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Abstract

Few-shot learning is valuable in many real-world applications, but learning a
generalizable model without overfitting to the few labeled datapoints is challenging.
In this work, we focus on Few-shot Learning with Auxiliary Data (FLAD), a
training paradigm that assumes access to auxiliary data during few-shot learning
in hopes of improving generalization. Previous works have proposed automated
methods for mixing auxiliary and target data, but these methods typically scale
linearly (or worse) with the number of auxiliary datasets, limiting their practicality.
In this work we relate FLAD to the explore-exploit dilemma that is central to the
multi-armed bandit setting and derive algorithms whose computational complexity
is independent of the number of auxiliary datasets, allowing us to scale to 100 x
more auxiliary datasets than prior methods. We propose two algorithms — EXP3-
FLAD and UCBI1-FLAD - and compare them with prior FLAD methods that either
explore or exploit, finding that the combination of exploration and exploitation is
crucial. Through extensive experimentation we find that our methods outperform
all pre-existing FLAD methods by 4% and lead to the first 3 billion parameter
language models that outperform the 175 billion parameter GPT-3. Overall, our
work suggests that the discovery of better, more efficient mixing strategies for
FLAD may provide a viable path towards substantially improving generalization in
few-shot learning. All of our code is available at github.com/alon-albalak/FLAD,

1 Introduction

Few-shot learning is an attractive learning setting for many reasons: it promises efficiency in cost
and time, and in some scenarios data is simply not available due to privacy concerns or the nature
of the problem. However, few-shot learning is also a challenging setting that requires a delicate
balance between learning the structure of the feature and label spaces while preventing overfitting to
the limited training samples [1}[2,[3]. One approach to improving the generalizability of models in
the few-shot setting is Few-shot Learning with Auxiliary Data (FLAD), where additional auxiliary
datasets are used to improve generalization on the target few-shot task [4} 15,16} [7].

However, FLAD methods introduce their own challenges, including increased algorithmic and
computational complexity. Specifically, incorporating auxiliary data during training introduces a
large space of design choices (e.g. how and when to train on auxiliary data). Manually designing the
curriculum for training on large quantities of auxiliary data is not feasible due to the combinatorially
large search space, and hand-picking which auxiliary data to use based on heuristics (e.g. from the
same domain or task as the target few-shot dataset) can lead to sub-optimal results [8]. Delegating such
choices to an algorithm can lead to better solutions, as demonstrated in the transfer learning [8} (9, 10]],
meta-learning [[11}[12], multi-task learning [[13} (14,15} 16], and auxiliary learning literature [4, [17].
However, prior auxiliary learning algorithms often assume that only 1-3 related auxiliary datasets are
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Figure 1: Overview of few-shot learning with auxiliary data (FLAD) as a multi-armed bandit
problem. On the left is the learner which defines a policy 7 that determines which auxiliary dataset
to sample from. On the right is the environment that includes the set of auxiliary datasets D 4, target
dataset D, and the model fy. At each turn ¢, the following five steps take place, further described
in Section [3.1} 1. The learner selects an auxiliary dataset D, according to its policy . 2. The
environment samples a batch {x,y} ~ D,. 3. The model fy calculates gradients for the sampled
batch (V) and the target dataset (V7), then updates the parameters 6. 4. A reward R, ; is calculated
based on V,, and V7. 5. The learner updates 7 based on R ;.

available and design algorithms whose computational complexity grows linearly (or worse) with the
number of auxiliary datasets [18l 8], motivating the search for more efficient methods as the number
of auxiliary datasets grows.

To overcome the challenges of prior works, we desire a FLAD algorithm that (1) makes no assump-
tions on available auxiliary data a-priori (in-domain, on-task, quality, quantity, etc.), (2) scales well
with the number of auxiliary datasets, and (3) adds minimal memory and computational overhead.
We design algorithms that satisfy our desiderata by drawing inspiration from the central problem
in multi-armed bandit (MAB) settings: the exploration-exploitation trade-off [[19} [20]. We relate
the set of auxiliary datasets to the arms of a MAB and tailor the classic EXP3 [21] and UCB1 [22]
algorithms to fit the FLAD framework by designing three efficient gradient-based reward signals.
The combination of our MAB-based algorithms and efficient gradient-based rewards allows us to
scale to 100x more auxiliary datasets than previous methods. Figure [T provides a basic illustration
of how we formulate FLAD as a MAB problem.

To empirically validate our approaches, we focus on few-shot training of language models and utilize
P3 [23], a readily available resource with hundreds of auxiliary language datasets. We evaluate our
methods on the same held-out tasks as the TO language model [16] and show that, when using the
same collection of auxiliary datasets, our algorithms outperform a directly fine-tuned TO by 5.6%
(EXP3-FLAD) and 5.7% (UCB1-FLAD) absolute. Furthermore, incorporating all available datasets
in P3 (i.e. not just those used to train TO) increases the improvement to 9.1% and 9.2%. Finally, we
compare models trained with our methods against state-of-the-art few-shot methods, finding that
our methods improve performance by >3%, even though one model utilizes a large collection of
unlabeled target dataset samples. Furthermore, to the best of our knowledge, our methods lead to the
first 3 billion parameter model that improves over 175B GPT-3 using few-shot in-context learning.

In summary, our main contributions are:

* We connect FLAD to the MAB setting and focus on the exploration-exploitation trade-off by
designing two algorithms, EXP3-FLAD and UCB1-FLAD along with three reward functions
that are both simple and efficient (in space and computational complexity).

* We empirically validate that our methods improve few-shot performance of pretrained
language models and show that strategies that employ only exploration or exploitation lead
to sub-optimal performance.

* We perform case studies to better understand the dynamics of our reward functions and their
interaction with the dynamics of large language model training.

2 Related work

A long history of works have found success when combining auxiliary data with target data [4}
24,16, 25, 126 15, 118, [7, 127, 28| |8]. Some works have explored the addition of auxiliary learning
objectives to aid the learning of the target task [24} |26} 25| |5, [17]. More similar to our work are



methods that perform auxiliary learning by introducing additional data sources beyond the target
data [4} 16} 118} 7,127,128, 18]]. As opposed to the few-shot setting on which this work focuses, previous
works have studied auxiliary learning in settings with large quantities of target data. For example,
Chen et al. [[18] and Verboven et al. [/] assume access to 10,000 labeled target samples, Ivison et
al. [28] and Lin et al. [27]] assume access to 1,000s of unlabeled target samples, and Du et al. [6]]
and Albalak et al. [8]] assume access to 100s of labeled target samples. Additionally, many of
the previous works that study auxiliary learning have only considered settings with 1-3 auxiliary
datasets [6, 187} 18]. For example, Verboven et al. [7] propose a task-weighting method that requires
solving a system of equations that becomes underspecified with multiple auxiliary tasks, limiting
their method to only a single auxiliary task. Furthermore, Chen et al. [18] experiment with 3 auxiliary
tasks because their method requires learning a target-aware classifier for each source task, so the
computation scales as O(|.A||T|) where |.A| is the number of auxiliary tasks and |7 is the number of
target tasks, making it impractical to scale to large numbers of source and target tasks. In this work,
we focus on improving auxiliary learning with very few target samples (20-70 samples) by scaling up
the number of auxiliary datasets orders of magnitude greater than previous work. In order to scale up
the learning process, efficiency is a central concern of this work, unlike prior works.

Data selection studies a similar (but distinct) problem where the goal is to selectively utilize a subset
of a single large dataset rather than selecting data from auxiliary datasets. Recent research on data
selection has found that intelligent data selection can provide significant improvements to model
performance [29, 30,131} 132].

3 Multi-armed bandits for few-shot learning with auxiliary data

In this section, we first define the few-shot learning with auxiliary data (FLAD) setting. Then, we
formulate FLAD as a multi-armed bandits (MAB) problem, shown in Figure E Next, we define
reward functions that are efficient to compute and appropriate for FLAD. Finally, we describe our
adaptations of two popular MAB algorithms: EXP3-FLAD and UCB1-FLAD.

