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ABSTRACT. We consider knots and links in handlebodies that have hy-

perbolic complements and operations akin to composition. Cutting the

complements of two such open along separating twice-punctured disks

such that each of the four resulting handlebodies has positive genus,

and gluing a pair of pieces together along the twice-punctured disks in

their boundaries, we show the result is also hyperbolic. This should

be contrasted with composition of any pair of knots in the 3-sphere,

which is never hyperbolic. Similar results are obtained when both twice-

punctured disks are in the same handlebody and we glue a resultant piece

to itself along copies of the twice-punctured disks on its boundary. We

include applications to staked links.

1. Introduction

A compact orientable 3-manifold M is tg-hyperbolic if the manifold M ′

obtained from M by shaving off all torus boundaries and capping off all

sphere boundaries with balls admits a finite volume hyperbolic metric such

that all remaining boundary components are totally geodesic. For a link

L in a handlebody H , we say that the pair (H,L) is tg-hyperbolic if the

complement of an open regular neighborhood of L in H is tg-hyperbolic.

By the Mostow-Prasad Rigidity Theorem, such a hyperbolic metric will

only depend on the complement H \L up to homeomorphism, which allows

us to associate a hyperbolic volume to (H,L) that is invariant under ambient

isotopies of L in H .

Work of W. Thurston implies that the complement of a link in a compact

orientable 3-manifold is tg-hyperbolic if and only if it contains no properly

embedded essential disks, spheres, annuli or tori. A sphere is essential if it

does not bound a ball. A disk is essential if it is not boundary parallel. A

torus is essential if it is incompressible and not boundary-parallel. Annuli

are essential if they are incompressible, boundary-incompressible and not
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boundary-parallel. In a manifold with no essential disks or spheres, an an-

nulus that is incompressible is boundary-incompressible if and only if it is

not boundary-parallel.

Examples of knots and links in handlebodies with complements that are

tg-hyperbolic appear in [5], [7], [8], [9], and [12]. In [3], a large source of

such examples is provided. Results from [11] can also be used to generate

many more.

Let L1 and L2 be two links in handlebodies H1 of genus g1 and H2 of

genus g2 respectively. Just as we have composition of two links in the 3-

sphere, we would like to define composition of these links in handlebodies.

To that end, let D1 ¢ H1, D2 ¢ H2 be properly embedded disks twice

punctured by L1, L2 respectively which separate balls B1 and B2 from H1

and H2 such that B1 ∩ L1 and B2 ∩ L2 are unknotted arcs. Discarding the

balls yields two handlebodies H ′
1
¢ H1 and H ′

2
¢ H2. Let L′

1
= H ′

1
∩ L1

and L′
2
= H ′

2
∩ L2. Glue H ′

1
to H ′

2
along D1 and D2 via φ. Since φ sends

the endpoints of the arc in L′
1

to the endpoints of the arc in L′
2
, this results

in a link in a handlebody, denoted (H ′
1
, L′

1
, D1)·φ (H

′
2
, L′

2
, D2) in H3 as in

Figure 1.

In contrast to the usual composition of links, the link/handlebody pair

(H ′
1
, L′

1
, D1) ·φ (H ′

2
, L′

2
, D2) depends highly on D1, D2, and φ. Further-

more, while composition of links in S3 never results in a hyperbolic link,

(H ′
1
, L′

1
, D1)·φ (H

′
2
, L′

2
, D2) can be tg-hyperbolic.

However, even if both H1 \ L1 and H2 \ L2 are tg-hyperbolic, it is not

always true that (H ′
1
, L′

1
, D1) ·φ (H ′

2
, L′

2
, D2) is tg-hyperbolic. In fact,

the disks D1 and D2 can always be chosen so that at least one is “knot-

ted” and there is an essential torus in the link complement associated to

(H ′
1
, L′

1
, D1)·φ (H

′
2
, L′

2
, D2) as shown in Figure 2.

In Section 2, we provide a method to avoid the problem with “knotted

disks”. In Theorem 2.1, we prove that if the two handlebody/link pairs cut

along their disks appear as submanifolds of handlebody/link pairs of higher

genus that are tg-hyperbolic, then the composition of the original pair is

tg-hyperbolic. The presence of the rest of the higher genus tg-hyperbolic

handlebodies prevents the disk from being “knotted”. We also show an

analogue of this result where one cuts along two separating twice punctured

disks in a single handlebody and glues the resulting manifold to itself along

a homeomorphism of the twice punctured disks.

In Section 3, we discuss applications. As mentioned, [3] and [11] provide

many examples of tg-hyperbolic links in handlebodies, and our construction

here can be applied to them to generate many more. Furthermore, these

results can be applied to staked links introduced in [2], which correspond
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FIGURE 1. Forming the link (H ′
1
, L′

1
, D1)·φ (H

′
2
, L′

2
, D2)

.

to link projections with isolated poles placed in the complementary regions,

over which strands of the link cannot pass. These are equivalent to links in

handlebodies.

We can also consider applications to knotoids. In [1], a definition of

what it means for a planar knotoid to be hyperbolic is given in terms of a

corresponding knot in a handlebody being tg-hyperbolic. So the results here

can be applied to extend the known examples of hyperbolic planar knotoids.

