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A B S T R A C T

Machine tool controllers (MTCs) are evolving rapidly in response to the growing precision requirements,
industry-wide thrusts to integrate cloud applications, external sensors and other data sources, as well to assure
cybersecurity. However, most of the MTCs have closed architecture. This severely impedes the innovations to
enhance their performance as well as assure their safety and security. Digital emulators, as alternatives to real
closed architecture MTCs, are considered essential to assess the performance of the closed MTCs and various
innovations therein. We present a machine learning method to create digital emulators that can mimic the
dynamics of closed architecture MTCs. The proposed method is based on interrogating the controller using a set
of production recipes (e.g., G-codes) and employing the response of the controller to learn a low-dimensional
parameterization of the underlying architecture. The low-dimensional base model captures the key aspects of
the structure and dynamic connectivity among the various components of an MTC. The parameters of the
base model are tuned based on the outputs of an MTC gathered using standard data exchange protocols (e.g.
OPC UA, MTConnect). We applied the proposed approach to develop emulators for a SIEMENS controller that
mimics X–Y motion of their 2-axis motion control systems. The current implementation of the emulator can
track the measured path trajectories up to 0.23 mm accuracy for various geometries tested. Our approach can
be used to generalize emulator development for different types of real world MTCs.
1. Introduction

Most industrial MTCs have had a closed architecture for several
decades [1,2]. The closed architecture is aimed at preserving pro-
rietary information about the controllers, offering a competitive ad-
antage to the original equipment manufacturers. However, it comes
t the expense of limited understanding of the underlying behaviors
nd vulnerabilities, besides impeding possible innovations to enhance
he controller. These enhancements are necessitated for two critical
easons. First, manufacturing precision assurance is increasingly pushed
rom the design stages onto the controller [3]. Innovations in the under-

lying architecture is at the central towards assuring precision control
of machine and process parameters. Second, with worldwide growth
in industrial automation and digitalization of manufacturing environ-
ments [4,5], MTCs are increasingly integrated with cloud applications,
external Internet of Things (IoT) sensors, and other data sources. This
trend towards digitalization and smartification introduces significant
cybersecurity challenges. MTCs are becoming primary attack targets for
cyber-criminals [6]. The consequences of attacks on MTCs can lead to
unreliable parts and accidents in a manufacturing plant floor [7]. MTCs
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need appropriate defense mechanisms which can provide cybersecurity
assurance in a manufacturing plant floor.

Additionally, offline testing of MTCs in a production scenario can
be very expensive due to safety implications and restrictive down
time costs. Therefore inexpensive and non-invasive approaches are
highly desirable to assess controller performance and effectiveness
of cybersecurity assurance techniques to protect against vulnerabil-
ities [6]. Another example includes cloud based control-by-software
paradigms [8–10]. Under this paradigm, the control policy is gener-
ated in the cloud and the control signals to actuators of mechanical
systems (like autonomous vehicles) are received from geographically
distant locations. Such paradigms bring various uncertainties and open
novel vulnerabilities for controllers. Again, controller performance as-
sessment (for example, as a function of network and cloud delays)
becomes important in this setting. The current ‘‘black-box’’ MTCs,
offering minimum access to assess their behaviors under various in-
dustrial manufacturing scenarios, hamper the innovations towards,
and evaluation of, quality [11], performance [12], safety [13], and
cybersecurity [14] assurance.
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Nomenclature

CLBD Closed loop Block Diagram
DED Directed Energy Deposition
DWM Dynamic Watermarking
GA Genetic Algorithm
IoT Internet of Things
MSE Mean Square Error
MTC Machine Tool Controller
OPC Open Platform Communications
UA Unified Architecture

