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ABSTRACT. We consider knots and links in handlebodies that have hy-
perbolic complements and operations akin to composition. Cutting the
complements of two such open along separating twice-punctured disks
such that each of the four resulting handlebodies has positive genus,
and gluing a pair of pieces together along the twice-punctured disks in
their boundaries, we show the result is also hyperbolic. This should
be contrasted with composition of any pair of knots in the 3-sphere,
which is never hyperbolic. Similar results are obtained when both twice-
punctured disks are in the same handlebody and we glue a resultant piece
to itself along copies of the twice-punctured disks on its boundary. We
include applications to staked links.

1. Introduction

A compact orientable 3-manifold M is tg-hyperbolic if the manifold M’
obtained from M by shaving off all torus boundaries and capping off all
sphere boundaries with balls admits a finite volume hyperbolic metric such
that all remaining boundary components are totally geodesic. For a link
L in a handlebody H, we say that the pair (H, L) is tg-hyperbolic if the
complement of an open regular neighborhood of L in H is tg-hyperbolic.
By the Mostow-Prasad Rigidity Theorem, such a hyperbolic metric will
only depend on the complement H \ L up to homeomorphism, which allows
us to associate a hyperbolic volume to (H, L) that is invariant under ambient
isotopies of L in H.

Work of W. Thurston implies that the complement of a link in a compact
orientable 3-manifold is tg-hyperbolic if and only if it contains no properly
embedded essential disks, spheres, annuli or tori. A sphere is essential if it
does not bound a ball. A disk is essential if it is not boundary parallel. A
torus is essential if it is incompressible and not boundary-parallel. Annuli
are essential if they are incompressible, boundary-incompressible and not
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boundary-parallel. In a manifold with no essential disks or spheres, an an-
nulus that is incompressible is boundary-incompressible if and only if it is
not boundary-parallel.

Examples of knots and links in handlebodies with complements that are
tg-hyperbolic appear in [5], [7], [8], [9], and [12]. In [3], a large source of
such examples is provided. Results from [11] can also be used to generate
many more.

Let L; and L,y be two links in handlebodies H; of genus ¢g; and Hs of
genus g, respectively. Just as we have composition of two links in the 3-
sphere, we would like to define composition of these links in handlebodies.

To that end, let Dy C Hy, Dy C Hs be properly embedded disks twice
punctured by L;, Lo respectively which separate balls B; and B, from H;
and H, such that By N Ly and By N Lo are unknotted arcs. Discarding the
balls yields two handlebodies H; C H; and H), C Hy. Let L} = H{ N L4
and L, = H) N Ly. Glue Hj to H) along D, and D, via ¢. Since ¢ sends
the endpoints of the arc in L to the endpoints of the arc in L), this results
in a link in a handlebody, denoted (H7, L, Dy) @4 (H), L, Ds) in Hy as in
Figure 1.

In contrast to the usual composition of links, the link/handlebody pair
(H1, L), Dy) @4 (Hj, LY, Do) depends highly on Dy, D5, and ¢. Further-
more, while composition of links in S never results in a hyperbolic link,
(Hi, L}, Dy) &, (H), LYy, Dy) can be tg-hyperbolic.

However, even if both H; \ L, and H, \ L, are tg-hyperbolic, it is not
always true that (Hi, L}, D1) &4 (Hj, L, Ds) is tg-hyperbolic. In fact,
the disks D, and D, can always be chosen so that at least one is “knot-
ted” and there is an essential torus in the link complement associated to
(H, L', D1) @, (H, L}, D) as shown in Figure 2.

In Section 2, we provide a method to avoid the problem with “knotted
disks”. In Theorem 2.1, we prove that if the two handlebody/link pairs cut
along their disks appear as submanifolds of handlebody/link pairs of higher
genus that are tg-hyperbolic, then the composition of the original pair is
tg-hyperbolic. The presence of the rest of the higher genus tg-hyperbolic
handlebodies prevents the disk from being “knotted”. We also show an
analogue of this result where one cuts along two separating twice punctured
disks in a single handlebody and glues the resulting manifold to itself along
a homeomorphism of the twice punctured disks.

In Section 3, we discuss applications. As mentioned, [3] and [11] provide
many examples of tg-hyperbolic links in handlebodies, and our construction
here can be applied to them to generate many more. Furthermore, these
results can be applied to staked links introduced in [2], which correspond
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FIGURE 1. Forming the link (H7, L}, D) @©4 (Hj, LY, Do)

to link projections with isolated poles placed in the complementary regions,
over which strands of the link cannot pass. These are equivalent to links in
handlebodies.

We can also consider applications to knotoids. In [1], a definition of
what it means for a planar knotoid to be hyperbolic is given in terms of a
corresponding knot in a handlebody being tg-hyperbolic. So the results here
can be applied to extend the known examples of hyperbolic planar knotoids.