In addition to considering knots in handlebodies, there is work that has

been done on hyperbolicity of links in thickened surfaces, as in [4] and

[11]. Questions about compositions have been addressed in that situation,

as in [6]. Converting a method applied there to our situation can avoid the

problem of knotted disks and allow composition of tg-hyperbolic links in

handlebodies to be tg-hyperbolic without requiring them to be submani-

folds as described above. That is, we can take a geodesic g that runs from

the surface of the handlebody to the link. Then the boundary of a regu-

lar neighborhood of g, including its endpoint on the link, will be a properly

embedded twice-punctured disk that cannot be knotted and therefore allows



4 C. ADAMS AND D. SANTIAGO

FIGURE 2. By choosing one of D1, D2 to be “knotted”, one

can create an essential torus in the complement H3 \ L3

which separates a knot exterior from H3 of the form appear-

ing in the last image.

composition to yield tg-hyperbolic links in handlebodies. However, we do

not include the details of the proof here.
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2. Proof of Main Result

For any submanifold S of a smooth manifold M , we denote by N(S) a

closed regular neighborhood of S in M and by N̊(S) the interior of N(S).
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For a space X , we denote by |X| the number of connected components of

X . Throughout, we use the fact that a handlebody is irreducible, which is to

say that it contains no essential spheres. This is true because a handlebody

can be embedded in S3, and any sphere in S3 cuts S3 into two balls. So the

sphere in the handlebody will bound a ball to one side.

Let H1, H2 be two handlebodies, each of genus at least 2, that contain

links L1 and L2 such that H1 \L1 and H2 \L2 are tg-hyperbolic. Let E1 and

E2 be properly embedded disks in H1 and H2, which separate H1 and H2

into handlebodies H1,1, H1,2 and H2,1, H2,2 of genera g1,1, g1,2 and g2,1, g2,2
respectively, where all genera are at least 1. Suppose further that E1 and E2

are each twice punctured by L1 and L2 respectively. Let Li,j = Li ∩Hi,j .

We denote by Mi,j = Hi,j \ N̊(Li,j) and by Fi = Ei \ N̊(Li) the cor-

responding separating surfaces. As we will ultimately only be interested in

M1,1 and M2,2, we will for convenience often drop the extra subscripts and

write M1,1 and M2,2 as M1 and M2 respectively.

FIGURE 3. The links L1, L2 in H1, H2 respectively and the

link L in the handlebody H .

Gluing H1,1 to H2,2 along an orientation preserving homeomorphism

φ : F1 → F2 sending ∂E1 to ∂E2 and ∂F1 ∩ ∂N(L1,1) to ∂F2 ∩ ∂N(L2,2)
yields a manifold/link pair denoted (H1,1, L1,1, E1)·φ(H2,2, L2,2, E2) which

is a handlebody H of genus g1,1 + g2,2 containing the link L formed by
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gluing L1,1 and L2,2 along their endpoints, as in Figure 3. Let HL be the

complement of N̊(L) in H . We denote by F the image of F1 and F2 in HL,

and by E the separating disk in H corresponding to F .

There is one component of L, which we denote by K, that is cut into two

arcs K1 and K2 by F , the arcs of which are in H1,1 and H2,2 respectively.

We denote ∂N(K) by TK . We denote the sub-annuli of TK corresponding

to the arcs K1 and K2 by AK1
and AK2

respectively. A hyperbolic manifold

is always assumed tg-hyperbolic unless otherwise stated.

Theorem 2.1. Let L1 and L2 be links in H1 and H2 such that H1 \ L1 and

H2 \ L2 are tg-hyperbolic, with E1 ¢ H1 and E2 ¢ H2 twice-punctured

disks separating each of H1 and H2 into handlebodies, all of positive genus.

If φ : E1 → E2 is a homeomorphism sending ∂E1 to ∂E2 and sending

punctures to punctures, then (H,L) = (H1,1, L1,1, E1) ·φ (H2,2, L2,2, E2)
is tg-hyperbolic.

To prove Theorem 2.1, it is enough to show that since H1 \ N̊(L1) and

H2 \ N̊(L2) contain no essential disks, spheres, annuli and tori, the same

holds for H \ N̊(L). In the remainder of this section, we rule out these four

kinds of essential surfaces with a sequence of lemmas.

Lemma 2.2. The surfaces F, F1, andF2 are incompressible and boundary

incompressible in HL.

Proof. We show that F is incompressible and boundary incompressible.

The same reasoning immediately applies to F1 and F2, as we only use that

M1 and M2 are submanifolds of the hyperbolic manifolds H1 \ N̊(L1) and

H2 \ N̊(L2) respectively.

Suppose that F is compressible. Then there is some nontrivial circle C ¢
F which bounds a disk D′ in M1 or M2. Suppose D′ ¢ M1 and let D be the

disk in E bounded by C. Suppose that D is punctured once by L. Then the

sphere D ∪D′ is punctured once by K1, a contradiction. Suppose next that

D is punctured twice by L. Then K1 is contained in the 3-ball bounded by

D∪D′ in H1, so K1 can be pushed into a neighborhood of E by an isotopy

fixing the endpoints of K1. Hence M1 contains a properly embedded disk

that is essential since the boundary of the disk, which is isotopic to ∂E1,

splits ∂H1 into two surfaces of positive genus. This contradicts the fact that

that H1 \ N̊(L1) is hyperbolic. We reach the analogous contradictions if

D′ ¢ M2, since H2 \ N̊(L2) is hyperbolic.
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Suppose next that F is boundary compressible. Then there is a nontrivial

arc α ¢ F which together with an arc β ¢ ∂HL bounds a disk D in M1 or

M2 such that D ∩ F = α. Suppose D ¢ M1. There are two cases.

