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ABSTRACT

While machine learning models rapidly advance the state-of-the-art on vari-
ous real-world tasks, out-of-domain (OOD) generalization remains a challeng-
ing problem given the vulnerability of these models to spurious correlations. We
propose a balanced mini-batch sampling strategy to transform a biased data dis-
tribution into a spurious-free balanced distribution, based on the invariance of the
underlying causal mechanisms for the data generation process. We argue that
the Bayes optimal classifiers trained on such balanced distribution are minimax
optimal across a diverse enough environment space. We also provide an identi-
fiability guarantee of the latent variable model of the proposed data generation
process, when utilizing enough train environments. Experiments are conducted
on DomainBed, demonstrating empirically that our method obtains the best per-
formance across 20 baselines reported on the benchmark. 1

1 INTRODUCTION

Machine learning is achieving tremendous success in many fields with useful real-world applica-
tions (Silver et al., 2016; Devlin et al., 2019; Jumper et al., 2021). While machine learning models
can perform well on in-domain data sampled from seen environments, they often fail to generalize
to out-of-domain (OOD) data sampled from unseen environments (Quiñonero-Candela et al., 2009;
Szegedy et al., 2014). One explanation is that machine learning models are prone to learning spu-
rious correlations that change between environments. For example, in image classification, instead
of relying on the object of interest, machine learning models easily rely on surface-level textures
(Jo & Bengio, 2017; Geirhos et al., 2019) or background environments (Beery et al., 2018; Zhang
et al., 2020). This vulnerability to changes in environments can cause serious problems for machine
learning systems deployed in the real world, calling into question their reliability over time.

Various methods have been proposed to improve the OOD generalizability by considering the in-
variance of causal features or the underlying causal mechanism (Pearl, 2009) through which data is
generated. Such methods often aim to find invariant data representations using new loss function de-
signs that incorporate some invariance conditions across different domains into the training process
(Arjovsky et al., 2020; Mahajan et al., 2021; Liu et al., 2021a; Lu et al., 2022; Wald et al., 2021).
Unfortunately, these approaches have to contend with trade-offs between weak linear models or ap-
proaches without theoretical guarantees (Arjovsky et al., 2020; Wald et al., 2021), and empirical
studies have shown their utility in the real world to be questionable (Gulrajani & Lopez-Paz, 2020).

In this paper, we consider the setting that multiple train domains/environments are available. We the-
oretically show that the Bayes optimal classifier trained on a balanced (spurious-free) distribution is
minimax optimal across all environments. Then we propose a principled two-step method to sam-
ple balanced mini-batches from such balanced distribution: (1) learn the observed data distribution
using a variational autoencoder (VAE) and identify the latent covariate; (2) match train examples

1We publicly release our code at https://github.com/WANGXinyiLinda/
causal-balancing-for-domain-generalization.
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(a) Observed distribution p(X,Y |E = e) (b) Balanced distribution p̂(X,Y |E = e)
Figure 1: The causal graphical model assumed for data generation process in environment e 2 E .
Shaded nodes mean being observed and white nodes mean not being observed. Black arrows mean
causal relations invariant across different environments. The Red dashed line means correlation
varies across different environments.

with the closest latent covariate to create balanced mini-batches. By only modifying the mini-batch
sampling strategy, our method is lightweight and highly flexible, enabling seamless incorporation
with complex classification models or improvement upon other domain generalization methods.

Our contributions are as follows: (1) We propose a general non-linear causality-based framework
for the domain generalization problem of classification tasks; (2) We prove that a spurious-free bal-

anced distribution can produce minimax optimal classifiers for OOD generalization; (3) We rigor-
ously demonstrate that the source of spurious correlation, as a latent variable, can be identified given
a large enough set of training environments in a nonlinear setting; (4) We propose a novel and prin-
cipled balanced mini-batch sampling algorithm that, in an ideal scenario, can remove the spurious
correlations in the observed data distribution; (5) Our empirical results show that our method obtains
significant performance gain compared to 20 baselines on DomainBed (Arjovsky et al., 2020).

2 PRELIMINARIES

Problem Setting. We consider a standard domain generalization setting with a potentially high-
dimensional variable X (e.g. an image), a label variable Y and a discrete environment (or domain)
variable E in the sample spaces X ,Y, E , respectively. Here we focus on the classification problems
with Y = {1, 2, ...,m} and X ✓ Rd. We assume that the training data are collected from a finite
subset of training environments Etrain ⇢ E . The training data De = {(xe

i , y
e
i )}N

e

i=1 is then sampled
from the distribution pe(X,Y ) = p(X,Y |E = e) for all e 2 Etrain. Our goal is to learn a classifier
C : X ! Y that performs well in a new, unseen environment etest 62 Etrain.

We assume that there is a data generation process of the observed data distribution pe(X,Y ) repre-
sented by an underlying structural causal model (SCM) shown in Figure 1a. More specifically, we
assume that X is caused by label Y , an unobserved latent variable Z (with sample space Z 2 Rn)
and an independent noise variable ✏ with the following formulation:

X = f(Y, Z) + ✏ = fY (Z) + ✏.

Here, we assume the causal mechanism is invariant across all environments e 2 E and we further
characterize f with the following assumption:
Assumption 2.1. f : {1, 2, ...,m} ⇥ Z ! X is injective. f�1 : X ! {1, 2, ...,m} ⇥ Z is the left

inverse of f .

Note that this assumption forces the generation process of X to consider both Z and Y instead of
only one of them. Suppose ✏ has a known probability density function p✏ > 0. Then we have

pf (X|Z, Y ) = p✏(X � fY (Z)).

While the causal mechanism is invariant across environments, we assume that the correlation be-
tween label Y and latent Z is environment-variant and Z should exclude Y information. i.e., Y
cannot be recovered as a function of Z. If Y is a function of Z, the generation process of X can
completely ignore Y and f would not be injective. We consider the following family of distributions:

F = { pe(X,Y, Z) = pf (X | Z, Y )pe(Z|Y )pe(Y )|pe(Z|Y ), pe(Y ) > 0 }e . (1)

Then the environment space we consider would be all the index of F : E = { e | pe 2 F }. Note
that any mixture of distributions from F would also be a member of F . i.e. Any combination of the
environments from E would also be an environment in E .

To better understand our setting, consider the following example: an image X of an object in class
Y has an appearance driven by the fundamental shared properties of Y as well as other meaning-
ful latent features Z that do not determine “Y -ness”, but can be spuriously correlated with Y . In
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Figure 2: Annotated example causal graphs of two realizations of the joint distribution p(X,Y,E).

Figure 2, we plot causal diagrams for the joint distributions p(X,Y,E) of two example domain
generalization datasets, ColoredMNIST (Arjovsky et al., 2020) and PACS (Li et al., 2017). In
ColoredMNIST, Z indicates the assigned color, which is determined by the digit label Y and the
environment E = p(Z|Y ). In PACS, images of the same objects in different styles (e.g. sketches
and photographs) occur in different environments, with Z containing this stylistic information.

In this setting, we can see that the correlation between X and Y would vary for different values of
e. We argue that the correlation Y $ Z ! X is not stable in an unseen environment e 62 Etrain as
it involves E and we only want to learn the stable causal relation Y ! X . However, the learned
predictor may inevitably absorb the unstable relation between X and Y if we simply train it on the
observed train distribution pe(X,Y ) with empirical risk minimization.

Balanced Distribution. To avoid learning the unstable relations, we propose to consider a balanced
distribution:
Definition 2.2. A balanced distribution can be written as pB(X,Y, Z) = pf (X|Y, Z)pB(Z)pB(Y ),
where pB(Y ) = U{1, 2, ...,m} and Y ??B Z.

Here we do not specify pB(Z). Note that pB(X|Y, Z) = pf (X|Y, Z) is a result of the unchanged
causal mechanism Z ! X  Y , and that pB(X,Y,X) 2 F can also be regarded as constructing
an new environment B 2 E . In this new distribution, X and Y are only correlated through the
stable causal relation Y ! X . We want to argue that the Bayesian optimal classifier trained on
such a balanced distribution would have the lowest worst-case risk, compared to Bayesian optimal
classifiers trained on other environments in E as defined in Equation (1). To support this statement,
we further assume some degree of disentanglement of the causal mechanism:
Assumption 2.3. There exist functions gY , gZ and noise variables ✏Y , ✏Z , such that (Y, Z) =
f�1(X � ✏) = (gY (X � ✏Y ),gZ(X � ✏Z)), and ✏Y ??B ✏Z .

