to Appendix F.2.
In all of our experiments, we choose the generalized retraction as a polar decomposition.

5.3 PerPCA: The algorithm

Now, we are ready to introduce the personalized PCA algorithm, PerPCA. Recall that our
algorithm is designed to be federated and requires multiple communication rounds between
a client and some central server/entity that orchestrates the collaborative learning process.
Suppose at communication round 7, each client has feasible global components U and local
components V;) -, i.e., [Ur, Vi) ;] € St(d,r1 + 7r3;y). Then client i calculates the gradient
of objective f; defined in (8):

Vu fi(Ur, Vi) ) = SiyUr
Vv, [ilUr, Viy +) = Sy Vi)

Since the gradient direction generally does not align with the tangent space of 7-[UT,V<Z~) BE
simple gradient ascent will move [U;, V{;) -] out of St(d,r1 + 73 ;). To ensure the iterates

move along the manifold, Stiefel optimization first projects the gradient to the tangent space:

G, =Pr,

[Ur Vo]

(Say [Ur. Vi r]) (21)

In literature, G ;) is usually referred to as the parallel gradient on the manifold (Edelman
et al., 1998). We shall note that G;) ; defined above is a d by r1 + 3 ;) matrix.

Clients then update global and local PCs in the direction of the parallel gradient Gy ..
As there is a small difference between the Stiefel manifold and the tangent space, the updated
PCs are still not orthonormalized. Therefore, we use a generalized retraction to retract the
updated local components to the Stiefel manifold. We use V(Z.)’T + to denote the retracted
matrix. For the global components, clients first send them to a server. The server then takes
the average and uses a generalized retraction to map the average to St(d,r). The updated
global PC matrix is denoted as Ur4.

A major challenge then arises: after the server averages the global PCs, U,41 is not
orthogonal to V(i)JJr% anymore, i.e., U;f_i_lV(i)’TJr% = 0 in general. Thus U, and V(i)JJr%’s
become infeasible, and the algorithm based on St-GD cannot proceed. One can verify that
UTT V(i)’T 1= O(n;), which has the same order as the parallel gradient update. Thus, we
cannot resolve the infeasibility issue by decreasing stepsize. This is a fundamental limitation
of a simple route that uses distributed St-GD.

Can we resolve the challenge by enforcing the orthogonality between global and local PC
estimates? Inspired by Gram-Schmit orthonormalization, we introduce a correction step on
the local PCs. We calculate the projection of V(i)ﬁré onto the column space of U,41, and
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subtract the projected matrix from V(i)ﬁ +1- The resulting (deflated) matrix is orthogonal
to Ur41. Then, we use a generalized retraction to map the subtracted matrix to the Stiefel
manifold. Remember that one key property of a generalized retraction is that it preserves
the column space; the retracted matrix is thus still orthogonal to Ury1. We use V{;) -4 to
denote the retracted matrix. Now U1 and V(;) - are feasible, and the updates can repeat
over multiple communication rounds until convergence. The pseudocode is summarized in
Algorithm 2.

Algorithm 2 PerPCA by St-GD
Input client covariance matrices {S(i)}ij\ilv stepsize 7,
Initialize Uy, and V(1)

for Communication rounds 7 =1, ..., R do
for Client i =1,--- , N do

Vi

1,
’2

Viyr = QRV“_)’T_% (—UTU;‘FV(i)’Tf%> // Deflate then retract
Choice 1:
Calculate G;) » = PT[UT,v@ 1 (S(i) U, V(i)j]) // Tangent projection
Update Uy 711 = Ur + nT(YG(Z-)ﬂ.)l:d’l;rl // Gradient ascent
Update Vv(z'),T-i—% = QRV(Z.N (777(G(i),‘r)1:d,(r1+1):(r1+r27(i))> // Retract
Choice 2:
Update [U(i),7+la ‘/(z'),7—+%] = gRI[)gier’T] (UTS(Z) [UTa ‘/(Z),T])
// Retract after gradient ascent
Send U;) r41 to the server. // Share global PCs
end for

Server calculates U-11 = GRy, (% Zfil Ui)re1 — UT> // Average then retract

Server broadcasts Uy
end for
Return principal components Ug and V(;) g’s.

The first line in the client loop V{;) . = QRVWF% <_UTU7:T‘/(/L')’T,%) represents the
correction on the local PC matrix. Regardless of whether U, and V(i)J7 1 are orthogonal,
U; and Vj;) . are always feasible: [U, V;) -] € St(d,m1 + ry;)). Then each client applies
standard St-GD (choice 1) or a variant of St-GD (choice 2) to update Uy;) ;11 and Vi, . 1
simultaneously. The updated global PCs are sent to the server. The server takes the simple
average of all received global PCs and retracts the average to St(d,r1). The obtained U4
is then broadcasted back to the clients and becomes the starting point of the next iteration.
The algorithm repeats for a certain number of communication rounds.

In Algorithm 2, we introduce two algorithmic choices on the client side. For choice 1,
clients perform standard St-GD: first project the updates to the tangent space, then retract
them to the Stiefel manifold. For choice 2, clients use polar projection to replace the St-GD.
This update rule is inspired by the Minorization-Maximization algorithm (Breloy et al.,
2021). Remember that by (20), polar projection acts as a projection into the nonlinear
Stiefel manifold. Hence, it is close to the composition of the projection onto the tangent
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space and the retraction from the tangent space onto the nonlinear manifold. We propose
two choices to enrich practitioners’ toolkits as they have similar performances in most of our
case studies. We focus on choice 1 in our theoretical analysis. However, it is observed in
the video segmentation task that choice 2 allows us to use larger stepsizes, thus converging
faster. Hence, we leave it to practitioners’ discretion to make specific algorithmic choices.

In general, the computation complexity per communication round at one client is
O(d?). To see that, we can analyze the update of Algorithm 2. One iteration only involves
matrix multiplication and generalized retractions. The computation complexity of matrix
multiplication S U is O(d?r1). The complexity of the tangent projection step is similar.
When the rank 71 and 73 ;) is far smaller than data dimension d, the computation complexity
for generalized retractions is only O(d). Thus, the per-iteration computation complexity
is O(d?). Tt is worth noting that the complexity can be further reduced to O(d) if the
covariance matrix Sy;) is known to be low rank. More specifically, when S;) has a low-rank
Cholesky decomposition S;) = Y(i)Y(iT), where Y(;) € R™0) is a low-rank matrix nay < d,
the computation cost of matrix multiplication S;U, = Y(l)Y(ZT) U; is reduced to O(dnr1).
As n(;y and 7 is far smaller than d, this becomes O(d). Hence the per-iteration computation
complexity is only O(d).

6. Does Algorithm 2 Recover the Local and Global Truth?

Though the development of Algorithm 2 is intuitive, it is important to understand whether it
converges and, if so, what kind of solution it can recover. In this section, we will analyze the
convergence of Algorithm 2 and show that, in general, Algorithm 2 converges into stationary
points of the objective. In addition, when the local and global components are initialized
properly, Algorithm 2 will converge into the global optimal solutions linearly, and the result
exactly recovers the true local and global PCs.

6.1 Global convergence

To analyze the convergence, we make an additional assumption that the largest eigenvalues
of the sample covariance matrices S;)’s are upper bounded:

Assumption 6.1 We assume that the operator norms of S;)’s are upper bounded by
constants G op*

HS(Z)Hop S G(’i),op (22)
and the Frobenius norms of Sy ’s are upper bounded by constants G ;) p:
IS0l < Ga.r (23)

We use Gmaz,op to denote max; G(i) and Gpaz,F to denote max; G(i%F.

,0p?
Assumption 6.1 is a common assumption in optimization literature, as it essentially assumes
the objective is Lipschitz continuous. Also, if we assume the data are independently generated
and follow a sub-Gaussian distribution, Assumption 6.1 will hold with high probability
(Wainwright, 2019).

20



PERsoNALIZED PCA

The first order condition (KKT condition) to problem (1) is that for the parallel gradients
defined in (21), the local parts are zero on each client, and the average of the global parts is
zZero:

(G(i))1:d’(r1+1):(7'1+7“2’(i>) = 0, V’L - {]_7 2’ o ’N}

1 & (24)
N Z (G(i))lzd,lz(rlﬂ) =0
i=1
The proof of KKT conditions (24) is in Appendix B. It is clear from Algorithm 2 that when
(24) is satisfied, the global and local PC updates will be stationary. Thus, (24) essentially
describes the stationary points of (7).

On non-stationary points, (24) generally does not hold. The below theorem provides
an upper bound on the magnitude of the violations to conditions (24). As the violations
decrease to zero when the number of communication approaches infinity, the theorem shows
that Algorithm 2 will converge into the KKT points. We use r to denote maximum rank

r= maX{?”lﬂ’Q,a)f" 77"2,(N)}-

Theorem 8 Under Assumption 6.1, if we choose a constant stepsize n, = n1 =
O(ﬁ), then Algorithm 2 with choice 1 will converge into stationary points:
max,opV T
e?llinR} Z (I - PUT - PV(“,T) S(Z)Uq- + Z (I - PUT - PV(i),n-) Z S(z)‘/(z)ﬂ—
e i=1 i=1 i—1

o)

Despite the nonconvex constraints in (7), Algorithm 2 provably converges to stationary
points, regardless of initial conditions. The % convergence rate is comparable to the rate in
literature (Chen et al., 2021a).

Our algorithm handles global and local PCs at the same time and attains stationary
points of both components. In the following section, we will show the proof sketch of
Theorem 8. The complete proof is relegated to Appendix D.

6.1.1 PROOF SKETCH FOR THEOREM 8 AND KEY LEMMAS

As discussed before, one major difficulty in analyzing Algorithm 2 lies in the correction step.
The correction step changes local PCs by O(n;), which is comparable to that in the gradient
ascent step. Therefore, a naive treatment to the correction step will generate a large error
term that cannot be bounded.

To bypass the issue, we exploit one nice structure in objective (8): f;(U, V{;)) is dependent
only on the subspace spanned by the concatenated matrix [U, V(;)]. Therefore one can
make adjustments on col(U) and col(V(;)) without changing the objective value, as long as
col([U, V{;]) are the same.

One major technical novelty of our work is to introduce Lyapunov functions that take
this key property into consideration. We define the two following Lyapunov functions:

Lipa(U, V)= —%TY (U (I-Pv)Si (I - Py)U) (25)
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and,
1
Lip2(U,V) = =T (VIS V) (26)

It’s easy to see that when VTU = 0, we have:
1 1
LoaU, V) + LU, V) =—oTr (UTSsyU) - ST (VIS,V) =—fulU,V)

At each communication step 7, global and local components are indeed orthogonal U Vi =
0, thus L) 1(Ur, Vigyr) + L) 2(Urs Vigy ) = = fu(Ur, Vi) 7)-

L ;)1 explicitly encodes the orthogonality constraint into the objective. Such design
enables convenient handling of the correction step: we can prove that the correction step
on V' changes L)1 + L;),2 only by O(n?). Therefore only the descent step can change
L+ L) by O(ny). Thus, the change of Lyapunov functions is dominated by the update
from the parallel gradient. By calculating the update of U and {V(l)} in each communication
round, we can have the following informal version of the sufficient descent lemma:

Lemma 9 (Informal) When we choose a constant stepsize nr =n = O (ﬁ), and
max,op

U: and V{;) ; satisfy the orthogonality condition UTTV(i)J =0, we have:

<ZVU£ 1(Ur, Vi - )UT+1—UT>

N
+ <VV< VL)1 (Ur, Vioyr) + Vv L6y 2Uzr, Vi 2)s Vi1 — V(z'),f>
=1

.

2 2

1 || & N N
<+ Z I ~ Py, - Py, ) Z (I Py — PV(Z.),T) S S Vig -
i=1 =1 =1 F
o)
(27)

When 7 is small, the O(n) terms will dominate O(n?) terms. Thus, Lemma 9 essentially
shows that in Algorithm 2, the change of Lyapunov functions is negative semidefinite in one
communication round. With the sufficient decrease property, standard analysis on first-order
optimization yields a O (%) convergence rate.

Formal proofs of Theorem 8 and Lemma 9 can be found in Appendix D.

6.2 Local convergence

Theorem 8 only shows that Algorithm 2 converges into stationary points but does not
provide further information about the property of the final solution. In problems like feature
extraction, we want to know whether the stationary point is a globally optimal solution or
whether it corresponds to the true PCs.

To this end, we analyze the convergence of global and local PCs. The convergence
depends on a Polyak-Lojasiewicz style condition. Similar to Section 6.1, we will introduce
another assumption about the eigenvalue distribution of the sample covariance matrix.
Without loss of generality, in this section, we assume ry =1y (1) =+ =719 (n) =T
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Assumption 6.2 (Covariance matriz eigenvalue lower bound) We further assume that the
population covariance ¥y can be entirely explained by 11, + Il(;), i.e., 3 (Hg + H(i)) =
X ), and that the minimum nonzero eigenvalues of X ;) 1s lower bounded by a constant
w>0:

i (I +T()) = 2 (28)

where 11y and 1L are rank-r projection matrices.

Assumption 6.2 assumes that data covariance can be decomposed as noiseless global and
local parts with rank r. The noiseless assumption of the population covariance matrices is
the standard assumption in the local convergence analysis of many PCA algorithms (e.g.,
(Tang, 2019)).