In addition to considering knots in handlebodies, there is work that has
been done on hyperbolicity of links in thickened surfaces, as in [4] and
[11]. Questions about compositions have been addressed in that situation,
as in [6]. Converting a method applied there to our situation can avoid the
problem of knotted disks and allow composition of tg-hyperbolic links in
handlebodies to be tg-hyperbolic without requiring them to be submani-
folds as described above. That is, we can take a geodesic ¢ that runs from
the surface of the handlebody to the link. Then the boundary of a regu-
lar neighborhood of g, including its endpoint on the link, will be a properly
embedded twice-punctured disk that cannot be knotted and therefore allows
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FIGURE 2. By choosing one of D, D, to be “knotted”, one
can create an essential torus in the complement Hj \ L3
which separates a knot exterior from H3 of the form appear-
ing in the last image.

composition to yield tg-hyperbolic links in handlebodies. However, we do
not include the details of the proof here.
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2. Proof of Main Result

For any submanifold S of a smooth manifold M, we denote by N(S) a
closed regular neighborhood of S in M and by N(.S) the interior of N(.5).
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For a space X, we denote by | X| the number of connected components of
X. Throughout, we use the fact that a handlebody is irreducible, which is to
say that it contains no essential spheres. This is true because a handlebody
can be embedded in S3, and any sphere in S cuts S into two balls. So the
sphere in the handlebody will bound a ball to one side.

Let Hy, H5 be two handlebodies, each of genus at least 2, that contain
links Ly and L such that H; \ L; and Hs \ Ly are tg-hyperbolic. Let F; and
E5 be properly embedded disks in /7 and Hs, which separate H; and H»
into handlebodies H 1, H, > and H; 1, Hs of genera ¢;1, 912 and g2 1, g2
respectively, where all genera are at least 1. Suppose further that /4 and F,
are each twice punctured by L, and L, respectively. Let L; ; = L; N H, ;.

We denote by M; ; = H;; \ N(L”) and by F, = E; \ N(L;) the cor-
responding separating surfaces. As we will ultimately only be interested in
M, ; and M5 5, we will for convenience often drop the extra subscripts and
write M 1 and M as M, and M, respectively.

A A
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FIGURE 3. The links Ly, L, in Hy, H5 respectively and the
link L in the handlebody H.

Gluing H, ; to H, > along an orientation preserving homeomorphism
¢ : Fy — F, sending OF, to 0E5 and OF) NON(Ly1) to 0F; NON (Las)
yields a manifold/link pair denoted (Hy 1, L1 1, E1)®y(Ha2, La2, E2) which
is a handlebody H of genus ¢;; + ¢»2 containing the link L formed by
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gluing L; ; and Ly along their endpoints, as in Figure 3. Let [, be the
complement of N (L) in H. We denote by F' the image of F; and F; in H,
and by F the separating disk in H corresponding to F'.

There is one component of L, which we denote by K, that is cut into two
arcs K; and K, by I, the arcs of which are in H; ; and H;, respectively.
We denote ON (K) by Tx. We denote the sub-annuli of T corresponding
to the arcs K and K5 by Ay, and Ak, respectively. A hyperbolic manifold
is always assumed tg-hyperbolic unless otherwise stated.

Theorem 2.1. Let Ly and Ly be links in Hy and Hy such that Hy \ Ly and
Hj \ Lo are tg-hyperbolic, with E; C H, and Ey C H, twice-punctured
disks separating each of H, and H, into handlebodies, all of positive genus.
If 9 : By — FEs is a homeomorphism sending OF; to OFy and sending
punctures to punctures, then (H,L) = (Hy1, L1 1, E1) @4 (Ha2, Lo, E»)
is tg-hyperbolic.

To prove Theorem 2.1, it is enough to show that since H; \ N(L;) and
Hy \ N (Ls) contain no essential disks, spheres, annuli and tori, the same
holds for H \ N(L). In the remainder of this section, we rule out these four
kinds of essential surfaces with a sequence of lemmas.

Lemma 2.2. The surfaces F, F,andF; are incompressible and boundary
incompressible in Hy.

Proof. We show that F' is incompressible and boundary incompressible.
The same reasoning immediately applies to F; and F5, as we only use that
M, and M, are submanifolds of the hyperbolic manifolds H; \ N (L1) and
Hy \ N(Ly) respectively.

Suppose that F' is compressible. Then there is some nontrivial circle C' C
F which bounds a disk D’ in M; or M,. Suppose D' C M, and let D be the
disk in £ bounded by C. Suppose that D is punctured once by L. Then the
sphere D U D’ is punctured once by K, a contradiction. Suppose next that
D is punctured twice by L. Then K is contained in the 3-ball bounded by
DU D' in Hy, so K can be pushed into a neighborhood of E by an isotopy
fixing the endpoints of /. Hence M, contains a properly embedded disk
that is essential since the boundary of the disk, which is isotopic to dFj,
splits O H; into two surfaces of positive genus. This contradicts the fact that
that H, \ N(L;) is hyperbolic. We reach the analogous contradictions if
D' C M, since Hy \ N(Ly) is hyperbolic.
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Suppose next that /' is boundary compressible. Then there is a nontrivial
arc v C F which together with an arc 5 C dH bounds a disk D in M; or
M, such that D N F' = . Suppose D C M;. There are two cases.

