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Abstract data are kept decentralized and private. Such a practical set-

Federated learning (FL) has recently attracted increas-
ing attention from academia and industry, with the ultimate
goal of achieving collaborative training under privacy and
communication constraints. Existing iterative model av-
eraging based FL algorithms require a large number of
communication rounds to obtain a well-performed model
due to extremely unbalanced and non-i.i.d data partitioning
among different clients. Thus, we propose FedDM to build
the global training objective from multiple local surrogate
functions, which enables the server to gain a more global
view of the loss landscape. In detail, we construct syn-
thetic sets of data on each client to locally match the loss
landscape from original data through distribution match-
ing. FedDM reduces communication rounds and improves
model quality by transmitting more informative and smaller
synthesized data compared with unwieldy model weights.
We conduct extensive experiments on three image classifica-
tion datasets, and show that our method outperforms other
FL counterparts in terms of efficiency and model perfor-
mance given a limited number of communication rounds.
Moreover, we demonstrate that FedDM can be adapted to
preserve differential privacy with Gaussian mechanism and
train a better model under the same privacy budget.

1. Introduction

Traditional machine learning methods are designed with
the assumption that all training data can be accessed from
a central location. However, due to the growing data size
together with the model complexity [10,23,26], distributed
optimization [7, 8,43] is necessary over different machines.
This leads to the problem of Federated Learning [32] (FL) —
multiple clients (e.g. mobile devices or local organizations)
collaboratively train a global model under the orchestration
of a central server (e.g. service provider) while the training
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ting poses two primary challenges [20,24,29,31,32]: train-
ing data of the FL system are highly unbalanced and
non-i.i.d. across downstream clients and more efficient
communication with fewer costs is expected because of
unreliable devices with limited transmission bandwidth.

Most of the existing FL. methods [22,28,31,32,48] adopt
an iterative training procedure from FedAvg [32], in which
each round takes the following steps: 1) The global model
is synchronized with a selected subset of clients; 2) Each
client trains the model locally and sends its weight or gra-
dient back to the server; 3) The server updates the global
model by aggregating messages from selected clients. This
framework works effectively for generic distributed opti-
mization while the difficult and challenging setting of FL,
unbalanced data partition in particular, would result in sta-
tistical heterogeneity in the whole system [30] and make
the gradient from each client inconsistent. It poses a great
challenge to the training of the shared model, which re-
quires a substantial number of communication rounds to
converge [28]. Although some improvements have been
made over FedAvg [32] including modifying loss func-
tions [31], correcting client-shift with control variates [22]
and the like, the reduced number of communication round
is still considerable and even the amount of information re-
quired by the server rises [56].

In our paper, we propose a different iterative surrogate
minimization based method, FedDM, referred to Federated
Learning with iterative Distribution Matching. Instead of
the commonly-used scheme where each client maintains
a locally trained model respectively and sends its gradi-
ent/weight to the server for aggregation, we take a distinct
perspective at the client’s side and attempt to build a lo-
cal surrogate function to approximate the local training ob-
jective. By sending those local surrogate functions to the
server, the server can then build a global surrogate function
around the current solution and conduct the update by min-
imizing this surrogate. The question is then how to build
local surrogate functions that are informative and with a rel-
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ative succinct representation. Inspired by recent progresses
in data condensation [54,55] we build local surrogate func-
tions by learning a synthetic dataset to replace the origi-
nal one to approximate the objective. It can be achieved
by matching the original data distribution in the embed-
ding space [16]. After the optimization of synthesized data,
the client can transmit them to the server, which can then
leverage the synthetic dataset to recover the global objec-
tive function for training. Our method enables the server
to have implicit access to the global objective defined by
the whole balanced dataset from all clients, and thus out-
performs previous algorithms involved in training a local
model with unbalanced data in terms of communication ef-
ficiency and effectiveness. We also demonstrate that our
method can be adapted to preserve differential privacy un-
der, an important factor to the deployment of FL systems.