The above assumption implies that Y ??B Z|X . We can then have the following theorem2:
Theorem 2.4. Consider a classifier C (X) = argmaxY p (Y |X) with parameter  . The

risk of such a classifier on an environment e 2 E is its cross entropy: Le(p (Y |X)) =
�Epe(X,Y ) log p (Y |X). Assume that E satisfies:

8e 2 E ,Y 6?? peZ =) 9e0 2 E s.t. Le0(pe(Y |X))� Le0(pB(Y )) > 0.

Then the Bayes optimal classifier trained on any balanced distribution pB(X,Y ) is minimax opti-
mal across all environments in E:

pB(Y |X) = argmin
p 2F

max
e2E

Le(p (Y |X)).

The assumption implies that the environment space E is large and diverse enough such that a perfect
classifier on one environment will always perform worse than random guessing on some other envi-
ronment. Under such an assumption, no other Byes optimal classifier produced by an environment
in E would have a better worst case OOD performance than the balanced distribution.

3 METHOD

We propose a two-phased method that first use a VAE to learn the underlying data distribution
pe(X,Y, Z) with latent covariate Z for each e 2 Etrain, and then use the learned distribution to
calculate a balancing score to create a balanced distribution based on the training data.

2See Appendix A for proofs of all theorems.
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3.1 LATENT COVARIATE LEARNING

We argue that the underlying joint distribution of pe(X,Y, Z) can be learned and identified by a
VAE, given a sufficiently large set of train environments Etrain. To specify the correlation between
Z and Y , we assume that the conditional distribution pe(Z|Y ) is conditional factorial with an expo-
nential family distribution:
Assumption 3.1. The correlation between Y and Z in environment e is characterized by:

peT,�(Z|Y ) =
nY

i=1

Qi(Zi)

W e
i (Y )

exp
h kX

j=1

Tij(Zi)�
e
ij(Y )

i
,

where Zi is the i-th element of Z, Q = [Qi]i : Z ! Rn
is the base measure, We = [W e

i ]i :
Y ! Rn

is the normalizing constant, T = [Tij ]ij : Z ! Rnk
is the sufficient statistics, and

�e = [�eij ]ij : Y ! Rnk
are the Y dependent parameters.

Here n is the dimension of the latent variable Z, and k is the dimension of each sufficient statis-
tic. Note that k, Q, and T is determined by the type of chosen exponential family distribution thus
independent of the environment. The simplified conditional factorial prior assumption is from the
mean-field approximation, which can be expressed as a closed form of the true prior (Blei et al.,
2017). Note that the exponential family assumption is not very restrictive as it has universal ap-
proximation capabilities (Sriperumbudur et al., 2017). We then consider the following conditional
generative model in each environment e 2 Etrain, with parameters ✓ = (f ,T,�):

pe✓(X,Z|Y ) = pf (X|Z, Y )peT,�(Z|Y ). (2)
We use a VAE to estimate the above generative model with the following evidence lower bound
(ELBO) in each environment e 2 Etrain:
EDe [log pe✓(X|Y )] � Le

✓,� := EDe

⇥
Eqe�(Z|X,Y ) [log pf (X|Z, Y )]�DKL(q

e
�(Z|X,Y )||peT,�(Z|Y )

⇤
.

The KL-divergence term can be calculated analytically. To sample from the variational distribution
qe�(Z|X,Y ), we use reparameterization trick (Kingma & Welling, 2013).

We then maximize the above ELBO 1
|Etrain|

P
e2Etrain

Le
✓,� over all training environments to obtain

model parameters (✓,�). To show that we can uniquely recover the latent variable Z up to some
simple transformations, we want to show that the model parameter ✓ is identifiable up to some simple
transformations. That is, for any {✓ = (f ,T,�), ✓0 = (f 0,T0,�0)} 2 ⇥,

pe✓(X|Y ) = pe✓0(X|Y ), 8e 2 Etrain =) ✓ ⇠ ✓0,
where ⇥ is the parameter space and ⇠ represents an equivalent relation. Specifically, we consider
the following equivalence relation from Motiian et al. (2017):
Definition 3.2. If (f ,T,�) ⇠A (f 0,T0,�0), then there exists an invertible matrix A 2 Rnk⇥nk

and

a vector c 2 Rnk
, such that T(f�1(x)) = AT0(f 0�1(x)) + c, 8x 2 X .

When the underlying model parameter ✓⇤ can be recovered by perfectly fitting the data distribution
pe✓⇤(X|Y ) for all e 2 Etrain, the joint distribution pe✓⇤(X,Z|Y ) is also recovered. This further implies
the recovery of the prior pe✓⇤(Z|Y ) and the true latent variable Z⇤. The identifiability of our proposed
latent covariate learning model can then be summarized as follows:
Theorem 3.3. Suppose we observe data sampled from the generative model defined according to

Equation (2), with parameters ✓ = (f ,T,�). In addition to Assumption 2.1 and Assumption 3.1, we

assume the following conditions holds: (1) The set {x 2 X|�✏(x) = 0} has measure zero, where

�✏ is the characteristic function of the density p✏. (2) The sufficient statistics Tij are differentiable

almost everywhere, and (Tij)1jk are linearly independent on any subset of X of measure greater

than zero. (3) There exist nk+1 distinct pairs (y0, e0), . . . , (ynk, enk) such that the nk⇥nk matrix

L = (�e1(y1)� �e0(y0), . . . ,�
enk(ynk)� �e0(y0)) ,

is invertible. Then we have the parameters ✓ = (f ,T,�) are ⇠A-identifiable.

Note that in the last assumption in Theorem 3.3, since there exists nk + 1 distinct points (yi, ei),
the product space Y ⇥ Etrain has to be large enough. i.e. We need m|Etrain| > nk. The invertibility
of L implies that �ei(yi) � �e0(y0) need to be orthogonal to each other which further implies the
diversity of environment space E .
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3.2 BALANCED MINI-BATCH SAMPLING

We consider using a classic method that has been widely used in the average treatment effect (ATE)
estimation — balancing score matching (Rosenbaum & Rubin, 1983) — to sample balanced mini-
batches that mimic a balanced distribution shown in Figure 1b. A balancing score is used to balance
the systematical difference between the treated unites and the controlled units, and to reveal the true
causal effect from the observed data, which is defined as below:
Definition 3.4. A balancing score b(Z) is a function of covariate Z s.t. Z ?? Y |b(Z).

There is a wide range of functions of Z that can be used as a balancing score, where the propensity
score p(Y = 1|Z) is the coarsest one and the covariate Z itself is the finest one (Rosenbaum &
Rubin, 1983). To extend this statement to non-binary treatments, we first define propensity score
s(Z) for Y 2 Y = {1, 2, ...,m} as a vector:
Definition 3.5. The propensity score for Y 2 {1, 2, ...,m} is s(Z) = [p(Y = y|Z)]my=1.

We then have the following theorem that applies to the vector version of propensity score s(Z):
Theorem 3.6. Let b(Z) be a function of Z. Then b(Z) is a balancing score, if and only if b(Z) is

finer than s(Z). i.e. exists a function g such that s(Z) = g(b(Z)).

We use be(Z) to denote the balancing score for a specific environment e. The propensity score
would then be se(Z) = [pe(Y = y|Z)]my=1, which can be derived from the VAE’s conditional prior
peT,�(Z|Y ) as defined in Equation (2):

pe(Y = y|Z) =
peT,�(Z|Y = y)pe(Y = y)

Pm
i=1 p

e
T,�(Z|Y = i)pe(Y = i)

, (3)

where pe(Y = i) can be directly estimated from the training data De.

In practice, we adopt the propensity score computed from Equation (3) as our balancing score
(b(Z) = se(Z)) and propose to construct balanced mini-batches by matching 1  a  m � 1
different examples with different labels but the same/closest balancing score, be(Z) 2 B, with each
train example. The detailed sampling algorithm is shown in Algorithm 1.

Algorithm 1: Balanced Mini-batch sampling.
Input: |Etrain| training datasets De = {(xe

i , y
e
i )}N

e

i=1 for all e 2 Etrain, a balancing score be(zi)
inferred from each training data point (xe

i , y
e
i ), and a distance metrics d : B ⇥ B ! R;

Output: A balanced batch of data Dbalanced consisting of B ⇥ |Etrain|⇥ (a+ 1) examples;
Dbalanced  Empty;
for e 2 Etrain do

Randomly sample B data points De
random from De;

Add De
random to Dbalanced;

for (xe, ye) 2 De
random do

Yalt = {yi ⇠ U{1, 2, ...,m} \ {ye, y1, .., yi�1}|i 2 [1, a]};
Compute balancing score be(ze) from (xe, ye);
for yi 2 Yalt do

j = argminj2[1,Ne] d(b
e(zj), be(ze)) such that yej = yi and (xe

j , y
e
j ) 2 De;

Add (xe
j , y

e
j ) to Dbalanced.