Case 1: The arc ( is in Ak,. If § is trivial in Ag,, then we can isotope
D so that 9D C F, which yields a compression disk for F' since o was
a nontrivial arc in F, a contradiction. If 3 is nontrivial in Ag,, then it
is a spanning arc of Ag,. Thus, K, together with an arc in £ bounds a
disk in M;. Thus we can push K3 onto /' in H; through an isotopy fixing
the endpoints of /. Once we have moved K, out of the way, we can
construct an essential disk in M with boundary isotopic in O0H,, to OF,
which contradicts that H, \ N(L,) is tg-hyperbolic.

Case 2: The arc 3 is in OH. Suppose D is separating in /; ;. Since D is
disjoint from Ag,, D separates M into two regions, each of which contains
an endpoint of /;. Since K is connected, this is a contradiction.

Suppose D is not separating in /; ;. The arc « separates an annulus A
from F' such that A* = AU D is a properly embedded annulus in H;, with
one boundary component a meridian on 7 and another boundary compo-
nenton OH. Since D is not separating in H; 1, 0A*NOH is nontrivial in 0 H,
thus A* is an essential annulus in M;, which contradicts that H, \ N (L) is
hyperbolic.

Since Hj \ N (Ls) is hyperbolic, we reach the analogous contradictions if
D C Mo, and thus F' is boundary incompressible. 0

Lemma 2.3. The manifold Hy, is irreducible.

Proof. Suppose H; contains an essential sphere .S. Suppose first that
SNE = (). Then S C M, or S C M,, which implies that one of H \N(Ll)
or Hy \ N(L;) contains an essential sphere, a contradiction.

Suppose next that S N F' # (). We assume that |.S N F'| is minimal among
all essential spheres in H;. An innermost circle C' of S N F"in .S bounds a
disk D in S such that D N F' = C. Since F' is incompressible, C' bounds a
disk D" in F. Then we can view D U D’ as a sphere in H; ; or H, 5, which
from the last case must bound a ball in Hy. Thus, we can push D to D’
and slightly beyond, pushing any other intersections of .S with D’ out of the
way as well, to reduce |S N F'|, contradicting minimality.

U

Lemma 2.4. The manifold Hy, is boundary irreducible.
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Proof. Suppose OH | has a compressing disk D’. Suppose first that 0D’ C
ON(L). Then the sphere given by ON (D’ U K'), where K’ is the corre-
sponding component of L, does not bound a ball to either side, contradicting
the fact we have already eliminated essential spheres in H7..

Suppose now that D" C 0H. If D’ N F = (), then one of 0H,; or
OH, 5 has a compression disk in M; or M, respectively, which contradicts
that H, \ N(L,) and H, \ N(Ls) are hyperbolic. Thus we can assume that
D' N F # (), and we further assume that |D’ N F| is minimal among all
compression disks of 0H . Then by incompressibility of F', the elements
of D' N F are all arcs. By minimality of |D’ , an outermost arc of
D’ N F in D' is then nontrivial in F, as otherwise by doing a surgery we
could find a compression disk D" of 0H, with |[D” N F| < |D’' N F|. This
outermost arc cuts a disk from D’ that gives a boundary compression for F’,
a contradiction. d

Lemma 2.5. The manifold Hy, does not contain an essential annulus A with
ANF =0

Proof. Suppose H contains such an annulus, and assume without loss of
generality that A C M. We can view A as a properly embedded annulus A
in H, \ N(L,) which we will show is essential H; \ N (L), a contradiction
to its being tg-hyperbolic.

Suppose A is compressible in H; \ N(Ly). Then a nontrivial simple
closed curve v C A bounds a disk D in H; \ N (L1). We assume that
| DN Fy| is minimal among all compression disks of A in H; \ N(L1). Note
that the components of D N F} are circles. If DN Fy = (), then D C My,
which implies that A is compressible in H;, a contradiction. If DN Fy # (),
by incompressibility of F, an innermost circle of D N F} in D is trivial in
F1, hence by irreducibility of H, we can reduce |D N F}| by an isotopy,
contradicting minimality.

Thus, A is boundary compressible in /; \ N(L;). (Note that if A is
boundary parallel, then it is boundary compressible.) Therefore, both bound-
ary components of A must be on the same component of 9H,. We consider
two cases.

Case 1: The annulus A has both boundary components on H. Suppose A
is boundary compressible in \N (L1). Then a nontrivial arc in A together
with an arc in @H; bounds a disk D in Hy \ N(Ly) . We assume |D N F}|
is minimal among all boundary compressing disks of A. If D N Fy = 0,
then D C M, which implies that A is boundary compressible in Hy, a
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contradiction. If |[D N Fy| # ), by incompressibility of F; and minimality,
the components of DN [ are arcs. An outermost arc in 1) must be nontrivial
in F}, as otherwise, we could find a boundary compression disk D’ of Ain
Hy \ N(L,) with |D’ N Fy| < |D N Fy|, a contradiction. But then we have
a boundary compression disk for Fj in H, a contradiction to Lemma 2.2.