The following theorem shows that if Algorithm 2 is initialized within the attractive basin
of the global optimum, the iterates will converge to the global optimal solution linearly.

Theorem 10 (Informal) Under assumptions 4.2, 6.1, and 6.2, if the difference between the
population and sample covariance is small, when we initialize close to the global optimum,

and choose a constant stepsize nr =n = O (ﬁ), then Algorithm 2 with choice 1 will
op,mazx

converge into the global optimum:
A A
fWU AV} — f(Ur,{Vii),r}) = O ((1 - 7732> )

where {U, {‘A/(l)}} is one set of optimal solutions to problem (7).
Furthermore, we can recover the exact global optimal solutions:

o ()

It is worthwhile to point out that in Theorem 10, the convergence is faster for a larger
misalignment parameter 6. This is intuitively understandable since when local eigenspaces
are more heterogeneous, it is easier to identify different eigenspaces. On the other hand,
if all the local eigenspaces are similar, it is difficult to distinguish local PCs from global
PCs; thus, the convergence is slower. This result is in striking contrast to standard federated
learning (e.g., Li et al. (2020, 2018a)), where data heterogeneity leads to slower convergence.
We will verify this finding in Section 7. A formal version of Theorem 10 and its proof is
relegated to the Appendix E.

With the statistical error bound provided by Theorem 1 and the convergence guarantee
from Theorem 10, we can derive the following corollary.

N
2 1
[P = P+ 5 P = P
i=1

Corollary 11 Under the same assumptions as Theorem 1 and Theorem 10, after t =

Q WG%”"’” log - tlt ) communication rounds, we can obtain estimates of global and local

PCs that satisfy,

2

N
1
HPUt - Hg”% + N E HPV(i),t - 1_I(z) O (Estats)
=1

F
where €gtqts 1S the statistical error €spqrs = 96%0402% Zf\il ni
1
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Proof By the triangle inequality, we know

2
F

N
1
1P, =015+ > [Py, — T
i=1

2

N
2
<2||Pu, = Pyl + = > | Pv. — Py, |
=1

2

N
2
+ 2|1y — Pyl + 5 > HHU) ~Pur
=1

The first term is bounded by Theorem 10, and the second term is bounded by Theorem 1 B

6.2.1 PROOF SKETCH OF THEOREM 10 AND KEY LEMMAS

To prove the exponential convergence in Theorem 10, we need a stronger version of the
sufficient decrease inequality than Lemma 9. We should show that, in each communication
round, the change in the Lyapunov functions is negative definite. This requires a careful
analysis of the geometry of objective (7) around the global optimum Py, and {Pﬂi),T}'

The key result is the Polyak-Lojasiewicz (PL) inequality.

Lemma 12 (Polyak-Lojasiewicz inequality) Under the same conditions as Theorem 10, we

have
1 N 2 N N 2
N Z; (1-Pu. - Py, ) Sy U- ) + Z; (1-Pv. - Py, ) Z_; S Vi )
O /o
> o5 (FO. Vi) = F(UR (Vi n)))

The PL inequality shows that the norm of the parallel gradient is lower bounded, a constant
fraction of the optimality gap. It certifies a nice geometric property in objective (7) so that
each step of gradient descent can make significant progress. By combining the PL inequality
with Lemma 16, we can easily prove Theorem 10.

One of our major technical contributions is to establish the PL inequality for the
nonconvex problem (7). We analyze the local geometry of the problem with the help of one
special set of optimal solutions {ﬁT, {V(Z)T}} We show that this set of optimal solutions is
close to the current iterate {Ur, {V{;) - }}. Also, the difference {U, — U., WVayr — V(i)ﬁ}} is
aligned with the parallel gradient. As a result, the parallel gradient can direct the updates
to the optimal solutions.

The full proof of Lemma 12 and Theorem 10 is relegated to Appendix E.

7. Numerical Experiments

This section tests our model on a set of datasets across different applications. We start in
Section 7.1 with a proof of concept study using a synthetic dataset to verify theoretical
findings in Sections 4 and 6.
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We also discuss the effects of overparametrization and show an interesting application
of PerPCA in federated client clustering using local PCs. In Section 7.2, we provide an
illustrative example in comparison with Robust PCA to shed light on the end goal of our
model. Next, we apply PerPCA to a real-life heterogeneous distributed dataset FEMNIST
and CIFAR10 to show PerPCA’s advantages in finding better features in Section 7.3. Finally,
we demonstrate how PerPCA can separate shared and unique features in video and language
data in Section 7.4.

We note that from Theorem 10, a suitable initialization is needed for the best perfor-
mance of PerPCA. We thus employ the standard one-communication round distributed PCA
algorithm proposed in Qu et al. (2002) as the initialization of global PCs in Algorithm 2,
unless specified otherwise. Local PCs are always randomly initialized. In this section we set

7'2’(1) = ’["27(2) — e e . = T27(N) = ’["2.

7.1 Proof of concept on synthetic datasets

We generate data from model (1). The u,’s and v,’s are set to be orthogonal components.
After obtaining u,’s and v,’s, we sample the score coefficients ¢;) ,’s and ;) ;’s from i.i.d.
Gaussian distributions. Noise €(;) are also sampled from i.i.d. Gaussian distributions.

Under this setting, multiple aspects are tested: in Section 7.1.1, we revisit the example
in Figure 1 and examine the convergence behavior of PerPCA numerically. In Sections 7.1.2,
7.1.3, and 7.1.4, we demonstrate how the statistical errors change with the (i) number of
observations n, (ii) data dimension d, and (iii) number of clients NV, and compare the results
with our theory. In Section 7.1.5, we show that in PerPCA, clients benefit from knowledge
sharing to improve their PC estimates. Then we investigate the numerical performance of
PerPCA when 71 and ro are overparametrized in Section 7.1.6. Finally, in Section 7.1.7, we
describe a method that exploits the estimated local PCs for client clustering.

7.1.1 CONVERGENCE OF PERPCA

We first analyze the convergence of PerPCA. Theorem 10 predicts that (i) PerPCA has local
linear convergence, and (ii) a larger 6 can expedite convergence. To verify the two theoretical
results, we run PerPCA on a group of synthetic data. We set N =2, d = 3 and n(;) = 1000.
Each client has exactly one global u; and one local component v(;) ;. After setting global
PC wu; and local PCs (1) and v(y) 1, we generate the data according to the model (1)
where coefficients ¢;) , and ¢(;) 4 are randomly sampled from Gaussian distributions. By
changing the direction of local PCs v(y); and v(9) 1, we can modify 6:

0 = sin? (; arccos(va)vlv@),l))

Figure 1, shown in the introduction, is an instance of this analysis where 8 = 0.127.

To see the 6’s effect on convergence, we generate the data with 8 ranging from 0 to 0.3.
In this experiment, we initialize global and local PCs to be random Gaussian vectors. We run
each experiment with the same stepsize 7 = 0.1 but from 10 different random initializations
and collect the reconstruction error in each communication round 7. The reconstruction
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error is defined as the objective in (5) divided by the number of observations n;):

1 2

N
1
Reconstruction error = N Zl % HY(Z) - <PU + P‘/(i)> Y (29)

F

Results are shown in Figure 3. From Figure 3(left), we can see that PerPCA indeed enjoys
linear convergence. Furthermore, bluer curves have a larger slope, which indicates that a
larger 6 leads to faster convergence. Such a finding is corroborated by Figure 3(right), which
plots the log error at the 100-th communication round with respect to 8. It is clear that the
log error decreases linearly with the increase in 0. These results thus confirm insights from
Theorem 10.
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Figure 3: Left: the learning curve of the reconstruction error. Each curve represents one
set of experiments with one 6. The bluer the curve is, the larger 6 is. Right: log
reconstruction error after 100 communication rounds for datasets with different
misalignment parameters 6. We run each experiment 10 times, each with a
different random initialization. The red line represents the mean log error after
100 communication rounds for the ten experiments, and the blue-shaded region
shows the confidence interval.

7.1.2 DEPENDENCE OF STATISTICAL ERROR ON n

Knowing that PerPCA converges rather quickly, we can use the final iterates of Algorithm 2
as an estimate of the optimal solution to problem (7). To show that the estimate can indeed
recover the true local and global PCs, we calculate the subspace error between eigenspace
estimates and true values defined in (13),

- (30)

N
1
Subspace error = || Py, — HQH% + N Z HPVWT — 11
i=1
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Remember that Theorem 1 shows that such error should decrease to 0 as the number of
observations on each client approaches infinity. Additionally, Corollary 3 gives a finite-sample
error bound of the subspace error.

Here, we benchmark with a one-shot approach distPCA (Fan et al., 2019). However,
we provide a simple variant of distPCA to make it amenable for personalization. For
standard distPCA, each client first calculates the top r1 + ro principal components and
sends them to the server. The server then concatenates all the received PCs into a d x
N(ry + r2) matrix and calculates the top r principal components of the matrix. To
enable personalization in distPCA, we take the following route: we use the obtained top r;
principal components Ugistpca as estimates of the global principal components. Then, we
estimate local PCs with the help of the global ones. Specifically, the global PCs Ug;stpca
are sent back to clients. Each client then deflates the sample covariance matrix S(;) ge fiate =
(I — Pyg.er) S(i) (I — PUy e ), and calculates the top 2 principal components of Sy ge fiate
as local PCs.

To analyze the statistical consistency, we run PerPCA on datasets with varying numbers
of observations n(; and compare with the benchmark algorithm distPCA. We set n(;) =
ne) = - =n. We fix data dimension d = 15 and generate data from 2 global PCs and
10 local PCs. On each client, the variances contributed by local PCs are set to be 100
times larger than those contributed by global PCs to simulate large heterogeneity. This is
achieved by setting the standard deviations of ¢;) , to be 10 times smaller than ¢ , in
data-generating model (1). We use 100 clients. Among them 50 clients have n observations,
and the rest 50 clients only have %n observations. We run both algorithms and estimate
the subspace error (30) from 5 different random seeds.
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Figure 4: Log subspace error vs local observations n. PerPCA is consistent while distPCA is
not.

Results in Figure 4 show that PerPCA achieves smaller statistical error for almost all
n, and more importantly, the error decreases with n, which indicates that PerPCA gives
consistent estimates of global and local PCs. When the error is small, the slope of the curve
is approximately —1, which matches the theoretical error upper bound O (%) in Corollary 3.
In comparison, the statistical error of distPCA does not decrease even when n is very
large, implying that the method is not consistent for heterogeneous datasets. This result also
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sheds light on an important insight. Simply learning global components and using
them for personalization in a train-then-personalize philosophy is not optimal,
as global components from aggregated data may not contain useful information
required for personalization.

7.1.3 DEPENDENCE OF STATISTICAL ERROR ON d

We also examine the performance of PerPCA on data with different dimensions d. We fix
n = 10000 and generate data with different d. Other settings are the same as Section 7.1.2.
We calculate the subspace error of estimates given by PerPCA and distPCA. Results are
plotted in Figure 5.
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Figure 5: Log error vs data dimension d.

From Figure 5, PerPCA still achieves smaller statistical error for all d. Also, the error
grows almost quadratically with d, which again matches the upper bound in Corollary 3.

7.1.4 DEPENDENCE OF STATISTICAL ERROR ON N

Now, we explore whether the number of clients N affects the statistical error. We fix d = 15,
n = 10000, and change N from 10 to 1000. The other settings are also the same as in
Section 7.1.2. After obtaining global and local PCs, we calculate the subspace error of both
global and local PCs (30) and the subspace error of only global PCs || Py — Hg||%. Results
are plotted in Figure 6.

Figure 6(a) shows that when N increases, the average subspace error decreases slowly.
The decreasing trend is more conspicuous for the subspace error of global PCs shown in
Figure 6(b). This is understandable as when more clients participate in PerPCA, more
observations are available. Thus, global PCs can be better estimated.

7.1.5 SHARED KNOWLEDGE

When the PCs on different clients are extremely heterogeneous, it is natural to ask whether
clients are sharing knowledge and learning from each other in PerPCA. Corollary 3 indicates
that clients can benefit from participating in the collaborative learning process from a
theoretical perspective. In this section, we show numerical results on how the learned global
components improve client-level predictions.
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Figure 6: Left: the average of local and global PCs’ subspace error. Right: Global PCs’
subspace error.

The dataset on client ¢ is split into a training set Y(;) trqin and testing set Y(;) jo5e. We
use the training set Y(;) ;qin to find estimates for global and local PCs and the testing set
to calculate the testing error. We focus on the reconstruction error defined in (29). As in
Section 7.1.2, we simulate two groups of clients with highly unbalanced dataset sizes. One
group of clients has n observations. We call them data-rich clients. The other group of
clients have only %n observations. We call them data-sparse clients. We set N = 100 and
n = 100.

In this experiment, we compare PerPCA with 3 benchmarks: indivPCA, CPCA, and
distPCA. For indivPCA, each client uses their own data to calculate PCs independently
without any knowledge sharing. CPCA represents PCA on the pooled data from all clients,
i.e., all data are uploaded to a central server, and PCA is learned on the aggregated dataset.
For fair comparisons, we allow indivPCA and CPCA to retain r; + ro principal components.
The results of testing reconstruction error averaged over the groups are shown in Table 2.
Ground Truth corresponds to the testing loss by the true PCs.