We denote the data distribution obtained from Algorithm 1 by p̂B(X,Y, Z,E), then we have:
Theorem 3.7. If d(be(zj), be(ze)) = 0 in Algorithm 1, the balanced mini-batch can be regarded as

sampling from a semi-balanced distribution with p̂B(Y |Z,E) = 1
a+1 (

a
m�1 + m�a�1

m�1 p(Y |Z,E)).

When a = m� 1, p̂B(Y |Z,E) = 1
m = pB(Y ).

With perfect match at every step (i.e., be(zj) = be(z)) and a = m� 1, we can obtain a completely
balanced mini-batch sampled from the balanced distribution. However, an exact match of balancing
score is unlikely in reality, so a larger a will introduce more noises. This can be mitigated by
choosing a smaller a, which on the other hand will increase the dependency between Y and Z. So
in practice, the choice of a reflects a trade-off between the balancing score matching quality and the
degree of dependency between Y and Z.
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(a) A random mini-batch. (b) A balanced mini-batch (obtained by our method).
Figure 3: A random mini-batch and a balanced mini-batch from the ColoredMNIST10 dataset. Note
that there is 25% label noise so mismatches of label y and image are expected.

4 EXPERIMENTS

Datasets: To verify the effectiveness of our proposed balancing mini-batch method, we conduct
experiments on DomainBed 3, a standard domain generalization benchmark, which contains seven
different datasets: ColoredMNIST (Arjovsky et al., 2020), RotatedMNIST (Ghifary et al., 2015),
VLCS (Fang et al., 2013), PACS (Li et al., 2017), OfficeHome (Venkateswara et al., 2017), Ter-
raIncognita (Beery et al., 2018) and DomainNet (Peng et al., 2019). We also report results on a
slightly modified version of ColoredMNIST dataset, ColoredMNIST10 (Bao et al., 2021), which
classify digits into 10 classes instead of binary classes.

Baselines: We apply our proposed balanced mini-batch sampling method along with four represen-
tative widely-used domain generalization algorithms: empirical risk minimization (ERM) (Vapnik,
1998), invariant risk minimization (IRM) (Arjovsky et al., 2020), GroupDRO (Sagawa et al., 2019)
and deep CORAL (Sun & Saenko, 2016), and compare the performance of using our balanced mini-
batch sampling strategy with using the usual random mini-batch sampling strategy. We compare our
method with 20 baselines in total (Xu et al., 2020; Li et al., 2018a; Ganin et al., 2016; Li et al.,
2018c;b; Krueger et al., 2021; Blanchard et al., 2021; Zhang et al., 2021; Nam et al., 2021; Huang
et al., 2020; Shi et al., 2022; Parascandolo et al., 2021; Shahtalebi et al., 2021; Rame et al., 2022; Kim
et al., 2021) reported on DomainBed, including a recent causality based baseline CausIRLCORAL
and CausIRLMMD (Chevalley et al., 2022) that also utilize the invariance of causal mechanisms. We
also compare with a group-based method PI (Bao et al., 2021) that interpolates the distributions of
the correct predictions and the wrong predictions on ColoredMNIST10.

To control the effect of the base algorithms, we use the same set of hyperparameters for both the
random sampling baselines and our methods. We primarily consider train domain validation for
model selection, as it is the most practical validation method. A detailed description of datasets and
baselines, and hyperparameter tuning and selection can be found in Appendix B.

ColoredMNIST: We use the ColoredMNIST dataset as a proof of concept scenario, as we already
know color is a dominant latent covariate that exhibits spurious correlation with the digit label.

For ColoredMNIST10, we adopt the setting from (Bao et al., 2021), which is a multiclass version
of the original ColoredMNIST dataset (Arjovsky et al., 2020). The label y is assigned according to
the numeric digit of the MNIST image with a 25% random noise. Then we assign one of a set of
10 colors (each indicated by a separate color channel) to the image according to the label y, with
probability e that we assign the corresponding color and probability 1 � e we randomly choose
another color. Here e 2 {0.1, 0.2} for two train environments and e = 0.9 for the test environment.
For ColoredMNIST, we adopt the original setting from (Arjovsky et al., 2020), which only has two
classes (digit smaller/larger than 5) and two colors, with three environments e 2 {0.1, 0.2, 0.9}.

Balanced mini-batch example. An example of a balanced mini-batch created by our method from
digit 4, 5 and 7 in ColoredMNIST10 is illustrated in Figure 3. In the random mini-batch, labels are
spuriously correlated with color. e.g. most 6 are blue, most 1 are red and most 2 are yellow. In
the balanced mini-batch, we force each label to have uniform color distribution by matching each
example with an example with a different label but the same color. Here, the color information is
implicitly learned by latent covariate learning.

ColoredMNIST main results. Table 1 shows the out-of-domain accuracy of our method combined
with various base algorithms on ColoredMNIST10 and ColoredMNIST dataset. Our balanced mini-

3https://github.com/facebookresearch/DomainBed
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Table 1: Out-of-domain accuracy on ColoredMNIST10 and ColoredMNIST with two train environ-
ments [0.1, 0.2] and one test environment [0.9].

Validation Dataset Sampling ERM IRM GroupDRO CORAL CausIRL PI

Train
CMNIST10 Random 14.25 13.13 21.06 13.1 ± 0.3 12.5 ± 0.1 69.68

Ours 69.8 ± 0.3 63.8 ± 0.5 69.3 ± 0.2 70.1 ± 0.2 69.6 ± 0.3 -

CMNIST Random 10.0 ± 0.1 10.2 ± 0.3 10.0 ± 0.2 9.9 ± 0.1 10.0 ± 0.1 -
Ours 37.6 ± 2.9 31.1 ± 8.6 17.0 ± 3.5 57.2 ± 3.4 43.7 ± 9.5 -

Test
CMNIST10 Random 26.15 45.41 32.51 21.1 ± 0.1 20.8 ± 0.3 69.44

Ours 70.5 ± 0.4 63.8 ± 0.4 69.4 ± 0.3 70.1 ± 0.2 69.6 ± 0.3 -

CMNIST Random 28.7 ± 0.5 58.5 ± 3.3 36.8 ± 2.8 31.1 ± 1.6 27.4 ± 0.3 -
Ours 38.4 ± 3.0 69.7 ± 16.5 44.8 ± 11.0 60.5 ± 4.1 43.3 ± 9.2 -

(a) Degree of balancing (b) number of matched examples (c) Test env
Figure 4: The out-of-domain accuracy versus (a) degree of balancing, (b) number of matched exam-
ples a, and (c) test environment, on ColoredMNIST10 dataset with ERM base algorithm.

batch sampling can increase the accuracy of all base algorithms by a large margin, with CORAL
improving the most (57% and 47.3%). Note that the highest possible accuracy without relying on
the color feature is 75%.

In Figure 4, we study important factors in our proposed method by ablating on the ColoredMNIST10

dataset with ERM.

The effectiveness of balancing. We construct oracle balanced mini-batches with b(Z) = Color, and
then control the degree of balancing by varying the fraction of balanced examples in a mini-batch:
for each randomly sampled example, with probability �, we match it with 9 examples with the same
color but different labels to balance the mini-batch; otherwise, we match it with 9 examples with
the same color and label to maintain the original distribution. Figure 4a shows that increasing the
balancing fraction would increase the OOD performance.

The effect of the number of matched examples a. Figure 4b shows that when a increases, the
OOD performance first increases, then becomes stable with a slightly decreasing trend. This result
is consistent with our analysis in Section 3.2, that a large a will increase balancing in theory, but
due to imperfection of the learning of latent covariate Z, large a will eventually introduce more
low-quality matches, which may hurt the performance. It can also be observed that we do not need
a very large a to reach the maximum performance.

The effect of different test environments. In Figure 4c, we fix the train environments as [0.1, 0.2]
and test on different test environments. We report the results chosen by train domain validation,
as the results with test domain validation are almost the same as the training domain validation
results. The accuracy of the model trained with random mini-batches drops linearly when the test
environment changes from 0.1 to 0.9, indicating that the model learns to use the color feature as
the main predictive evidence. On the other hand, the accuracy of the model trained with balanced
mini-batches produce by our method almost stays the same across all test domains, indicating that
the model learns to use domain-invariant features.