Case 1: The arc β is in AK1
. If β is trivial in AK1

, then we can isotope

D so that ∂D ¢ F , which yields a compression disk for F since α was

a nontrivial arc in F , a contradiction. If β is nontrivial in AK1
, then it

is a spanning arc of AK1
. Thus, K1 together with an arc in E bounds a

disk in M1. Thus we can push K1 onto F in HL through an isotopy fixing

the endpoints of K1. Once we have moved K1 out of the way, we can

construct an essential disk in M with boundary isotopic in ∂HL to ∂E,

which contradicts that H1 \ N̊(L1) is tg-hyperbolic.

Case 2: The arc β is in ∂H . Suppose D is separating in H1,1. Since D is

disjoint from AK1
, D separates M1 into two regions, each of which contains

an endpoint of K1. Since K1 is connected, this is a contradiction.

Suppose D is not separating in H1,1. The arc α separates an annulus A
from F such that A∗ = A ∪D is a properly embedded annulus in HL with

one boundary component a meridian on TK and another boundary compo-

nent on ∂H . Since D is not separating in H1,1, ∂A∗∩∂H is nontrivial in ∂H ,

thus A∗ is an essential annulus in M1, which contradicts that H1 \ N̊(L1) is

hyperbolic.

Since H2 \ N̊(L2) is hyperbolic, we reach the analogous contradictions if

D ¢ M2, and thus F is boundary incompressible. □

Lemma 2.3. The manifold HL is irreducible.

Proof. Suppose HL contains an essential sphere S. Suppose first that

S∩F = ∅. Then S ¢ M1 or S ¢ M2, which implies that one of H1\N̊(L1)

or H2 \ N̊(L2) contains an essential sphere, a contradiction.

Suppose next that S ∩F ̸= ∅. We assume that |S ∩F | is minimal among

all essential spheres in HL. An innermost circle C of S ∩ F in S bounds a

disk D in S such that D ∩ F = C. Since F is incompressible, C bounds a

disk D′ in F . Then we can view D ∪D′ as a sphere in H1,1 or H2,2, which

from the last case must bound a ball in HL. Thus, we can push D to D′

and slightly beyond, pushing any other intersections of S with D′ out of the

way as well, to reduce |S ∩ F |, contradicting minimality.

□

Lemma 2.4. The manifold HL is boundary irreducible.
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Proof. Suppose ∂HL has a compressing disk D′. Suppose first that ∂D′ ¢
∂N(L). Then the sphere given by ∂N(D′ ∪ K ′), where K ′ is the corre-

sponding component of L, does not bound a ball to either side, contradicting

the fact we have already eliminated essential spheres in HL.

Suppose now that ∂D′ ¢ ∂H . If D′ ∩ F = ∅, then one of ∂H1,1 or

∂H2,2 has a compression disk in M1 or M2 respectively, which contradicts

that H1 \ N̊(L1) and H2 \ N̊(L2) are hyperbolic. Thus we can assume that

D′ ∩ F ̸= ∅, and we further assume that |D′ ∩ F | is minimal among all

compression disks of ∂HL. Then by incompressibility of F , the elements

of D′ ∩ F are all arcs. By minimality of |D′ ∩ F |, an outermost arc of

D′ ∩ F in D′ is then nontrivial in F , as otherwise by doing a surgery we

could find a compression disk D′′ of ∂HL with |D′′ ∩ F | < |D′ ∩ F |. This

outermost arc cuts a disk from D′ that gives a boundary compression for F ,

a contradiction. □

Lemma 2.5. The manifold HL does not contain an essential annulus A with

A ∩ F = ∅.

Proof. Suppose HL contains such an annulus, and assume without loss of

generality that A ¢ M1. We can view A as a properly embedded annulus A
in H1 \ N̊(L1) which we will show is essential H1 \ N̊(L1), a contradiction

to its being tg-hyperbolic.

Suppose A is compressible in H1 \ N̊(L1). Then a nontrivial simple

closed curve γ ¢ A bounds a disk D in H1 \ N̊(L1). We assume that

|D∩F1| is minimal among all compression disks of A in H1 \ N̊(L1). Note

that the components of D ∩ F1 are circles. If D ∩ F1 = ∅, then D ¢ M1,

which implies that A is compressible in HL, a contradiction. If D∩F1 ̸= ∅,

by incompressibility of F1, an innermost circle of D ∩ F1 in D is trivial in

F1, hence by irreducibility of HL, we can reduce |D ∩ F1| by an isotopy,

contradicting minimality.

Thus, A is boundary compressible in H1 \ N̊(L1). (Note that if A is

boundary parallel, then it is boundary compressible.) Therefore, both bound-

ary components of A must be on the same component of ∂HL. We consider

two cases.