Our contributions are primarily summarized as follows:

* We propose FedDM, which is based on iterative distri-
bution matching to learn a surrogate function. It sends
synthesized data to the server rather than commonly-
used local model updates and improves communica-
tion efficiency and effectiveness significantly.

* We analyze how to protect privacy of client’s data for
our method and show that it is able to guarantee (e, J)-
differential privacy with the Gaussian mechanism and
train a better model under the same privacy budget.

* We conduct comprehensive experiments on three tasks
and demonstrate that FedDM is better than its FL
counterparts in communication efficiency and the final
model performance.

2. Related Work

Federated Learning. Federated learning [20, 32] has
aroused heated discussion nowadays from both research and
applied areas. With the goal to train the model collabo-
ratively, it incorporates the principles of focused data col-
lection and minimization [20]. FedAvg [32] was proposed
along with the concept of FL as the first effective method
to train the global model under the coordination of multi-
ple devices. Since it is based on iterative model averaging,
FedAvg suffers from heterogeneity in the FL system, espe-
cially the non-i.i.d. data partitioning, which degrades the
performance of the global model and adds to the burden of
communication [30]. To mitigate the issue, some variants
have been developed upon FedAvg including [22, 31, 48].
For instance, FedProx [3 1] modifies the loss function while
FedNova [48] and SCAFFOLD [22] leverage auxiliary in-
formation to balance the distribution shift. Apart from bet-
ter learning algorithms with faster convergence rate, another
perspective at improving efficiency is to reduce communi-
cation costs explicitly [5, 6,40,42,51]. An intuitive ap-
proach is to quantize and sparsify the uploaded weights di-
rectly [40]. Efforts have also been made towards one-shot

federated learning [ 17,4 1,44,56], expecting to obtain a sat-
isfactory model through only one communication round.
Differential Privacy. To measure and quantify information
disclosure about individuals, researchers usually adopt the
state-of-the-art model, differential privacy (DP) [11, 14, 15].
DP describes the patterns of groups while withholding in-
formation about individuals in the dataset. There are many
scenarios in which DP guarantee is necessary [1,2, 12, 13,
,34,38]. For example, Abadi et.al [ 1] developed differen-
tially private SGD (DP-SGD) which enabled training deep
neural networks with non-convex objectives under a certain
privacy budget. It was further extended to settings of feder-
ated learning, where various techniques have been designed
to guarantee client-level or instance-level differential pri-
vacy [33,37,52]. Recently, DP has been taken into account
for hyperparameter tuning [38].
Dataset Distillation. With the explosive growing of the size
of training data, it becomes much more challenging and
costly to acquire large datasets and train a neural network
within moderate time [35, 36]. Thus, constructing smaller
but still informative datasets is of vital importance. The
traditional way to reduce the size is through coreset selec-
tion [3], which select samples based on particular heuris-
tic criteria. However, this kind of method has to deal with
a trade-off between performance and data size [35, 55].
To improve the expressiveness of the smaller dataset, re-
cent approaches consider learning a synthetic set of data
from the original set, or data distillation for simplicity.
Along this line, different methods are proposed using meta-
learning [46, 50], gradient matching [53, 55], distribution
matching [49,54], neural kernels [35,36] or generative mod-
els [45]. These methods demonstrate great potentials in
datasets such as CIFAR10 but face challenges in scaling up
to larger ones like ImageNet. Besides, a recent work [9] has
analyzed the privacy property of dataset distillation meth-
ods, focusing on membership inference attacks. It provides
a complementary prospective to (e, d)-differential privacy
discussed in our paper.

3. Methodology

In this part, we first present the iterative surrogate mini-
mization framework in Section 3.1, and then expand on the
details of our implementation of FedDM in Section 3.2. In
addition, we discuss preserving differential privacy of our
method through Gaussian mechanism in Section 3.3.