Our paper bridges the gap between the (i) knowledge of the black-
ox governing the dynamic input–output relations of controllers, and
ii) development and testing of cybersecurity and quality assurance
echniques for controllers. We propose a novel machine-learning based
pproach to developing emulators of MTCs. The emulator is developed
y parameterizing the underlying transfer functions of the widespread
ontrol structure employed in manufacturing MTCs [1]. The closed

architecture of MTCs make it very challenging to decipher the param-
eter values therefore encouraging the use of data-driven approaches to
decipher the parameters that can accurately emulate physical MTCs.
The parameterized emulator used in this work serves as a minimal rep-
resentation of the MTCs which accurately captures the dynamics of the
physical MTC. While more complex non-parametric emulators which
are optimally tuned can offer superior performance over traditional
physics-based models, owing to their flexibility, often times in such
cases the underlying structure in relevance to the physical MTC is lost.
This makes it challenging to rely on these complex emulator structures
in novel situations. In this work, the emulator is modeled such that the
MTC structure is preserved and allows use of machine-data to tune the
parameters of the emulator for resembling physical MTCs in response
to manufacturing instructions.

We note that in recent years there have been increased and often
overloaded use of terms such as ‘‘digital twins’’ and ‘‘virtualizations’’ of
various entities and processes of a manufacturing system [15,16]. While
he emulator we present can be characterized in terms of these, we note
hat the emulator presented here specifically refers to a software code
hat captures the dynamics, and hence mimics the salient behaviors of
he controllers. We also contrast an emulator from a simulation model
n the sense that the emulator aims to mimic an entity, here, an MTC
nd its dynamics, and a simulator focuses on mimicking the actions
nd/or activities of the various entities of a system.

The proposed emulator development approach employs the current
nderstanding of MTC architecture to parameterize a ‘‘best guess’’ low-
imensional model of a controller, and uses the response of the machine
ool when ‘‘probed’’ with different manufacturing instructions (i.e., G-
odes) to learn the model parameters. The method was implemented to
reate an emulator of a Sinumerik 828D MTC from Siemens that serves
n Optomec MTS 500 Hybrid Additive (DED) machine tool. The emula-
or was able to mimic the motion of the physical MTC to submillimeter
recisions for various horizontal (X–Y table) motion trajectories. The
roposed approach allows the derivation of emulators whose structure
an be directly related to the various elements of physical MTCs, and
heir parameters can be tuned to match the behaviors of a broad range
f industrial MTCs.

The emulator which has been tuned to a certain MTC can then be
sed for further testing of novel applications under simulated scenarios
efore their actual deployment on a real machine. Unraveling of a
lack-box controller improves the understanding of the controllers and
herefore help with testing and enhancing the controllers. Also, many of
he emerging cybersecurity assurance techniques require knowledge of
he transfer functions of the controllers. For example, dynamic water-
arking (DWM) [17] helps in detecting attacks to the system. However,
696
Fig. 1. Overview of methodology for development of MTC emulator.

this requires the state-space equation of the dynamic system which may
not be readily available. Knowledge of the black box can also help in
devising effective defense mechanisms and conduct what-if analysis.
The key contribution of this work is methodological in nature which
proposes the development of a physics-driven parametric model for an
MTC emulator. This emulator type is an alternate to other parametric
and non-parametric models [18]. Non-parametric models although can
offer superior performance, they fail to generalize well due to lack of
resemblance to underlying MTC structures. Such non-parametric emu-
lators are also data-intensive which may be restrictive in manufacturing
systems due to limitations imposed by MTC communication protocols.
On the other hand, our choice of a physics-driven parametric model for
the emulator are a minimal representation which retains the underlying
MTC structure by introducing the knowledge of dynamics [13,19]
which allows us to estimate and tune the impedance characteristics
to required performance criteria for the MTC. Emulators with physics-
driven parametric models also have the ability to generalize to novel
physical MTCs. Such tuning approaches are not straightforward in other
types of parametric and non-parametric emulator models.

The remainder of the paper is organized as follows. Section 2
discusses development of an emulator. In Section 3, we validate the
emulator using different contour designs for 2-axis processes such as
3D printing and milling. Section 4 concludes the paper.