DomainBed: We investigate the effectiveness of our method under different situations.

DomainBed main results. In Table 2, we consider combining our method with four representative
base algorithms: ERM, IRM, GroupDRO, and CORAL. IRM represents a wide range of invariant
representation learning baselines. GroupDRO represents group-based methods that minimize the
worst group errors. CORAL represents the distribution matching algorithms that match the feature
distribution across train domains. In general, our method can improve the average performance of
all the base algorithms by one to two points (1.6% for ERM, IRM and GroupDRO), while CORAL
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Table 2: Out-of-domain accuracy on DomainBed benchmark. Numbers are averaged over all test
environments with standard deviation over 3 runs. The training domain validation scheme is used.
Full results on each test environment can be found in Appendix B.4.

Algorithm CMNIST RMNIST VLCS PACS Office-Home TerraInc DomainNet Avg
ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6
IRM 52.0 ± 0.1 97.7 ± 0.1 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 65.4
GroupDRO 52.1 ± 0.0 98.0 ± 0.0 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 64.8
Mixup 52.1 ± 0.2 98.0 ± 0.1 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 66.7
MLDG 51.5 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 66.7
CORAL 51.5 ± 0.1 98.0 ± 0.1 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 67.5
MMD 51.5 ± 0.2 97.9 ± 0.0 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3
DANN 51.5 ± 0.3 97.8 ± 0.1 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 66.1
CDANN 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 65.6
MTL 51.4 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 66.2
SagNet 51.7 ± 0.0 98.0 ± 0.0 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 67.2
ARM 56.2 ± 0.2 98.2 ± 0.1 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 66.1
VREx 51.8 ± 0.1 97.9 ± 0.1 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 65.6
RSC 51.7 ± 0.2 97.6 ± 0.1 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 66.1
Fish 51.6 ± 0.1 98.0 ± 0.0 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2 67.1
Fishr 52.0 ± 0.2 97.8 ± 0.0 77.8 ± 0.1 85.5 ± 0.4 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 67.1
AND-mask 51.3 ± 0.2 97.6 ± 0.1 78.1 ± 0.9 84.4 ± 0.9 65.6 ± 0.4 44.6 ± 0.3 37.2 ± 0.6 65.5
SAND-mask 51.8 ± 0.2 97.4 ± 0.1 77.4 ± 0.2 84.6 ± 0.9 65.8 ± 0.4 42.9 ± 1.7 32.1 ± 0.6 64.6
SelfReg 52.1 ± 0.2 98.0 ± 0.1 77.8 ± 0.9 85.6 ± 0.4 67.9 ± 0.7 47.0 ± 0.3 42.8 ± 0.0 67.3
CausIRLCORAL 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.6 85.8 ± 0.1 68.6 ± 0.3 47.3 ± 0.8 41.9 ± 0.1 67.3
CausIRLMMD 51.6 ± 0.1 97.9 ± 0.0 77.6 ± 0.4 84.0 ± 0.8 65.7 ± 0.6 46.3 ± 0.9 40.3 ± 0.2 66.2

Ours+ERM 60.1 ± 1.0 97.7 ± 0.0 76.1 ± 0.3 86.1 ± 0.4 67.1 ± 0.4 48.0 ± 1.7 42.6 ± 1.0 68.2
Ours+IRM 59.2 ± 2.9 96.8 ± 0.1 76.5 ± 0.1 85.2 ± 0.3 64.6 ± 2.3 46.5 ± 1.2 40.5 ± 1.7 67.0
Ours+DRO 53.9 ± 1.3 97.6 ± 0.1 76.0 ± 0.2 84.9 ± 0.2 66.5 ± 0.5 45.4 ± 0.4 40.8 ± 0.6 66.4
Ours+CORAL 66.6 ± 1.2 97.7 ± 0.1 76.4 ± 0.5 86.7 ± 0.1 69.6 ± 0.2 47.0 ± 1.2 43.9 ± 0.1 69.7

improves the most (2.2%). The reason why CORAL works the best with our method, and achieves
the state-of-the-art OOD accuracy not only on average but also on ColoredMNIST, PACS, Office-
Home and DomainNet dataset, is likely because our method aims to balance the data distribution
and close the distribution gap between domains, which is in line with the objective of distribution
matching algorithms.

Our proposed method improves the most on ColoreMNIST, OfficeHome, and DomainNet, while our
method is not very effective on RotatedMNIST and VLCS.

Reason for significant improvements. The large improvement on ColoredMNIST (8.6% for ERM,
7.2% for IRM, 1.8% for GroupDRO and 15.1% for CORAL) is likely because the dominant latent
covariate, color, is relatively easy to learn with a low dimensional VAE. The good performance on
OfficeHome and DomainNet (1.7% for ERM, 6.6% for IRM, 7.5% for GroupDRO and 2.4% for
CORAL) is likely because of the large number of classes. OfficeHome has 65 classes, and Domain-
Net has 345 classes, while all the other datasets have less or equal to 10 classes. According to the
conclusion of Theorem 3.3, a larger number of labels or environments will enable the identification
of a higher dimensional latent covariate, which is more likely to capture the complex underlying
data distribution.

Reason for insignificant improvements. The lower performance on RotatedMNIST is because the
digits in each domain are all rotated by the same degree. Since classes are balanced, images in each
domain are already balanced for rotation, the dominant latent covariate. As the performance with
random mini-batches is already very high, the noise introduced by the matching procedure may hurt
the performance. VLCS on the one hand has a pretty complex data distribution as the images from
each domain are very different realistic photos collected in different ways. However, VLCS only
has 5 classes and 4 domains, which only enables the identification of a very low dimensional latent
covariate, which is insufficient to capture the complexity of each domain.

In practice, we suggest using our method when there is a large number of classes or domains, and
preferably combined with distribution matching algorithms for domain generalization.

5 RELATED WORK

A growing body of work has investigated the out-of-domain (OOD) generalization problem with
causal modeling. One prominent idea is to learn invariant features. When multiple training domains
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are available, this can be approximated by enforcing some invariance conditions across training
domains by adding a regularization term to the usual empirical risk minimization (Arjovsky et al.,
2020; Krueger et al., 2021; Bellot & van der Schaar, 2020; Wald et al., 2021; Chevalley et al., 2022).
There are also some group-based works (Sagawa et al., 2019; Bao et al., 2021; Liu et al., 2021b;
Sanh et al., 2021; Piratla et al., 2021; Zhou et al., 2021) that improve worst group performance and
can be applied to domain generalization problem. However, recent work claims that many of these
approaches still fail to achieve the intended invariance property (Kamath et al., 2021; Rosenfeld
et al., 2020; Guo et al., 2021), and thorough empirical study questions the true effectiveness of these
domain generalization methods (Gulrajani & Lopez-Paz, 2020).

Instead of using datasets from multiple domains, Makar et al. (2022) and Puli et al. (2022) propose
to utilize an additional auxiliary variable different from the label to solve the OOD problem, using
a single train domain. Their methods are two-phased: (1) reweight the train data with respect to the
auxiliary variable; (2) add invariance regularizations to the training objective. The limitation of such
methods is that they can only handle distribution shifts induced by the chosen auxiliary variable.
Little & Badawy (2019) also propose a bootstrapping method to resample train data by reweighting
to mimic a randomized controlled trial. There is also single-phased methods like Wang et al. (2021)
which proposes new training objectives to reduce spurious correlations.

Some other OOD works aim to improve OOD accuracy without any additional information. Liu
et al. (2021a) and Lu et al. (2022) propose to use VAE to learn latent variables in the assumed causal
graph, with appropriate assumptions of the train data distribution in a single train domain. The
identifiability of such latent variables is usually based on Khemakhem et al. (2020), which assumes
that the latent variable has a factorial exponential family distribution given an auxiliary variable.
Our identifiability result is also an extension of Khemakhem et al. (2020), where we use both label
Y and training domain E as the auxiliary variable and include the label Y in the causal mechanism
of generating X instead of only using the latent variable Z to generate X . Christiansen et al. (2021)
use interventions on a different structural causal model to model the OOD test distributions and
show a similar minimax optimal result.