Case 2: The annulus A has both boundary components on 9N (L). Suppose
first that the components OA are on a single torus component of ON (L) in
M, and that A is boundary compressible in H; \ N (L1). A nontrivial arc
in A together with an arc in N (L;) bounds a disk D in H, \ N(L;) . Note
that the components of D N [} are circles, thus repeating the minimality
argument from Case 1 it follows that A is boundary compressible in Hy, a
contradiction.

Suppose next that the components of 9 A are both in Ty. Since ANE = (),
both components of OA are (1,0) curves in Tk. Suppose A is boundary
compressible in Hj \ N (L1), then a nontrivial arc « in A together with an
arc 3 C Ty bounds a disk D in H; \ N(L;). Again, choose D such that
|D N Fy| is minimal.

If 5N F = (), the components of |[D N Fy| are circles, and thus we
reach a contradiction by repeating the minimality argument from Case 1
and obtaining a boundary compression for A in Hy. If 5N F # (), then
B intersects ON (L) N M 5 in at least one arc. Thus, D must intersect F'
in at least one arc. Choosing an outermost arc on ), we obtain a disk in
D N M, » with a boundary consisting of two arcs, one a nontrivial arc in F’
and one in ON (L) N M, 5. This contradicts boundary incompressibility of
.

U

Lemma 2.6. The manifold H, contains no essential annuli.

Proof. Suppose H;, contains an essential annulus A. We assume that |A N
F| is minimal among all essential annuli in H;. From Lemma 2.5, we can
assume that A N F' # (). There are three cases.

Case 1: The annulus A has boundary components 0, A, 9: A in 0H. By
minimality and incompressibility and boundary incompressibility of F', the
components of A N F' are all either nontrivial circles in A and F' or all
nontrivial arcs in A and F.

(1a) The components of AN F’ are all nontrivial circles in A and F'. Then up
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to isotopy, the boundary components 0; A, 9> A do not intersect F'. Suppose
some component of A, say 04 A, is in M;. Then a circle C'in AN F
together with 9; A bounds an annulus A* C A in M; such that A*NF = C.

Let D denote the disk in E bounded by C'. Suppose D is punctured once
by L. Then H contains a properly embedded once-punctured disk D U A*
which can be pushed off £ to yield an essential annulus in M, contradicting
Lemma 2.5.

Suppose D is punctured twice by L. Then we can slide C' along E out to
OH. Hence we obtain an annulus A** that is entirely contained in M.

So, A** is a properly embedded annulus in M4, which is incompressible
since 0, A, C' are nontrivial in A. Hence by Lemma 2.5, it is boundary
compressible in H;, and both boundary curves are on 0H.

Doing the boundary compression on A** yields a disk with boundary on
OH,. If the boundary of the disk is trivial on H;, as happens when the two
boundaries of A** are parallel on 0 Hy, then we can form a sphere from the
disk and another disk on OH,. Irreducibility of H; implies we can then
isotope A to lower the number of intersections with F', a contradiction.

If the boundary of the disk is nontrivial on H;, we contradict boundary
irreducibility of H .

(1b) The components of A N F' are nontrivial arcs in both A and F. Then
A is cut by F' into disks in M; and M, with boundaries that consist of two
opposite sides in F' and two opposite sides in 0H. Let D; C M; be one
such disk. Let R C F be a rectangle such that two opposite sides of R
are the components of Dy N F', and the other two sides are disjoint curves
in OF. Then D; U R is either a properly embedded Mobius band () or a
properly embedded annulus A; C M; in Hy.

We begin with the case it is an annulus, which we claim is essential in
Hp. By minimality of | AN F'|, A; is incompressible, as otherwise we could
push D; through F'.

Suppose A; is boundary compressible in Hy. Then a nontrivial arc
a C A, bounds a disk D in Hy, with an arc 5 C 0H. We suppose |D N F|
is minimal among all boundary compression disks of A; in H;. By mini-
mality and incompressibility of /', the components of D N F' are arcs. Up
to isotopy we can assume that « C D; or « C R. In the former case
D provides a boundary compression of A, a contradiction. Suppose now
that « C F. If D does not intersect F' in an arc distinct from «, then D
provides a boundary compression of F', a contradiction. If D N F # ),
then an outermost arc in D of D N F' is nontrivial in /', as otherwise by
doing a surgery we could find a boundary compression disk D’ of A; along
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a with |[D' N F| < |D N F|. This yields a boundary compression of F,
a contradiction. If A; were boundary parallel in H, it would be bound-
ary compressible, hence A; is an essential annulus in H}, contained in M,
which contradicts Lemma 2.5.