3.1 Setup

FLAD problem setting. Few-shot learning with auxiliary data (FLAD) fits into the following
setting: assume access to a large set of auxiliary datasets D 4 where, for all a € A, D, is an individual
auxiliary dataset. Given a small quantity of data belonging to a target dataset D, the goal of FLAD
is to find parameters 6 of a model fy that achieve high performance on the unknown distribution
underlying D7 while utilizing only the available data, Dy U D 4.

Formulating FLAD as MAB. In this work, we adopt the multi-armed bandit (MAB) setting
by formulating FLAD as a Markov decision process [33] and defining a learner and environment,
illustrated in Figure [I. The learner consists of a policy 7 defining a selection strategy over all
D, € D 4. The environment consists of the target dataset D7, auxiliary datasets D 4, and model
fo. In this formulation the learner interacts with the environment over N rounds. At each round ¢
the learner selects one of the environment’s |.A| datasets D, € D 4. Next, the environment samples
a batch {x,y} ~ D, and calculates the gradient w.r.t. f using a task-appropriate loss function as
V. = Vg¢L(fs,x,y). Then, the environment computes the target gradient V- = VoL (fy, D7),
and updates model parameters w.r.t. V1 4+ V,. Finally, the learner uses a gradient-based reward
Ra.t(Va, V) to update its policy 7. See Appendiannd Lattimore & Szepesvari [34] for further
details on multi-armed bandits.

Designing the reward functions. We design the reward function R with our desiderata in mind.
To ensure that our algorithm adds minimal memory and computational overhead we consider rewards
that utilize information intrinsic to the model and the losses being optimized, not an external model
or metric (e.g. accuracy or BLEU). In this work we propose three gradient-based reward functions
inspired by previous works: gradient alignment [6, 24, 35]], gradient magnitude similarity [36,37],
and their aggregation. Formally, at turn ¢ let V,, be the gradient of the auxiliary batch and V1 be
the target dataset gradient. Gradient alignment is defined as Rf‘t“ = %, i.e. the cosine

similarity between the gradients of the sampled auxiliary dataset batch and the whole target dataset.
Gradient magnitude similarity is defined as RS = % so that when the two gradients
’ all2 2

have equal magnitude, this value is equal to 1 and as the magnitudes differ the value goes to zero. In



addition to the individual reward functions, we also consider an aggregate reward. To ensure that the

aggregate is not dominated by either individual reward, we normalize R4 € [0, 1], the same range
. 1+RG %

as REMS and define the aggregate to be their sum: R7¢C = % + REMS

discussion on the design of reward functions in Section 6]

. We provide further

3.2 Adapting the EXP3 algorithm.

EXP3 Background We base our first algorithm, EXP3-FLAD, on the EXP3 algorithm [21]
(“Exponential-weight algorithm for Exploration and Exploitation”). EXP3 targets the adversarial
MAB setting, which assumes that the reward-generating process is controlled by an adversary who is
given access to the learner’s policy 7 and determines the sequence of rewards, (R, )%, for each
arm prior to play [38]]. We consider the adversarial MAB formulation due to the highly non-convex
loss landscape of deep neural networks and our use of stochastic gradient descent-based optimization
methods. These factors imply that we cannot guarantee our rewards to be stationary, independent, or
follow any particular distribution (e.g. Gaussian). Further details on adversarial MAB are included in
Appendix [A and in [21].

In EXP3-FLAD, the learner selects arms according to a Gibbs distribution based on the empirically
determined importance-weighted rewards of arms [39]]. To allow for exploration, we mix the Gibbs
distribution with a uniform distribution [21]]. Formally, let £ be the exploration rate at turn ¢
and, recalling that K = |A| is the number of auxiliary datasets, then 7 defines the probability
of selecting a given arm a € A as the linear combination of Gibbs and uniform distributions
m(a) = (1 — Ké't)% + &; where Ra,t is the importance weighted reward Ra,t =
Ra,t—1 + Wf"l‘(*a) . We want the learner to explore more in early training than in later stages, so we

use a decaying exploration rate & = min{ %, lﬁ(f } as proposed by Seldin et al. [39]]. The use of

an importance-weighted estimated reward compensates the rewards of actions that are less likely to
be chosen, guaranteeing that the expected estimated reward is equal to the actual reward for each
action. EXP3-FLAD is designed to be nearly optimal in the worst case, but due to the exploration
rate it will select “bad” actions at a rate of &. The exploration of EXP3-FLAD combined with
importance-weighting allows the policy to handle non-stationary reward-generating processes.

3.3 Adapting the UCB1 algorithm.

UCBI1 background. While EXP3-FLAD is applicable in unconstrained settings with highly stochas-
tic and non-stationary rewards, it can be outperformed by other algorithms in settings that are con-
strained. One such algorithm is the upper confidence bound (UCB1) algorithm [22], which was
originally designed to be optimal for stationary, normally distributed reward functions. Neverthe-
less, variants of UCB1 have been demonstrated to be effective in a range of settings, such as those
involving non-stationary, sub-Gaussian, or heavy-tailed distributions [40,41]. The UCB1 algorithm
and its variants assign each arm a value called the upper confidence bound based on Hoeffding’s
inequality [42] and are based on the principle of optimism in the face of uncertainty, meaning that
with high probability the upper confidence bound assigned to each arm is an overestimate of the
unknown mean reward.

In UCB1-FLAD, the learner greedily selects arms according to their upper confidence bound. UCB1
is originally designed for stationary reward-generating processes, so to accommodate non-stationarity
we include an exponential moving average when estimating the mean reward for a given arm.
Formally, let 12, ¢ be the observed reward for arm a at turn ¢, then we calculate the estimated mean

reward as R, = (1- ﬁ)Ra + BR,, where § is the smoothing factor. Then, we define the upper

confidence bound to be UCB, ; = Ra + 4/ % In the original MAB setting all interactions with

the environment occur online, but FLAD is a unique situation where the learner can interact with the
auxiliary data prior to training. To take advantage of this, rather than initializing estimated rewards
with a single mini-batch, we initialize them with larger data quantities to improve the approximation
of the true dataset gradients. This is done for each auxiliary dataset by calculating the gradient
V. = VoL(fp,x,y), where the number of samples in {x,y} can be significantly larger than a
mini-batch, and can be up to the size of the full dataset. In practice, we use 1,000 examples which is
computed in ~ 2 minutes on a single GPU.



Algorithms The EXP3-FLAD and UCB1-FLAD algorithms are visualized in Figure|l. At each
turn, both methods will first select an auxiliary dataset D,. EXP3-FLAD first computes the current
exploration rate & and samples D, according to the distribution defined by 7;(A), while UCB1-
FLAD greedily selects D,« corresponding to the arm with largest upper confidence bound, a* =
arg maxqe 4 UC B, +. Next, for both methods, the environment samples a batch from the selected
dataset, {x,y} ~ D,, and calculates the gradient V, = VoL(fy,x,y). Let G be the number of
rounds between model updates, then the previous steps will repeat G times, at which point the
environment calculates the gradient of the target dataset Vo L(fy, D7) and updates the model w.r.t.
V7 + >, Va. Finally, EXP3-FLAD calculates the importance-weighted reward for each auxiliary
batch using the observed rewards, while UCB1-FLAD calculates the smoothed estimated mean
reward. Pseudocode is found in Appendix

4 Experimental setup

Models. For our experiments, we utilize encoder-decoder Transformer models from the TS family
of pre-trained language models [43]]. Specifically, we experiment with LM-adapted T5 (T5-LM) and
TO. The T5-LM model further trains the T5.1.1 model for 100,000 steps (corresponding to 100B
tokens) from the C4 dataset [43]] on the prefix language modeling objective [44]. The TO model was
initialized from T5-LM and further trained on a multitask mixture of prompted datasets as described
by Sanh et al. [[16]. We repeat each experiment with TS-LM XL (hereafter T5-XL) and T0-3B as our
base model. Both models use the same architecture with 2.85 billion parameters, and we used model
checkpoints from Hugging Face Transformers [45]).