Case 1: The annulus A has both boundary components on ∂H . Suppose A
is boundary compressible in H1\N̊(L1). Then a nontrivial arc in A together

with an arc in ∂H1 bounds a disk D in H1 \ N̊(L1) . We assume |D ∩ F1|
is minimal among all boundary compressing disks of A. If D ∩ F1 = ∅,

then D ¢ M1, which implies that A is boundary compressible in HL, a
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contradiction. If |D ∩ F1| ≠ ∅, by incompressibility of F1 and minimality,

the components of D∩F1 are arcs. An outermost arc in D must be nontrivial

in F1, as otherwise, we could find a boundary compression disk D′ of A in

H1 \ N̊(L1) with |D′ ∩ F1| < |D ∩ F1|, a contradiction. But then we have

a boundary compression disk for F1 in HL, a contradiction to Lemma 2.2.

Case 2: The annulus A has both boundary components on ∂N(L). Suppose

first that the components ∂A are on a single torus component of ∂N(L) in

M1, and that A is boundary compressible in H1 \ N̊(L1). A nontrivial arc

in A together with an arc in ∂N(L1) bounds a disk D in H1 \ N̊(L1) . Note

that the components of D ∩ F1 are circles, thus repeating the minimality

argument from Case 1 it follows that A is boundary compressible in HL, a

contradiction.

Suppose next that the components of ∂A are both in TK . Since A∩F = ∅,

both components of ∂A are (1, 0) curves in TK . Suppose A is boundary

compressible in H1 \ N̊(L1), then a nontrivial arc α in A together with an

arc β ¢ TK bounds a disk D in H1 \ N̊(L1). Again, choose D such that

|D ∩ F1| is minimal.

If β ∩ F = ∅, the components of |D ∩ F1| are circles, and thus we

reach a contradiction by repeating the minimality argument from Case 1
and obtaining a boundary compression for A in HL. If β ∩ F ̸= ∅, then

β intersects ∂N(L1) ∩ M1,2 in at least one arc. Thus, D must intersect F
in at least one arc. Choosing an outermost arc on D, we obtain a disk in

D ∩M1,2 with a boundary consisting of two arcs, one a nontrivial arc in F
and one in ∂N(L1) ∩M1,2. This contradicts boundary incompressibility of

F1.

□

Lemma 2.6. The manifold HL contains no essential annuli.

Proof. Suppose HL contains an essential annulus A. We assume that |A ∩
F | is minimal among all essential annuli in HL. From Lemma 2.5, we can

assume that A ∩ F ̸= ∅. There are three cases.

Case 1: The annulus A has boundary components ∂1A, ∂2A in ∂H . By

minimality and incompressibility and boundary incompressibility of F , the

components of A ∩ F are all either nontrivial circles in A and F or all

nontrivial arcs in A and F .

(1a) The components of A∩F are all nontrivial circles in A and F . Then up
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to isotopy, the boundary components ∂1A, ∂2A do not intersect F . Suppose

some component of ∂A, say ∂1A, is in M1. Then a circle C in A ∩ F
together with ∂1A bounds an annulus A∗ ¢ A in M1 such that A∗∩F = C.

Let D denote the disk in E bounded by C. Suppose D is punctured once

by L. Then HL contains a properly embedded once-punctured disk D ∪A∗

which can be pushed off E to yield an essential annulus in M1, contradicting

Lemma 2.5.

Suppose D is punctured twice by L. Then we can slide C along E out to

∂H . Hence we obtain an annulus A∗∗ that is entirely contained in M1.

So, A∗∗ is a properly embedded annulus in M1, which is incompressible

since ∂1A,C are nontrivial in A. Hence by Lemma 2.5, it is boundary

compressible in HL and both boundary curves are on ∂H1.

Doing the boundary compression on A∗∗ yields a disk with boundary on

∂H1. If the boundary of the disk is trivial on H1, as happens when the two

boundaries of A∗∗ are parallel on ∂H1, then we can form a sphere from the

disk and another disk on ∂H1. Irreducibility of HL implies we can then

isotope A to lower the number of intersections with F , a contradiction.

If the boundary of the disk is nontrivial on H1, we contradict boundary

irreducibility of HL.

(1b) The components of A ∩ F are nontrivial arcs in both A and F . Then

A is cut by F into disks in M1 and M2 with boundaries that consist of two

opposite sides in F and two opposite sides in ∂H . Let D1 ¢ M1 be one

such disk. Let R ¢ F be a rectangle such that two opposite sides of R
are the components of D1 ∩ F , and the other two sides are disjoint curves

in ∂E. Then D1 ∪ R is either a properly embedded Möbius band Q or a

properly embedded annulus A1 ¢ M1 in HL.

We begin with the case it is an annulus, which we claim is essential in

HL. By minimality of |A∩F |, A1 is incompressible, as otherwise we could

push D1 through F .

Suppose A1 is boundary compressible in HL. Then a nontrivial arc

α ¢ A1 bounds a disk D in HL with an arc β ¢ ∂H . We suppose |D ∩ F |
is minimal among all boundary compression disks of A1 in HL. By mini-

mality and incompressibility of F , the components of D ∩ F are arcs. Up

to isotopy we can assume that α ¢ D1 or α ¢ R. In the former case

D provides a boundary compression of A, a contradiction. Suppose now

that α ¢ F . If D does not intersect F in an arc distinct from α, then D
provides a boundary compression of F , a contradiction. If D ∩ F ̸= ∅,

then an outermost arc in D of D ∩ F is nontrivial in F , as otherwise by

doing a surgery we could find a boundary compression disk D′ of A1 along
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α with |D′ ∩ F | < |D ∩ F |. This yields a boundary compression of F ,

a contradiction. If A1 were boundary parallel in HL, it would be bound-

ary compressible, hence A1 is an essential annulus in HL contained in M1,

which contradicts Lemma 2.5.