Suppose now that D; U R is a Mobius band (). Then the boundary of
a regular neighborhood of () is an annulus A,. It cannot compress in the
regular neighborhood of () since that is a solid torus, and the boundaries of
As are isotopic to twice the core curve of the solid torus. It cannot compress
to the outside of the regular neighborhood of () because either component
of the boundary of the annulus links the core curve of the annulus, due to
the twisting of the Mdbius band. If the core curve bounded a disk, that disk
would not intersect the boundary curves of the annulus, which would con-
tradict the linking. And it is boundary incompressible for the same reasons
that A, is, also contradicting Lemma 2.5.

Case 2: The annulus A has boundary components 0; A and 9, A on ON (L).
There are two subcases.

(2a) Both 0; A and 0, A lie on the torus components T, , and Tk, , where
T, , is a torus component of N (L) contained completely in M, and Tk, |
is a torus component of 9N (L) contained completely in M/>. By minimality
of |AN F| and incompressibility of F', the components of AN F are circles
which are nontrivial in both A and F'. A circle C'in A N F bounds a sub-
annulus A* of A with 0; A such that A* N F' = C which is incompressible
since C' and 0; A are nontrivial in A.

Suppose A* C M. Let D denote the disk in £ bounded by C. If D is
punctured once, we can take the union of it with A*, and then H, contains
an essential annulus in M; with one boundary component on 7T, , and an-
other boundary component on 7T'x. If D is punctured twice, we can glue the
annulus F'\ D to A* to obtain an annulus essential in /H, and contained in
M with one boundary component on T, , and the other boundary com-
ponent on OH. Both cases contradict Lemma 2.5. We reach the analogous
contradictions if A* C M,.

(2b) The annulus A has at least one boundary component 9; A on K. Sup-
pose first that 0; A is a (1, 0) curve in T. Then 0, A is either a (1,0) curve
in T or lies in some Tk, , or Tk, ;. By minimality of |A N F'| and incom-
pressibility of F', the components of A N F are circles which are nontrivial
in A and F. A circle C in A N F bounds a subannulus A* of A with 0; A
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such that A* N F' = (. Note A* is incompressible since C' and 0; A are
nontrivial in A.

Suppose, without loss of generality, that A* C M;. Let D denote the
disk in E bounded by C'. Suppose first that D is punctured once. Then we
obtain a new annulus A by gluing D onto A*, with both boundaries now
meridians on T. We can view A" as a properly embedded annulus in M
which is boundary compressible in //;, by Lemma 2.5.

By irreducibility of Hj, the annulus must be boundary parallel. If it is
boundary parallel to the M; side of H;, then we can use that to isotope A
along T’k and reduce its number of intersection curves with F', a contradic-
tion to minimality. It cannot be boundary parallel to the other side as the
boundary of the handlebody is to that side.

If D is punctured twice, then Hj contains an essential annulus in M,
with one boundary component on 7% and the other boundary component
on OH. this contradicts Lemma 2.5.

Suppose next that 9, A is a (p, ¢)-curve in Tk with |g| > 0. If 0,A C
Tk, then all components of A N F' are nontrivial arcs in A. If there is
an innermost arc of A N F in F that is trivial in F, then A is boundary
compressible, contradicting its essentiality.

So all arcs in A N F are nontrivial and parallel on F'. Each component
of AN M, is a disk with boundary consisting of four arcs, two in ON(K)
and two in . Let D be one of them. The two arcs on its boundary in F' cut
a disk D’ from F that has two arcs on its boundary also in ON(XK). Then
DU D' is either a properly embedded Mobius band () or an annulus A’. We
consider the annulus possibility first.

If A" is compressible, then we can use the compression disk together with
half of A’ to obtain a disk with boundary consisting of two arcs, one in F’
and one in ON (K). But this contradicts the boundary-incompressibility of
F.

If A’ is boundary compressible by a disk D”, we can take the arc in
D"Nn A’ tobein D' C F, therefore obtaining a boundary compression of
F. So A’ is a essential annulus that does not intersect F'. Therefore the
existence of A’ contradicts Lemma 2.5.

If DU D' is a Mobius band (), then the boundary of () must be a meridian
on Ty as it is entirely contained in M; and cannot be trivial as then we
would have a projective plane embedded in M; which we could embed in
S3. a contradiction.

The boundary of a regular neighborhood of () is an annulus A”. Tt is
incompressible to the inside of the regular neighborhod of () as that is a
solid torus, with the core curve of the annulus going around the core curve
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of the solid torus twice. It is incompressible to the outside as the boundaries
are meridian curves on 7. It is boundary incompressible as any boundary
compression would yield a boundary compression for /', a contradiction.
So again, the existence of an essential annulus A” that misses F' contradicts
Lemma 2.5.

Suppose 0, A is in some Tk, ,. Then there must be an intersection arc
in A N F that cuts a disk from A with one boundary in F' and the other
boundary in N (K3). We can use it to push K, onto E by an isotopy in H,
fixing the endpoints of K. This implies that /{; contains a compressing
disk in M, with boundary isotopic in 0H to 0FE. We reach the analogous
contradiction if d, A is in some Tk, ;.