Target datasets. We obtain all datasets from Hugging Face Dataset and cast them to the text-to-
text format by applying prompt templates from the Public Pool of Prompts (P3) [23]] that was used
to train TO. To evaluate our few-shot methods, we utilize the same held-out datasets as TO, which
cover four distinct tasks: sentence completion (COPA [46]], HellaSwag [47], Story Cloze [48]]),
natural language inference (ANLI [49], CB [50], RTE [51])), coreference resolution (WSC [52],
Winogrande [53]]), and word sense disambiguation (WiC [54]). For each dataset, we randomly
sample five few-shot splits from their training data, containing the same number of training examples
as previous works, between 20 to 70 [S5, 156l]. We further divide each split into equal training
and validation partitions for true few-shot learning [57](e.g. 10 train and 10 validation samples for
HellaSwag). Only ANLI datasets have a publicly available test set, so for all other datasets we
evaluate models on the original validation set (not utilized for few-shot training or validation).

Auxiliary datasets. We compare the performance of our methods using two sets of auxiliary data
and never include any of the target datasets as part of auxiliary data. First, we use the collection of
datasets used for multitask training of TO (henceforth referred to as TOMix), including 35 unique
datasets covering question answering, sentiment analysis, topic classification, summarization, para-
phrase detection and structure-to-text. Second, we utilize all datasets in P3 [23] (which forms a
superset of TOMix) and prevent data leakage by filtering out datasets that overlap with any target
dataset, leading to 260 available datasets (list in Appendix [H). For each auxiliary dataset, we use at
most 10,000 of the dataset’s examples.

Baseline methods. We compare our proposed methods with several FLAD and non-FLAD baselines.
Target-Only (non-FLAD) directly fine-tunes the base model on the target dataset (i.e. without using
auxiliary data). Explore-Only [8] is a commonly used FLAD method which simultaneously trains
on auxiliary and target data by mixing auxiliary datasets equally. Originally called Multitask in [8],
we call this Explore-Only because it is equivalent to continuously exploring auxiliary data and never
exploiting knowledge of its relation to the target data. Exploit-Only computes gradient alignment
prior to training (as in UCB1), and multitask-trains the model by mixing auxiliary datasets according
to a Gibbs distribution over the alignments (similar to that in EXP3), resulting in an algorithm that
exploits the relations determined prior to training, but never exploring. Both explore- and exploit-only
mix target and auxiliary data with a ratio of M times the highest auxiliary sampling probability. For
instance, explore-only with M = 5 and D4 = TOMix has a 1/35 probability to sample auxiliary
dataset D, € D 4 and a 5/35 probability for the target dataset. Loss-Scaling [6] is a FLAD method
similar to EXP3 and UCBI1; the main difference being that it scales auxiliary batch losses by their
gradient alignment instead of modifying sampling probabilities. Du et al. [6] originally propose to

"https://huggingface.co/datasets



BASE MODEL T5-XL T0-3B
Training Method \  Auxiliary Data | TOMix | P3 | TOMix | P3
Target-Only 52.82 56.44
Loss-Scaling [6] (G A) 53.22 | 55.19 | 59.47 | 60.66
Loss-Scaling [6] (GM S) 55.98 | 56.40 | 60.47 | 60.70
Explore-Only [8] 59.18 | 60.64 | 61.17 | 62.77
Exploit-Only [8] 59.79 | 60.49 | 60.87 | 62.87
EXP3-FLAD (RE%) 6150 | 64.07 | 62.87 | 65.98
UCB1-FLAD (R%%) 62.01 | 65.52 | 62.35 | 66.29
EXP3-FLAD (REM%) 61.72 | 65.57 | 62.78 | 65.51
UCBI1-FLAD (R%M?%) 61.67 | 65.21 | 62.85 | 66.00
EXP3-FLAD (RA4%%) 62.05 | 6547 | 62.84 | 66.84
UCBI-FLAD (RA%%) 62.08 | 65.63 | 62.93 | 66.29

Table 1: Main results. Each cell contains the score of training a base model (top row) with auxiliary
data (second row) using the specified training method (left column), averaged across 11 target datasets
on 5 random seeds (each cell is the average of 55 experiments). Target-Only does not utilize auxiliary
data. Bolded scores are those with highest mean for a given base model and auxiliary dataset
(column-wise), underlined scores are those where a Wilcoxon rank-sum test fails to find significant
difference from the highest score (p > 0.05). Expanded results are found in Appendix D.

use gradient alignment (Loss-Scaling (G A)), but we also propose a version that scales losses by
gradient magnitude similarity (Loss-Scaling (G M S)).

Training details. For the target-only baseline, we use learning rates in {1e-4, 3e-4}. For all other
methods, we always use a learning rate of 1le-4. For target-, explore-, and exploit-only baselines we
use batch sizes in {32, 128}. For loss-scaling, EXP3-FLAD, and UCB1-FLAD we use mini-batches
of 8 samples and let G be in {4, 16} to match the batch size of all methods. For explore- and
exploit-only, we use a target dataset mixing ratio of M € {1,5,10}. For all experiments we use
the Adafactor optimizer [58] and validation-based early stopping for model checkpoint selection.
In preliminary experiments we consider rewards using gradients from various model partitions: the
full model, encoder-only, decoder-only, and the weights of the output vocabulary matrix (language
modeling head). We find that using the parameters from the language modeling head provides
the best performance and contains only 2.3% of the full model parameters, significantly reducing
memory consumption. For UCB1-FLAD we found the smoothing factor 5 = 0.9 to work well in
preliminary experiments and initialize auxiliary dataset gradient alignment using 1,000 samples from
each auxiliary dataset. Additional implementation details can be found in Appendix [C|

Experiment procedure. The FLAD experiment process involves training a model that is specialized
for each target dataset. For each proposed method and baseline, we train and evaluate a model on
each of the 11 target datasets. We repeat training and evaluation on 5 random seeds and include the
aggregated results in Table[I] Each cell shows the accuracy averaged across all 55 (11 target datasets,
5 random seeds) experiments. This experimental process is performed for each training method on
both models and auxiliary datasets. We include the non-aggregated results in Appendix [D!

5 Findings and analysis

In Table[I we compare the empirical results of our MAB-based methods (EXP3-FLAD and UCBI-
FLAD) and corresponding baselines on 11 target datasets (expanded results in Appendix [D] For
each base model and auxiliary data combination (each column) EXP3-FLAD and UCB1-FLAD
outperform all the baselines. In fact, we find that for every single task our methods always perform
equal to or better than the baselines. This demonstrates that our MAB-based methods provide a
strong improvement in few-shot generalization over previous FLAD methods. For a fair comparison
where each method utilizes equal data, we compare the performance of Target-Only using TO
and TOMix (56.44) against the proposed FLAD methods and baselines using TS and TOMix (left
column). From this comparison it becomes clear that Loss-Scaling actually does worse than multitask
training followed by direct fine-tuning by 0.5-3.2%. However, we do find that the remaining FLAD
methods lead to improvements (between 2.7-5.6% absolute improvement). We find small performance
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Figure 2: Comparison of state-of-the-art few-shot methods with FLAD methods trained on
P3 using RAGG . T-Few scores are from [56]. DEFT-Few scores are from [28]. GPT-3 scores are
from [53] and utilize few-shot in-context learning. All models utilize the same number of few-shot
examples and (other than GPT-3) have 3B parameters.

differences between EXP3-FLAD and UCB1-FLAD across the three reward functions. In general,
RACGE Jeads to the best performance, but we perform a two-sided Wilcoxon rank-sum test to check
for significance between average scores and find that the other rewards frequently have no significant
difference (p > 0.05).