2. Methodology

In our approach to developing an emulator for an MTC, we limit
the functionalities of the emulator to accurately model a 2-axis motion
control system. This choice is informed by the ubiquity of these 2-axis
motion systems in real world manufacturing systems, and process-
agnostic nature of these motion controllers [20]. In developing an
emulator, we follow three key steps in our methodology which is
outlined in Fig. 1. First, we define an appropriate structural basis for
our emulator via a parameterization step. Here, we identify a minimal
set of emulator parameters which can capture the salient behaviors
of real world MTCs. Next, we probe a real world closed architecture
controller using specific set of G-Codes. As the controller executes the
G-code, we collect the machine data, specifically, the key way points
on actual motion trajectory, including the positions and velocities,
employing OPC UA interface. Last, the parameter values are learned
by formulating and solving an optimization problem. The emulator
parameters learned from the machine data would accurately generate
2-axis motion trajectories resembling that of MTCs. The remainder of

the section discusses the methodology in detail.



Journal of Manufacturing Systems 68 (2023) 695–703A. Tiwari et al.

t
o

Fig. 2. (a) Schematic diagram for 2-axis motion control system (adapted from [21]) (b) X-axis closed loop block diagram with input and output signals of various controllers.
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2.1. Emulator structure and parameterization

The structural basis of choice for the development of an emulator
for a 2-axis X–Y motion control system is illustrated in Fig. 2(a). Such a
representation captures the salient behaviors of controllers in a variety
of automated manufacturing machine tools, including conventional
CNC machining, 3D printing, forming processes. Although the scope
of our emulator in this work is limited to 2-axis it can be extended to
additional axes.

In automated manufacturing machine tools, a part program (G-
code) is provided as input to the MTC (see Fig. 2(a)). An inter-
preter module of the controller processes the G-codes, typically, it
uses an interpolator to generate the reference coordinates and feed
rate (𝑥𝑟𝑒𝑓 (𝑡), 𝑦𝑟𝑒𝑓 (𝑡), 𝑣𝑥𝑟𝑒𝑓 (𝑡), 𝑣

𝑦
𝑟𝑒𝑓 (𝑡), 𝑡), which altogether define the motion

trajectory. The corresponding reference coordinates are then passed
to the position control system of the X and Y axes [21]. Each axis
comprises cascaded control loops. A Multioscillatory (MOSC) controller
is employed for position control [22].

Fig. 2(b) illustrates the closed loop block diagram (CLBD) with
flow of signals between the components of the control system of the
X-axis. The CLBD for the Y-axis is similar with a difference in the
transfer function of the position controller as described later in this
section. The transfer functions governing the relation between input
and output signals of the various controllers and sub-systems of the
CLBD are described in the remainder of this section. The error between
the reference coordinate 𝑥𝑟𝑒𝑓 obtained from the interpolator and initial
coordinate from feedback 𝑥(𝑡 − 𝛿𝑡) is calculated as 𝑒𝑥(𝑡) = 𝑥𝑟𝑒𝑓 (𝑡) −
𝑥(𝑡− 𝛿𝑡) which is sent to the position controller. The position controller
determines the velocity signal 𝑣(𝑡). We denote 𝐸𝑥(𝑠) = {𝑒𝑥(𝑡)}, where 
denotes the Laplace transform. The transfer function relating the output
from the position controller 𝑉 (𝑠) = {𝑣(𝑡)} and the input position error
𝐸𝑥(𝑠) is given by

𝑉 (𝑠) = 𝑝24

⎛

⎜

⎜

⎜

⎝

𝑝23 +
∑

𝑖={1,…,4}
𝑗={19,…,22}

𝑝𝑖𝑝𝑗𝑠

𝑠2 + 2𝑝𝑖𝑝(𝑖+4)𝑠 + 𝑝2𝑖

⎞

⎟

⎟

⎟

⎠

𝐸𝑥(𝑠) (1)

where parameters {𝑝1,… , 𝑝8} and {𝑝19,… , 𝑝22} are coefficients of the
ransfer function and the gain applied to output from each of the four
scillatory elements in the X-axis, respectively.