Suppose now that D1 ∪ R is a Möbius band Q. Then the boundary of

a regular neighborhood of Q is an annulus A2. It cannot compress in the

regular neighborhood of Q since that is a solid torus, and the boundaries of

A2 are isotopic to twice the core curve of the solid torus. It cannot compress

to the outside of the regular neighborhood of Q because either component

of the boundary of the annulus links the core curve of the annulus, due to

the twisting of the Möbius band. If the core curve bounded a disk, that disk

would not intersect the boundary curves of the annulus, which would con-

tradict the linking. And it is boundary incompressible for the same reasons

that A1 is, also contradicting Lemma 2.5.

Case 2: The annulus A has boundary components ∂1A and ∂2A on ∂N(L).
There are two subcases.

(2a) Both ∂1A and ∂2A lie on the torus components TK1,i
and TK2,j

where

TK1,i
is a torus component of ∂N(L) contained completely in M1, and TK2,j

is a torus component of ∂N(L) contained completely in M2. By minimality

of |A∩F | and incompressibility of F , the components of A∩F are circles

which are nontrivial in both A and F . A circle C in A ∩ F bounds a sub-

annulus A∗ of A with ∂1A such that A∗ ∩ F = C which is incompressible

since C and ∂1A are nontrivial in A.

Suppose A∗ ¢ M1. Let D denote the disk in E bounded by C. If D is

punctured once, we can take the union of it with A∗, and then HL contains

an essential annulus in M1 with one boundary component on TK1,i
and an-

other boundary component on TK . If D is punctured twice, we can glue the

annulus F \D to A∗ to obtain an annulus essential in HL and contained in

M1 with one boundary component on TK1,i
and the other boundary com-

ponent on ∂H . Both cases contradict Lemma 2.5. We reach the analogous

contradictions if A∗ ¢ M2.

(2b) The annulus A has at least one boundary component ∂1A on K. Sup-

pose first that ∂1A is a (1, 0) curve in TK . Then ∂2A is either a (1, 0) curve

in TK or lies in some TK1,i
or TK2,j

. By minimality of |A ∩ F | and incom-

pressibility of F , the components of A ∩ F are circles which are nontrivial

in A and F . A circle C in A ∩ F bounds a subannulus A∗ of A with ∂1A



12 C. ADAMS AND D. SANTIAGO

such that A∗ ∩ F = C. Note A∗ is incompressible since C and ∂1A are

nontrivial in A.

Suppose, without loss of generality, that A∗ ¢ M1. Let D denote the

disk in E bounded by C. Suppose first that D is punctured once. Then we

obtain a new annulus A′∗ by gluing D onto A∗, with both boundaries now

meridians on TK . We can view A′∗ as a properly embedded annulus in M1

which is boundary compressible in HL by Lemma 2.5.

By irreducibility of HL, the annulus must be boundary parallel. If it is

boundary parallel to the M1 side of HL, then we can use that to isotope A
along TK and reduce its number of intersection curves with F , a contradic-

tion to minimality. It cannot be boundary parallel to the other side as the

boundary of the handlebody is to that side.

If D is punctured twice, then HL contains an essential annulus in M1

with one boundary component on TK and the other boundary component

on ∂H . this contradicts Lemma 2.5.

Suppose next that ∂1A is a (p, q)-curve in TK with |q| > 0. If ∂2A ¢
TK , then all components of A ∩ F are nontrivial arcs in A. If there is

an innermost arc of A ∩ F in F that is trivial in F , then A is boundary

compressible, contradicting its essentiality.

So all arcs in A ∩ F are nontrivial and parallel on F . Each component

of A ∩ M1 is a disk with boundary consisting of four arcs, two in ∂N(K)
and two in F . Let D be one of them. The two arcs on its boundary in F cut

a disk D′ from F that has two arcs on its boundary also in ∂N(K). Then

D∪D′ is either a properly embedded Möbius band Q or an annulus A′. We

consider the annulus possibility first.

If A′ is compressible, then we can use the compression disk together with

half of A′ to obtain a disk with boundary consisting of two arcs, one in F
and one in ∂N(K). But this contradicts the boundary-incompressibility of

F .

If A′ is boundary compressible by a disk D′′, we can take the arc in

D′′ ∩ A′ to be in D′ ¢ F , therefore obtaining a boundary compression of

F . So A′ is a essential annulus that does not intersect F . Therefore the

existence of A′ contradicts Lemma 2.5.

If D∪D′ is a Möbius band Q, then the boundary of Q must be a meridian

on TK as it is entirely contained in M1 and cannot be trivial as then we

would have a projective plane embedded in M1 which we could embed in

S3, a contradiction.

The boundary of a regular neighborhood of Q is an annulus A′′. It is

incompressible to the inside of the regular neighborhod of Q as that is a

solid torus, with the core curve of the annulus going around the core curve
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of the solid torus twice. It is incompressible to the outside as the boundaries

are meridian curves on TK . It is boundary incompressible as any boundary

compression would yield a boundary compression for F , a contradiction.

So again, the existence of an essential annulus A′′ that misses F contradicts

Lemma 2.5.