The importance of prioritized sampling. Loss-Scaling was originally proposed for use with
only a single auxiliary dataset and it was unclear, a priori, how it would cope with larger quantities.
Additionally, Du et al. [6] purposefully choose an auxiliary dataset that is related to the target, while
in our setting we make no such assumptions. We find that our methods outperform Loss-Scaling
methods by 6.3% on average. In Figure 3| (and Figure[5]in Appendix[E) we show that, over the course
of training, the value of gradient alignments and gradient magnitude similarities for most datasets
will converge to 0, leading to very small gradient updates for Loss-Scaling. More importantly, the
auxiliary data that is relevant to the target task is seen less frequently for Loss-Scaling than our
MAB-based methods. This can be seen by comparing the difference in performance of Loss-Scaling
methods when using less (TOMix) vs. more (P3) auxiliary data. We find that, at best, Loss-Scaling
(G A) improves 2% when using T5 and, at worst, only 0.2% for Loss-Scaling (GM S) with TO. This
is compared with the notable improvements of EXP3-FLAD and UCBI1-FLAD of 2.6-4% when
considering the same data increase from TOMix to P3.

The importance of exploration and exploitation. Interestingly, we expected that Exploit-Only
would outperform the Explore-Only method because it utilizes relational information between the
target and auxiliary tasks, but find no statistical difference between the methods (two-sided Wilcoxon
rank-sum test gives p > 0.05). Furthermore, when comparing the ability to leverage additional
auxiliary data (i.e. going from TOMix to all of P3), we find that the improvement for Explore- and
Exploit-Only methods is minimal with only 0.7-2% improvement. On the other hand, EXP3-FLAD
and UCB1-FLAD show a notable improvement of 2.6-4%, emphasizing the importance of both
exploration and exploitation, particularly when dealing with large collections of auxiliary data.

FLAD provides improved generalization over non-FLAD methods. Next, we compare the
performance of our best models trained on P3 using RA%“ with state-of-the-art few-shot methods:
T-Few, DEFT-Few, and GPT-3. T-Few is a variant of the TO-3B model that multi-task pre-
trains parameter-efficient (IA)2 modules followed by target-only fine-tuning of the (IA)? modules.
DEFT-Few is a variant of the T5-XL model that uses retrieved auxiliary data for multi-task
training. It first trains a T5-XL model on the 500 nearest neighbor samples from P3 using 1000
unlabeled target dataset samples, and then performs few-shot target-only fine-tuning with the (IA)?
modules from Liu et al. [56]]. Finally, we also compare against the 175 billion parameter variant of
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Figure 3: Reward distributions of R4 and R prior to training (step 0) and after 300 gradient
updates for the T5-XL model with TOMix as the auxiliary dataset and WSC as the target dataset.
Each quadrant shows the histograms of reward distributions for all 35 auxiliary datasets. By step 300
most auxiliary datasets provide 0 reward, while only the few remaining “beneficial” datasets provide
positive rewards. Results from every 100 gradient updates are shown in Figure[5)in Appendix [E.

GPT-3 [33]], which utilizes in-context learning. We find that, on average, models trained using our
FLAD-based methods outperform all other methods and, to the best of our knowledge, our methods
lead to the first 3 billion parameter model that outperforms GPT-3 on this dataset mixture (previous
smallest models have 11 billion parameters), despite using 62.5 times fewer parameters than GPT-3.
Additionally, we find that our FLAD-based methods provide robust performance across datasets,
achieving the best or second-best performance on 8/11 datasets, and never performing worst. The
use of task-specific modules lead T-Few and DEFT-Few to significant improvements over target-only
fine-tuning, preventing the models from ending up in poor local minima. However, these results
demonstrate that with the same data, simultaneously fine-tuning with auxiliary and target data leads
to improved few-shot generalization, providing a complementary means of improving performance.

Investigating the Reward-Generating Processes. In Section[3.2, we mention that due to the highly
non-convex loss landscape and the use of stochastic gradient descent-based optimization techniques,
we cannot ensure that our reward generating process is stationary, independent across auxiliary
datasets, or follows a normal distribution. To gain a deeper understanding of our reward-generating
processes, we examine the distribution of each reward using 5,000 samples from all 35 auxiliary
datasets of TOMix and 32 samples from a few-shot target dataset, WSC [52]]. The resulting histograms
at every 100 steps can be found in Appendix @ and Figure [3 shows an abbreviated version. The
left side of Figure E demonstrates that for R4, almost every dataset yields a Gaussian reward
distribution, with a few multi-modal distributions. Notably, WikiBio (dark orange) exhibits
peaks at 0.25 and -0.75. Interestingly, R4 results in polarized rewards across datasets, with minimal
distribution density between -0.75 and 0.25. In contrast, the right side of Figure g displays more
non-Gaussian distributions for REM5 | as well as flatter distributions compared to R A Remarkably,
we observe that RE4 produces more stationary reward distributions, as the distribution for almost
every dataset (30/35) converges rapidly towards O after only 100 steps. Although most distributions
for REMS also converge towards 0, the convergence occurs at a slower pace, taking nearly 500 steps.

Probing the training dynamics. To better understand the training dynamics of our proposed
methods, we perform a case study on T5-XL with TOMix and R4 and find two datasets where either
algorithm improves significantly over the other (full details and figures in Appendix [F). First, we
study RTE, where UCB1-FLAD outperforms EXP3-FLAD. We calculate the empirical distribution of
samples seen from each auxiliary dataset and find that EXP3-FLAD samples nearly uniformly from
all datasets while UCB1-FLAD forms a bimodal sampling distribution with peaks at 2.5% and 3.25%
(30% relative difference). The uniformity of the EXP3-FLAD distribution is counterintuitive, as we do
find that it achieves separation between auxiliary tasks in the cumulative estimated reward (as shown
in Figure[7), but this does not lead to separation in the sampling probability space. Additionally we
find that even on COPA, where EXP3-FLAD outperforms UCB1-FLAD, EXP3-FLAD still achieves



good separation between cumulative estimated rewards, but has a unimodal sampling distribution,
while UCB1-FLAD does not have as clear of a bimodal distribution as in RTE. The difference in
empirical sampling distributions is likely due to the difference between the greedy policy of UCB1-
FLAD and the stochastic policy of EXP3-FLAD. Empirically, we find that EXP3-FLAD very rarely
assigns an auxiliary dataset a probability < 1%, leading to many “bad” batches over the course of
thousands of turns. On the other hand, the optimistic policy of UCB1-FLAD spends much less time
exploring and will sample “bad” batches much less frequently.

The effect of scaling |.4| To assess the scal-
ability of our proposed methods, we con-
duct a study by varying the size of |A| €
{35, 75,125,175, 225,260}. For each value of
|A|, we consistently include the 35 datasets from
TOMix and randomly select additional auxiliary o6 1 £
datasets from P3 until we reach the desired |.A|. S

The study is performed on the same 11 target
datasets as the main study, using the TO base
model and RASC reward. The experiment is re-
peated with three random seeds. Figure ] shows
the mean across the 11 target datasets, along —— EXP3-FLAD
with the standard deviation between seeds. UCBL-FLAD
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We find that both EXP3-FLAD and UCBI1- ¥ 4ofAuliary Datasets
FLAD experience a sharp increase from |.A4| =
35 to 75. In addition, we observe improvements
up to the maximum value of |A| = 260, ulti-
mately improving accuracy by 2.54 for EXP3-
FLAD and 3.12 for UCB1-FLAD when tran-
sitioning from 35 to 75 datasets, with further
increases of 1.54 for EXP3-FLAD and 0.47 for
UCB1-FLAD when increasing |.A| from 75 to
260.

Figure 4: The effect of scaling |.A| on target task
performance. Each line represents mean score
across 11 datasets and three random seeds, with
shaded regions falling between one standard devia-
tion of the mean.