The error 𝑒𝑣(𝑡) = 𝑣(𝑡) − 𝜅1𝑣(𝑡 − 𝛿𝑡) between reference velocity signal
from the position controller and initial velocity from feedback enters
the speed controller. 𝜅1 is the gain applied to the feedback velocity
697

signal. The speed controller determines the control signal 𝑢(𝑡) for the
electronics. Let 𝑈 (𝑠) = {𝑢(𝑡)} and 𝐸𝑣(𝑠) = {𝑒𝑣(𝑡)}, then the transfer
function for the speed controller is given by

𝑈 (𝑠) = 𝑝25
(

𝑝13 + 𝑝14
1
𝑠

)

𝐸𝑣(𝑠) (2)

where 𝑝13 and 𝑝14 are the proportional and integral parameters for a
PI controller within the speed controller. 𝑝25 is the gain applied to
the output from the PI controller. The error in control signal to the
electronics, 𝑒𝑢(𝑡) = 𝑢(𝑡) − 𝜅2(𝑖(𝑡 − 𝛿𝑡) + 𝜅3), enters the power controller

hich sends control signal 𝑤(𝑡) to the electronics within the system. 𝜅2
nd 𝜅3 are the gain applied to the feedback current and the additive
isturbance to the feedback current, respectively. let 𝐸𝑢(𝑠) = {𝑒𝑢(𝑡)}

and 𝑊 (𝑠) = {𝑤(𝑡)}. The transfer function for the power controller is
iven by

(𝑠) =
𝑝26

(𝜅4𝑠 + 𝑒−𝑠𝛿𝑡)

(

𝑝15 + 𝑝16
1
𝑠

)

𝐸𝑢(𝑠) (3)

where 𝑝15 and 𝑝16 are the proportional and integral parameters for a PI
controller within the power controller. Gain 𝑝26 is applied to the output
from the PI controller. 𝜅4 models the delay within the power controller.
The parameters {𝑝13,… , 𝑝16} for the PI controller block within the
speed and power controller are determined using the modulus optimum
method (Kessler’s method) and symmetrical optimum method (Naslin’s
polynomial method, Kessler’s method) [23] and adjusted using Genetic

lgorithm. The identification errors used for this method are given by
he parameters {𝑝28,… , 𝑝34}.

The electronic system determines the current signal 𝑖(𝑡) for input
nto the motor based on the error 𝑒𝑤(𝑡) = 𝑤(𝑡)−𝜅5𝑣(𝑡−𝛿𝑡) where 𝜅5 is the
ain applied to velocity feedback. Let 𝐸𝑤(𝑠) = {𝑒𝑤(𝑡)}, 𝐼(𝑠) = {𝑖(𝑡)}
nd 𝑉 (𝑠) = {𝑣(𝑡)}, then the transfer function for the electronic system
nd electromechanical conversion at the motor are given by

(𝑠) =
𝜅6

𝑠 + 𝜅7𝑒−𝑠𝛿𝑡
𝐸𝑤(𝑠) (4)

𝑉 (𝑠) =
𝜅8

𝑠 + 𝜅9𝑒−𝑠𝛿𝑡
𝐼(𝑠) (5)

here 𝜅6 and 𝜅8 are factors for abstracting the model of physical and
electronic system. 𝜅7 and 𝜅9 are the gain applied to the feedback of cur-
rent and velocity within the electronic system and motor, respectively.
Finally, the output from the motors goes through an integrator block
which gives the position 𝑋(𝑠) = 1

𝑠𝑉 (𝑠), where 𝑋(𝑠) = {𝑥(𝑡)}. 𝜅1,… , 𝜅9
n Eq. (1)–(5) are chosen to be exogenous parameters of the model.