Suppose ∂2A is in some TK1,i
. Then there must be an intersection arc

in A ∩ F that cuts a disk from A with one boundary in F and the other

boundary in ∂N(K2). We can use it to push K2 onto E by an isotopy in HL

fixing the endpoints of K2. This implies that HL contains a compressing

disk in M2 with boundary isotopic in ∂H to ∂E. We reach the analogous

contradiction if ∂2A is in some TK2,j
.

Case 3: The annulus A has a boundary component ∂1A on ∂N(L) and a

boundary component ∂2A on ∂H .

Let J be the component of L with regular neighborhood boundary that A
intersects. Then the boundary of a regular neighborhood of A ∪ ∂N(J) is

an annulus A′ with both of its boundaries in ∂H . The boundaries of A′ are

two parallel nontrivial curves on the boundary of H that are also parallel to

the one boundary of A on ∂H . Thus A′ must be incompressible.

If A′ is boundary compressible, then do the boundary compression on

the annulus A′ to obtain a disk D′′ with boundary in ∂H . By boundary-

irreducibility of HL, D′′ would have to have trivial boundary in ∂H . The

boundary compression has the impact on ∂A′ of surgering the two curves

along an arc running from one to the other. Surgering two nontrivial par-

allel curves on a surface of genus at least two along an arc that is not in

the annulus between the curves yields a nontrivial curve. So the boundary

compression cannot be to that side. Thus the boundary compression must

be to the side of the annulus in ∂H shared by the two curves. But this side

is a solid torus missing its core curve J , preventing a boundary compression

to that side. So A′ is an essential annulus in HL with both boundaries on

∂H , contradicting Case 1.

□

Lemma 2.7. The manifold HL contains no essential torus.

Proof. Suppose HL contains an essential torus T . We assume that |T ∩ F |
is minimal among all essential tori in HL.

Suppose first that T ∩ F = ∅. Then T ¢ M1 or T ¢ M2. For con-

venience, we assume T ¢ M1. Then we can view T as a torus T in

H1 \ N̊(L1) which we show is essential.
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Suppose T is boundary parallel in H1 \ N̊(L1). Since ∂H1 has genus at

least 2, T must be parallel to a component of ∂N(L1). If it is boundary

parallel to a component J , then T must separate a solid torus from H1 that

has J as its core curve. Since F is to the side of T that H is, the solid torus

cannot intersect F1 either. So both the solid torus and J are in M1, and T is

boundary parallel in HL, contrary to our assumption.

Suppose T is compressible in H1\N̊(L1). Then a nontrivial curve γ ¢ T

bounds a disk D in H1 \N̊(L1). We assume that |D∩F1| is minimal among

all compression disks of T in H1 \ N̊(L1). Note that the components of

D ∩ F are circles.

If D ∩ F1 = ∅, then D ¢ M1, which implies that T is compressible in

HL, a contradiction. If D∩F1 ̸= ∅, by incompressibility of F , an innermost

circle of D ∩ F1 in D is trivial in F1, hence by irreducibility of HL, we can

reduce |D∩F1| by an isotopy, contradicting minimality. It follows that T is

essential in H1 \ N̊(L1), which contradicts that H1 \ N̊(L1) is hyperbolic.

Since H2 \ N̊(L2) is hyperbolic, we reach the analogous contradictions if

T ¢ M2.

Suppose next that T ∩F ̸= ∅. By minimality of |T ∩F | and incompress-

ibility of F , the components of T ∩ F are circles which are nontrivial in T
and F .

Let AC be an annulus which is a connected component of M1 ∩ T with

boundary two circles in F ∩ T . We claim the boundaries of AC are two

disjoint circles C1 and C2 which bound disjoint disks in E punctured once

by L. Suppose otherwise. Then two circles C1, C2 ¢ AC ∩ F bound disks

D1, D2 ¢ E such that D2 ¢ D1. If D2 is punctured once and D1 is punc-

tured twice by L, then we can glue D2 and a slightly moved D1 to AC to

obtain a sphere in H that is punctured three times by L. Thus D1, D2 are

both punctured once or twice by L.

Suppose D1 and D2 are both punctured twice. Then by adding the annuli

in F \ Di to AC , we obtain an annulus A′
C with boundary in ∂H . By the

same reasoning as in the proof of Case 1 in the proof of Lemma 2.6, A′
C

is boundary compressible in M1 and we can push AC through F to reduce

|A ∩ F |, contradicting minimality.

Suppose D1 and D2 are both punctured once. The circles C1 and C2

bound an annulus AC,F in F which is not punctured by L.

By gluing the punctured disks D1 and D2 onto AC , and sliding the D1

portion just off F , we obtain a new annulus AC with boundaries on AK1
.

This annulus AC ¢ M1 is properly embedded in HL with ∂AC ¢ TK . The

boundaries of AC are meridians on TK that bound an annulus A′
C,F ¢ AK1
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which is obtained from AC,F by an isotopy in M1. Note AC is incompress-

ible in HL as AC is incompressible, and hence by Lemma 2.5 it is boundary

compressible in HL. Thus a nontrivial arc α in AC bounds a disk Dβ in HL

with an arc β ¢ TK .

If β is not a nontrivial arc in A′
C,F , it intersects AK2

in a nontrivial arc. In

that case Dβ becomes a compressing disk for the torus AC ∪ (TK \ A′
C,F .