Client Group  indivPCA CPCA disPCA PerPCA Ground Truth
Data sparse  1.87+0.01 2.07+0.01 1.91+£0.01 1.68+0.02 1.50 +0.01
Data rich 1.80£0.01 2.10+0.01 1.8840.01 1.52+0.01 1.50 £ 0.01

Table 2: Testing reconstruction error averaged on each group

From Table 2, it is clear that PerPCA achieves the smallest testing error in both the
data-sparse and the data-rich group, thus having the best predictive performance. As PerPCA
outperforms indivPCA, we can conclude that PerPCA learns useful shared knowledge. The
results highlight PerPCA’s ability to extract common features from heterogeneous datasets.
Also, CPCA exhibits the worst performance. This again highlights the need for personalized
learning when data comes from heterogeneous sources.
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Figure 7: Simulations where we choose 79 > 73.

7.1.6 OVERPAMETRIZATION

In practice, when the true rank 71 and ry (;)’s are unknown, practitioners may choose the
rank of U and V{;) to be larger than the ground truth. This is called an overparametrized
regime (Zhuo et al., 2021). Overparametrization is a common technique for PCA and
matrix factorization. Here we investigate the numerical performance of PerPCA in an
overparametrized regime.

We use synthetic data to analyze the convergence behavior of PerPCA. We set d = 30
and r1 =1, ro ;) = r2 = 1. Then we randomly generate data {Y(,)} for N = 20 clients and
calculate the corresponding covariance matrix {S(i)}. The data are generated without noise
to better understand the convergence.

We run overparametrized PerPCA on the generated data. More specifically, we choose
orthonormal matrices U € R and Vi € RI*72 with rank 7#; > r and 79 > 79 in
Algorithm 2. Since, in practice, people may over-parametrize the rank of both global and
local PCs differently, we study both cases separately.

Case 1: 79 > 5. We choose the rank of local PCs 75 to be higher than the ground truth
ro, while keeping 71 = r;. Then we run PerPCA starting from random initializations to
obtain iterates U, and {VJ;) .} for different 7. We analyze three metrics:

o Global error: £ YN, L | Py, Yy, — LY, |7

=17

2
e Local error: 4 Yo%, ;L HPV(Z,MY@ ~ Y|

e Reconstruction Error: % Z,fil % HY(l) — (H(i) + Hg) Y(l)HfF

Apparently, the reconstruction error is upper bounded by the sum of the local error and
global error. We plot these metrics for different 79 in Figure 7.

There are a few interesting observations in Figure 7. Firstly, for all 7o, the reconstruction
errors decrease linearly. This is understandable as using a larger rank in local features 79 can
add more representation power to the model, thus helping model fitting. As the covariance
matrices are noiseless, the linear decrease of reconstruction error is also consistent with
the standard matrix factorization results in Zhuo et al. (2021). Secondly, when the local
features {V(Z)} are slightly parametrized ro < 79 < 19 4+ 3, the global error and local error
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Figure 8: Simulations where we choose 71 > ry.

also decrease linearly. Such results show that with slightly overparametrized {V(;y}, one can
still recover the global features and the local ones. Thirdly, when 75 is very large, 7o > ro+4,
the global error and local error decrease sublinearly. In this highly overparametrized regime,
though the reconstruction error decreases to zero linearly, the learned global and local
features do not converge to the ground truth equally fast.

When the ground truth II, and II;) are unknown, one cannot evaluate the local and
global error. Therefore, we propose the estimated misalignment 6.5 value as a statistic
indicative of the global-local separation:

N

1
Hest =1- )\max (N ZPV(Z)>

i=1

where V(i) is the recovered local PCs on client 7. 0.5 measures how different the local
features are.
We calculate 0.4 for different ranks of V(s) and show the results in Table 3.

~

79 79 ro+1 r9+2 r9+3 ro + 4 r9 + 6
0.t 0.90 0.69 0.36 019 18x10% 25x1079Y

Table 3: Misalignment value 6 for different ranks of matrix Vj;

From Table 3, when 79 increases from r9 + 3 to 79 + 4, 6.5 decreases rapidly from 0.19
to almost 0. Such change indicates that the local features are very aligned when 7o = 19 + 4.
Thus, local features are not “distinguishable”. The abrupt changes 6.s: echo the results in
Figure 7: when 0.4 is small, local PCs are similar, and the separation between local and
global PCs is not clear.

Case 2: 71 > r1. Similarly, we choose the rank of global PCs 7 to be higher than the
ground truth r;, while keeping 79 = r3. The results are shown in Figure 8.

Figure 8 demonstrates different qualitative behaviors than Figure 7. Even when 7 is
slightly overparametrized, 71 = r1 + 1, the global and local errors do not linearly decrease to
0. Yet the fitting error for all cases decreases linearly. The comparison implies that when
U is overparametrized, the combined features U and {V(Z)} can still explain well the data
variance, but may not exactly characterize the global and local features.
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In light of the insights gained, we recommend that practitioners carefully select small
values for r; and 75 in a way that ensures a small reconstruction error while also maintaining
a large value for 6.4 if they suspect heterogeneity among the data sources.

7.1.7 CLUSTERING BASED ON LOCAL PRINCIPAL COMPONENTS

Apart from capturing the variance structure in the data, the learned local and global
components can reveal high-level information about the client’s interrelatedness. Below we
present an interesting application of PerPCA in client clustering.

An important question in federated and distributed learning is how to cluster clients
based on some summary statistics from their data. This is usually done by exploiting some
distance metrics over the estimated parameters or gradients (Sattler et al., 2019) from each
client. PerPCA can pose an alternative approach for client clustering based on local PCs.
The intuition is that by focusing on local PCs, differences across clients are more explicit
compared to the raw data. More specifically, when ry (1) = -+ = ry () = 72, one can
calculate the subspace distance between client ¢ and j p; ; defined as:

(31)

Pii = 1y HP‘A’@) Py, llp
If the column space of V(i) and V(j) are more similar, p; ; will be smaller.

The p; j’s measure the closeness of local subspaces, thus revealing a similarity structure
among clients. They form an N x N matrix p. As such, simple spectral clustering (Hastie
et al., 2009) on p can be used to analyze the relations among different clients.

As an example, we generate clients from 10 different client groups. Clients in one group
have the same local PCs. Different groups have different local PCs. The data on clients
within one group thus have a similar variance structure. We set r; = 2, ro = 3, and d = 15.
We apply PerPCA and calculate the matrix p(7) with each communication round 7. We
omit the dependence p(7) on 7 for simplicity. Then, we use multidimensional scaling (MDS)
(Hastie et al., 2009) and spectral clustering on p. Results are shown in Figure 9.

Since local PCs are randomly initialized, it is hard to find meaningful structures from
initialization in Figure 9(a). However, after only one communication round, the true structure
emerges in Figure 9(b). After 30 communication rounds, clients can be effectively clustered
based on their learned local PCs.

7.2 An illustrative example in comparison to Robust PCA

The philosophy of finding common and unique features can be applied to other tasks beyond
explaining data variance. In this section, we use a simple example to demonstrate how
PerPCA can separate shared and unique features from image data.

We start by comparing PerPCA with Robust PCA. Though Robust PCA is proposed
to learn low-rank and sparse parts, it is also potentially useful in finding irregular and
common patterns from a dataset. When data come from different sources {Y{;} and have
equal number of columns n;y = --- = ny) = n, one can stack them into one matrix
Yiack = [Vec (Y(l)) -, Vec (Y(N))] Then Robust PCA can be applied on the stacked
matrix Yagaek € R"V to distinguish low rank and sparse parts. The common wisdom is to
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Figure 9: MDS of the distance matrix p. Color denotes the output of the spectral clustering
algorithm. Numbers denote the true cluster labels.

use a low-rank part to represent shared patterns and a sparse part to represent irregular
trends (Candes et al., 2011).

The underlying assumption of such an approach is that unique features are somewhat
sparse among all datasets. However, there are cases where a sparse matrix cannot model
unique features. An example is shown in Table 4. We create 4 images of different icons
(triangle, disk, cross, and cloud) on similar background textures using PowerPoint and
distinguish the icons from the background. As a greyscale image can naturally be represented
by an observation matrix with dimensions of its height and width, we can construct 4 datasets
representing 4 images. Then we apply PerPCA and Robust PCA to identify the icons.

From Table 4, it is apparent that Robust PCA does not perform well as it cannot recover
the icons and always leaves shadows of icons on other images, probably because icons occupy
a large space in the image and thus cannot be modeled by sparse noise. PerPCA recovers
the icons by projecting the images to the subspace spanned by local PCs. The third row in
Table 4 shows that PerPCA has decent performance as the icons recovered have clear edges
and shapes.

This highlights the need for personalized inference in many applications where PCA is
utilized.
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Image

Original

Sparse
parts by
RPCA

Projection to
local PCs

Table 4: A comparison of PerPCA and Robust PCA on images of icons on background
textures.

7.3 Real-life federated dataset

We also apply our algorithm on FEMNIST (Caldas et al., 2019) and CIFAR10 (Krizhevsky
et al., 2009).

FEMNIST is a popular dataset in federated analytics. It consists of greyscale images of
handwritten digits and English letters contributed by 3550 different writers. Each image has
28 x 28 = 784 pixels. Different writers have different writing styles. Thus, the datasets are
inherently heterogeneous. Our task is to learn a few PCs that can represent the dataset. On
average, each client has 89 images. We represent an image by a vector in R"®*. For these
vectors, we randomly choose 80% of them to form the training set and take the rest as the
test set.

CIFARI10 is a multiclass image dataset. It consists of 60000 images from 10 classes.
To simulate a heterogeneous setting, we separate the training and testing set of CIFAR10
into 20 parts such that each part contains images from only 2 classes. Then, we assign the
separated parts to 20 clients. The data partition scheme is consistent with federated learning
literature (McMahan et al., 2017). Then we use similar data preprocessing procedures to
vectorize the images on each client and construct the dataset {¥(;)}.

We use PerPCA, indivPCA, CPCA, and distPCA to fit PCs on training sets. Then, we
evaluate the reconstruction error (29) on both training and test sets. The experiments are
repeated 3 times to calculate the mean and standard deviations . The results are shown in
Table 5.

As the reconstruction error represents the difference between the original and recon-
structed image, it represents how well the learned PCs can characterize the features in the
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Reconstruction error indivPCA CPCA disPCA PerPCA

FEMNIST Training 0.49 +£0.01 1.724+0.01 1.43 +£0.01 1.44 +0.02
CIFARI10 Training  105.68 £0.01 114.79+£0.01 113.56 £0.01 113.69 4+0.02
FEMNIST Testing 1.97 +0.03 1.73+0.01 1.73 £0.01 1.70 £ 0.01
CIFAR10 Testing 120.79 £0.02 11544 4+0.02 11543 +0.01 115.33 +£0.02

Table 5: The mean and standard deviations of the training and testing reconstruction error
on FEMNIST

image. In Table 5, indivPCA achieves the lowest training error but incurs high testing error,
suggesting that learned PCs overfit the training sets. PerPCA has the lowest testing loss both
in FEMNIST and CIFAR10, highlighting PerPCA’s ability to leverage common knowledge
with unique trends to find better features from data.

7.4 Other Applications

Besides the experiments in the previous sections, PerPCA can excel in various tasks that
require separating shared and unique features. In this section, we will use video segmentation
and topic extraction as two examples to show the applicability of PerPCA.

7.4.1 VIDEO SEGMENTATION

The task of video segmentation is to separate moving parts (foreground) from stationary
backgrounds in a video. For a video with F' frames, where each frame is an image with
width W and height H, we can model it as F' separated datasets. Each dataset has the data
of one image frame or H observations from R". Therefore, we can naturally apply PerPCA
to recover local and global PCs from the constructed datasets of all frames. Intuitively, the
global PCs should capture shared features across all frames, representing the stationary
background. Meanwhile, local PCs capture unique features in each frame corresponding to
the moving parts. Hence, after obtaining the global and local PCs, we project the original
picture onto the subspace spanned by these components to extract the background and
foreground segments.

We use a surveillance video example from Vacavant et al. (2012). We set 71 = 50 and
To,1) = - = T2,y = 50 and apply Algorithm 2 with choice 2. Some segmentation results
are shown in Table 6. From Table 6, we can see that backgrounds and moving parts are well
separated by global and local PCs, validating PerPCA’s ability to find common and unique
features in image datasets.

7.4.2 TOPIC EXTRACTION

PerPCA is also useful in modeling changing topics in language datasets. As a demonstration,
we analyze the presidential debate transcriptions from 1960 to 2020 (Asokan, 2022). The
goal is to extract key debating topics for each specific election year.

The dataset contains 9135 dialogues in 46 debates from 13 election years, where one
dialogue is the speech the speaker makes in the debate before another person speaks. After
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Sample Frame 1 2 3

Original

Projection to
global
PC space

Projection to
local
PC space

Table 6: Video segmentation. We separate moving cars from the background in a video
from (Vacavant et al., 2012).

Table 7: U.S. presidential debate key topics represented by local & global PCs

Year Top local principal components words

1960 peace, Castro, Africa, Kennedy, now, world, ...

1976 billion, Carter, Governor, Africa, Ford, people, world, ...

1980 coal, oil, money, energy, Social, Security, Reagan, ...

1984 Union, tax, Soviet, arms, leadership, proposal, ...

1988 drug, young, strong, build, future, enforcement, good, ...

1992 Bill, school, children, care, health, taxes, reform, plan, control, ...

1996 Clinton, Security, Medicare, budget, tax, Dole, Bob, ...

2000 school, public, plan, children, money, Social, Security, health, tax, ...