Case 3: The annulus A has a boundary component 9; A on ON (L) and a
boundary component 0> A on OH.

Let J be the component of L with regular neighborhood boundary that A
intersects. Then the boundary of a regular neighborhood of A U ON(J) is
an annulus A’ with both of its boundaries in OH. The boundaries of A’ are
two parallel nontrivial curves on the boundary of H that are also parallel to
the one boundary of A on 0H. Thus A’ must be incompressible.

If A" is boundary compressible, then do the boundary compression on
the annulus A’ to obtain a disk D" with boundary in 0H. By boundary-
irreducibility of Hy, D” would have to have trivial boundary in 0H. The
boundary compression has the impact on 0A’ of surgering the two curves
along an arc running from one to the other. Surgering two nontrivial par-
allel curves on a surface of genus at least two along an arc that is not in
the annulus between the curves yields a nontrivial curve. So the boundary
compression cannot be to that side. Thus the boundary compression must
be to the side of the annulus in 0H shared by the two curves. But this side
is a solid torus missing its core curve J, preventing a boundary compression
to that side. So A’ is an essential annulus in H; with both boundaries on
OH, contradicting Case 1.

U

Lemma 2.7. The manifold H, contains no essential torus.

Proof. Suppose H, contains an essential torus 7. We assume that |7 N F|
is minimal among all essential tori in H7.

Suppose first that 7 N F = (). Then T C M; or T C M,. For con-
Venienoce, we assume 7 C M;. Then we can view 7 as a torus 7 in
H, \ N(L;) which we show is essential.
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Suppose T is boundary parallel in H; \ N (Ly). Since OH; has genus at
least 2, 7 must be parallel to a component of ON (L;). If it is boundary
parallel to a component .J, then 7 must separate a solid torus from H; that
has J as its core curve. Since F is to the side of T that H is, the solid torus
cannot intersect F} either. So both the solid torus and J are in M, and T is
boundary parallel in H, contrary to our assumption.

Suppose 7 is compressible in H, \N(Ly). Then a nontrivial curve y C T
bounds a disk D in H; \ N'(L;). We assume that | D N F} | is minimal among
all compression disks of 7 in H; \ N(L;). Note that the components of
D N F are circles.

If DN F; = (), then D C M,, which implies that 7 is compressible in
Hp, acontradiction. If DN F} # (), by incompressibility of F', an innermost
circle of D N F} in D is trivial in F7, hence by irreducibility of Hj, we can
reduce |[D N F}| by an isotopy, contradicting mmlmahty It follows that 7T is
essential in [, \ N(L,), which contradicts that H, \ N(Ly) is hyperbolic.
Since Hj \ N (Ls) is hyperbolic, we reach the analogous contradictions if
T C M.

Suppose next that 7N F' # (). By minimality of |7 N F| and incompress-
ibility of F', the components of 7 N F are circles which are nontrivial in 7
and F.

Let A¢ be an annulus which is a connected component of M; N T with
boundary two circles in /' N 7. We claim the boundaries of A are two
disjoint circles C'; and C'y which bound disjoint disks in £ punctured once
by L. Suppose otherwise. Then two circles C,Cy C Ac N F bound disks
Dy, D, C E such that D, C D;. If Ds is punctured once and D, is punc-
tured twice by L, then we can glue D; and a slightly moved D, to A¢ to
obtain a sphere in H that is punctured three times by L. Thus Dy, D, are
both punctured once or twice by L.

Suppose D; and D, are both punctured twice. Then by adding the annuli
in '\ D; to Ac, we obtain an annulus A}, with boundary in H. By the
same reasoning as in the proof of Case 1 in the proof of Lemma 2.6, A,
is boundary compressible in M; and we can push A through F' to reduce
|A N F|, contradicting minimality.

Suppose D; and D, are both punctured once. The circles C; and Cs
bound an annulus A¢ r in F' which is not punctured by L.

By gluing the punctured disks D; and D, onto A¢, and sliding the D,
portion just off F', we obtain a new annulus A. with boundaries on A, .
This annulus Ac C M, is properly embedded in H;, with 9A- C Txk. The
boundaries of A¢ are meridians on T that bound an annulus Ao r C Ak,
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which is obtained from A¢, by an isotopy in M;. Note A is incompress-
ible in Hy, as A¢ is incompressible, and hence by Lemma 2.5 it is boundary
compressible in H,. Thus a nontrivial arc «v in A bounds a disk Dgin Hy,
with an arc 5 C Tk.

If 3 is not a nontrivial arc in Af, r, it intersects A, in a nontrivial arc. In

that case D becomes a compressing disk for the torus A U (T \ Af .
Doin the compression yields a sphere in Hj, that separates K from 0H, a
contradiction to irreducibility of H,.