Doin the compression yields a sphere in HL that separates K from ∂H , a

contradiction to irreducibility of HL.

If β is not a nontrivial arc in A′
C,F , the disk Dβ lies in the region contained

in M1 that AC separates from HL. We can thus push Dβ by an isotopy to

obtain a boundary compression disk for AC in M1, hence AC is boundary

compressible in M1 and boundary parallel (since the boundary compressing

arc in M1 is a nontrivial arc in AC,F ) and we can push it through F to reduce

|A ∩ F |, a contradiction.

We reach the analogous contradictions if AC ¢ M2. Thus, we can as-

sume the boundaries of AC are two disjoint circles which bound disjoint

disks in E punctured once by L.

If there were more than one such annulus in M1 and one such in M2, then

following along the annuli, one after the other as we travel along a longitude

of T , we would have to have them cycle one inside the next as they pass

through F , and the torus could never close up. So there is only one to each

side of F and T is cut into two incompressible (since the elements of T ∩F
are nontrivial in T ) annuli A1 ¢ M1,A2 ¢ M2.

If we glue the punctured disks D1 and D2 to A1 we obtain an incompress-

ible annulus, which must then be boundary parallel to ∂N(K) by Lemma

2.6. The same holds for A2, implying the torus T is boundary parallel, a

contradiction to its being essential.

□

A situation where Theorem 2.1 is easily applicable is when H1 = H2,
and L1 = L2. See Figure 4.

Corollary 2.8. Let (H,L) be a handlebody/link pair that is tg-hyperbolic.

Let E1 and E2 be two disjoint twice-punctured separating disks in H . Then

cutting along the two disks, the piece with both disks on the boundary can be

discarded and the two pieces with one disk along the boundary, assuming

they are positive genus, can be glued together along those disks, and the

resulting handlebody/link pair will be tg-hyperbolic.
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FIGURE 4. Applying Theorem 2.1 to two pieces in a single handlebody.

Note that the intermediate piece that is being removed need not have

positive genus. So, we can remove appropriate tangles from a tg-hyperbolic

link in a handlebody and still preserve tg-hyperbolicity. Thus, in order to

determine tg-hyperbolicity of a link in a handlebody, all such tangles could

be removed and if the resulting simplified link is not tg-hyperbolic because

of the presence of an essential sphere, disk, annulus or torus, neither could

the original link have been.

The ideas in the proof of Theorem 2.1 extend to a different setting, where

we cut a handlebody into three pieces along disks E1 and E2 and glue one

piece to itself along the copies of E1 and E2.

Suppose L1 is a link in a handlebody H1 and (H1, L1) is tg-hyperbolic.

Suppose E1 and E2 are two nontrivial separating disks in H1 each punctured

twice by L1, which together separate a handlebody H1,2 of genus g1,2 from

two disjoint handlebodies H1,1, H1,3 of genus g1,1, g1,3 respectively, with all

these genera positive. Let M1,i = H1,i \ N̊(L1), Fi = Ei \ N̊(L1). Let

L1,2 = L1 ∩H1,2.

Gluing the subsets F1, F2 of ∂M1,2 together by an orientation preserving

homeomorphism φ : F1 → F2 sending ∂E1 to ∂E2 and ∂F1 ∩ ∂N(L1) to

∂F2∩∂N(L2) yields a link complement HL = H\N̊(L) in the handlebody

H of genus g1,2 + 1 as in Figure 5. We denote by F the image of F1 and F2

in HL.

Theorem 2.9. Suppose H1 \ L1 is tg-hyperbolic, and E1 ∩ L1 = E1 ∩
K,E2∩L1 = E2∩K ′, where K and K ′ are two distinct components of L1,

then HL is tg-hyperbolic.

Theorem 2.9 follows from the same arguments as Theorem 2.1. Namely, the

surfaces F, F1, and F2 are incompressible and boundary incompressible,



COMPOSITION PROPERTIES OF HYPERBOLIC LINKS IN HANDLEBODIES 17

FIGURE 5. Gluing M to itself by a homeomorphism F1 → F2.

and we can use this to reach the analogous contradictions from Lemmas

2.2-2.7. The requirement that the punctures of E1 and E2 correspond to

two distinct components K and K ′ of L must be introduced to force an

annulus with boundary in ∂H that intersects F in nontrivial arcs to be cut

into disks with two opposite sides in F . Without this condition the result

does not hold in general, as shown in Figure 6.

3. Applications

3.1. Staked Links. Links in handlebodies are directly related to the theory

of staked links defined in [2]. (These links are also called tunnel links as in

[10] or starred links as in as-of-yet unpublished work of N. Gügümcü and

L. Kauffman.) In this section we will only work with staked links in S2. A

staked link is a pair (LD, {pi}1fifn) of a link diagram LD ¢ S2 together

with a finite collection {pi}1fifn of isolated poles, which are distinct points

p1, . . . , pn ∈ S2 such that each pi lies in a connected component of S2 \
LD. Staked links are considered up to Reidemeister moves that do not pass

strands over elements of {pi}1fifn. A staked link determines a link in a

handlebody of genus n − 1 as follows. Choose open disks D1, . . . , Dn ¢
S2 \LD containing p1, . . . , pn respectively, such that Di∩Dj = ∅ for i ̸= j.