2004 wrong, plan, cost, free, Saddam, troops, Iraq, war, health, tax, ...

2008 nuclear, oil, troops, Iraq, Afghanistan, Pakistan, health, Iran, energy, ...

2012 million, small, business, China, Medicare, Romney, jobs, tax, ...

2016 Russia, Trump, Hillary, companies, taxes, Mosul, Iran, deal, ...

2020 Harris, Pence, Trump, down, Joe, Biden, jobs, Donald, health, ...
Common words Tax, country, States, make, world, money, people, cut, ...

we remove common English words such as “you”, “I”, “and”, “at”, “that”, from the text
corpus, there are 5464 different words used in the dataset.
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We model the dataset as a collection of 13 separate datasets, each of which has all
the dialogues in one election year. To construct the observation matrix Y(;), we first use
one-hot encoding to map an English word into a vector in R?¥%%, Then, we add all vectors
corresponding to words that appear in one dialogue. The added vector is one observation
in R%464, Y(;) is formed by concatenating observations corresponding to dialogues in the
election year.

With the datasets constructed, we run PerPCA for 20 communication rounds to extract
local PCs. We set 1 =2 and ry (1) = -+ = ry (v) = 2. To show the key topics represented
by the two local PCs, we find the words corresponding to the dimensions in each local
and global PC that have the top 20 largest absolute values. Table 7 contains the most
informative keywords from the top 20 keywords obtained.

From Table 7, one can find different debating key topics for different years. For some
years, the key topics are about public finance and domestic economic reform. For others,
the key topics are more about international relations. These topics represent the central
issues at a specific time in history.

8. Conclusion

This work proposes PerPCA, a systematic approach to decouple shared and unique features
from heterogeneous datasets. We show that the problem is well formulated, and consistency
can be guaranteed under mild conditions. A fully federated algorithm with a convergence
guarantee is designed to efficiently obtain global and local PCs from noisy observations.
Extensive simulations highlight PerPCA’s ability to separate shared and unique features in
various applications.

As the first systematic approach to decouple shared and unique features quantitatively, we
envision that PerPCA can find use across various downstream analytics such as interpretability,
clustering, classification, change detection, and transfer/federated learning. Within these
areas, one can leverage unique knowledge so that differences become more explicit and leverage
shared knowledge to transfer useful information from one source to another. Exploration
along these directions may be promising.

In addition, within PerPCA, there are several avenues for expansion and exploration. On
the optimization front, it is promising to design algorithms that can converge faster, or
require lower computation resources, including Grassmannian gradient descent, and adaptive
stepsize Stiefel gradient descent. Further, extensions of PerPCA that consider missing data,
large noise, sparse factors, or malicious intruders are important directions for future work.
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Appendix A. Proof of Theorem 1

In this section, we will show the proof of Theorem 1. We first use standard perturbation
analysis on the eigenspaces of 3(;) (Vu et al., 2013). By assumption, IT; and I1; are the
projections onto top eigenspaces of X;), therefore for any orthogonal projection matrix Py
and P‘A,(i), we have:

<2(i), Hg + H(i) - PU — PV(1)>

- <(ng + 1) 2y, I — Py — P%> - <(I 1T, — I ), Py + Py, )>
> Aritrs g (T + ) By) (T + T T = Py — Py )

=\ (I =Ty = THp) ) (T =TI, ~ Ty, Py + Py, )

>0 (n + 7o) — <H9 + ), Py + PV<z)>)

Summing both sides for ¢ from 1 to N, we have:

EN: (B My + T~ Py — Py ) > 5§N: (r1+ 72 — (T, + Ty, Py + Py, ) (32)
=1

i=1
Since Py, and {PV<Z_)} are the optimal solutions to (7), and II, and {IT(;} are feasible, we
know that:
N N
> (St Py + Py, ) 2 > (ST, + ) (33)
i=1

1=

Combining (32) and (33), we can obtain:

N N
> (i)~ Sy, Py + Py, ~ Ty~ Tl ) > 5; (11 + ) = (T, + Ty, Py + Py, )

i=1
We can use the Cauchy-Schwartz inequality to further bound the left-hand side as:

(St =S Py + Py, — Ty — Ty ) < || S - Py + Py T, — T |

=l |
Notice that
HPUJFPV, — Iy = I ||

= IPo oy [+ I T 2Py Py 1 1)

= \/5\/7“1 + T3y — <Pfj + Py I + H(i)>
‘We thus have:

N
2. <S<z’> =X, Py + Py, — Iy — H<i>>
=1

N N
< V2 Y186 = S5y X [+ e — (Po + Py, Ty + Ty )|
i=1

=1
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by another application of Cauchy-Schwartz inequality.
Finally:

1 N
N ; [Tl T T <Pﬁ Py, g + >} N(52 Z 186 — (z‘)”? (34)

The relation (34) slightly extends the standard result from matrix perturbation theory.
However, it only shows the summation of Pp and PV“-) is close to the summation of IT, and
IT;). One cannot infer additional information about the closeness of Py; to Ily, or PV“-) to
IT(;). In other words, (34) alone does not ensure that the recovered global and local PCs
correspond to true PCs.

Such a guarantee is too weak in practice when we want to know if the solved U and
Vis)’s are close to the ground truth. Fortunately, we can show that this is indeed the case if
the problem satisfies the identifiability assumption 4.2. An important finding is the following
lemma, which indicates that the closeness in direct sum space can lead to closeness in each
global and local subspaces.

Lemma 13 Suppose fori=1,--- N, Py, P‘/(i) and Py, P‘*/u) are projection matrices
satisfying Py Py, =0 and P{}P‘*,(_) =0 for each i. Among them, Py and Pg; have rank r1,
Py, and P‘*’<‘) have rank ro ;). If there exists a positive constant 6 > 0 such that

N

maz E

We have the following bound:

N N
ZTl + 7o) — <PU + Py, P + P‘t'(i)> < N (r —(Pg, Pu)) + Z@,(i) - <P%)7PV(¢)>
=1 =1
(35)
Also:
N 0 N
ZT1+7‘2,(¢)*<PU + Py, Pj + Px*/(i)> 25 (N (r1— (Pg, Pu)) + > 7o) — <P‘*/(i)aPV(i)>>
i=1 i=1
(36)

The proof of Lemma 13 is at the end of Section G. By applying inequality (36) to (34), we
can prove the desired error bound in Theorem 1.

Appendix B. KKT condition
We show the KKT conditions (24). The lagrangian to the objective (7) is:

1
& = Z { Tr (UTSU) + 5T (VS Via) + (As VEVio = I) + (M50, U7 Vi)

<A1, U'v)
(37)
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where A € R, Ay ;) € R™®7™2.0) and Ag ;) € R™*™® are dual variables. The KKT
conditions are:

S(z)"()“’()(A2<>+Az(>)+UA3,<i>=0

[s WU+ VigA | +U (A1 +AT) =0 (38)

SMZ

UTU =1, ViyViy = I, ,, UTV; =0

By left multiplying the first equation in (38) with I — Py — Py, we have
(I — Py — P‘/U)) SiVii) = 0, which is the first equation in (24). By left multiplying
the first equation in (38) with U”, we have A6y = —UTS(Z»)V(i). Plugging this into the
second equation in (38), we have EZ 1 [ U — Py, S U] +U (A1 + AT) = 0. We then

left multiply both sides again by I — Py. The second equation in (24) follows accordingly.
One can also infer (38) from (24).

Appendix C. Proof of Theorem 2

Inspired by Birnbaum et al. (2013), in this section, we will use a “spiked population model”
to demonstrate the lower bound. We will first use matrix perturbation analysis to estimate
the leading order term for the estimation error of global PCs. Then, we verify our results
through numerical experiments.

Proof To prove theorem 2, it suffices to find one set of parameters under which the
statistical error is indeed 2 (% 52) For simplicity, we consider N = 2 and r; = ry = 1,
i.e., each client is driven by one global feature and one local feature. We define a few needed
signal vectors wi 1, w1 2, w2 1, W22 € R* and a noise vector w3 € R? as

. . . T
wi,; = (cosysina,sin asiny, cos «v, 0)
. . T
= (cosy cos a, cos asiny, —sin v, 0)
wy 1 = (cosysina, —sinasiny, cos a, 0)” (39)
wy o = (cosycosa, —cosasiny, —sina, O)T
T
w3 = (Oa Oa Oa 1)

Then, we define the population covariance matrix as,

T T T
3 = 2w1,1'w1’1 + wi pwi 5 + pwsws (40)
T T T
3o = 2wa 1w3 | + W2 2w; 5 + QW3W3

where g is a constant ¢ < 1. In (40), 2w1,1'w1T’1 +w1,2w1T’2 denotes the signal part in 37 and
gwgwg denotes the noise part. Apparently, the model (40) satisfies assumption 4.1 in the
main paper. The eigengap § is d =1 — o.

It is easy to check that if we run PerPCA directly on the population covariance matrices
{21), X(2)} defined in (40), the algorithm would recover the optimal global PC as

u=(0,0,1,0)"
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and the optimal local PCs as
v, = (cos,sin~y,0,0)
. T (41)
v9 = (cos~y, —sin~, 0,0)
. . . _ < 2
It is also easy to see that the misalignment parameter 6 = sin“~ when 0 <~ < 7.

We further introduce v+, and vty as,

vt = (—sin~y, cos 7,0, ())T

vy = (sin~, cos 7,0, O)T

Now we consider the sample covariance matrices S; and So. For simplicity, we assume
they are only slightly perturbed from the population covariance matrices; S; = 37 + €45,
and Sy = X5 + €055, where € << 1 is a small number, and §S; and 4S5 are defined as,

081 = vlw;{ + wgvlT +viul + uvlT + vleg + ngvlT + ’lU3UT + uwg

T

(42)
(552 = Ug’wg + 1U3Ug + ’UQUT + UU; + 'UQ'UJ_T + Ull’UQ

i.e., there are some small perturbations in the sample covariance matrix. §S; and .55 model
the small differences between the sample covariance and population covariance matrices. It
is easy to calculate that,

) 2
2 (HS(U - Sl + 5@ - 2@)”?) = 7e’

We can run PerPCA on the sample covariance matrices S and So. The optimal global and
local optimal PCs are denoted as @ and (01, 02). Apparently, @ and (v, v2) are a function
of £, and as € becomes zero, the sample covariance becomes the population covariance, and
(@, 01, 02) become (u,vi,vs).

To estimate (@, 01,?2) when ¢ is nonzero, we can use the KKT conditions to analyze
how (@, ¥1,02) change with respect to e. Remember that the KKT conditions (38) are,

S191 = D191 + 0101 1t
Soby = Dodag + Dol Syt (43)
(814 82) 6 = a\ + aa’ Sy, + wn’ Sy,

Since 31y and () do not have duplicate eigenvalues, from Greenbaum et al. (2020),
(@, v1,02) and (A1, A21, A22) are analytic functions of € when ¢ is small. We can thus write
the Taylor series expansion of (u,¥1,¥2) as,

(1)

()
v1(e) =v1 +evy ' + 52v§2) +---
va(e) :v2+€v§ ) —1—5-:2 ) + .-
0, 0, 2, (44)
M) = A +eA]’ +e2\
Aai(e) = A5+ eay + €25 +
(e) =

/\gz) + 8)\(1) + 52)\52) +
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where u() is the first-order coefficient and w(?) is the second-order coefficient for the
expansion of @(e). Similar notations are used for other variables.

Then we can take the expansion (44) into the KKT conditions (43) and match the O(g)
terms on both sides,

5S1v1 + S0l = v Al + oA
+ vgl)vipﬁlu + vlvgl)TZ]lu + vlvipéSlu + vl'vlTElu(l)

0S2v9 + Egvél) = '1)2)\;12) + vél))\g;)
+ Ugl)ngQU + 'vaS)TEgu + vovd §Sou + vovl Seu)

(581 +682) u+ (31 + o) u® = uAl 4 OAY
+ u(l)uTElvl + uu(l)TElvl +uul5S1v; + uuT21'v§1)

+ U(I)UTEQUQ + uu(l)TEQ'UQ + uu’5Syvs + 'U;'U,TEQ'Uél)

(45)
To solve equation (45), we can expand uD), vgl), and Uél) over a basis,
1 — 1L
U’ = Yoot + Yo1V1 + P02V 2 + Yo3Ws3
v = plou+ p11v1 + PravTs + 3wy (46)
Uél) = P20l + P21V 1 + Y2202 + Po3W3
Since ||@|| = [|01]| = [|D2]] = 1, we know that g9 = @11 = ¢22 = 0. Then we can take
(46) into (45), and solve ¢’s as,
1.
po1 =~ sin(2«) cot(7y)
1
poz =~ sin(a) cos(«)
_ 2sin(2a) + cos(2a) +20 — 3
w08 = 1(02—30+2)
1.
P10 = sin(2a) cot(7y)
1
P12 = Z(cos(2a) +3) (47)
_ sin(2a) — 2cos(2a) + 40— 6
P18 = 4(0 —30+2)

1
P20 = 1 sin(2a) cot(7y)

1
P91 = Z(COS(QCK) +3)

sin(2a) — 2 cos(2a) + 40 — 6
4(0* —30+2)

P23 = —
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Now, we obtained the closed-form formula for the first-order perturbation of global and local
PCs. It is straightforward to calculate that

@ — |,

T 2
H (e cu® +2u® ) (e eu® 4@ 1)
F
2 48
:522Hu(1)H +O(z~:3) (48)
£2 40 +2v3 —5)°
= a 3cs 2(7) ( 2 )2 0(53)
(I1-0)7(2-0
Since we know that 6 = sin?(y) and § = 1 — o when v < T we have,
5 2
\ T T2 € 1 (2v3—1-146) 5
_ -~ |32 4
ot = 5 (35 + L ) v (o)

When ¢ is small, the higher order term O (£*) can be neglected. Thus the error in (49)
can be further simplified to €2 (52 (% + 6%)) when 6 and § are small. This completes our
proof. |

We also verify the predicted error (49) via numerical simulations. In the simulations,
we run PerPCA on the sample covariance matrices S7 and Sy to obtain the global PC .
Then we use 4 to calculate the subspace error H'&/&T - 'u,uTH This is the actual statistical
error for the estimates from PerPCA. We compare it with the predicted values in (49) under
different parameter values of 6§ and §. Results are shown in Figure 10 and 11.