If 3 is not a nontrivial arc in A¢, ., the disk Dy lies in the region contained

in M, that A separates from H. We can thus push Dg by an isotopy to
obtain a boundary compression disk for A in My, hence A¢ is boundary
compressible in M and boundary parallel (since the boundary compressing
arc in M is a nontrivial arc in A¢ ) and we can push it through F' to reduce
|A N F|, a contradiction.

We reach the analogous contradictions if A C M,. Thus, we can as-
sume the boundaries of A are two disjoint circles which bound disjoint
disks in £ punctured once by L.

If there were more than one such annulus in M, and one such in M5, then
following along the annuli, one after the other as we travel along a longitude
of 7, we would have to have them cycle one inside the next as they pass
through F', and the torus could never close up. So there is only one to each
side of F'and 7T is cut into two incompressible (since the elements of 7 N F
are nontrivial in 7) annuli A; C M, Ay C M.

If we glue the punctured disks D7 and D, to A; we obtain an incompress-
ible annulus, which must then be boundary parallel to 0N (K) by Lemma
2.6. The same holds for .4,, implying the torus 7 is boundary parallel, a
contradiction to its being essential.

U

A situation where Theorem 2.1 is easily applicable is when H; = Ho,
and L, = L. See Figure 4.

Corollary 2.8. Let (H, L) be a handlebody/link pair that is tg-hyperbolic.
Let £y and E5 be two disjoint twice-punctured separating disks in H. Then
cutting along the two disks, the piece with both disks on the boundary can be
discarded and the two pieces with one disk along the boundary, assuming
they are positive genus, can be glued together along those disks, and the
resulting handlebody/link pair will be tg-hyperbolic.
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FIGURE 4. Applying Theorem 2.1 to two pieces in a single handlebody.

Note that the intermediate piece that is being removed need not have
positive genus. So, we can remove appropriate tangles from a tg-hyperbolic
link in a handlebody and still preserve tg-hyperbolicity. Thus, in order to
determine tg-hyperbolicity of a link in a handlebody, all such tangles could
be removed and if the resulting simplified link is not tg-hyperbolic because
of the presence of an essential sphere, disk, annulus or torus, neither could
the original link have been.

The ideas in the proof of Theorem 2.1 extend to a different setting, where
we cut a handlebody into three pieces along disks F; and F5 and glue one
piece to itself along the copies of E; and Fj.

Suppose L; is a link in a handlebody H; and (Hy, L) is tg-hyperbolic.
Suppose F; and E5 are two nontrivial separating disks in //; each punctured
twice by L, which together separate a handlebody H; 5 of genus g; o from
two disjoint handlebodies H, 1, H; 3 of genus g; 1, g1 3 respectively, with all
these genera positive. Let M, = Hy; \ ](/(Ll),Fi = FE;\ ]\Of(Ll). Let
LLQ == Ll N HLQ.

Gluing the subsets £, F;, of M , together by an orientation preserving
homeomorphism ¢ : F; — F» sending OF; to 0Es and OF; N ON(L4) to
OF,NON(Ly) yields a link complement H;, = H\N(L) in the handlebody
H of genus g; » + 1 as in Figure 5. We denote by [ the image of F and [
in H L

Theorem 2.9. Suppose Hy \ L, is tg-hyperbolic, and E1 N Ly = E; N
K, EyNLy = EoN K/, where K and K' are two distinct components of L,
then Hy, is tg-hyperbolic.

Theorem 2.9 follows from the same arguments as Theorem 2.1. Namely, the
surfaces F, F, and F;, are incompressible and boundary incompressible,
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FIGURE 5. Gluing M to itself by a homeomorphism F; — F5.
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and we can use this to reach the analogous contradictions from Lemmas
2.2-2.7. The requirement that the punctures of F; and F5 correspond to
two distinct components K and K’ of L must be introduced to force an
annulus with boundary in 0H that intersects F' in nontrivial arcs to be cut
into disks with two opposite sides in F'. Without this condition the result
does not hold in general, as shown in Figure 6.

3. Applications

3.1. Staked Links. Links in handlebodies are directly related to the theory
of staked links defined in [2]. (These links are also called tunnel links as in
[10] or starred links as in as-of-yet unpublished work of N. Giiglimcii and
L. Kauffman.) In this section we will only work with staked links in S%. A
staked link is a pair (Lp, {p;}1<i<n) of a link diagram Lp C S? together
with a finite collection {p; }1<;<, of isolated poles, which are distinct points
P1,...,Pn € S? such that each p; lies in a connected component of S? \
Lp. Staked links are considered up to Reidemeister moves that do not pass
strands over elements of {p;}1<i<,. A staked link determines a link in a
handlebody of genus n — 1 as follows. Choose open disks D, ..., D, C
S?\ Lp containing py, . . ., p, respectively, such that D; N D; = () for i # j.
Then Dy := S?\ (U™, D;) is the closure of a n — 1 punctured disk and
Lp determines a link Lp in the handlebody D x [0, 1] as shown in Figure
7. A staked link (Lp, {p;}1<i<n) is tg-hyperbolic if (D x [0,1], Lp) is
hyperbolic as in Section 1.
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FIGURE 6. A counterexample to Theorem 2.9 when the
condition on the punctures of £y, F); is removed. Here T’
is an alternating tangle which can be chosen to satisfy the
conditions of Theorem 1.6 of [3] (appearing in the next sec-
tion) so that H; \ L; tg-hyperbolic. After cutting and gluing,
H7, contains an essential annulus A with boundary in 0H as
shown (perpendicular to the page), which intersects £’ in a
single nontrivial arc and which separates one component of
the link.