6 Discussion

Discussion on reward functions. In FLAD we want to prioritize training on auxiliary datasets
with similar solution spaces as the target task without overfitting to the few-shot target data, and
our reward functions are designed to serve this goal. To better understand the reward signal of our
aggregate reward, R4GC, we examine four combinations of rewards: low R4 and R“*5, high
RE4 but low REMS | low R4 but high REM S and high R“4 and R“M S, When both rewards are
high, we can assume that the auxiliary gradient is useful. However, when one reward is high and the
other is low, it is difficult to draw conclusions as a high R4 on its own means the auxiliary gradient
will update weights in the right direction, but low R can mean that we significantly overshoot or
undershoot the target, where overshooting can be much more detrimental than undershooting. If both
REA and REM S are small, we know the auxiliary gradient leads us away from the target solution
space, but we don’t know if its magnitude is much larger or smaller than the target. At the beginning
of training, we can’t know if the target or auxiliary gradient has larger magnitude, but as training
progresses, it becomes significantly more likely that the auxiliary gradient is greater than the target.
Thus, when both R“4 and REMS are low, we are likely to be pulled far from our current solution.

This work uses training set-based rewards, but validation set-based rewards are also possible. One
downside of validation-based rewards is they calculate validation score frequently, which increases
computational complexity. Additionally, we focus on the few-shot setting and use validation-based
early stopping. If we use a validation-based reward, then to prevent overfitting we will need to further
split the data into 3 partitions: train, early-stopping validation, and reward-validation.

Choice of baselines. With respect to the number of auxiliary datasets |.4| and target datasets | 7|,
our methods and the baselines we compare against have a computational complexity of O(|T),
independent of |.A|. For our model and these baselines, the models we train require ~ 6 GPU-hours
per target dataset. If we were to consider a baseline whose computation grows linearly w.r.t. |.A],



O(JA||T]) (e.g. [18]), these experiments would not be feasible without a large amount of hardware:
Training such a model with TOMix would take over 200 GPU-hours (over 8 GPU-days) for a single
target dataset, and over 1500 GPU-hours (over 2 GPU-months) when using all of P3.

Why we don’t include theoretical guarantees. The design of MAB algorithms generally comes
with theoretical proofs of regret bounds, but in this work we omit such analysis. Although we could
make guarantees on the regret bounds of our algorithms, they would not be meaningful because they
would be with respect to the rewards, not the accuracy on a held-out dataset (which is the quantity we
actually care about).

How does FLAD relate to few-shot learning and multitask learning? Both few-shot learning
and FLAD are concerned with optimizing model performance on a single target task with a limited
number of examples from the target task. In few-shot learning, the model is given only the target
task data D7 and there is no auxiliary data. Effectively, D 4 is the empty set for few-shot learning.
In contrast, for the FLAD setting |D_4| > 1. Based on the findings from this study, we highly
recommend that practitioners utilize auxiliary data when it is available.

Multitask learning is concerned with optimizing a model for performance on multiple target datasets
simultaneously. This is in direct opposition with the FLAD methods presented here, which aim to
optimize a model for a single target task. However, it is possible to extend our MAB-based methods
to optimize for multiple target tasks simultaneously by aggregating multiple rewards. We believe this
would make for an interesting future study.

Limitations. One of the implicit assumptions in the FLAD setting (made by this work and all prior
works) is that there is at least some auxiliary data that will be useful for the target task. However,
one of the main distinctions of our methods from prior works in the FLAD setting is that prior works
make a strong assumption that all auxiliary data are useful, and thus appropriate auxiliary datasets
must be hand-picked by humans. On the other hand, our methods allow for only a small portion of
the auxiliary data to be useful — our proposed algorithm explores to find useful auxiliary datasets and
then exploits them.

7 Conclusion

Recall the desiderata for our algorithm, expressed in the introduction: our algorithm should (1)
make no assumptions on the available auxiliary data a-priori, (2) scale well with the number of
auxiliary datasets, and (3) add minimal memory and computational overhead. (1) When designing
our algorithm, we purposefully formulate the problem as a multi-armed bandit. MAB algorithms,
in general, make no assumptions on the quality of rewards and, in particular, EXP3 even assumes
that the auxiliary datasets will play an adversarial role when returning rewards. (2) As previously
mentioned, our algorithms have a single-turn computational complexity that is independent of the
number of auxiliary datasets. (3) Finally, our method adds minimal computational overhead beyond
usual training computations. Every gradient that we utilize for our reward functions are also used to
update the model, adding no additional computations. The only computational overhead is to compute
gradient alignment (three vector dot products, two scalar square roots, and two scalar multiplications)
or magnitude similarity (four vector dot products, two scalar square roots, three scalar multiplications,
and one scalar addition). Additionally, our method adds a small amount of memory overhead, used to
store gradients between model updates. Our rewards consider only the gradient w.r.t the language
modelling head and, in practice, require 0.25Gb per auxiliary gradient to store, slightly increasing the
space complexity above standard fine-tuning.

The methods proposed in this work demonstrate the effectiveness of simultaneous training on auxiliary
and target datasets in few-shot settings, continuously updating beliefs by exploring and exploiting
auxiliary data, and framing FLAD as a MAB problem. We further showed that by satisfying our
desiderata, we are able to scale up FLAD to hundreds of auxiliary datasets and outperform traditional
few-shot fine-tuning and in-context learning methods. While the presented algorithms satisfy our
desiderata, the findings from this study can inform future work to further improve upon these methods
in a number of ways, such as improving the reward function and reducing the space complexity.
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A Multi-armed bandits

The Multi-Armed Bandit (MAB) setting is a problem from machine learning where a learner interacts
with an environment over N rounds by following a policy 7. At each round ¢ the learner chooses
one of the environment’s K arms, a € A where K = |.A|, after which the environment provides a
reward R;. Rewards for unplayed arms are not observed. The goal of the learner is to adopt a policy

« that selects actions that lead to the largest cumulative reward over N rounds, R = Ztl\i 1 Ri. In
this work we assume a finite K and that the underlying reward distribution of each arm may have a
variety of properties (e.g. stochasticity or stationarity) depending on the exact scenario, leading to
different optimal policies [34]].

Adversarial MAB. The adversarial MAB setting assumes that the reward-generating process is
controlled by an adversary. This assumption allows for modelling non-stationary and highly stochastic
reward signals. We will later show why our FLAD formulation fits into this setting. Under this setting,
it is assumed that an adversary is given access to the learner’s policy 7 and determines the sequence
of rewards, (Ra,t)é\':l, for each arm prior to play [38]. At each turn 7 determines a distribution
over actions, p(A), and an action is sampled from the distribution, a ~ p(A). See Lattimore &
Szepesviri [34]] for further details.

The EXP3 algorithm. The EXP3 algorithm (“Exponential-weight algorithm for Exploration and
Exploitation”) targets the adversarial multi-armed bandit problem by choosing arms according to a
Gibbs distribution based on the empirically determined importance-weighted rewards of arms [21].
To allow for exploration, EXP3 mixes the Gibbs distribution with a uniform distribution.

Formally, let the exploration rate be v € (0, 1]. At round ¢, 7 defines the probability of selecting a
given arm, a € A, as a linear combination of Gibbs and uniform distributions

EXP('VRa,tfl/K)

~
pe(a) = (1 % + = (1
S exp(YRa 1 /K) K
where the importance weighted reward Rw is calculated as
R . R,
Ray=Ray1+ —= ©)
Pt—1 (a)

and R, denotes the observed reward. All unplayed arms, o’ # a have unchanged importance
weighted rewards; ]%a/_,t = ]A%a/7t_1.

Algorithmically, EXP3 takes the following steps at each round: First, calculate the sampling distribu-
tion p; and sample an arm from the distribution. Then a reward R, ; is observed and the algorithm

updates the importance weighted reward Ra,t for the played arm.