—— Predicted global error 6] — predicted global error
3.25- ® Actual global error ® Actual global error

10 20 30 40 20 40 60 80 100 120

1/62 1/6

Figure 10: The (rescaled)2 global PC error  Figure 11: The (rescaled) global PC error
H"lﬁT - uuTH r/ &? under differ- |aa’ — uuTH? /€% under differ-

ent eigengap 9. ent misalignment parameter 6.
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Figure 10 and 11 demonstrate good matches between the predicted statistical error and

the actual statistical error. The two curves vividly show that when % and 5% is large, the

global subspace error grows linearly with % and 6%.

Appendix D. Proof of Theorem 8

Now we analyze the global convergence of Algorithm 2. We begin by calculating the
derivative of L;) 1 and L;) 2. The derivative of L;), over U is:

Vulp(U,V)=—(I—-Py)S;(I—-Py)U (50)
When VITU = 0, this reduces to:
VuLlpa(U,V)=—(I—-Py)SyU
And the derivative of L;); over V is:
VvLy.(U,V)=PyS;V + S, PuV — PuPyS,V — S, Py PyV (51)
When VU = 0, this reduces to:
VvLiy1(U,V)=PyS;V
Similarly, the derivative of L;) o over V is:
VvLip2(U,V)=-SuV (52)
The following lemma shows that the function we introduced is Lipschitz continuous.

Lemma 14 When |U||,, and |V ||,, are upper bounded by 1, the functions L)1 + L)

are Lipschitz continuous with constant L. More formally, for any Uy, Us, Vi, Vo € RT,
such that U], |02l IVill,, | Vall,, < 1, we have:

0p’| O;D" 0p’| op =

H {VU[’(Z'),I(U% V2) = VuLiy1 (Ui, V1),

Vv L 1(U2, V2) + Vv Ly 2(Uz, V2) = Vv L) 1(Ur, Vi) = Vy L) o (U, ‘/1)} HF (53)

< L\/|UL - st + Vi — Val%

where
L =9V2G i) op (54)

Proof First, we calculate the difference in the gradient of U:
VUL (Us, Vo) = Vu Ll (UL, V)|,
= [|(1-viVi") SiyUr — (I - VaVy') S5y Ua |
< [(T=viv) SpU = (I = Ve Vy') SuUi| | + [[(T - VaVe') SiyUr = (T = VaVy') Sy U
< |viVi" = VaVy || Goyop + 1UL = Uzl Gy op
<2|Vi = Vallp Gy op + UL = Uzl p G iy op
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where we used the triangle inequality for the Frobenius norm for the first inequality, and
Lemma 23 for the second and third inequality. Next, we calculate the difference in the

gradient of V:
Vv L1 (U2, Va) + Vv Ly 2(Uz, Va) = Vv Ly 1 (U, Vi) = Vv Ly o (U, Vi
=< H(PU2 —1I) SoVa — (Py, — )S(i)VlHF + HS(Z')PU2V2 - S(i)PU2V?H
+ [P Pv S5 Va = Pu Py Sy Vi o + || (i) P Pu Va = S(iy Pvi Poy Vi
S7”‘/1 ‘/QHF () op+6HU1 UQHF

i

I

Summing them up, we know:
H [VU['(@‘)J(UQ, Va) = Vu Ly, (Ui, V1),

Vv L 1(Uz, Va) + Vv L) 2(Us, V2) = Vv Ly 1 (U, Vi) — Vv L) o(Un, Vﬂ} HF
<||Vu LUz, Va) = VoL (U, Vi) ||, (55)

+ || Vv Lo 1 (Us, Vo) + Vv Li) 2(Us, Vo) = Vv Loy 1 (U, Vi) = Vv L) 2 (U, Vi

e
< 9| Vi = Vallp Goop + TUL = Un]| G

(4),0p
< 9V2Cmarop/ IUL — Vel + Vi — Val1%

We thus complete the proof. |

Now we introduce some notations:

N
1
OU, = > (1= Pu, - Py, ) SuU- (56)
i=1
It is easy to verify OU, € Ty, when UTV(Z-)J —
Uur'ou, =0
The Frobenius norm of LU is upper bounded by:
10U

F

\OPHS@HOPHUTHF (57)

Z Gmax ,0p \/>

= Gmaw,op\[

where we applied Lemma 23 for the first inequality.
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By the client update rule, we know that:
Ugiyrs1 = Us + 1 <I Py - PV(W> SwUs (58)

Therefore, after the server takes the average of U(;) 11 and performs a generalized
retraction, the following holds:

UT+1 =U; + HTDUT + 7772'8177' (59)

where e; ; is an error term defined as:

1
€17 = ﬁ (Ury1 = U; —n;0U;)

T

By definition of a generalized retraction, since OU : is in the tangent space of U, we
have:
2
lerr|lp < My ||[OU- 7

where we applied the condition n, < ﬁ#‘j’w thus ||n;0U;| p < M3. Remember that M;

is a numerical constant in the definition of generalized retraction (Definition 5).
Similarly, we define:

UV - = <I —Pu, - Pv(i),f) SiyVii)r (60)
Also by Lemma 23, the Frobenius norm of [JV{;) - is upper bounded by:

HDV(Z')JHF

- H (I - Pu. - PV@»,T) SaVio.r
[
< GaopVT

Now we calculate the update of V{;) - in one communication round. We summarize the
result in the following lemma.

' (61)
| 186, Vil

. < m Ms VMs; 1
Lemma 15 If we choose the stepsize 1y < mln{ 22, \/m} rEm— the update

of Vi3 is given by:
‘/(i),T—i-l = ‘/(i),’r + UTD‘/(i),T - nTUTDUz‘/(i),T + 7772'65,(i),r
where es ;) + s an error term that salisfies:

les,iyr || < Cs0 10U + Cs.1 OV |

where Cs o and Cs 1 are two constants that only depend on My and Ma from the generalized
retraction Definition 5.
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Proof We first calculate the projection:

U, UL,
= (UT + UTDUT + 77361,7') (UT + UTDUT + n?el,T)T
CUUT 4 gy (U007 £ OUUT) 4 rfen

where ey (;) - is defined as:

e2,(1'),7' = DUTDU7-T‘1'UT€1T7(1~),T+€1,(i),rU7-T+nrDU76F£(i),T +77T61,(i),7'|:|U7T+”772-el,(i),’re{(i)

\T

Its norm is upper bounded by:

€266y, ||
< ||OU- |7 +2 U op ||€1,00),7 || 5 + 207 10U | 2 || €1,3),7 || + 72 Hﬁ,@;”?
< ||OU- |17 + 2My ||OU- |5 + 20 My |OU- |3 + 92 M3 |OU; ||

1
< (1+3M; + L M7) |00 |7

where the final inequality comes from upper bound (57) and the choice of stepsize 7;:

< —1 ! < L
= Gmaalc,mo\/’7 \/6—i-12M1—|—M12 - QGWLME,DP\/F

Similarly, we define e3 (;) , as:

1
€3,¢i),r = ?72 (V(,-),TJF% —Viyr — nTD‘/(i),T>

By definition of a retraction, the norm of e3 ;) , is upper bounded by:

lles, el o < My [|OVioy- |15

Then
UT+1UTT+1V(z'),T+§
= UUIV) oy + 0 (UOUF +00UT) Vi )+ ikes 00V,
=U.U! (Vi + 00V - + 112€3,5).7)
+0r (U007 + 00U ) (Vo7 + 1:0Via) - + 07€3,00),0) + 072,000, Vi oL
= Uy DU; Vii) - + 07U Uy €3, 7 + 782,60 V), + 120-007 OV £
+n2 (U,OU + 00, UT) e35).-
= nTUTDUTTV(Z-),T + 77364,(1'),7

0,743

where we use €4,(;),r to denote:
T T T T
€4.(i),r = UTUT €3.(i),r + 62’(1-)77.‘/@)77_’_% + UTDUT D‘/(i),T + N7 (UTDUT =+ DUTUT ) €3 (i),r
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Its norm is upper bounded as:

He47(i)’THF
< lles.rll o + llez Lo + 18U [BVio ol + 1 (10U L5 + 10Vio 1) el
<C40HDU HF+C41HDV HF
where 5 )
Cio = +3My + MY
and )
Cy1 = - +2M;
2
Thus we know when 7, < min{%, A/ 4]&30}W, U, U; +1V(z) . < M3
Next we calculate the projection PNV< N (— U +1V(Z) T+%>:
T+7

P, (FUUL Vi ris) = Vi i <V<iT),T+% P UV i)

(@),m+3%

_ 2 A
=N ‘/(i),T-l-% ‘/(i),’r-‘r% 84’(7;)’7—

We use e5 (), to denote the difference between gRV(i),H—% (—UTHU Jr1V( ) 1) and Vi;) -+

Vi r — nTUTDUTTV(i),T, then its norm is upper bounded by:

12 || €5y ||
Con

()7 +3

<_UT+1U +1 Vi), r ) —Vioy,r =1 BV3i - + UTUTDUTTV(Z')’T

R ) 0

I + U + D V -V — V U T
H (@)1 % THE 1Y (i), (4),7 UTD (i),r T Nr TDDT L(i),T

By property 2 of the generalized retraction in Definition 5, we have:

[97v,,..; (FUmUTaVig ray) = (Vigray = UraUlaVi )|,
2

<M, (~U- ULV i) ot

P
TVirr+

(M2 +1) HPNV (‘Ur+1U +1 V), T+%)

(4), r+7

F

<My | UpaULL Vi |+ (0 + D

T
Viyr+1 Vi re 18400

= My 0 U DU Vi 1 + e |+ O+ 1)

T
(7;),7'—"% ‘/v(’i)ﬂ'—‘y-l 647(,5‘)77-

r+lV() 1 €407

F F

< 22 (|[U-007 Vi [ + 02 lleaonll7) + (M2 + 102 [V,
<n?|0U- H% (2M1(Cuo + Cu1)Cap + 2M71 + M2Cyp)

+ 1 HDV (2M;(Ca0+ C41)Ca1 + MCly 1)

-
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For the second part:

T
H‘/(i)ﬂ""‘% - UT+1U +1‘/(z) T+ ‘/(i),’r - 77T|:|V(i)77— + nTUT\:‘UT ‘/(i),r

=7 |les,(my.r — a(myr || o

< 07 [|es ).~ o+ 7 [|ea,m)

5T }F
Therefore, the norm of ej (;) , is upper bounded as:

He57(i)’THF
< ||OU, |3 (2M1(Cao + C1,1)Clap + 2My1 + MaCy + Cap)
+ HDV HF (2M1(Cu0+ C41)Ca1 + MaCyq + My + Cy 1)

This completes our proof, with

Cso == L (12 (M + 1) + My (240, + My (My (M (M + 32) + 254) + 2 (Ms + 109)) + 88))

Qo

and

81M}

Cs1 = M} + + (2My + 5) My + — (M2 +1)

The following lemma shows the sufficient decrease property:

Lemma 16 (Formal wversion of Lemma 9) When we choose the stepsize n, <

My My ) . . .
a— opf mln{ \/m}, and U; and V;) ;. satisfy the orthogonality condition
U;‘FV(i) -+ =0, we have:

<ZVU£ UTa‘/() ) UT+1 _UT>

+ Z <VV( S L1 (Ur, Vi ) + Vv, Ly 2(Ur, Vi 2)s Vi 741 — V(z'),r> (62)

N N
< e N QU =1 |0V |5 + 72 (CG,ON IOU- (1% + Co1 D HDVm,THi>
i=1 i=1

where Cg o and Cg1 are constants dependent only on My, Ma, r, and Gpmaz,op:

06 0= Gmaw,op\/;(Ml + C15,0)

)

and
06,1 = Gmaa:,op \/FC5,1
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Proof We firstly calculate the sufficient decrease of U:

VU»C(i),l(UTa ‘/ii),T)a U’l’+1 - UT>

Il ‘:‘/@
.MZ

@
Il
—_

(1= Pv,,.) SeUrUpia - UT>

e
=¥
1=

S
Il
—

(I — PV(i),T> SiUr, = (I Py, . PUT> SyUr + 77361,T>

=1

(1-Py,.) SoUn 5

I
|
/\/\
M=

z|F

(1- Py, - Po,) S(i)UT>

S
I
N

1

2

(I - PVm,T) S@Ur niers

<
I

I |
YR

@
Il
—

(1- Py, - Pu.)Sq

2\3

g: (I ~ Py, - PUT> Si) UT>

Ve

S
Il
—

(I o P‘/(i)n') S(i)UT’ 7738177>

N
< e N [OU- S+ 2 el 30| (T Py, ) So
i=1

N
< e N |OU |2+ M2 |00 |23 Gloyop V7
=1

Next, we calculate:

vaﬁ(i),l(UT, Vi) + Vx/(i)ﬁ(i),z(Um Vi) )s Viiyr1 — V(i),T>
(= (I = Pu,) Sy Visyrs -0V + 0 U;OUL Vi) - + 15,1y 2)
= (—(I = Pu,) S&)Viyyr-1:0Vioy o) + (= (I = Pu,) Sy Viay 2 - U-OUT Vi )
(—(I-Py,) S(i)V(i),T,UEeE) (i)r)

< (I Py, — Py, , ) S Vi) n-0Viy > (= (I - Py,) S(i)‘/(i),faneS,(i)7T>
< = |0V o+ 2 | (X = Pu) Sy Viayo | - lles, ool e

< 0 OV I + 72G iy \f(csoﬂmU I3 + Cs1 |0V |1
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Adding them, we have:

<Z VUL (Ur, Viiyr), Urit — UT>

+ <VV<¢)£(Z'),1(U7'7 Vi) + Vv, £ 2(Ur, Vi) 2), Vi 01 — Vo), r>

N
< =N |OU 17 = > 0 OV 2|1 + 12 (NOGOHDU HF+0612}IDV HF>
=1 =1

where the constants are:
C6.0 = Gmaz,opVT(Mi1 + Cs )

and
06,1 = Gma:c,op \/;05,1

Finally, we come to the proof of Theorem 8.
Proof We choose constant a stepsize 1, = 11 small enough:

1 1

M2 Cs0\? ’ Cs1 2
206,0—|—L<<(1—|—22) _|-2< 20) >) 206,1+2L(1+ 3 > (63)

1 M3 1 \/Mg }
Gmaa:,op\/F 2’ G'n’ww:,op\/F \/6 + 12M7 + M12

Obviously, 7 satisfies the requirement in Lemma 15 and 16.
By the property of Lipschitz continuity, we have:

L) (UT+1,V(¢),T+1) < Ly (U, V(z),f)
+(VuLly (Ur, Viiy2) s Uri1 = Ur) +(Vu L) (Ur, Vi £) s Vi ri1 = Vi)

L 9 9
t3 (HV 1= Vi |lp + 1Ur1 — UTHF)
where L is defined in (54). Since U. +1V( )r+1 = 0 and UTV(Z) = 0, we know that
Ly Uri1, Vi r1) = —fi (Uri1, Vi) r41)

7 gnc:min{

and that
Loy (U, Viyr) = —fi (Ur, Vigy 1)

Then, summing up both sides for n from 1 to N, we have:

f( T+17{V T+1}) < f(UT7{‘/(Z ‘r})

N
+ <Z VoLl (Ur, Viyr) s Urgr — > + Z Vol (Ur, Viye) > Viyr+1 — Viyr)
1

N
L
+ 325 (Vigire = Viprllz + U1 - U-13)
=1
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From equation (59), we know

HUT-I—I - UT”F

= ||n,0U; + n?e1- ||,

<, |OU: | + [|nZers |

< e |OU | p + 2 My |OU |3

M
<01+ 50 Ol

Similarly, from Lemma 15, we have:

H‘/(i)fr_"l - ‘/(Z),THF

= [ 0¥%o -+ 00007 Vi + 1o

< [OVeay ol o+ 1 |UROUZ Vi o o+ 17 Nl 5,607

< Nr HD‘/(’L 77'HF + Uis HDU’FHF + Nr He5, () ,THF
< e 00 || (14 Cs 0 100 ) + 17 OVl (1 + Co e [OV4o 1)

1 1
<07 |[OViy || (1 + 205,1> + - |0U | 5 <1 + 205,o>

Combining the two inequalities and Lemma 16, we have:

_f( T+17{Vz) T+1})

N
< _f (UT7 {‘/(z),’r}) —Nr (N |||:|UT||%‘ + Z HD‘/(z),THiﬂ>

1=1

+n3Nce,o||DUT||F+nTZCmHDV Al

N
+773§Z<<<1+A§2> +2<1+C;O) )\DU HF+2<1+051> IOV, Hp)
=1

—f (Un Vi) }) — (NHDU HF+ZHDV HF>

=1
(64)
Summing up both sides for 7 from 1 to R and rearranging terms, we have:

R N
> (N (A REDY HD%%) < — (O {Viya}) + F U Vi ri})
T=1

=1

As a result,

R
. 2 (f(Ury1,AVii), 1)) — F(UL{V(5)1}))
pin 3 (V100 3 0Vt < o
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This completes the proof of Theorem 8. Notice that Cg g, Cg 1, and L are of the order
Gmaz,op\/T, thus the requirement on 7. in equation (63) becomes:

1
-Cp—
e nGmax,op\/;

where (), is a constant that only depends on M;, Ms, and M3 from the generalized
retraction Definition 5. |

Appendix E. Proof for local linear convergence

In this section, we will show the full proof of Theorem 10. A formal theorem is stated below.

Theorem 17 (Formal version of theorem 10) Under assumptions 4.2, 6.1, and 6.2, if the

difference between the population and sample covariance is small \/Zfil HS(i) — E(i)HQF

. — 2 2 . . . .
mln{%um/?,m} and HS(Z-) — E(i)H < Gaz,op, when we initialize close to

IN

the global optimum ¢g < ¢, < W, and choose a constant stepsize ny = n =

max,op

0] (ﬁ), then Algorithm 2 with choice 1 will converge into the global optimum:
op,mazx

PN uo R
fWU Vi) — f(Ur,{Vii),r}) = O ((1 - 7732) )

where {U, {V(l)}} is a set of optimal solutions to problem (7).
Furthermore, we can recover the exact global optimal solutions:

o ((-))

We will start by introducing needed notations, then proceed to establish some lemmas
that characterize the local geometry of the optimization objective, then prove Theorem 10
at the end.

At communication round 7, remember that we use U, and V(;) . to denote the updated

N
2 1
|Pon = Pa, |+ 5 2] P — P,
=1

variables. We use (f], {V(Z)}) to denote one set of optimal solutions to (7). For simplicity, we

use fIg to denote the projection 11, = UUT and ﬂ(i) to denote the projection ﬂ(i) = V(,-) V@T)

Since each covariance matrix S(;) is symmetric positive semidefinite, we can find matrix
Fi € R4 such that F F (:g) = S(;) by Cholesky factorization. Furthermore, we can define
F).g> Fi)1, and Ry as,

g
Fp) g = I F)
Fiyu =) Fy,
Flo)1 = Fuyg + Fuyy
Ry = Fy) — I, Fy) — 1) F,)
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Apparently, F(ZT)’gR( ) = F(Z) R =0.

Next we will introduce a set of optimal solutions ((]}, {V(Z)T}) that is close to the
current updates (Ur,{V(;) r}. The variables U, and ‘A/(Z-)’T’s are defined as

. . . ~1/2
U}:IQU}OUHTHJL> (66)
and "
. . . B
Vio,r =a Vi,r (V@),Tﬂu)Vu)w) (67)

for each n =1,...N.
It’s easy to verify that

and that
o
Viy-(Viy,-)" =

Notice that {l}}, {V@T}} is one set of global optimal solutions that is dependent on the
iteration index 7. The U, and V@)J’S are dependent on the communication round 7. We
use AU, to denote the difference between U, and l]}:

AU, =U, - U, (68)

and similarly:

AViyr = Vior = Vior (69)
Since U, and V(i)ﬁ’s are optimal, we can simplify the KKT conditions in (24) as
T - .
R(z)F(l)Vv(z),T = 0, Vi € [N]
N
T o
> RyFLU- =0 (70)
i=1

We can replace Fi;) by ﬁ’(i) in (70) since F(ZT) V(Z-W = ﬁ‘g)

We will first show some properties of the introduced variables.

Vi and FU: = FU;.

Lemma 18 Under the same conditions as Theorem 10, there exists constants 6 = %,
= %, such that the following holds,

1. ||Fy 2C maz.op-

2. The smallest nonzero eigenvalue ofF (i) 1s lower bounded by fi.

<1-46.

HZZ 1 NH(Z

no

4 HR’)H - 64\/2Gmm op - 128+/2Gmaz,op
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We will use the 6 and [1 notations in the remaining parts of the section.
Proof We will prove the claims one by one.
From (34), we know,

1 Y 2
< w5z 2150 = Zo s
=1

where we replace d by p since (I II, H(l)) @ =0.

1Y . N 2
¥ Hﬂg + 1L — Iy — Il
=1

Therefore, the difference between F( ) (i) and X ;) is upper bounded by,

_|_
I, + H(i)) ) (ﬂg + 1QI(Z')) -

<211, + 1) - 1, - 1

(1L, + 1)) (Z) = S) (T, + 1) ) |
NZoll 126 = Swll

8G N )
< = 21260 = Solle + 26 - So
=1

N202
<
= 1282 X 2G maz.op

From Weyl’s theorem, we know,

~ 2 ~ ~

Fo)| = )F@')F(zT*)
< || # — =) ol
< 2Gmax,op

This proves Claim 1.
Also by Weyl’s theorem, we know,

A2y (Fmﬁ ér))
> Aor (ﬁuﬂ% - 2@) -

U2‘92
32768G ma,op

~

> -

>
Z M 2
This proves Claim 2.
Next, we consider the results from Theorem 1,

2
| Py — T, I3 + ZH - sgmzu - Swll3
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Therefore, an upper bound for HP‘A’(') — I || s

F
HP‘% ~Hol,
al 2
< 2f Z Sl
< 2= ﬂ
- 2
where we applied the condition that \/ Zfi =6 = S H P < pufts \[ L in the last inequal-

ity.
As a result, we have,

1L
~ 21
=1

1 & 1 .
~ 2 +NZHH@>—H
=1 =1
1
31—9+9<1—\/§>
.
V2

This proves Claim 3.
Then we analyze the norm of R(i)RT ,

=< Hﬂg + 1) — Iy = I ||

N
Gmax,o /~59
<¢Zz(i>5miﬂ <1+4 5 p)
=1

128./2G maz,op
where the last inequality comes from the fact that sz\; 1 HE(i) —S(i)HQF <
1 ( 292 )2
8Gmaz,op \2 \ 32768Gmaz,op )
(H— o p) P
|
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As discussed in Section 6.1.1, different U and V{;)’s may have the same objective value,
as long as they span the same column space. We introduce a variable ( to denote the
subspace distance between the estimate and ground truth:

Chyr =1 — <Pwi),T,H(i)> (71)
for each i = 1,...NV, and,
Coy)r =7 — (Pu., ) (72)
We use (; to denote:
| N
G =Co),r + N ; Cliy,r (73)

The ((g),r and ((;);’s defined represent how far away the iterates are from the ground truth,
measured by subspace distance.

We can also define,

Cliyr = 21 — <PUT + Py, Ty + ﬂ(i)> )

for each i = 1,...N. We use ET to denote:
~ N ~
G = ZC@),T (75)
i=1

From Lemma 13, since ﬂ(i)’s are é—misaligned, there exists a relation between (; and ZT:

gNCT < < NG (76)
For simplicity, we also define the optimality gap ¢, as,
N A ~

i=1

We then use the optimality gap ¢, to upper bound the norm of AU; and AV ..

Lemma 19 Under the same conditions as Theorem 10, we have,

>

=

N
br > ¢ (N\AUT||%+ZHA%>,TH§) (78)

i=1
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Proof By definition of the optimality gap ¢,, we have,

N
26, = Z (Tr (ﬂgS(i)> + Tr <ﬂ(i)s(i)> Tr (Py, Si)) - (PV( R ))>

=1
2
F

I
Mz

(HF (F’UT-i-P’V(> )

C|Fe - (1, ) Ry

=1

- EN: <H (- Po. Py, ) Fy + (T Pu. — Py, ) - HRu)wa)
=

DL AR LR UYL L LY
= Term I

(1= Po. — Py, ) B[ - R0

Term II

The above can be further simplified. For Term I, we have,
N
S 2 < (I Py - PVW) Fy, (I - Py, - Pv@,T) R<i>>
N
= Z 2Tr (Rg) (I — Py, — PV(,L-),T) F(i))
N
= Z 2Tr (R%;) (ﬂg +1, — Py, — P‘/(iw) F(i))

_ i Ty (Rg) (—AUTAUTT - AV@'),TAV@T»T) F <@'>>

where we have applied the KKT conditions (70) that V(ZT) Tﬁ‘(i)RT = 0 and

@ =
SN O F( )R( ) = 0 in the third equality.
For term Term II, we can also derive

|(1-Po. Py, ) Bo ||~ B0 I,
=T (R, (I~ P, - PVW) Rg)) = Tr (R})R))
=Tr (R%;) (f[g + f[(i) - Py, — P‘/(i);r> R@))

- Ty (Rg;) (AUTAUTT + A‘/(i),TA‘/(iT),T) R(z‘))

|| B

where we used the condition IAITT R = V(ZT) R =0 in the last equality.
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Combining these, we have,

207

N
- 2(”(1 Py, — Py, )F(A) = Tr (RE) (AU-AUT + AV AV ) Ryp)
—2Tr (R, (AU-AUT + AV, AV ) By ) ) (79)
From Lemma 18, we know that F( ) Ag) = [ (ﬂg + fI(i)), thus

v
2[R,
i+
/N
=
|
o=
Y
H
e
\_/
+
=
|
-
/
E>
=
B
~—~
N~—+~

~A N
> 23 (18U + AV )

=1

By Cauchy-Schwartz inequality, we have,
Tr (Rf) (AU-AUT + AV, AV ) Rpy))
= Tr (R}, AU, AUT Ryy)) + T (R]) AV, AV Ry )
< AT 1R + [ AVio Il [ Reo |

and
2Tr (R, (AU-AUT + AV AVE ) Fy)) )
ol 1R
Since HR H < 64\/% and ‘ A(Z) < +/2Gmaz,0p, We have
max,op

IR I° + 2| R | || B

Thus we have,

~A N
26, 2 13 (18T + [ aVioII})
=1

This completes our proof. |

Next we will provide a lemma that characterizes the landscape of the objective.