3.1. Iterative surrogate minimization framework
for federated learning

Neural network training can be formulated as solving the
finite sum minimization problem:

min f(D;w) where f(D;w) = %Zf(iﬁi,yi;w),
i=1
(1
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where w € R? is the parameter to be optimized, D is
the dataset and ¢(x;, y;; w) is the loss of the prediction on
sample (z;,y;) € D w.rt. w such as cross entropy. We
will abbreviate these terms as f(w) and ¢;(w) for simplic-
ity. Equation 1 is typically solved by stochastic optimizers
when training data are gathered in a single machine. How-
ever, the scenario is different under the setting of federated
learning with K clients. In detail, each client k£ has access
to its local dataset of the size n; with the set of indices Z;,
(nk, = |Zx|), and we can rewrite the objective as

K
fw) =30 " (w) where fi(w) = - 3 Liw).
k=1

: 1€Ly,
2

Original
Surrogate
—:=— Tangent

Loss
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Figure 1. A 1-D example showing advantages of minimizing the
surrogate function.

Since information can only be communicated between
the server and clients, previous methods [22,31,32,48] train
the global model by aggregation of local model updates, as
introduced in Section 1. However, as each client only sees
local data which could be biased and skewed, the local up-
dates is often insufficient to capture the global information.
Further, since local weight update consists limited informa-
tion, it is hard for the server to obtain better joint update
direction by considering higher order interactions between
different clients. We are motivated to leverage the surro-
gate function by the example in Figure 1. Specifically, we
synthesize a 1-D binary classification problem and learn a
surrogate for the objective function. We learn the surrogate
function via distribution matching introduced in Section 3.2
around the weight of 0. Compared with the tangent line
computed by the gradient, the surrogate function in orange
matches the original one accurately and minimizing it leads
to a satisfactory solution. More details can be checked in
Appendix B.Thus, we hope to develop a novel scheme such
that each client can send a local surrogate function instead
of a single gradient or weight update to the server, so the
server has a more global view to loss landscape to obtain a
better update instead of pure averaging.

To achieve this goal, we propose to conduct federated
learning with an iterative surrogate minimization frame-

work. At each round, let w, be the current solution, we
build a surrogate training objective fr (+) to approximate the
original training objective in the local area around w,., and
then update the model by minimizing the local surrogate
function. The update rule can be written as

Fr(w), 3)

Wy41 = min
wEB, (w,)

where f.(w) ~ f(w),Yw € B,(w,) and B,(w,) is a p-
radius ball around w,. We do not expect to build a good
surrogate function in the entire parameter space; instead,
we only construct it near w, and obtain the update by mini-
mizing the surrogate function within this space. Many opti-
mization algorithms can be described under this framework.
For instance, if f,(w) = Vf(w,)T (w — w,.) (based on the
first-order Taylor expansion), then Equation 3 leads to the
gradient descent update where p controls the step size.

To apply this framework in the federated learning set-
ting, we consider the decomposition of Equation 2 and try
to build surrogate functions to approximate each fj(w) on
each client. More specifically, each client aims to find

frk(w) ~ fr(w), Yw € B,(w;) 4)

and send the local surrogate function fr,k(') instead of
gradient or weights to the server. The server then form the
aggregated surrogate function

fr(w) = fra(w) + -+ frrc(w) (5)

and then use Equation 3 to obtain the update. Again, if
each fnk is the Taylor expansion based on local data, it is
sufficient for the client to send local gradient to the server,
and the update will be equivalent to (large batch) gradient
descent. However, we will show that there exists other ways
to build local approximations to make federated learning
more communication efficient.

3.2. Local distribution matching

Inspired by recent progresses in data distillation [35, 36,

], it is possible to learn a set of synthesized data for

each client to represent original data in terms of the objec-

tive function. Therefore, we propose to build local surro-

gate models based on the following approximation for the
r-th round:

fulw) = o 37 (G w) = Fal(Siw), Vo € By(un)
kjezs

(6)

where S denotes the set of synthesized data and Z¢ is the

corresponding set of indices. Note that we aim to approxi-

mate fj, only in a local region around w,. instead of finding

the approximation globally, which is hard as demonstrated
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in [54,55]. To form the approximation function in Equa-
tion 6, we solve the following minimization problem:

— frp(S;w)|? 7

rnSinEwNPw Il fr.(w)

where w is sampled from distribution P,, which is a
Gaussian distribution truncated at radius p. A differ-
ent perspective at Equation 7 is that we can just match
the distribution between the real data and synthesized
ones given fj(w) and fr,k(S;w) are just empirical risks.
A common way to achieve this is to estimate the real
data distribution in the latent space with a lower dimen-
sion by maximum mean discrepancy (MMD) [49, 54]:
SUP|p, (<1 Elhw(D)] — E[hy(S)]). Here H is reproduc-
ing kernel Hilbert space and h,, is the embedding function
that maps the input into the hidden representation. We use
the empirical estimate of MMD in [54] since the underly-
ing distribution is inaccessible. To make our approximation
more accurate and effective, we match the outputs of the
logit layer which corresponds with the Equation 7, together
with the preceding embedding layer:

Zhw

(z IS

1
LDM:EweBp(w,)”W Z by (
(z,y)€D

1 1 ®)
‘|‘Ew€B,J(wr)”W Z 20 () — E Z 2 (T )H s

(z,y)€D (z,9)eS
where h,,(x) again denotes intermediate features of the in-
put while z,(z) € R represents the output of the final
logit layer. It should be emphasized that we learn synthe-
sized data for each class respectively, which means samples
in D and S belong to the same class. For training, we adopt
mini-batch based optimizers to make it more efficiently.
Specifically, a batch of real data and a batch of synthetic
data are sampled randomly for each class independently by
BPr ~ Dy, and BS* ~ Si. We plug these two batches into
Equation 8 to compute £, and £ = Zf;ol L.. S; can be

updated with SGD by minimizing £ for each client.
Then we aggregate all synthesized data from K clients at
the server’s side to approximate the global objective func-

tion, which is computed as

K K S
n n
w):E:ffk( E:?’v K (Sk;w), Yw € B,(w,).
k=1 k=1

©))

Moreover, since synthesized data are trained based on
a specific distribution around the current value of w, we
need to iteratively synchronize the global weights with all
the clients and obtain proper S according to the latest w for
the next communication round.

Therefore, instead of transmitting information such as
parameters or gradients in previous FL algorithms, we pro-
pose federated learning with iterative distribution match-
ing (FedDM) in Algorithm 1 following the steps below to
train the global model:

(a) At each communication round, for each client, we
adopt Equation 8 as the objective function to train syn-
thesized data for each class.

(b) The server receives synthesized data and leverages
them to update the global model.

(c) The current weight is then synchronized with all the
clients and a new communication round starts by re-
peating step (a) and (b).

It should be noticed that through estimating the local ob-
jective, FedDM extracts richer information than existing
model averaging based methods, and enables the server to
explore the loss landscape from a more global view. It re-
duces communication rounds significantly. On the other
hand, the explicit message uploaded to the server, or the
number of float parameters, is relatively smaller. This is
especially true when training large neural network models,
where the size of neural network parameters (and there-
fore gradient update) is much larger than the size of the
input. Take CIFARI10 as an example, when training data
are distributed obeying Diry((0.5), the average number of
classes per client (cpc) is 9. When we adopt the num-
ber of images per class (ipc) of 10 for the synthetic set,
the total number of float parameters uploaded to the server
is: the number of clients X cpc X ipc X image size =
10 x 9 x 10 x 3 x 32 x 32 = 2.8 x 10°. For those iter-
ative model averaging model methods, the number of float
parameters is equal to the product of weight size and the
number of clients, which is 320010 x 10 ~ 3.2 x 10° for
ConvNet [55] and comparably larger than FedDM. An ex-
tensive comparison is presented in Appendix C.

3.3. Differential privacy of FedDM

An important factor to evaluate a federated learning algo-
rithm is whether it can preserve differential privacy. Before
analyzing our method, we first review some fundamentals
of differential privacy.