Informally, the use of an importance-weighted estimated reward compensates the rewards of actions
that are less likely to be chosen, guaranteeing that the expected estimated reward is equal to the
actual reward for each action. EXP3 is designed to be nearly optimal in the worst case, but due to the
exploration rate it will select “bad” actions at a rate of /K. The exploration of EXP3 combined
with importance-weighting allows the policy to handle non-stationary reward-generating processes.

The UCBI1 algorithm. While the adversarial setting makes almost no assumptions about the
reward-generating process and therefore maintains its performance guarantees under almost any
circumstances, it can be outperformed in settings that are constrained. In this section we assume
that the reward-generating processes are stationary Gaussian distributions. A common policy used to
solve this MAB setting is the Upper Confidence Bound (UCB1) algorithm, which assigns each arm a
value called the upper confidence bound based on Hoeffding’s inequality [22]. The UCBI1 algorithm
is based on the principle of optimism in the face of uncertainty, meaning that with high probability
the upper confidence bound assigned to each arm is an overestimate of the unknown mean reward.

Formally, let the estimated mean reward of arm a after being played n, times be R, and the true
mean reward be R, then

21In(1/4)

Ng

P(Ra>Ra+ ><5 Vo e (0,1)
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derived from Hoeffding’s inequality (following equation 7.1 of Lattimore & Szepesvdri [34]), where
J is the confidence level that quantifies the degree of certainty in the arm. In this work we let § = 1/¢
where ¢ is the number of rounds played, shrinking the confidence bound over rounds. Thus, we define
the upper confidence bound for arm a at turn ¢ as

00 ifn, =0
UCB,, = 3)

b
R, + /22t otherwise

Ng

Algorithmically, UCB1 takes the following steps at each round. First, the UCB1 policy plays the arm
with largest upper confidence bound, a* = arg max,c 4 UC B, ;. Next, a reward R,- ; is observed

and the algorithm updates Ry~ (the estimated mean reward for a*) and the upper confidence bounds
for all a. Informally, this algorithm suggests that the learner should play arms more often if they

either 1. have large expected reward, R, or 2. n, is small because the arm is not well explored.

B Pseudo-code

We include here pseudo-code for our 2 proposed algorithms. Algorithm [T]contains the pseudo-code
for EXP3-FLAD, and Algorithm contains the pseudo-code for UCB1-FLAD.

Algorithm 1 EXP3-FLAD

Require: D 4, D7: Auxiliary and target datasets
Require: fy: Parameterized model
Require: G: Gradient accumulation steps
1: Initialize: K = [A]; & = &
Va€A:Va=0R,=1
2: fort=1,2,...,N do

& = min{%7 \/ 1;‘(15}
Va € A:7(a) + (1_th)3XP<£t—flRa)/) + &

3

4 >arexp(&r1R,
5:  Sample a ~ 7(.A) and batch {x,y} ~ D,
6.
7
8

Va < Va+VoL(fo,x,y)
if ¢ (mod G) = 0 then
Vo« Vgﬁ(fg, DT)

9: Update model parameters w.r.t.Vy + > V,
10: for all {a € A|V, # 0} do

11: Ry « Ro + 724

12: Va0

13: end for

14:  endif

15: end for

17



Algorithm 2 UCB1-FLAD

Require: D4, D7: Auxiliary and target datasets
Require: fy: Parameterized model
Require: G: Gradient accumulation steps
Require: 3: Smoothing factor
1: Initialize:
Va€e A:ng =1,
Ra = COS(VQE(fg, DT)? vg[’(fga DG))
fort=1,2,...,N do

2Int
MNa

2:
3 a® = argmax R, +
acA
4:  Sample batch {x,y} ~ Dq=
5: V< Ve + VoL(fo,x,y)

6:  Ngr & Nax +1
7. ift (mod G) = 0 then
8 VT — Vgﬁ(fg, DT)

9: Update model parameters w.r.t. Vo + >V,
10: for all {a € A|V, # 0} do

11: Ra — (1= B)Ro + BRas

12: Va0

13: end for

14:  endif

15: end for

C Training details

We train all models (FLAD and non-FLAD) on 40Gb A100s.

For all experiments, we use validation-based early stopping, and train for a maximum of 10,000
gradient update steps. In practice, we find that early-stopping leads to significantly fewer than 10,000
updates, usually between 50-150 for direct fine-tuning, and 1-2,000 for other methods.

For the smoothing factor, 3, in UCB1-FLAD we ran preliminary experiments using values of
{0.99,0.9,0.75,0.5} and found 0.9 to work well across datasets. All reported scores use 5 = 0.9.

In preliminary experiments we consider rewards using gradients from multiple model partitions: the
full model, encoder-only, decoder-only, and language modelling head (token classifier). We find that
using the parameters from the LM head provides best performance, followed by the decoder-only,
encoder-only, and full model gradients. The differential from best to worst method was ~ 3% relative
performance. Recall that with a gradient accumulation factor of (G, our algorithms need to store
at most G + 1 gradients at any time. So not only does using the LM head provide performance
improvements, but also saves memory. For the models we use, the LM head contains only 2.3% of
the full model parameters.

D Full results

The full results of experiments on target-only fine-tuning, explore-only, exploit-only, EXP3-FLAD,
and UCB1-FLAD are found on the next page.
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Table 2

exploitation-only baselines and our proposed methods, EXP3-FLAD and UCB1-FLAD.

Dataset Anli-rl Anli-r2 Anli-r3 CB COPA HellaSwag RTE Story Cloze WiC Winogrande | WSC Average

Direct Fine-Tuning 37.6 36.2 350 | 832 53.8 51.0 | 542 759 | 516 49.6 | 53.1 52.8
Loss-Scaling (GA) 35.7 36.4 353 | 825 58.0 518 | 59.0 796 | 49.8 504 | 469 532
Loss-Scaling (GM S) 37.8 376 360 | 80.0 76.4 526 | 553 85.7 | 50.6 520 | 517 56.0
Exploration-Only 38.1 403 36.7 | 886 85.6 512 | 67.6 88.8 | 51.0 555 | 477 59.2
Exploitation-Only 38.8 405 38.0 | 86.1 86.0 511 | 69.4 89.5 | 52.8 592 | 463 59.8

TOMix EXP3-FLAD (RE4) 40.6 39.9 369 | 86.1 89.8 520 | 76.7 90.8 | 50.5 60.3 529 615
UCBI-FLAD (R¢4) 41.8 39.0 380 | 854 87.0 520 | 79.1 914 | 497 627 | 562 62.0
EXP3-FLAD (RGMS) 42.0 40.2 36.6 | 87.1 87.2 524 | 715 909 | 51.1 61.9 51.9 61.7
UCBI-FLAD (REMS) 413 39.7 380 | 825 89.8 510 | 76.6 90.5 | 51.0 62.0 56.0 61.7
EXP3-FLAD (RAE%) 38.6 39.8 39.1 | 868 91.2 512 | 78.8 904 | 507 630 | 529 62.0

T5-3B UCBI-FLAD (RACG%) 420 41.0 36.6 | 882 86.8 510 | 77.3 90.3 | 51.1 63.3 55.4 62.1
Loss-Scaling (G A) 38.7 39.5 34.8 | 80.7 64.4 527 | 629 80.1 | 50.3 519 | 512 55.2
Loss-Scaling (GM S) 39.2 38.7 364 | 85.0 67.8 519 | 624 84.8 | 503 518 | 521 56.4
Exploration-Only 40.1 377 360 | 854 83.6 521 | 773 89.1 | 515 572 | 571 60.6
Exploitation-Only 40.4 372 373 | 871 84.4 510 | 78.6 903 | 513 562 | 515 60.5