59



SHI AND KONTAR

Lemma 20 Under the same conditions as Theorem 10, we have,

Proof

We first consider the inner product term,

(1= Pu, = Py,.) S)Viy. AViy )
- <(I —FPu, - PVm,T) F), AV(i),TV@-T)’TF(i»
)

= (1~ Pu. ~ Py, ) By AV V5 B + (- Po, — Py, ) R AV V) Ry )

1),T

Term III Term IV

+{((1-Pu, = Py, ) B, AVl .V Ry ) + (= Pu, = Py, ) R, AV V) By )

1),T

Term V Term VI

We will analyze each term separately. For Term III, we know that A‘/'(i)jv(g =
V(i),fv(z; r V(i),TV(i),T — V(,-)JAV(Z.T) . Therefore,

~ Py, )Ey,
= (1~ Po. ~ Py, ) By (Pv,, T~ Vi AV ) B )
= <(I — Py, — Py, ) ), (PV@-),T ﬂ(z‘)) F@>

~((1- P, ~ Py, ) By (Voo AV ) Fio)
=<(I—PUT—PV<¢), )F(av(Pwn,T ﬂ(z‘)) F<>>+€1(>r
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where 61,(2'),7. is defined as 617(1-)77_ = — <(I — PUT — PV“),T) 131(1), (‘A/(Z),TA‘/(Y; )
norm is upper bounded by

(z)> Its

e e
Tr (Fg) (I — Py, — PV(z-),T) ‘A/(i),TA‘/(z;,TF(i)>‘
= | (B2 (1~ Po, — Py, ) AV, AV B
(5 (1

g-|-1'I() Py, — Py, . )AV(Z') AV(T) A(A))‘

IA
?

5 (1, + 1) — Pu, = Py, | >H HAV@ AV@T R

F

< )H9+H() Py, - Py, H |AV,),

<4IF< Gmaz,op

For Term IV, we have,

HF’ (@)

<<I ~Pu. - P"(iw) R;), AV Vi, R(i)>
- <<I —Pu, - PV<i),r> R;), AV(y) AV, TR(z')>
= <R(l‘), A‘/(i),-rAVv(z;’TR(i» + €,3i),7

where €3 (;) ; is defined as

e == ((Pur + Py, ) R AV AV Riy)
and its norm is upper bounded by,
2,607 |
= T (Rf, (Pu, + Py, ) AV, AV Ry
= |1r (Rm (PU + Py, 11, - ﬂ(i)) (PUT + Py, . ) AV, AV TR(Z»))‘

H (PUT + PV@,T) AV AV R

IN

’R%;) (PUT + Py, — I, - ﬂ(i))‘ F

F

= ’PU#P%T—ﬂg—ﬂ(i)

Vil [ Bl
< 2f C() C maxop
For the Term V,
((1-Pu, = Pv,) Fly. AV V) Ry
= ((1- Pv. = Py, ) Fiy, AV}, AV Ry )
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where the norm of €3 (;) - is upper bounded by,
|€3,66).|
=|Tr ( (0) (I Py, - PV@,T) AV(WAV@‘TLTR(@)(
= |Tx (B (11, + T — Pu, = Py, ) AV, AVE Ry

< ‘F@T) (ﬁg +10, — Py, — PVW)

e,

HAV

+ Py, — T, — T

< 4@\/((17((¢),7Gmax,0p

For Term VI,

<(I — Py - PV(Z.),T) Ry, AV@,TV@TF@)>
- <(I ~ Py, — PVW) R, AV’@,TAV&,TF@>>
= <R(Z~>, AV@,TAV(?S,T%> T e

where €4 (;) ; is defined as

T s
€43i)r = <(PUT + Pvm,f) R, AV(z'wAVWF@
Its norm is upper bounded by,

€4,
= | (Bf, (Po. + Py, ) AV AV F)|
= | (RE) (-, H<>+PUT+PV<> ) AVl AVE F)|
SN HFHR(Z

o+ P+ Py, |
<4v2 C( Gmaz,op
Combining these terms, we have,
((1-Pu, = Py, ) Si)Virs AV )
= <(I — Py, - Pvm,T) ), (PVW - ﬂ(i)) F@> + <R(i), A"(i>,7A‘QzT),TR<z‘>>

S
+ <R<i>7 AV(z'>,rAV<z>,TF<i>>
+ €1,6),r T €2,:),r T €3,(6),r T €4,(5),7 (80)
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Similarly, we can calculate the inner product term,

i1

(1= Pu, - Py,.) SuU:, AU, )

f: ((1-Pu, - Py,.) Fi, AU U Fy )
=1

i (1= Pu, - Py, ) Fiy, AUUT Ey ) + (1= Pu, = Py, ) Ry, AU-UT Ryy))
=1

Term VII Ter$v§III
+ <(I — Py, — PV@),T) F, AUTUTTR(Z»)> + <(I — Py, - PV(Z-),T> R;), AUTUTTF@)>

Term IX Term X

For the Term VII, we can simplify it as,
(1= Pu, - Py,,) B, AUUT By )
- <<I Py - PVW) ), (PUT - ﬂg) F(Z-)> + €500y
where €55, is defined as,
& = —( (I Pu, = Py, ) By, U, AU F) )
= ((1- Pu, — Py, ) Fy, AU AUT Fyy) )

Its norm is upper bounded by
|€5.(0),r |

= |1 (F (1- Pu, - Py, AUTAUfTﬁ(i))‘

= |Tr (F( ) < g+ H( ) — Pu, — PV(i),T) AUTAUTTF@)‘

<ot () Jovesor

< ‘Hg—i—l'[() Py, — Py, H AU, ||FHF H

<4\f\/7€0) Grmaz,op

For Term VIII, also we have,
<<I — Py, — PV(Z-)J> R, AU.U; R(i)>
((1- P, - Py, ) Ry, AUAU! Ryy))

= (R(;), AU-AU R(;)) + €,(i) +
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where €g(;) ; is defined as,

5. = — ( (Po, + Py, ) Ri), AU; AU Ry))
and its norm is upper bounded by,
€6,
— T (Rf, (Pu, + Py, ) AU,AUTRy,))|
_ Tr(Rg) (PUT+PV ~1I, ﬂ()) (PU + Py, . )AU AU R())‘

‘R%;)<PUT+P‘/() -~ 1, H)

(P, + Py, ) AU.AUTRg|

INIA

’PU + Py, . — 11, —H(i)‘)F||AU I7 1R H

<2f C( ma:p op

For Term IX, we have,
<(I Py - PV“.)’T) F,), AU, U} R<i>>
— ((1- Py, - Py, ) ). AU, AUTRy,))

= 677 (i)YT

where the norm of €7 (;) - is upper bounded by,

l€7,(i).r]

- ( (I Py, - Py, )AUTAUTTR@))‘

= |1 (E2 (1, + T~ Py, - Py, ) AUAUT Ry, )|
< |[EG (M, + 10 - Pu, — Py, )| [AUAUT R |,
< |, + F1 - P, - PVM,THFHAU I+ 1Rl |[#o

< 4\/5\/ E(i),TC(O)JGmax,op

Finally, for Term X, we have,

>

S

(I Py - PV@:) Ry, AUTUfIE‘(i)>

Il
M=M= IM="

((T-Pu, = Py,.) R, AU Uy ) + (I = Pu, = Py, ) Ry, AU, AUT B )

<(I Py — PV(Z.),T> Ry, AU, AU F@> - <PV(Z_)77R(1»)7 AUTUTF@>

<R(i), AU, AUT 13“(1-)> + €5 (i)r
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where €g (;) ; is defined as,

T2 o a
esir = ((~Pu. = Py, ) Ry, AU;AUT Ry ) = ( Py, R, AUULF)
Its norm is upper bounded by

|€8 )|

( (@) ( Py, — Py, . )AUTAUTTF(@)‘—F Tr
‘“(R?Q (~Pu, - P ) AU, AU B

+ | (R (Pm o) Pvi,.. AUUF(Z))‘

<4\[ / maa:op—i_HPV()T

Combining them, we have,

(Bl Py, AUOF )|

I - AU, || R

i <(I ~Pu. - PVm,r) SwUr, AUT>
=1

- i <(I — Py - PVW) 2 (PUT — ﬂg) ﬁ(i)> + (R, AU, AUT Ry
1=1
+ (Rgy), AU-AUT By )

+ €5,3i),r + €6,3i),r + €7,30)7 + €8,3i)7 (81)

Comparing (79), (80), and (81), we know that,

N N
_ <Z (1 ~ Py, Py, ) S Us, AU, > 3 <(I Py - PV@),T> Sy Vioyon AV(Z-)J>

=1 =1

=20 - Z“( ) (AU-AUT + AV AV ) B ) - iiea(m
=1 a=1

From the estimated upper bounds of ‘61,(1),7‘ to ‘687@),7 ,

ZTY( (AU AU + AV AV ) (z))

N
<23 (IAU- + [AVio -5 1R 2Gmaz.op\| ). (i r + C0)1r)
=1
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From Lemma 18, we know that HR z)H HF < 62, we can thus upper bound the first

term as,

N
23~ (IAU 7+ AV 7.) [ B

(]

=1
N

< Z(mU 12+ 1A VeI )

< ¢-/2

where the last inequality comes from Lemma 19.
Also, the second term can be bounded as,

N
14\/§Gmax,op Z m (C(l)
i1
N N
< 14V2Gmaz.op \/ﬁ S €00y | 2 S T SO0r
i—1 J=1

N N
< 14V2C mazopy | 3 Sy ZCWHOM > Lo+ Cor
i=1 i=1

J=1

N 1.5
< 14\/§Gmaz,op <Z< >

i=1

N 1.5
143G ( 31801 + Vi ] )

< 56Gmax ,0p <¢;> < ¢T/2
2

16

where the second inequality comes from Cauchy-Schwrtz inequality, the third inequality

comes from Lemma 13, the fourth inequality comes from Lemma 26, the fifth inequality
393
< 38022162

max,op

comes from Lemma 19, and the last inequality comes from the fact that ¢, <
This completes the proof.
|

Combining Lemma 19 with Lemma 20, we can prove the following PL-inequality.

Lemma 21 (Lemma 12 in the main paper) Under the same conditions as Theorem 10, we
have

i
N |OU, HF+Z||DV A= Tger

=1
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Proof From Cauchy-Schwartz inequality, we know that,

— N/(OU,, AU;) Z (OViiy - AV 1)
=1

< N |OU, || |AU; H+ZHDV e 1AV -l -
=1

IN

N|OU, HF+ZHDV Ao [N AU, HF+ZHAV@ up
i=1 =1

< N I00 2 + 3 [0V, [

i=1 16

where the last inequality comes from Lemma 19.
From Lemma 20, we know,

=

— N{(OU,, AU;) =) {0V, -, AV )

=1

> ¢r
Combining them, we have,
i
N |07 + Z ==

=1

Finally, we come to the proof of Theorem 10:
Proof Combining Lemma 21 with equation (64), we know:

—f (Ui, {V(i)JH}) <-f (Uﬂ{V(i),r}) ~ 9516
We add f* on both sides. Since ¢, = f*— —f ( 1V, T}) we have:

¢T+1

n b
< _ A
S ér =519

—(1-%) .

Thus ¢, decreases linearly with 7. From Lemma 19 and Lemma 26, we can show
|Pu, — 0, || and ||Py, — 11|
This completes the proof of Theorem 10. [ ]

decrease linearly to zero as well.
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Appendix F. Some examples of generalized retraction

In this section, we discuss two popular normalization schemes: polar projection and QR
decomposition. We prove that both fit the Definition 5 of a generalized retraction. The
analysis in this section is inspired by Liu et al. (2019). However, Liu et al. (2019) only
considers conventional retraction operations, while we consider generalized retractions.