Definition 3.1 (Differential Privacy [12]). A randomized
mechanism M : D — R with domain D and range R
satisfies (e, §)-differential privacy if for any two adjacent
datasets D, Dy and any measurable subset S C R,

Pr(M(D;) € S) < ePr(M(D3) € S) + 4. (10)

In this paper, we focus on instance-level differential pri-
vacy, which indicates that D; and D, differ on a single
element. Typically, the randomized mechanism is applied
to a query function of the dataset, f : D — X. With-
out loss of generality, we assume that the output spaces
R,X C R™. A key quantity in characterizing differen-
tial privacy for various mechanisms is the sensitivity of a
query [15] f : D — R™ in a given norm ¢,,. Formally this
is defined as

A2 max |[f(D) = (D)l (D)
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Algorithm 1 FedDM: Federated Learning with Iterative
Distribution Matching

1: Input: Training set D, set of synthetic samples S, deep
neural network parameterized with w, probability dis-
tribution over parameters P,,, training iterations of dis-
tribution matching 7', learning rate 7). and 7.
Server executes:
for eachroundr =1,..., Rdo
forclientk =1,..., K do
Si, «+ ClientUpdate(k, w;.)
Transmit Sy, to the server
end for
Aggregate synthesized data from each client and
build the surrogate function by Equation 9
9:  Update weights to w1 on S by SGD with the learn-
ing rate 7,
10: end for
11: ClientUpdate(k, w,.):
12: Initialize Sy from random noise or real examples.
13: fort =0,--- , 7 —1do
14:  Sample w ~ P, (w,)
15:  Sample mini-batch pairs BP* ~ D and BS* ~ Sj
for each class c
16:  Compute L. based on Equation 8, £ «+ ZCC:_Ol L.
17: Update Sp — Sk — TICVS,CE
18: end for

e A A R

Gaussian mechanism [15] is one simple and effective
method to achieve (e, §)-differential privacy:

M(D) £ (D) + Z,

where  Z ~ N(0,0%A2T). (12)
It has been proved that under Gaussian mechanism, (¢, d)-
differential privacy is satisfied for the function f of sensitiv-

ity A, if we choose o > 1/2log 122 /e [15]. Differentially
private SGD (DP-SGD) [!] then applies Gaussian mecha-
nism to deep learning optimization with hundreds of steps

and demonstrates the following theorem:

Theorem 3.1 (Differential Privacy of DP-SGD). There
exist constants c; and ¢y so that given the sampling prob-
ability ¢ and the number of steps T, for any € < c¢;¢*T,
DP-SGD is (¢, ¢)-differentially private for any § > 0 if

- Czq\/leg(l/&. (13)

We then prove that by leveraging DP-SGD to update the

synthetic dataset which is initialized from random Gaussian

noise, FedDM can preserve differential privacy of the orig-

inal dataset. We present this DP guarantee of FedDM in the
theorem below:

Theorem 3.2 (Differential privacy of FedDM.). Given
the synthetic dataset S is initialized from random noise,
FedDM trained with DP-SGD can guarantee (€,0)-
differential privacy in a K-client federated learning system,

with ¢ > ‘/71?%@5 or o > \/21%(1/6)iqu2 < €/2in

each communication round.

A complete proof and an initial analysis of differential
privacy for R communication rounds are included in Ap-
pendix D.We also present the whole procedure of FedDM
integrated with DP-SGD in Appendix E.

4. Experiments
4.1. Experimental setup

Datasets. In this paper, we focus on image classifi-
cation tasks, and select three commonly-used datasets:
MNIST [27], CIFAR10 [25], and CIFARI100 [25]. We
adopt the standard training and testing split. Following
commonly-used scheme [47], we simulate non-i.i.d. data
partitioning with Dirichlet distribution Dirg (), where K
is the number of clients and « determines the non-i.i.d.
level, and allocate divided subsets to clients respectively.
A smaller value of « leads to more unbalanced data distri-
bution. The default data partitioning is based on Dir(0.5)
with 10 clients. Furthermore, we also take into account dif-
ferent scenarios of data distribution, including Diry((0.1),
Dir;(0.01). Results of Dirs(0.5) and Diry0(50) (i.i.d. sce-
nario) can be found in Appendix F.1. We evaluate a realistic
dataset CelebA as well, following splits in the LEAF bench-
mark [4] in Appendix F.1.