Given a staked link (Lp, {p; }1<i<n), any simple closed loop 7 : [0, 1] —
S? with v(0) = (1) = p; determines a proper non self-intersecting arc
a, C S?\ (U, D;) with da, C dD;, and hence a proper separating disk
a x [0,1]in Dy, x [0, 1], as in Figure 8. If ~y intersects L twice, this disk
could come from a gluing operation satisfying the conditions of Theorem
2.1, hence Theorem 2.1 gives a way to check if a complicated staked link
is hyperbolic by checking if it is cut by v into pieces which come from
hyperbolic staked links.

3.2. Alternating Links. To show a link in a handlebody (H, L) is tg-hyperbolic,
it is sufficient to show that H can be given a product structure H = F' X

0, 1], where F is the closure of a disk punctured some nonzero number of
times, such that the projection of L to the surface F' x {1/2} is alternating

and satisfies conditions as follows.
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FIGURE7. A staked link L, C S? with n stakes determines
a link Lp in a handlebody of genus n — 1.

a, % [0,1]

FIGURE 8. A simple closed loop « based at a pole of a
staked knot determines a separating disk in the correspond-
ing handlebody.
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Theorem 3.1 (Theorem 1.6 in [3]). Let F' be a projection surface with
nonempty boundary which is not a disk, and let L. C F' x I be a link with a
connected, reduced, alternating projection diagram (L) C F x{1/2} with
at least one crossing. Let M = (F x 1)\ N(L). Then M is tg-hyperbolic
if and only if the following four conditions are satisfied:
(i) w(L) is weakly prime on F' x {1/2};
(ii) the interior of every complementary region of (F' x {1/2}) \ w(L)
is either an open disk or an open annulus;
(iii) if regions Ry and Ry of (F x {1/2}) \ w(L) share an edge, then at
least one is a disk;
(iv) there is no simple closed curve o in F that intersects w(L) exactly in
a nonempty collection of crossings, such that for each such crossing,
« bisects the crossing and the two opposite complementary regions
meeting at that crossing that do not intersect o« near that crossing
are annuli.

By weakly prime we mean that there is no simple closed curve on the
projection surface that crosses the link twice and that bounds a disk that
contains crossings. Note that each of these conditions is easily checked for
the projection.

In the notations of Section 2, this gives a simple way to show that (H;, L;)
and (Hy, Ly) are tg-hyperbolic. Note that Theorem 2.1 gives the expected
behavior when both L, L, are alternating and K, K glue together so that
K is alternating. In particular, Theorem 2.1 can apply in the general situa-
tion of gluing an alternating piece to a non-alternating piece.

As an example, for any weakly prime alternating tangle 7" as in Figure 9
other than O or 1 crossing or a horizontal sequence of bigons, (which do not
satisfy the conditions of the theorem), we can form the piece M. Then if
we take any other hyperbolic knot in a handlebody of positive genus, and
split it into two pieces of positive genus by a twice-punctured disk, we can
glue either resulting piece to the piece M and still generate a tg-hyperbolic
handlebody/link pair.

3.3. Planar Knotoids. Knotoids are a variation on knots given by projec-
tions of line segments defined up to Reidemeister moves and disallowing
strands to pass over or under the endpoints of the segment. When the pro-
jection surface is a plane, we say the knotoid is a planar knotoid. In [1], two
definitions of hyperbolicity of planar knotoids were given. The first, which
is called the planar reflected doubling map, associates to the knotoid a link
in a genus three handlebody. If the complement of the link is tg-hyperbolic,
the knotoid is said to be hyperbolic under the reflected doubling map. The
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FIGURE 9. If T is an alternating tangle satisfying sim-
ple restrictions, the genus 2 handlebody/link pair depicted
is tg-hyperbolic, so we can glue My to any other piece
from a hyperbolic handlebody/link pair to obtain another tg-
hyperbolic handlebody/link pair.

second, which is called the planar gluing map, associates to the knotoid
a link in a genus two handlebody. Again, if the complement of the link
is tg-hyperbolic, the knotoid is said to be hyperbolic under the gluing map.
Proposition 2.5 in [1] proves that hyperbolicity of a planar knotoid under the
reflected doubling map implies hyperbolicity under the gluing map but not
vice versa. Further, the volume under the reflected doubling map is always
at least as large as the volume under the gluing map. Theorem 2.1 together
with the results from [3] can provide many examples of planar knotoids that
are hyperbolic under either of the two constructions.
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