To sample from the balanced distribution, we use a classic method for average treatment effect (ATE)
estimation (Holland, 1986) – balancing score matching (Rosenbaum & Rubin, 1983). Causal effect
estimation studies the effect a treatment would have had on a unit that in reality received another
treatment. A causal graph (Pearl, 2009) similar to Figure 1a is usually considered in a causal effect
estimation problem, where Z is called the covariate (e.g. a patient profile), which is observed before
treatment Y 2 {0, 1} (e.g. taking placebo or drug) is applied. We denote the effect of receiving a
specific treatment Y = y as Xy (e.g. blood pressure). Note that the causal graph implies the Strong
Ignorability assumption (Rubin, 1978). i.e. Z includes all variables related to both X and Y . In the
case of a binary treatment, the ATE is defined as E[X1 �X0].

For a randomized controlled trial, ATE can be directly estimated by E[X|Y = 1] � E[X|Y = 0],
as in this case Z ?? Y and there would not be systematic differences between units exposed to one
treatment and units exposed to another. However, in most observed datasets, Z is correlated with Y .
Thus E[X1] and E[X0] are not directly comparable. We can then use balancing score b(Z) (Dawid,
1979) to de-correlate Z and Y , and ATE can then be estimated by matching units with same balanc-
ing score but different treatments: E[X1 �X0] = Eb(Z) [E[X|Y = 1, b(Z)]� E[X|Y = 0, b(Z)]].
Recently, Schwab et al. (2018) extends this method to individual treatment effect (ITE) estimation
(Holland, 1986) by constructinng virtually randomized mini-batches with balancing score.

6 CONCLUSION

Our novel causality-based domain generalization method for classification task samples balanced
mini-batches to reduce the presentation of spurious correlations in the dataset. We propose a
spurious-free balanced distribution and show that the Bayes optimal classifier trained on such distri-
bution is minimax optimal over all environments. We show that our assumed data generation model
with an invariant causal mechanism can be identified up to sample transformations. We demonstrate
theoretically that the balanced mini-batch is approximately sampled from a spurious-free balanced
distribution with the same causal mechanism under ideal scenarios. Our experiments empirically
show the effectiveness of our method in both semi-synthetic settings and real-world settings.
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A PROOFS

In this section, we give full proofs of the main theorems in the paper.

A.1 BALANCED DISTRIBUTION

A.1.1 PROOF FOR THEOREM 2.4

Here we give a proof of the minimax optimality of the Bayes optimal classifier trained on a balanced
distribution.

Proof. The Bayes optimal classifier trained on a balanced distribution pB(X,Y ) has p (Y |X) =
pB(Y |X). Then consider the expected cross entropy loss of such classifier on an unseen test distri-
bution pe:

Le(pB(Y |X)) = �Epe(X,Y ) log p
B(Y |X) (4)

= �Epe(X,Y ) log p
B(Y ) + Epe(X,Y ) log

pB(Y )

pB(Y |X)

= Le(pB(Y )) + Epe(X,Y,Z)


log

pB(Y )

pB(Y |X)

�

= Le(pB(Y )) + Epe(Y,Z)


EpB(X|Y,Z)


log

pB(Y )

pB(Y |X)

��

= Le(pB(Y )) + Epe(Y,Z)


EpB(X|Y,Z)


log

pB(Y |Z)

pB(Y |X,Z)

��
(5)

= Le(pB(Y )) + Epe(Y,Z)


EpB(X|Y,Z)


log

pB(X|Z)

pB(X|Y, Z)

��

= Le(pB(Y ))� Epe(Y,Z)KL[pB(X|Y, Z)||pB(X|Z)].

• Equation (4) is the definition of cross entropy loss.

• Equation (5) is obtained by Y ??B Z and Y ??B Z|X .

Thus we have the cross entropy loss of pB(X,Y ) in any environment e is smaller than that of
pB(Y ) = 1

m (random guess):

Le(pB(Y |X))� Le(pB(Y ))  �Epe(Y,Z)KL[pB(X|Y, Z)||pB(X|Z)]  0,

which means:

max
e02E

h
Le0(pB(Y |X))� Le0(pB(Y ))

i
 0.

That is, the performance of pB(X,Y ) is at least as good as a random guess in any environment.
Since we assume the environment diversity, that is for any pe with Y 6?? eZ, there exists an environ-
ment e0 such that pe(Y |X) performs worse than a random guess. So we have:

max
e02E

h
Le0(pB(Y |X))� Le0(pB(Y ))

i
 0 < max

e02E

h
Le0(pe(Y |X))� Le0(pB(Y ))

i
.
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Now we want to prove that 8e 2 E , Y ??e Z, Y ??e Z|X, pe(Y ) = 1
m =) pe(Y |X) =

pB(Y |X). For any Z 2 Z , we have:

pe(Y |X) = pe(Y |X,Z)

= pe(Y )
pe(X|Y, Z)

Epe(Y |Z)[pe(X|Z, Y )]

= pB(Y )
pB(X|Y, Z)

EpB(Y )[pB(X|Z, Y )]

= pB(Y |X,Z) = pB(Y |X).

Thus we have the following minimax optimality:

pB(Y |X) = argmin
p 2F

max
e2E

Le(p (Y |X)).

A.2 LATENT COVARIATE LEARNING

A.2.1 PROOF FOR THEOREM 3.3

We now prove Theorem 3.3 setting up the identifiability of the necessary parameters that capture the
spuriously correlated covariate features in the VAE. The proof is based on the proof of Theorem 1
in (Motiian et al., 2017), with the following modifications:

1. We use both E and Y as auxiliary variables.
2. We include Y in the causal mechanism of generating X by X = f(Y, Z)+ ✏ = fY (Z)+ ✏.

Proof. Step I. In this step, we transform the equality of the marginal distributions over observed data
into the equality of a noise-free distribution. Suppose we have two sets of parameters ✓ = (f ,T,�)
and ✓0 = (f 0,T0,�0) such that p✓(X|Y,E = e) = p✓0(X|Y,E = e), 8e 2 Etrain, then:

Z

Z
pT,�(Z|Y,E = e)pf (X|Z, Y )dZ =

Z

Z
PT0,�0(Z|Y,E = e)p0f (X|Z, Y )dZ

)
Z

Z
pT,�(Z|Y,E = e)p✏(X � fY (Z))dZ =

Z

Z
pT0,�0(Z|Y,E = e)p✏(X � f 0Y (Z))dZ

)
Z

X
pT,�(f

�1(X̄)|Y,E = e)volJf�1(X̄)p✏(X � X̄)dX̄ =

Z

X
pT0,�0(f 0�1(X̄)|Y,E = e)volJf 0�1(X̄)p✏(X � X̄)dX̄ (6)

)
Z

Rd
p̃T,�,f ,Y,e(X̄)p✏(X � X̄)dX̄ =

Z

Rd
p̃T0,�0,f 0,Y,e(X̄p✏(X � X̄)dX̄) (7)

) (p̃T,�,f ,Y,e ⇤ p✏)(X) = (p̃T0,�0,f 0,Y,e ⇤ PE)(X) (8)
) F [p̃T,�,f ,Y,e](!)�✏(!) = F [p̃T0,�0,f 0,Y,e](!)�✏(!) (9)
) F [p̃T,�,f ,Y,e](!) = F [p̃T0,�0,f 0,Y,e](!) (10)
) p̃T,�,f ,Y,e(X) = p̃T0,�0,f 0,Y,e(X). (11)

• In Equation (6), we denote the volume of a matrix A as volA :=
p
detATA. J denotes

the Jacobian. We made the change of variable X̄ = fY (Z) on the left hand side and
X̄ = f̄Y (Z) on the right hand side. Since f is injective, we have f�1(X̄) = (Y, Z). Here
we abuse f�1(X̄) to specifically denote the recovery of Z, i.e. f�1(X̄) = Z.

• In Equation (7), we introduce

p̃T,�,f ,Y,e(X) = pT,�(f
�1
Y (X)|Y,E = e)volJf�1

Y
(X) X (X),

on the left hand side, and similarly on the right hand side.
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• In Equation (8), we use ⇤ for the convolution operator.

• In Equation (9), we use F [·] to designate the Fourier transform. The characteristic function
of ✏ is then �✏ = F [p✏].

• In Equation (10), we dropped �✏(!) from both sides as it is non-zero almost everywhere
(by assumption (1) of the Theorem).

Step II. In this step, we remove all terms that are either a function of X or Y or e. By taking
logarithm on both sides of Equation (11) and replacing PT,� by its expression from Equation (3) we
get:

log volJf�1(X) +
nX

i=1

(logQi(f
�1
i (X))� logW e

i (Y ) +
kX

j=1

Ti,j(f
�1
i (X))�ei,j(Y ))

= log volJf 0�1(X) +
nX

i=1

(logQ0
i(f

0�1
i (X))� logW 0e

i (Y ) +
kX

j=1

T0
i,j(f

0�1
i (X))�0ei,j(Y )).