P EXP3-FLAD (RE4) 46.9 38.8 402 | 896 88.0 515 | 76.9 912 | 534 662 | 61.9 64.1
UCBI-FLAD (R¢4) 49.1 38.8 40.1 | 886 88.2 516 | 83.7 90.2 | 543 68.0 | 683 65.5
EXP3-FLAD (REMS) 46.2 40.6 394 | 889 90.4 51.6 | 85.1 913 | 544 65.8 67.5 65.6
UCBI1-FLAD (REMS) 48.1 40.1 39.1 | 875 89.4 520 | 83.7 89.4 | 517 658 | 706 65.2
EXP3-FLAD (R4G %) 47.6 40.6 406 | 90.0 90.6 514 | 845 91.0 | 532 66.7 64.0 65.5
UCBI-FLAD (R4G€) 47.1 39.0 412 | 86.8 90.4 515 | 855 91.1 | 52.7 66.3 70.6 65.6

Direct Fine-Tuning 409 39.1 371 | 796 66.4 435 | 67.1 832 | 525 546 | 56.7 56.4
Loss-Scaling (GA) 413 40.0 369 | 818 78.0 512 | 765 86.9 | 50.7 547 | 562 59.5
Loss-Scaling (GM S) 405 405 37.8 | 81.1 79.0 520 | 77.0 88.8 | 52.7 550 | 60.8 60.5
Exploration-Only 44.4 403 370 | 825 85.6 479 | 776 90.1 | 52.1 586 | 569 61.2
Exploitation-Only 425 39.3 372 | 843 82.8 48.1 | 79.7 88.8 | 52.8 578 | 563 60.9

TOMix EXP3-FLAD (RC4) 462 415 377 | 839 87.6 49.4 | 80.0 90.1 | 526 634 | 59.0 62.9
UCBI-FLAD (R¢4) 437 40.8 376 | 86.1 85.4 486 | 80.5 913 | 534 63.5 61.0 62.9
EXP3-FLAD (REM5) 434 41.1 382 | 846 86.6 49.1 | 81.0 90.6 | 53.0 63.1 59.8 62.8
UCBI-FLAD (REMS) 432 412 387 | 86.4 86.6 484 | 828 914 | 522 61.0 59.4 62.8
EXP3-FLAD (RA%%) 43.8 41.6 380 | 83.9 87.8 489 | 819 90.7 | 525 62.3 59.8 62.8

T0-3B UCBI-FLAD (RAC%) 440 41.6 383 | 854 87.4 486 | 8l.1 90.6 | 53.0 63.1 59.2 62.9
Loss-Scaling (GA) 440 404 389 | 864 77.6 510 | 75.1 86.8 | 51.7 556 | 59.8 60.7
Loss-Scaling (GM S) 438 38.6 393 | 825 79.2 506 | 80.6 89.1 | 51.6 566 | 56.0 60.7
Exploration-Only 454 403 380 | 825 87.8 50.6 | 822 88.8 | 524 61.8 | 60.6 62.8
Exploitation-Only 455 40.0 388 | 87.5 82.2 499 | 79.6 90.9 | 522 60.1 64.8 62.9

P EXP3-FLAD (R%) 50.4 40.0 412 | 879 88.4 497 | 86.1 91.6 | 528 67.5 70.4 66.0
UCBI-FLAD (R%4) 482 41.8 412 | 90.0 86.6 500 | 86.1 915 | 536 656 | 746 66.3
EXP3-FLAD (REMS) 495 40.8 395 | 87.1 89.2 494 | 85.8 914 | 539 654 | 687 65.5
UCBI1-FLAD (REM5) 482 41.8 405 | 89.6 88.0 496 | 832 91.6 | 526 66.1 74.6 66.0
EXP3-FLAD (RAE %) 51.1 403 399 | 896 91.4 490 | 86.5 916 | 526 664 | 76.7 66.8
UCBI-FLAD (RAG%) 49.8 39.9 408 | 86.8 88.4 496 | 84.7 91.0 | 532 68.0 | 769 66.3
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E Probing the reward generating processes.

Gradient Alignment R%4 Gradient Magnitude Similarity REMS

' ' ' [
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' ' | |
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Figure 5: Reward distributions of R“4 and R prior to training and every 100 gradient updates
thereafter. We probe the reward distributions using the T5-XL model with the TOMix auxiliary dataset
and WSC [52] as the target dataset.
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F EXP3-FLAD and UCB1-FLAD training dynamics

The following 4 pages include a case study on the training dynamics of EXP3-FLAD and UCB1-
FLAD when training T5-XL using TOMix as the auxiliary data. First, we find datasets where
EXP3-FLAD and UCBI1-FLAD improve significantly over the baseline FLAD methods, but also
where either EXP3-FLAD or UCB1-FLAD clearly outperforms the other. The two datasets that fulfill
our interests are RTE and COPA.

We find that UCB1-FLAD outperforms EXP3-FLAD on RTE, and show their respective training
dynamics in Figure [6] (UCB1) and Figure [7] (EXP3).

We find that EXP3-FLAD outperforms UCB1-FLAD on COPA, and show their respective training
dynamics in Figure 8] (UCB1) and Figure O] (EXP3).

We include details and takeaways in the caption for each figure. For EXP3-FLAD figures, we include
charts of the cumulative estimated reward, empirical gradient alignment, instantaneous sampling
distribution determined by the policy, and the empirical sampling distribution determined by the total
number of samples seen per dataset as a fraction of the total samples seen. For UCB1-FLAD figures,
we include charts of the upper confidence index, estimated gradient alignment, and the empirical
sampling distribution.
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Figure 6: Training dynamics of UCB1-FLAD, a case study using RTE as target dataset and TOMix as
auxiliary data, where UCB1-FLAD outperforms EXP3-FLAD. Colored lines are a sample of auxiliary
datasets with interesting properties, the remaining datasets are shown in grey. We find that even
though wiki_qga’s estimated gradient alignment falls to below 0 (middle), UCB1 does not abandon
sampling from it in the future, finding that between 3200 and 4800 batches, it becomes the dataset
with largest upper confidence bound (top). Similarly, we see that UCBI1 alternates between wiki_qa,
amazon_polarity, and qasc as the datasets with higher gradient alignment and upper confidence
bounds. kilt_tasks/hotpotqa has a very high gradient alignment prior to training, but UCB1 samples
very infrequently from it, due to it’ls lower upper confidence bound. This is a failure case for transfer
learning-based methods. Interestingly, UCB1 never estimates imdb to have a negative gradient, and
gradually samples from it more and more frequently over the course of training.
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Figure 7: Training dynamics of EXP3-FLAD, a case study using RTE as target dataset and TOMix
as auxiliary data, where UCB1-FLAD outperforms EXP3-FLAD. Colored lines are a sample of
auxiliary datasets with interesting properties, the remaining datasets are shown in grey. We find that
the gradient alignment signal is particularly noisy for EXP3-FLAD, possibly leading to it’s slightly
worse performance on RTE. All five highlighted auxiliary datasets have high instantaneous sampling
probability, but over the course of training, the empirical sampling distribution is very condensed
across the full set of auxiliary datasets, unlike UCB1 which is able to find better separation.
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Figure 8: Training dynamics of UCB1-FLAD, a case study using COPA as target dataset and TOMix
as auxiliary data, where EXP3-FLAD outperforms UCB1-FLAD. Colored lines are a sample of
auxiliary datasets with interesting properties, the remaining datasets are shown in grey. We find
that although qasc and quartz start with very high gradient alignment, they very quickly fall to
negative alignment (middle figure, green and yellow). In the end, we find that the algorithm samples
much more from qasc than from quartz (bottom figure). Interestingly, we find that although both
cnn_dailymail and multi_news start off with very negative gradient alignment, they quickly become
the most aligned with the target task (middle figure, blue and red). We find that the three auxiliary
datasets with highest upper confidence index (top figure) and largest sampling percent (bottom figure)
are cnn_dailymail, multi_news, and trec even though these all considered dissimilar to the target prior
to training.
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Figure 9: Training dynamics of EXP3-FLAD, a case study using COPA as target dataset and TOMix
as auxiliary data, where EXP3-FLAD outperforms UCB1-FLAD. Colored lines are a sample of
auxiliary datasets with interesting properties, the remaining datasets are shown in grey. This is
an impressive example of the importance-weighted estimated reward. We see that cnn_dailymail
and multi_news both start with very negative alignment, but EXP3 quickly updates it’s estimated
reward once their alignment becomes positive. Similar to RTE, we see that EXP3 never makes large
separations in the empirical sampling distribution, possibly a reason why UCB1 outperforms EXP3
overall. Compared to RTE, we find that gradient alignments are much less variable, with a maximum
alignment close to 0.5 and minimum alignment close to -0.5. Whereas in RTE, alignments regularly
reach close to 1.0 and -1.0.
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| Explore-Only | Exploit-Only | EXP3-FLAD (R“*) | UCBI-FLAD (R“*)