Baseline methods. We compare FedDM with four rep-
resentative iterative model averaging based methods: Fe-
dAvg [32], FedProx [31], FedNova [48], and SCAF-
FOLD [22]. We summarize the action of the client and
the server, and the transmitted message for all methods
in Table 1. Two stronger methods, FedAvgM [19] and
FedAdam [39], are compared in Appendix F.1.

Hyperparameters. For FedDM, following [54], we se-
lect the batch size as 256 for real images, and update the
synthetic set S, for 7' = 1,000 iterations with ., = 1
for each client in each communication round, and tune the
number of images per class (ipc) within [3,5,10]. Syn-
thetic images are initialized as randomly sampled real im-
ages with corresponding labels suggested by [54,55], and
random noise initialization is leveraged when differential
privacy is required. Considering the trade-off between com-
munication efficiency and model performance, we choose
ipc to be 10 for MNIST and CIFARI10, 5 for CIFAR100
when there are 10 clients. The choice of radius p = 5 is
discussed in Section 4.5. On the server’s side, the global
model is trained with the batch size 256 for 500 epochs by
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Method Client Message Server
FedAvg [32] min fi(w) A" model averaging
FedProx [31]  min f(w) + pllw — w,||/2 Ay, model averaging
FedNova [48] min fj(w) d and a” normalized model averaging

SCAFFOLD [22
FedDM(Ours)

min fi(w, ¢)
min Equation 8

A, and A," model averaging for both w and ¢

S model updating on S

* A, denotes the model update, d is the aggregated gradient and « is the coefficient vector, A.. is the change of
control variates. Refer to original papers for more details.

Table 1. Summary of different FL methods.
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Figure 2. Test accuracy along with the number of communication rounds and the message size. Within the limited communication budget,
FedDM performs the best in all three datasets, in terms of efficiency and final test accuracy.

SGD of ns = 0.01. For baseline methods', we choose the
same batch size of 256 for local training. We tune the learn-
ing rate at the client from [0.001,0.01,0.1] and at the server
from [0.01, 0.1, 1], and local epoch from [1, 2, 5, 10, 15, 20].
In particular, we tune p for FedProx in [0.01,0.1,1]. For
a fair comparison, all methods share the fixed number of
communication rounds as 20, and the same model struc-
ture ConvNet [55] by default. We consider 40 commu-
nication rounds in Appendix F.1 and a different network
ResNet-18 [18] in Section 4.5 as well. All experiments are
run for three times with different random seeds with one
NVIDIA 2080Ti GPU and the average performance is re-
ported. More implementation details and experimental re-

IWe use implementations from https://github.com/Xtra-
Computing/NIID-Bench in [28].

sults can be found in Appendix F.1.

4.2. Communication efficiency & convergence rate

We first evaluate our method in terms of communication
efficiency and convergence rate on all three datasets on the
default data partitioning Dir;(0.5). As we can see in Fig-
ure 2(a)-(c), our method FedDM performs the best among
all considered algorithms by a large margin on MNIST,
CIFARI10, and CIFAR100. Specifically, for CIFARI1O0,
FedDM achieves 69.66 & 0.13% on test accuracy while the
best baseline SCAFFOLD only has 66.12 + 0.17% after 20
communication rounds. FedDM also has the best conver-
gence rate and it significantly outperforms baseline meth-
ods within the initial few rounds. Advantages of FedDM
are more evident when we evaluate convergence as a func-
tion of the message size. As mentioned in 3.2, FedDM re-
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P T
o o wu

Test Accuracy (%)
N
S

Method a=0.1 a=0.01
MNIST CIFAR10 CIFAR100 MNIST CIFARI10 CIFAR100
FedAvg 96.92 £0.09 57.32+0.04 32.00+0.50 | 91.04 +£0.80 39.28 £0.25 27.05+0.45
FedProx 96.72 £0.04 5692+ 030 30.77+£0.52 | 91.18 £ 0.16 40.30 £0.15 25.88 +0.39
FedNova 98.04 £0.03 60.76 +0.14 31.924+0.42 | 90.27 +£0.49 36.46 +£042 27.52+043
SCAFFOLD | 98.32 £0.06 6096 +1.20 34.39+0.25 | 88.37+0.25 3242+1.13 31.14+0.20
FedDM 98.67 £ 0.01 67.38+0.32 37.58 +0.27 | 98.21 + 0.23 63.82 £ 0.17 34.98 + 0.17

Table 2. Test accuracy of FL. methods with different level of non-uniform data partitioning.