Let (e0, y0), (e1, y1), ..., (enk, ynk) be the points provided by assumption (3) of the Theorem. We
evaluate the above equations at these points to obtain k+1 equations, and subtract the first equation
from the remaining k equations to obtain:

hT(f�1(X)),�el(yl)� �e0(y0)i+
nX

i=1

log
W e0

i (y0)

W el
i (yl)

=hT0(f�1(X)),�0el(yl)� �0e0(y0)i+
nX

i=1

log
W 0e0

i (y0)

W 0el
i (yl)

. (12)

Let L be the matrix defined in assumption (3) and L0 similarly defined for �0 (L0 is not necessarily
invertible). Define bl =

Pn
i=1 log

W
0e0
i (y0)W

el
i (yl)

W
e0
i (y0)W

0el
i (yl)

and b = [bl]nkl=1.

Then Equation (12) can be rewritten in the matrix form:

LTT(f�1(X)) = L0TT0(f 0�1(X)) + b. (13)

We multiply both sides of Equation (13) by L�T to get:

T(f�1(X)) = AT0(f 0�1(X)) + c. (14)

Where A = L�TL0 and c = L�Tb.

Step III. To complete the proof, we need to show that A is invertible. By definition of T and
according to Assumption (2), its Jacobian exists and is an nk⇥n matrix of rank n. This implies that
the Jacobian of T0 � f 0�1 exists and is of rank n and so is A.

We distinguish two cases:

1. If k = 1, then A is invertible as A 2 Rn⇥n.

2. If k > 1, define x̄ = f�1(x) and Ti(x̄i) = (Ti,1(x̄i), ..., Ti,k(x̄i)).

Suppose for any choice of x̄1
i , x̄

2
i , ..., x̄

k
i , the family (dTi(x̄

1
i )

dx̄1
i

, ..., dTi(x̄
k
i )

dx̄k
i

) is never linearly
independent. This means that Ti(R) is included in a subspace of Rk of the dimension of
most k� 1. Let h be a non-zero vector that is orthogonal to Ti(R). Then for all x 2 R, we
have hdTi(x)

dx ,hi = 0. By integrating we find that hTi(x),hi = const.
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Since this is true for all x 2 R and a h 6= 0, we conclude that the distribution is not strongly
exponential. So by contradiction, we conclude that there exist k points x̄1

i , x̄
2
i , ...x̄

k
i such

that (dTi(x̄
1
i )

dx̄1
i

, ..., dTi(x̄
k
i )

dx̄k
i

) are linearly independent.

Collect these points into k vectors (x̄1, ..., x̄k) and concatenate the k Jacobians JT(x̄l)
evaluated at each of those vectors horizontally into the matrix Q = (JT(x̄1), ..., JT(x̄k))
and similarly define Q0 as the concatenation of the Jacobians of T0(f 0�1 � f(x̄)) evaluated
at those points. Then the matrix Q is invertible. By differentiating Equation (14) for each
xl, we get:

Q = AQ0.

The invertibility of Q implies the invertibility of A and Q0. This completes the proof.

A.3 BALANCED MINI-BATCH SAMPLING

A.3.1 PROOF FOR THEOREM 3.6

Our proof of all possible balancing scores is an extension of the proof of Theorem 2 from (Rosen-
baum & Rubin, 1983), by generalizing the binary treatment to multiple treatments.

Proof. First, suppose the balancing score b(Z) is finer than the propensity score s(Z). By the
definition of a balancing score (Theorem 3.4) and Bayes’ rule, we have:

p(Y |Z, b(Z)) = p(Y |b(Z)) (15)

On the other hand, since b(Z) is a function of Z, we have:

p(Y |Z, b(Z)) = p(Y |Z) (16)

Equation (15) and Equation (16) give us p(Y |b(Z)) = p(Y |Z). So to show b(Z) is a balancing
score, it is sufficient to show p(Y |b(Z)) = p(Y |Z).

Let the y-th entry of s(Z) be sy(Z) = p(Y = y|Z), then:

E[sy(Z)|b(Z)] =

Z

Z
p(Y = y|Z = z)p(Z = z|b(Z))dz = p(Y = y|b(Z)) (17)

But since b(Z) is finer than s(Z), b(Z) is also finer than sy(Z), then

E[sy(Z)|b(Z)] = sy(Z) (18)

Then by Equation (17) and Equation (18) we have P (Y = y|Z) = P (Y = y|b(Z)) as required. So
b(Z) is a balancing score.

For the converse, suppose b(Z) is a balancing score, but that b(Z) is not finer than s(Z). Then there
exists z1 and z2 such that s(z1) 6= s(z2), but b(z1) = b(z2). By the definition of s(·), there exists y
such that P (Y = y|z1) 6= P (Y = y|z2). This means, Y and Z are not conditionally independent
given b(Z), thus b(Z) is not a balancing score. Therefore, to be a balancing score, b(Z) must be
finer than s(Z).

Note that s(Z) is also a balancing score, since s(Z) is also a function of itself.
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A.3.2 PROOF FOR THEOREM 3.7

We provide a proof for Theorem 3.7, demonstrating the feasibility of balanced mini-batch sampling.

Proof. In Algorithm 1, by uniformly sampling a different labels such that y 6= ye, we mean sample
Yalt = {y1, y2, ..., ya} by the following procedure:

y1 ⇠ U{1, 2, ...,m} \ {ye}
y2 ⇠ U{1, 2, ...,m} \ {ye, y1}

...
ya ⇠ U{1, 2, ...,m} \ {ye, y1, y2...ya�1},

where U denotes the uniform distribution. Suppose Dbalanced ⇠ p̂B(X,Y ), and data distribution
De ⇠ p(X,Y |E = e), 8e 2 Etrain.

Suppose we have an exact match every time we match a balancing score, then for all e 2 Etrain, we
have

p̂B(Y |be(Z), E = e) =
1

a+ 1
p(Y |be(Z), E = e) +

1

a+ 1
(1� p(Y |be(Z), E = e)

1

m� 1
+

+
1

a+ 1
(1� p(Y |be(Z), E = e)(1� 1

m� 1
)

1

m� 2
+ ...

+
1

a+ 1
(1� p(Y |be(Z), E = e)(1� 1

m� 1
)(1� 1

m� 2
)...

(1� 1

m� a+ 1
)

1

m� a

=
1

a+ 1
(

a

m� 1
+

m� a� 1

m� 1
p(Y |be(Z), E = e)).

By the definition of balancing score, p(Y |Z,E = e) = p(Y |be(Z), E = e) and p̂B(Y |Z,E = e) =
p̂B(Y |be(Z), E = e), then we have

p̂B(Y |Z,E) =
1

a+ 1
(

a

m� 1
+

m� a� 1

m� 1
p(Y |Z,E)).

When a = m � 1, we have p̂B(Y |Z,E) = 1
m = U{1, 2, ...,m}, which means p̂B(X,Y, Z) =

pB(X,Y, Z). i.e. Dbalanced can be regarded as sampled from the balanced distribution pB as defined
in Definition 2.2.

B EXPERIMENT DETAILS

In this section, we give more details of our experiments. We perform our experiments on the Do-
mainBed codebase4 (Gulrajani & Lopez-Paz, 2020).

B.1 DATASETS

ColoredMNIST is a variant of the MNIST handwritten digit classification dataset. Each domain in
[0.1, 0.3, 0.9] is constructed by digits spuriously correlated with their color. This dataset contains
70, 000 examples of dimensions (2, 28, 28) and 2 classes, where the class indicates if the digit is
less than 5, with a 25% noise. RotatedMNIST is another variant of MNIST where each domain

4https://github.com/facebookresearch/DomainBed
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contains digits rotated by ↵ degrees, where ↵ 2 {0, 15, 30, 45, 60, 75}. This dataset contains 70,
000 examples of dimensions (1, 28, 28) and 10 classes, where the class indicates the digit. PACS
comprises four domains: art, cartoons, photos, and sketches. This dataset contains 9, 991 examples
of dimensions (3, 224, 224) and 7 classes, where the class indicates the object in the image. VLCS
comprises four photographic domains: Caltech101, LabelMe, SUN09, and VOC2007. This dataset
contains 10, 729 examples of dimensions (3, 224, 224) and 5 classes, where the class indicates
the main object in the photo. OfficeHome includes four domains: art, clipart, product, and real.
This dataset contains 15, 588 examples of dimension (3, 224, 224) and 65 classes, where the class
indicates the object in the image. TerraIncognita contains photographs of wild animals taken by
camera traps at four different locations: L100, L38, L43, and L46. This dataset contains 24, 788
examples of dimensions (3, 224, 224) and 10 classes, where the class indicates the animal in the
image. DomainNet has six domains: clipart, infographics, painting, quickdraw, real, and sketch.
This dataset contains 586, 575 examples of size (3, 224, 224) and 345 classes.