F.1 Polar projection

Polar projection is defined as:

_1
2

GRY™ (&) = (U + &) (I+UTe+£TU +€7¢)

Then obviously,
col(GRy (§)) = col (U +§)

To verify the second property, we can calculate the difference between GRy (€) and U +

PTU (5) .
Notice that

(I+UTe+€"U + £T£)_%
(2n — DI(=1)"
2nnl

o log, Lo 1 s T L lT T p\m
—1-UTe- €U - 3¢ §+nz::2(U E+¢TU+€7¢)

We have
GRu (&) — (U + Pr,(€))

- n (20 — DI(=1)"
— U+ <I—;UT£—;ETU—;€T€+Z(UT£+£TU+£T£) (2~ DI(-1) )

21!
n=2

_ <U _ey %UTﬁ + ;STU>

2nn

- (—;sTUTs Slerery e L)Y (UTe s o 4 g B DECD
n=2 (82)
By the property of Frobinius norm:
[Uhe+&"U +€'¢
<2l lUT],, + I€lF
=2 €llp + I1€]F
<3|&llp
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Therefore,

IGRu (§) — (U + Pry, ()l
< S €707 o+ 3 |€7€T U + 5 1€7ETe]

> n (20— 1)
FIU €l Y U7+ €70+ e D
n=2 ’

1
< €l + 5 1€1E+ 1+ lglm) > Glgle)

n=2

n (2n — 1N
27!

3(31I€llF)* + BN’
2

1
= ll€lle + 5 1€l + (1 + 1€ )

< Mpola?" ”5”%‘

where M0, = %3. We applied the following summation in the derivation:

(e o]

— 1\
2nn)
n=2
= (1—)? = (1+3)

32 + 23

T VI—z+(-2)(1+2)

and the fact that x < % in the third inequality.
Since

42

= |Pr, (€) + Py ()3

< 2(|Pr, (€)% + 21 Pag (O
<2|[Pr, (N7 + Pa ()l

We prove that polar projection is a generalized retraction with M; = %3 and Mo = %3.
Polar projection can be implemented via singular value decomposition of U + &, whose

computational complexity is O(dr? + r3) (Breloy et al., 2021).

F.2 QR decomposition

QR decomposition is an extension of Gram-Schmidt orthonormalization. For a matrix
U + ¢ € R¥™", the method finds a orthogonal matrix Q € R%" and an upper triangular
matrix R € R, such that QR = U + €. Then GRZ" (€) = Q.

In this section, we will prove that QR decomposition is a generalized retraction for
|€]| < 4. Our proof in this section extends that in Liu et al. (2019).

Notice that col(U + &) = col(Q), thus the first property of generalized retraction in
Definition 5 is satisfied. We will prove the second in the case M3 = i
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Similar to Liu et al. (2019), we define U(t) =
denote the QR decomposition of U(t). Then:

|org @) - w+e)

(
= 1R = QMERM)|r = QM) (I = R(1))[
< [|R(1) = R(0)[| o

/R i
g/o HR’(t) th

Since Q(t)R(t) is the QR decomposition of U (t), we have:

U +t€, for t € [0,1], and use Q(t)R(t) to

RTOR(t) =UT (U (t) =UTU + 67U +tUT¢ + 12¢7¢

(83)
Taking the derivative with respect to ¢ on both sides, we have:

NT /
(R ) () R(t) + RT(H)R (¢)
=T +UT¢e +2€%¢

We can left multiply both sides by (R_I)T (t), and right multiply both sides by R™!(¢), to
obtain:

(RYH" @) (R')T )+ ROR )= (R (1) (TU +UT¢ +2£7¢) R\ (1)

Since on the left hand side, R (t)R~'(t) is an upper triangular matrix, its transpose
AT
(Rfl)T (t) (R ) (t) is a lower triangular matrix, we have:

/

R ()R™'(t) = up [(R_l)T (t) (67U + UT¢ + 2t€7¢) R‘l(t)}

where for C € R™4 up[] is defined as:

Cij, ifj >4
1 e
up [C]ij = iciia ifj=1
0,if j <1
Therefore,

K1) =w |[(R™) (1) (€7U +U ¢ +2€7¢) R ()| R(1)
and accordingly:
R =|uw (@0 (EU+UTe+26") B0 R
<|joo [(RY)" () (67U + U e+ 2¢76) R )] | IR,

<@ 0 v+ UTe e R0 1RO,

F
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where we used Lemma 23 for the first inequality.
From (83), we know that:

IR®)S, = | ROTRM],,
:‘ul%t@TUFFUT€)+f@TﬂLp
>1-t||TU+U"e|, 1|7,

L—2lgllp - [l€"€] -
7

16

where the first inequality comes from the triangle inequality, the second comes from the fact
that |||z > [|-||,,, and the third comes from the requirement [|£| < I
Similarly, we can derive:

Y

v

25
IR®)Z, = [ROTRM),, < 1+2€lr+[|€7€]| < 3¢

As a result,

R, < H (B (1) (€U +UT¢+267) R 1) IR,

(e oEv oo ro], @ o eEgrro),) ]
)
< 1 (HﬁTU+ U, (R (¢ )R—l(t)Hop+2tH£T£HF | R @) op)
< 7 S (17U +UTe] + 2 €7 )
Hence,
|org @) - w+e)
< (€U +UTe] . + €€ )
Since U is an orthogonal matrix, [Pay, (&) = 5||U (70U + UTE)HF
% HﬁTU + UTEHF. By  Cauchy-Schwartz  inequality, HETEHF =

|(Prs (€ + Priy (€))7 (Pay (&) + Pry (©))] | < 21Pwes (©)IF +211Pr, ()13
Thus we have:
|gr" ©) - W +9)|
< ? (2125 @l +21Pxis €)1 + 2177, (©)13)
< 2 1Pxe @)l + 2 IPr 1
Hence the second property of definition holds with M; = 2 and M, = %

QR decomposition can be implemented by Gram-Schmidt or Householder algorithm with
computation complexity of O(dr?)
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Appendix G. Auxiliary lemmas

In this section, we show some auxiliary lemmas needed for the proof in earlier Sections.
Most lemmas are derived from basic facts in linear algebra.
We begin with some general inequalities related to matrix trace norms.

Lemma 22 For two matrices A, B € R¥™?, if both A, B are symmetric positive definite,
then:

Tr(AB) >0

A simple corollary is that if A;, Ag, B € R%*? are symmetric and B is positive semi-definite,
and A1 t AQ, then

Proof Since both A and B are positive symmetric, there exists X,Y € R%*? such that
A=XTX and B =YY, therefore:

Tr (AB)

=Tr (X"XY"Y)

=Tr (YX)TyxT)

>0

|

The following lemma presents an upper bound of the Frobenius norm of the product of two
matrices.
Lemma 23 For two matrices A € R™*" and B € R™* we have:

IAB|[r < [[All,, 1Bl

and:
|AB||r < [|All B,

The proof of the lemma can be found in Sun and Luo (2015).

The following lemma introduces a simple upper bound on the Frobenius norm of I, —
UTPU.

Lemma 24 For any rank-r orthonormal matriz U € R, and rank-r projection matriz
P c R™4 we have:

|I, -UTPU|, <r— Tr(U"PU) (84)

Proof It is easy to see that I, — UTPU is positive semidefinite. Also, for a positive
semidefinite matrix, its Frobenius norm is upper bounded by its trace. Inequality (84)
follows accordingly. [ ]

We can proceed to the following lemma that upper bounds the trace of the k-th power of
I, -UTPU.
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Lemma 25 For any rank-r orthonormal matriz U € R, and rank-r projection matriz
PcR™ k=1,2,.., (Ir — UTPU)k is positive semi-definite and:

0<1r ((I-UTPU)") < (r - Tr(UTPU))* (85)

Proof Since I, — UT PU is symmetric positive semidefinite, (Ir - UTPU)k is also sym-
metric positive semidefinite. Assume eigenvalues of I, — UTPU are A1, Ag, -+ , \g, with
N2 Ao 2 e 2 A, we know that Tr (I — UTPU)") = Y M < A 0 A

By Lemma 24, we know that
k—1 T k-1 T k-1
M <L -U"PU|, < (r—Tx (U'PU))

This completes our proof. |

Based on the above results, we can discuss some properties of the projection of a matrix onto
a subspace. Suppose we know the column space of U € R is close to that of P € R4,
can we find a matrix U* close to U with column vectors in col(P)? The following two
lemmas give affirmative answers.

Lemma 26 For any rank-r orthonormal matriz U € R, and rank-r projection matriz
P c R we define:

U* = pU (UTPU)
Ifr— Tr(UTPU) < 1, we have:
U - U*|)% >r— Tr (UTPU) (86)
and,
U - U*||% <2(r— Tr(UTPU)) (87)

Proof To prove the lower bound (86) and upper bound (87), we can write |[U — U*||% as,

U= U2 = U,U) + (U, U") — 2 (U, U")
=2r—2(U,U%)

We first find an upper bound for (U,U™).
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Notice that:
({U,U7%)
=Tr (UTUY)
=T (uTPU (UTPU) )
= ((UTPU)"?)

— T (1, -UTPU))"”)

(Ir (I, —-UTPU) - i W (I — UTPU)”>

n=2

= %Tr (I, —-UTPU) - i Cn =M ((r.-uTPU)")

2nn!
n=2
1
=5 (L~ U'PU)
We used the series (l—x)% = ac Yo, (2; 3, 2", and the result Tr ((IT — UTPU)n) >
0 from Lemma 25.
As a result:

U - U*||7 > Tr (I, -UTPU) =r — Tt (UTPU)
Similarly, from Lemma 25, Tr ((IT — UTPU)n) <Tr (Ir — UTPU)n, thus:
({U,U7")

1
=r—5T (I. -UTPU) -

ALY

Cn=3n ((IT . UTPU)”)
(2n —3)N

>r— %Tr (I, -UTPU) - Tr (I, - UTPU)"

oo
=2
|

s 2"n!

)=

-3

=r+(1-Tr (I - UTPU))% -1
~Tr (I, - U PU)

where we used the relation /1 — 2 — 1 > —x,Vx € [0,1], in the last inequality.
Thus

|U - U*||3 < 2Tx (I, - UTPU) =2 (r - Tt (UTPU))

This completes our proof. |

The following lemma shows that we can identify global PCs from local PCs.

Lemma 27 Suppose fori=1,--- N, Py, Py, and Py, P‘*/(i) are projection matrices
satisfying Py Py, =0 and P{}P{}(i) = 0 for each i. Among them, Py and Pg; have rank r1,
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Py, and P‘*,(i) have rank ro ;). If there exists a positive constant 6 > 0 such that

1 N
Amaz (7 ;PVM) <1-9

we have the following bound:

N
Y oritra = Tr ((Po+ Py, ) (Po+ Py, )

i=1 (88)
N
< N(ri —Tr(P;Py)) + Z T9.(i) — TT(P‘*/(i)P‘/(i>)
i=1
And also:
N
Soritra - Tr ((Pu+Py,) (P +Py,)
i=1
9 N (89)
> B (N (r1 — TT(PI*JPU)) + Z T2,() — TT(P‘*/(i)PV(i))>
i=1

Notice that we can replace + by @ on the left hand side of (88) and (89)
Proof We first calculate the upper bound.
Since PUP‘*,WPU is positive semidefinite, we know that:

Tr (PUP‘*,(Z_) PU) >0

Thus
Tx (PuPy, Pu) = Tr (PuPy, ) 0

Similarly, we have:

Tx (Pg Py, ) = 0

Combining them, we have:

T ((Po+ Py, ) (P + Py, )
— Tr (PyPf) + Tr (PUP%) 4Ty (PVMP,}) +Tr (PV@ P%)
> Tr (PyPy) + Tt (PV(Z.)P‘*,@)

This proves inequality (88).
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Next, we calculate the lower bound.

N

ZTT ((PU + PV(v:)) (P’*f T P‘*’u)))
= DT (PuPy) < T (PuPy, ) + T (P, By ) + T (P By )
=T (PyPy) +Tr (Pu (I - Py) Py, (- Py)) +Tx (Py, Py ) + T Py, Py,

N
=Y Tr(PyPp) + Tr ((I _ PPy (I-PY) P‘*,m) +Tr <PV(Z_)P,*J) Ty (P‘/(i)P‘*,m)

Since (I — P{y) Py (I — Pfy) and P‘*,m are both symmetric positive semidefinite, we have:

Tr ((I P) Py (I — P) ZPVM>

N
< Tr ((I - Pg) Py (I - P)) m< > Py )
=1

<Tr(Py — PuPg) (1-6)
=(rm—Tr(PuPg))(1-0)

For notation simplicity, we define zo = r1 — Tr (Py Py;) and z; = 79 (;y — Tr (PV(i)Pl*/(i))

From the orthogonality, we have:

Tx (Py;, Py
=T (Py, (T- Py, ) Po (1- Py, ))
=T ((1-Py,) Py, (I- Py, ) P5)
((r-Po,) Py, (1~ Pm)) Amas (PY)
<Tr(<I PV()>PV (I ))
( )

=Tr ( Py, — Py, )PV(Z)

<Tr
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Also, from the orthogonality, we have:
Tr (P, Py)
_ ((I ~ Py) Py, (I - Py) P,*J)
~Tv (PV( (I Py) Py (I - PU)>

< Tv (I - Py) Py (I — Py)) Amas <PV(Z.)>
Tr (I — Py) Py (I — Pu))
— T (Py — PuPp)

= ZO
Combining the two:
Tr (va P{}) < min{zg, 2 }
As a result:
N
Z 1+ T2 5)
i=1
_ [Tr (PyPy) + T ((I _ PPy (I - PY) P‘*,m) +Tr (P%P,*]) +Tr (PVMP‘*,@H
N
> Zzo — (1 —=6) z0 + z; — min{zp, 2; }
i=1

Since for any number v € (0, 1), we know:
z; —min{zg, z;} > v (z; — 20)

We can set v = g, then

N
Zzo — (1 =0) 2o + z; — min{zg, 2}
i=1

This proves inequality (89).
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