|A| =35 (TOMix) 570.9 549.1 769.1 700.0
|A|l = 260 (P3) 863.6 692.7 832.7 794.5
% increase | 51.3% | 26.2% | 8.3% | 13.5%

Table 3: Number of training iterations for TO-3B to converge using a training method (column) and a
set of auxiliary datasets (row). The number of iterations to convergence is averaged across 11 target
datasets and 5 seeds, leading to 55 experiments aggregated per cell.

G Effect of scaling |.4| on time-to-convergence

As we have described in this work, the computational complexity for a single turn of our methods
are independent of the number of auxiliary datasets. However, it is unclear whether the computation
complexity of the multi-armed bandits are dependent on the number of auxiliary datasets through
their exploration rates. Thus, the computational complexity of an individual training run may be
influenced by the number of auxiliary datasets (].4]), but it is not possible to characterize this relation
explicitly as it relates to the complex and stochastic process of training and large language model.

To better understand the empirical effects of increasing |.4| on the time-to-model-convergence, we
perform a study on the number of iterations to convergence for different FLAD algorithms. Table
shows that all methods require longer training to converge when increasing from |.A| = 35 to 260.
We find that, compared with baseline methods, our MAB-based methods require more steps for the
smaller set of auxiliary datasets, but the number of additional steps required to train our methods only
increases modestly (~ 10%) when increasing |.A| by a factor of nearly 10. In contrast, the Explore-
and Exploit-Only methods do not scale nearly as well when increasing the number of auxiliary
datasets. Notably, the Explore-Only method requires over 50% more training iterations for P3 than
for TOMix, at which point it takes longer to converge than either of the MAB-based methods.

H Auxiliary Datasets

Here we include the full list of auxiliary datasets from P3 [23]] used to train models for the ANLI target
tasks. Other target datasets have slightly different auxiliary datasets due to test set decontamination,
but are generally the same. Datasets are listed by their name as found in HuggingFace Dataset

Zaid/quac_expanded, acronym_identification, ade_corpus_v2/Ade_corpus_v?2_classification,
ade_corpus_v2/Ade_corpus_v2_drug_ade_relation, ade_corpus_v2/Ade_corpus_v2_drug_dosage_relation,
adversarial_qa/adversarialQA, adversarial_qa/dbert, adversarial_qa/dbidaf, adversarial_qa/droberta,
aeslc, ag_news, ai2_arc/ARC-Challenge, ai2_arc/ARC-Easy, amazon_polarity, ama-
zon_reviews_multi/en, amazon_us_reviews/Wireless_v1_00, ambig_qga/light, app_reviews,
aqua_rat/raw, art, asset/ratings, asset/simplification, banking77, billsum, bing_coronavirus_query_set,
biosses, blbooksgenre/title_genre_classifiction, blended_skill_talk, cbt/CN, cbt/NE, cbt/P,
cbt/V, cbt/raw, cc_news, circa, climate_fever, cnn_dailymail/3.0.0, codah/codah, codah/fold_O,
codah/fold_1, codah/fold_2, codah/fold_3, codah/fold_4, code_x_glue_tc_text_to_code, com-
mon_gen, commonsense_qa, conv_ai, conv_ai_2, conv_ai_3, cordl9/metadata, cos_e/v1.0,
cos_e/vl.11, cosmos_qga, covid_qa_castorini, craffel/openai_lambada, craigslist_bargains,
crows_pairs, dbpedia_14, discofuse/discofuse-sport, discofuse/discofuse-wikipedia, discov-
ery/discovery, docred, dream, drop, duorc/ParaphraseRC, duorc/SelfRC, e2e_nlg_cleaned,
ecthr_cases/alleged-violation-prediction, emo, emotion, enriched_web_nlg/en, esnli, ev-
idence_infer_treatment/1.1, evidence_infer_treatment/2.0, fever/v1.0, fever/v2.0, finan-
cial_phrasebank/sentences_allagree, freebase_qa, generated_reviews_enth, gigaword,
glue/ax, glue/cola, glue/mnli, glue/mnli_matched, glue/mnli_mismatched, glue/mrpc,
glue/qnli, glue/qqp, glue/rte, glue/sst2, glue/stsb, glue/wnli, google_wellformed_query,
great_code, guardian_authorship/cross_genre_1, guardian_authorship/cross_topic_1,
guardian_authorship/cross_topic_4, guardian_authorship/cross_topic_7, gutenberg_time,
hans, hate_speechl8, head_qga/en, health_fact, hlgd, hotpot_qa/distractor, hotpot_ga/fullwiki,

“https://huggingface.co/datasets
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humicroedit/subtask-1, humicroedit/subtask-2, hyperpartisan_news_detection/byarticle, hyperparti-
san_news_detection/bypublisher, imdb, jfleg, kelm, kilt_tasks/hotpotqa, kilt_tasks/nq, lama/trex,
lambada, liar, limit, math_dataset/algebra__linear_1d, math_dataset/algebra__linear_1d_composed,
math_dataset/algebra__linear_2d, math_dataset/algebra__linear_2d_composed, math_qa,
mc_taco, mdd/taskl_ga, mdd/task2_recs, mdd/task3_qarecs, medal, medical_questions_pairs,
meta_woz/dialogues, mocha, movie_rationales, multi_news, multi_nli, multi_x_science_sum, mwsc,
narrativeqa, ncbi_disease, neural_code_search/evaluation_dataset, newspop, nlu_evaluation_data,
nq_open, numer_sense, onestop_english, openai_humaneval, openbookqa/additional, open-
bookqa/main, paws-x/en, paws/labeled_final, paws/labeled_swap, paws/unlabeled_final, piqa,
poem_sentiment, pubmed_qa/pqa_labeled, qa_srl, qa_zre, qasc, qed, quac, quail, quarel,
quartz, quora, quoref, race/all, race/high, race/middle, riddle_sense, ropes, rotten_tomatoes,
samsum, scan/addprim_jump, scan/addprim_turn_left, scan/filler_numO, scan/filler_numl,
scan/filler_num2, scan/filler_num3, scan/length, scan/simple, scan/template_around_right,
scan/template_jump_around_right, scan/template_opposite_right, scan/template_right, scicite,
scientific_papers/arxiv, scientific_papers/pubmed, sciq, scitail/snli_format, scitail/tsv_format,
scitldr/Abstract, selqa/answer_selection_analysis, sem_eval_2010_task_8, sem_eval_2014_task_1,
sent_comp, sick, sms_spam, snips_built_in_intents, snli, social_i_qa, species_800, squad,
squad_adversarial/AddSent, squad_v2, squadshifts/amazon, squadshifts/new_wiki, squadshifts/nyt,
sst/default, stsb_multi_mt/en, subjqa/books, subjqa/electronics, subjqa/grocery, subjqa/movies,
subjqa/restaurants, subjqa/tripadvisor, super_glue/axb, super_glue/axg, super_glue/boolq, su-
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