B.2 BASELINES

We choose ERM, IRM, GroupDRO and CORAL as base algorithms to apply our method be-
cause they are representative methods for domain generalization, and they serve as strong baselines
when compared to a wide range of domain generalization methods. Empirical risk minimization
(ERM) is a default training scheme for most machine learning problems, merging all training data
into one dataset and minimizing the training errors across all training domains. Invariant risk mini-
mization (IRM) represents a wide range of invariant representation learning baselines. IRM learns
a data representation such that the optimal linear classifier on top of it is invariant across training
domains. Group distributionally robust optimization (GroupDRO) represents group-based methods
that minimize the worst group errors. GroupDRO performs ERM while increasing the weight of
the environments with larger errors. Deep CORAL represents the distribution matching algorithms.
CORAL matches the mean and covariance of feature distributions across training domains. Ac-
cording to (Gulrajani & Lopez-Paz, 2020), CORAL is the best performing domain generalization
algorithm averaged across 7 datasets, compared to other 13 baselines.

B.3 HYPERPARAMETER SELECTION

Base algorithms: For the architecture of image classifiers, following the DomainBed setting, we
train a convolutional neural network from scratch for ColoredMNIST and RotatedMNIST datasets,
and use a pre-trained ResNet50 (He et al., 2016) for all other datasets. Each experiment is repeated
with 3 different random seeds. We choose the hyperparameters of base algorithms based on the
default hyperparameter search with random mini-batch sampling. More specifically, we extract the
hyperparameters from the official experimental logs provided in the DomainBed GitHub repository.
5 To retrieve hyperparameters, we ran the script collect results detailed.py, modified
from the provided collect results.py script, to collect the hyperparameters that are used to
produce the DomainBed results table with train domain validation.

Balanced mini-batch construction: We use a multi-layer perceptron (MLP) based VAE (Kingma
& Welling, 2013) to learn the latent covariate Z. For ColoredMNIST, ColoredMNIST10 and Rotat-
edMNIST, we use a 2-layer MLP with 512 neurons in each layer. For all other datasets, we use a
3-layer MLP with 1024 neurons in each layer. We choose the conditional prior pt(Z|Y,E = e) to
be a Gaussian distribution with diagonal covariance matrix. We also choose the noise distribution
p✏ to be a Gaussian distribution with zero mean and identity variance matrix. We choose the largest
possible latent dimension n according to Theorem 3.3 up to 64. We choose KL divergence as our
distance metric d on DomainBed.

The hyperparameters we use are shown in Table 3. We control k by choosing different distributions
to model the latent covariate: for k = 2, we choose Normal distribution, and for k = 1, we choose
Normal distribution with a fixed variance equal to the identity matrix. When choosing the latent
dimension n, we follow the identifiability requirement m|Etrain| > nk in Section 3.1, and we chose
the maximum allowed n up to � = 64 for large images (224 ⇥ 224) and up to � = 16 for small
images (28 ⇥ 28). i.e. n = min{bm|Etrain|/kc,�}. For the distance metric d, we choose the KL
divergence on all datasets except on ColoredMNIST10, we choose the L1 distance. Different choice

5https://drive.google.com/file/d/16VFQWTble6-nB5AdXBtQpQFwjEC7CChM/
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of distance metric usually does not affect the final results too much, as shown in Table 4. We tune
the number of matching examples a for each base algorithm with a train domain validation, and the
best a for each base algorithm is shown in the order of ERM/IRM/GroupDRO/CORAL in the last
column of Table 3. Typically, the best a for a dataset across different base algorithms is similar.

Table 3: Choice of hyperparameters for constructing balanced mini-batches, including training the
VAE model for latent covariate learning (n, lr, batch size) and the balancing score matching (a, d).

|Etrain| m k n lr batch size d a

ColoredMNIST10 2 10 1 16 1e-3 64 L1 4/4/4/4
ColoredMNIST 2 2 1 3 1e-3 64 KLD 1/1/1/1
RotatedMNIST 5 10 1 16 1e-3 64 KLD 1/2/1/1

VLCS 3 5 2 7 1e-4 32 KLD 2/1/1/2
PACS 3 7 2 10 1e-4 32 KLD 3/2/1/2

OfficeHome 3 65 2 64 1e-4 32 KLD 2/2/2/2
TerraIncognita 3 10 2 14 1e-4 32 KLD 2/1/1/2

DomainNet 5 345 2 64 1e-4 32 KLD 5/5/5/5

Table 4: Out-of-domain accuracy on ColoredMNIST10 when using different distance metrics.

L1 L2 L1 KLD

Train Val 69.3 ± 0.1 69.5 ± 0.1 69.8 ± 0.1 69.2 ± 0.0

Test Val 70.2 ± 0.5 70.3 ± 0.4 70.5 ± 0.4 69.9 ± 0.3

Figure 5 shows three sets of reconstructed images with the same latent covariate Z and different
label Y using our VAE model. We can see that Z keeps the color feature and some style features,
while the digit shape is changed to the closest digits belongs to class Y .

(a) (b) (c)

Figure 5: Reconstructed ColoredMNIST images from our VAE model. In each sub-figure, we infer
Z from the leftmost image, then generate images with labels Y = 0 (middle) and Y = 1 (right).

B.4 DETAILED RESULTS

All experiments were conducted on NVidia A100, Titan RTX and RTX A6000 GPUs. Here we
report detailed results on each domain of all seven datasets on DomainBed, with base algorithms
ERM, IRM, GroupDRO, and CORAL. We use training domain validation.

Table 5: ColoredMNIST

Algorithm +90% +80% -90% Avg
ERM 71.7 ± 0.1 72.9 ± 0.2 10.0 ± 0.1 51.5
IRM 72.5 ± 0.1 73.3 ± 0.5 10.2 ± 0.3 52.0
GroupDRO 73.1 ± 0.3 73.2 ± 0.2 10.0 ± 0.2 52.1
CORAL 71.6 ± 0.3 73.1 ± 0.1 9.9 ± 0.1 51.5

Ours+ERM 71.5 ± 0.3 71.2 ± 0.2 37.6 ± 2.9 60.1
Ours+IRM 75.4 ± 2.5 71.0 ± 0.3 31.1 ± 8.6 59.2
Ours+GroupDRO 72.0 ± 0.6 72.8 ± 0.2 17.0 ± 3.5 53.9
Ours+CORAL 70.5 ± 0.6 72.0 ± 0.2 57.2 ± 3.4 66.6
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Table 6: RotatedMNIST

Algorithm 0 15 30 45 60 75 Avg
ERM 95.9 ± 0.1 98.9 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 98.9 ± 0.0 96.4 ± 0.0 98.0
IRM 95.5 ± 0.1 98.8 ± 0.2 98.7 ± 0.1 98.6 ± 0.1 98.7 ± 0.0 95.9 ± 0.2 97.7
GroupDRO 95.6 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 98.9 ± 0.0 96.5 ± 0.2 98.0
CORAL 95.8 ± 0.3 98.8 ± 0.0 98.9 ± 0.0 99.0 ± 0.0 98.9 ± 0.1 96.4 ± 0.2 98.0

Ours+ERM 94.8 ± 0.3 98.4 ± 0.1 98.7 ± 0.0 98.8 ± 0.0 98.8 ± 0.0 96.4 ± 0.1 97.7
Ours+IRM 93.0 ± 0.5 98.2 ± 0.1 98.6 ± 0.1 98.3 ± 0.2 98.6 ± 0.1 94.3 ± 0.2 96.8
Ours+GroupDRO 94.8 ± 0.2 98.5 ± 0.1 98.9 ± 0.0 98.8 ± 0.0 98.9 ± 0.1 95.9 ± 0.3 97.6
Ours+CORAL 94.5 ± 0.4 98.7 ± 0.0 98.8 ± 0.1 99.0 ± 0.0 98.9 ± 0.0 96.2 ± 0.2 97.7