CIFAR10, small noise

CIFAR10, medium noise

CIFAR10, large noise

o
=3

u
o

u
o

IS
o

—#— FedAvg
FedProx
—¥— FedNova
—#— SCAFFOLD
—e— FedDM

Test Accuracy (%)

w
o

w
o

IS
=)

—#— FedAvg
FedProx
—¥— FedNova
—#— SCAFFOLD
—e— FedDM

Test Accuracy (%)
IS
&

—&— FedAvg
FedProx
—¥— FedNova
—#— SCAFFOLD
—e— FedDM

5 10 15 20
Communication Round

(a) Small noise (¢ = 12.25).

5 10 15 20
Communication Round

(b) Medium noise (¢ = 2.46).

5 10 15 20
Communication Round

(c) Large noise (¢ = 1.35).

Figure 3. Performance of FL. methods with different levels of noise. To preserve differential privacy, FedDM initializes the synthetic data

from random Gaussian noise.

quires less information per round. Therefore, we can ob-
serve in Figure 2(d)-(e) that FedDM converges the fastest
along with the message size. Details of the message size of
each method for different tasks are provided in Appendix C.

4.3. Evaluation on different data partitioning

In real-world applications, there are various extreme
data distributions among clients. To synthesize such non-
ii.d. partitioning, we consider two more scenarios with
Diry(0.1) and Diry(0.01). As mentioned, « — 0 implies
each client holds examples from only one random class. It
can be seen in Table 2 that previous methods based on it-
erative model averaging are insufficient to handle these two
challenging scenarios and their performance degrades dras-
tically compared with Diryo(0.5). In contrast, FedDM per-
forms consistently better and more robustly, since distribu-
tion matching enables it to approximate the global training
objective more accurately.

4.4. Performance with DP guarantee

As discussed in Section 3.3, if the synthetic dataset is
initialized from random noise, using DP-SGD in local train-
ing of FedDM can satisfy (e, 0)-differential privacy, with

2log(1/4)
o 2\

bound independent of training steps 7'. To make a fair com-
parison, we use tensorflow privacy to compute € with a tight
bound given the number of examples, batch size, training
steps, § = 107° under ¢ € 1,3,5 for FedDM, and ob-
tain noise levels for baseline methods accordingly which

for any T'q®> < ¢/2, a relatively loose

are [0.44,0.76,0.95] respectively. We tune clipping norm
C € [1,3,5,10]. S is initialized from A/(0,1) to guar-
antee differential privacy. We notice in Figure 3 that un-
der the same DP guarantee, FedDM outperforms other FL.
counterparts in terms of convergence rate and final perfor-
mance. Moreover, the accuracy of FedDM does not drop
significantly compared with all considered methods when
the noise level increases, indicating that FedDM is most re-
sistant to the perturbed optimization. Visualization of the
synthetic dataset can be found in Appendix F.2.

4.5. Analysis of FedDM

In this section, we analyze FedDM to investigate effects
of hyperparameters including the initialization of the syn-
thetic dataset, image-per-class (ipc), network structure and
selection of p-radius ball. Besides, we compare our method
with a strong baseline of sending real images with the same
size. Extensive results are reported in Appendix F.1.

Initialization of the synthetic dataset. We conduct an
ablation study on the initialization of the synthetic dataset S
on CIFAR10 with the default partition Dir;((0.5). In detail,
random initialize S based on the standard normal distribu-
tion (0, 1) while real samples instances from the original
dataset to be distilled. It can be observed in Table 3 that
real performs consistently better than random, which con-
curs with the conclusion in [54] and justifies the choice of
real in our experiments. Note that even random can out-
perform model averaging methods compared with results in
Figure 2 and Table 2. In addition, random with DP-SGD
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helps preserve differential privacy of FedDM, and still im-
proves the efficiency and accuracy significantly in Figure 3.