Then DL := S2 \ (∪n
i=1

Di) is the closure of a n − 1 punctured disk and

LD determines a link LD in the handlebody DL × [0, 1] as shown in Figure

7. A staked link (LD, {pi}1fifn) is tg-hyperbolic if (DL × [0, 1], LD) is

hyperbolic as in Section 1.
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H
1
\ L

1

H
L

FIGURE 6. A counterexample to Theorem 2.9 when the

condition on the punctures of E1, E2 is removed. Here T
is an alternating tangle which can be chosen to satisfy the

conditions of Theorem 1.6 of [3] (appearing in the next sec-

tion) so that H1 \L1 tg-hyperbolic. After cutting and gluing,

HL contains an essential annulus A with boundary in ∂H as

shown (perpendicular to the page), which intersects F in a

single nontrivial arc and which separates one component of

the link.

Given a staked link (LD, {pi}1fifn), any simple closed loop γ : [0, 1] →
S2 with γ(0) = γ(1) = pi determines a proper non self-intersecting arc

aγ ¢ S2 \ (∪n
i=1

Di) with ∂aγ ¢ ∂Di, and hence a proper separating disk

aγ × [0, 1] in DL × [0, 1], as in Figure 8. If γ intersects LD twice, this disk

could come from a gluing operation satisfying the conditions of Theorem

2.1, hence Theorem 2.1 gives a way to check if a complicated staked link

is hyperbolic by checking if it is cut by γ into pieces which come from

hyperbolic staked links.

3.2. Alternating Links. To show a link in a handlebody (H,L) is tg-hyperbolic,

it is sufficient to show that H can be given a product structure H ∼= F ×
[0, 1], where F is the closure of a disk punctured some nonzero number of

times, such that the projection of L to the surface F × {1/2} is alternating

and satisfies conditions as follows.
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FIGURE 7. A staked link LD ¢ S2 with n stakes determines

a link LD in a handlebody of genus n− 1.

FIGURE 8. A simple closed loop γ based at a pole of a

staked knot determines a separating disk in the correspond-

ing handlebody.
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Theorem 3.1 (Theorem 1.6 in [3]). Let F be a projection surface with

nonempty boundary which is not a disk, and let L ¢ F × I be a link with a

connected, reduced, alternating projection diagram π(L) ¢ F×{1/2} with

at least one crossing. Let M = (F × I) \ N(L). Then M is tg-hyperbolic

if and only if the following four conditions are satisfied:

(i) π(L) is weakly prime on F × {1/2};

(ii) the interior of every complementary region of (F × {1/2}) \ π(L)
is either an open disk or an open annulus;

(iii) if regions R1 and R2 of (F × {1/2}) \ π(L) share an edge, then at

least one is a disk;

(iv) there is no simple closed curve α in F that intersects π(L) exactly in

a nonempty collection of crossings, such that for each such crossing,

α bisects the crossing and the two opposite complementary regions

meeting at that crossing that do not intersect α near that crossing

are annuli.

By weakly prime we mean that there is no simple closed curve on the

projection surface that crosses the link twice and that bounds a disk that

contains crossings. Note that each of these conditions is easily checked for

the projection.

In the notations of Section 2, this gives a simple way to show that (H1, L1)
and (H2, L2) are tg-hyperbolic. Note that Theorem 2.1 gives the expected

behavior when both L1, L2 are alternating and K1, K2 glue together so that

K is alternating. In particular, Theorem 2.1 can apply in the general situa-

tion of gluing an alternating piece to a non-alternating piece.

As an example, for any weakly prime alternating tangle T as in Figure 9

other than 0 or 1 crossing or a horizontal sequence of bigons, (which do not

satisfy the conditions of the theorem), we can form the piece MT . Then if

we take any other hyperbolic knot in a handlebody of positive genus, and

split it into two pieces of positive genus by a twice-punctured disk, we can

glue either resulting piece to the piece MT and still generate a tg-hyperbolic

handlebody/link pair.

3.3. Planar Knotoids. Knotoids are a variation on knots given by projec-

tions of line segments defined up to Reidemeister moves and disallowing

strands to pass over or under the endpoints of the segment. When the pro-

jection surface is a plane, we say the knotoid is a planar knotoid. In [1], two

definitions of hyperbolicity of planar knotoids were given. The first, which

is called the planar reflected doubling map, associates to the knotoid a link

in a genus three handlebody. If the complement of the link is tg-hyperbolic,

the knotoid is said to be hyperbolic under the reflected doubling map. The
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FIGURE 9. If T is an alternating tangle satisfying sim-

ple restrictions, the genus 2 handlebody/link pair depicted

is tg-hyperbolic, so we can glue MT to any other piece

from a hyperbolic handlebody/link pair to obtain another tg-

hyperbolic handlebody/link pair.

second, which is called the planar gluing map, associates to the knotoid

a link in a genus two handlebody. Again, if the complement of the link

is tg-hyperbolic, the knotoid is said to be hyperbolic under the gluing map.

Proposition 2.5 in [1] proves that hyperbolicity of a planar knotoid under the

reflected doubling map implies hyperbolicity under the gluing map but not

vice versa. Further, the volume under the reflected doubling map is always

at least as large as the volume under the gluing map. Theorem 2.1 together

with the results from [3] can provide many examples of planar knotoids that

are hyperbolic under either of the two constructions.
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