Table 7: VLCS

Algorithm C L S V Avg
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8

Ours+ERM 96.9 ± 0.4 64.8 ± 1.2 70.2 ± 0.8 72.6 ± 1.3 76.1
Ours+IRM 97.5 ± 0.3 61.6 ± 0.7 72.1 ± 1.2 74.5 ± 0.2 76.5
Ours+GroupDRO 98.2 ± 0.4 64.0 ± 0.9 69.2 ± 0.8 72.6 ± 0.6 76.0
Ours+CORAL 98.3 ± 0.1 63.9 ± 0.2 69.6 ± 1.1 73.7 ± 1.3 76.4

Table 8: PACS

Algorithm A C P S Avg
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2

Ours+ERM 87.9 ± 0.6 80.5 ± 1.0 97.1 ± 0.3 79.1 ± 1.2 86.1
Ours+IRM 84.6 ± 1.1 79.9 ± 0.1 96.4 ± 0.4 80.0 ± 1.2 85.2
Ours+GroupDRO 86.3 ± 0.6 79.2 ± 0.8 96.5 ± 0.2 77.7 ± 0.6 84.9
Ours+CORAL 87.8 ± 0.8 81.0 ± 0.1 97.1 ± 0.4 81.1 ± 0.8 86.7

Table 9: OfficeHome

Algorithm A C P R Avg
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7

Ours+ERM 61.5 ± 0.4 53.8 ± 0.5 75.9 ± 0.2 77.4 ± 0.5 67.1
Ours+IRM 59.2 ± 3.7 49.8 ± 0.9 74.0 ± 2.3 75.5 ± 2.4 64.6
Ours+GroupDRO 61.7 ± 1.0 52.5 ± 0.8 74.9 ± 0.8 76.9 ± 0.6 66.5
Ours+CORAL 65.6 ± 0.6 56.5 ± 0.6 77.6 ± 0.3 78.8 ± 0.5 69.6
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Table 10: TerraIncognita

Algorithm L100 L38 L43 L46 Avg
ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6

Ours+ERM 53.3 ± 0.8 47.2 ± 1.9 55.3 ± 0.7 36.2 ± 1.0 48.0
Ours+IRM 50.0 ± 1.9 41.3 ± 1.1 54.0 ± 2.7 40.5 ± 0.6 46.5
Ours+GroupDRO 51.2 ± 1.8 35.4 ± 2.5 56.0 ± 1.0 38.9 ± 1.4 45.4
Ours+CORAL 55.2 ± 0.3 42.3 ± 3.6 54.7 ± 0.4 36.0 ± 1.0 47.0

Table 11: DomainNet

Algorithm clip info paint quick real sketch Avg
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5

Ours+ERM 61.2 ± 0.2 19.8 ± 0.6 48.6 ± 0.3 13.0 ± 0.2 61.0 ± 0.4 51.9 ± 0.0 42.6
Ours+IRM 57.9 ± 1.6 18.2 ± 1.3 46.0 ± 1.5 13.2 ± 0.3 57.2 ± 4.5 50.3 ± 1.3 40.5
Ours+GroupDRO 59.3 ± 0.3 18.4 ± 0.2 45.3 ± 0.3 12.2 ± 0.4 60.5 ± 0.4 48.9 ± 0.2 40.8
Ours+CORAL 63.4 ± 0.1 20.7 ± 0.2 50.4 ± 0.1 13.6 ± 0.4 62.7 ± 0.1 52.8 ± 0.3 43.9

C DISCUSSIONS AND LIMITATIONS

The experiments show that our balanced mini-batch sampling method outperforms the random mini-
sampling baseline when applied to multiple domain generalization methods, on both semi-synthetic
datasets and real-world datasets. While our method can be easily incorporated into other domain
generalization methods with good performance, there are some potential drawbacks of our method.
First, the computation complexity of our method grows quadratically with the dataset size, as for
each training example, our method requires searching across the dataset to find the closest match
in balancing score, which could become a computation bottleneck on large datasets. However,
this could be solved by matching examples offline before training, or with more efficient searching
methods. The second caveat is that we do not provide an optimized model selection method to
complement our method. While it is possible to balance the held-out validation set with our method
and choose the best model based on the accuracy of the balanced validation set, the quality of such
a balanced validation set is questionable given the small size of a typical validation set. For now, we
recommend the training-domain validation scheme in practice.

D IN-DEPTH COMPARISON WITH RELATED WORK

D.1 COMPARISON OF ASSUMPTIONS

Certain assumptions are needed for our paper, as in other works on domain generalization. Our
assumptions are not stronger than other domain generalization works that give similar generalization
guarantees. Arguably, ours are weaker than most of them.

We provide the identifiability of the balanced distribution given a finite set of train environments and
prove that the Bayesian optimal classifier trained on the balanced distribution would be minimax
optimal across all environments. Our main assumptions are the factorial exponential distribution of
the latent covariate given the label, the invertible causal function f , and the additive noise. Similar
assumptions have been made in Sun et al. (2021).

Works without constraints on environments usually can only provide a generalization guarantee
when optimizing overall environments (Mahajan et al., 2021) or do not provide any such guarantees
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(Chen et al., 2021; Li et al., 2022). To provide a generalization guarantee with a single or a small
number of train environments, Yuan et al. (2021); Wald et al. (2021); Ahuja et al. (2021) use a more
restrictive linear causal model, Arjovsky et al. (2020) only provide full solution for linear classifiers,
Christiansen et al. (2021) assume additive confounders, Yuan et al. (2021); Makar et al. (2022); Puli
et al. (2022) need to utilize the observation of the variable spurious correlated with the label Y .

In practice, the model built with our assumptions works well on real-world datasets that do not
exactly fit our assumptions, which empirically demonstrates that our method is robust against viola-
tions of our assumptions.

D.2 COMPARISON OF CAUSAL MODEL

In general, the assumption of the underlying Structural Causal Model (SCM) is determined by the
nature of the task. Sometimes, such SCM can be designed by a human expert who knows the data
generation process of the task. In our paper, we propose to adopt a coarse-grained SCM for general
image classification tasks with only three variables: image X , label Y , and latent variable Z.

Our high-level philosophy is that the image itself is merely a record of what has been done, and
the label can usually be regarded as a driving force of the recorded event. When one intervenes on
image X , the label Y of the image does not necessarily change. However, if the intervention is on
the class label Y , the image X changes almost for sure for a well-defined image classification task.
For example, in the medical domain, a disease (Y ) would cause some lesions, further driving the
different appearance of MRI images (X). Another example is when Y is the object class of the item
appearing in the image X , which is usually the case for the most widely used image classification
benchmarks like ImageNet. We have also discussed this in Section 2.1 of our paper.

However, there could be exceptions. For example, if we are asked to classify whether we feel
happy or sad after seeing a picture, picture X would become the cause of the sentiment label Y .
Such a scenario is less likely to happen in real-world image classification tasks. To resolve the
issue of different SCM for different tasks, Christiansen et al. (2021) consider all SCMs that can be
transformed into a specific linear form with plausible interventions. Wald et al. (2021) assume X can
be disentangled into features causing Y and features caused by Y , and derive their theoretical results
with a linear SCM. We assume a more general nonlinear SCM with Y ! X , which is suitable for
most of the image classification tasks we consider. On the other hand, Yuan et al. (2021) directly
assumes an SCM with X ! Y . Empirically, they obtained worse results on PACS (84.4 v.s. 86.7)
and OfficeHome (64.2 v.s. 69.6) datasets, which confirms that our SCM is more suitable.

A principled way of identifying the causal relationship (if there is any) between X and Y is
causal discovery. However, current causal discovery techniques cannot handle the complex high-
dimensional image data we consider in the paper (Vowels et al., 2021). A slightly related work is
Hoover (1990), which proposes that decomposing a joint distribution following the causal graph
is more stable for interventions than a random decomposition. Our paper uses the invariant of
P (X|Y, Z), where Z represents domain-dependent features like camera positions and picture style.
It is hard to find such invariance in other ways of decomposition.

On the other hand, quite a few works assume no direct causal relationship between X and Y (Chen
et al., 2021; Mahajan et al., 2021; Liu et al., 2021a; Sun et al., 2021; Ahuja et al., 2021; Li et al.,
2022). Instead, they assume there is a causal feature Zcausal directly causing X , together with another
non-causal feature Znon-causal. Y is caused by Zcausal, which implies that Zcausal may contain more
information than Y . Such a causal model can be viewed as a noisy version of ours, as we consider Y
the same as the causal feature Zcausal, and Z the same as the non-causal feature Znon-causal. Different
paper model the spurious correlation between Zcausal and Znon-causal in a different way in the SCM,
while we just ensure Zcausal and Znon-causal are correlated, without specifying how they are correlated.
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