Partitioning random real
a=0.5 64.12+0.15 69.66 + 0.13
a=0.1 62.75+£0.24 67.38 + 0.32
a=0.01 59.00+026 63.82+0.17

Table 3. Test accuracy of FedDM with random and real S initial-
ization on CIFAR10. Three data partitionings are evaluated.

Effects of ipc. Experiments are conducted on CIFAR10
with the distribution Diry((0.5) with three different ipc val-
ues from [3,5,10]. As the ipc increases, the performance
gradually get better from 53.64 + 0.35%, 62.24 + 0.04% to
69.624+0.14%. On the other hand, more images per class in-
dicates a heavier communication burden in the meanwhile.
We need to trade off the model performance against the
communication cost, and thus choose an appropriate ipc
value based on the task.
CIFAR10

70

65 8
~ 60
B

—#- FedAvg

45 FedProx

—¥— FedNova
=40 —+— SCAFFOLD
—e— FedDM(ipc=10)
—e— FedDM(ipc=5)
30 FedDM(ipc=3)

0 5 10 15 20
Communication Round

Figure 4. Performance under different ipc values.

Different network structures. Besides ConvNet, we
evaluate FedDM under the default CIFAR10 setting on
ResNet-18. It can be observed that our method works well
even for this more complicated and larger model in Figure
5. It should also be emphasized that for FL baseline meth-
ods, they have to transmit a larger amount of message while
FedDM maintains the original size. This makes FedDM
more efficient in larger networks.

CIFAR1O
704
60 1
501 y

—#— FedAvg
FedProx
—¥— FedNova
—#— SCAFFOLD
—e— FedDM

Test Accuracy (%)
IS
8

0 5 10 15 20
Communication Round

Figure 5. Test accuracy on ResNet-18.

Selection of p-radius ball. It has been discussed in Sec-
tion 3.1 that B, (w;.) is a p-radius ball around w,:

Bp(wr) = {w|l|w — w2 < p}. (14)

In FedDM, we sample w based on a truncated Gaussian dis-
tribution below:

Pw(wr) = Chp(N(wra 1)7/7)3 (15)

where we clip the sampled weight to guarantee that ||w —
wyrll2 < p. At the server’s side, when training the global
model, we also clip the weight to the p-radius ball. We con-
duct experiments to choose p from [3, 5, 10] and present the
test accuracy after 20 communication rounds on CIFAR10
under the default Diry((0.5) setting in Table 4. We find that
performance is similar and FedDM is not very sensitive to
the choice of p. p = 5 performs relatively the best and
we hypothesize that a too small weight restricts the opti-
mization to a limited range and a too big one adds to the
difficulty of learning a surrogate function. Based on results
in Table 4, we select p = 5 for all our experiments.

p Test accuracy (%)

p=3  69.15+0.09
p=5  69.66+0.13
p=10  69.32+024

Table 4. Test accuracy of FedDM under different p.

Comparison with transmitting real images. Our
method is compared with REAL, which sends real images
of the same size as FedDM (ipc = 10). In particular, REAL
achieves test acccuracy of 68.66 + 0.08% on CIFARI10
with the default setting, but cannot beat FedDM with
69.62 + 0.14%. It indicates that our learned synthetic set
can capture richer information of the whole dataset rather
than just a few images.

5. Conclusions and Limitations

In this paper we propose an iterative distribution
matching based method, FedDM, to achieve more
communication-efficient federated learning. By learning a
synthetic dataset for each client to approximate the local ob-
jective function, the server can obtain a global view of the
loss landscape better than aggregating local model updates.
We also show that FedDM can preserve differential privacy
with Gaussian mechanism. However, there is still a trade-
off between the size of the synthetic set and the final perfor-
mance, especially for classification tasks with hundreds of
clients or classes. How to reduce the synthetic set to save
communication costs can be a future direction.
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