As mentioned earlier, The Y-axis has a similar CLBD (as illustrated
in Fig. 2(b)) with differences in the position controller. Specifically,
the position controller (MOSC) uses two oscillatory elements with
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Table 1
Emulator parameters.
Parameter Variable Count

MOSC controller transfer function (Axis X) {𝑝1 ,… , 𝑝8} 8
MOSC controller transfer function (Axis Y) {𝑝9 ,… , 𝑝12} 4
PID block parameters {𝑝13 ,… , 𝑝16} 4
MOSC controller gains (Axis X) {𝑝19 ,… , 𝑝22} 4
MOSC controller gains (Axis Y) {𝑝17 , 𝑝18} 2
Control loop gains {𝑝23 ,… , 𝑝26} 4
Feedback disturbance {𝑝27} 1
Identification errors {𝑝28 ,… , 𝑝34} 7

Total 34

transfer functions 𝑝9𝑠
𝑠2+2𝑝11𝑝9𝑠+𝑝29

and 𝑝10𝑠
𝑠2+2𝑝12𝑝10𝑠+𝑝210

, respectively. The gain
applied to output from each oscillatory element in Y-axis is 𝑝17 and 𝑝18,
respectively. The parameters of the PI controller in speed and power
controller of the X-axis are the same as for the Y-axis.

The controller and the control loops for X and Y axes altogether
comprise 34 parameters represented by the vector 𝐩 = {𝑝1,… , 𝑝34}. The
parameters are summarized in Table 1. The parameters of this general
tructure are part of transfer functions of the internal control structure
idely found in physical MTCs and can be tuned appropriately to

esemble an MTC.

.2. Interrogating closed architecture MTCs and data acquisition

As noted, a physical MTC takes the G-code (part program) as input.
e represent G-code with . The G-code contains information about

he successive segments to traverse in the X–Y plane, whether the
raversing segment is a linear or a curved (circular) path, and the
eed rate for each segment. The interpolator of the MTC specifies the
eference trajectory given by the tuple (𝑥𝑟𝑒𝑓 (𝑡), 𝑦𝑟𝑒𝑓 (𝑡), 𝑣𝑥𝑟𝑒𝑓 (𝑡), 𝑣

𝑦
𝑟𝑒𝑓 (𝑡), 𝑡)

o be tracked. The reference trajectory specifies the table motion in
erms of the X and Y axes coordinate and feed rate at time 𝑡. The
ctual trajectory of the machine however is denoted by the tuple
𝑥0(𝑡), 𝑦0(𝑡), 𝑣𝑥0 (𝑡), 𝑣

𝑦
0(𝑡), 𝑡).

G-code must be chosen appropriately, when interrogating the closed
rchitecture MTCs and collecting machine data for learning the emula-
ors. Selection criterion for G-code must be to learn various subtleties
f the performance of the motion system. For example, although a
onstant feed rate may be specified in the G-code for a straight path,
he actual feed rates 𝑣𝑥0(𝑡) and 𝑣𝑦0(𝑡) vary along the straight path due
o the acceleration and deceleration at the start and end of the straight
ine segments which can be observed from Machine data obtained from
PC UA. G-codes on which the emulator is to be trained for effectively
apturing physical MTC performance and responses must have a variety
f trajectory features to accurately learn the subtle performance charac-
eristics of a closed architecture MTC. These trajectory features include
ut are not limited to straight paths, sharp corners, curved paths and
hanges in feed rate. The accuracy of the emulator increases with the
et of trajectory features included.

Due to limitations on temporal and positional accuracy of the MTC,
here exists a deviation between (𝑥𝑟𝑒𝑓 (𝑡), 𝑦𝑟𝑒𝑓 (𝑡), 𝑣𝑥𝑟𝑒𝑓 (𝑡), 𝑣

𝑦
𝑟𝑒𝑓 (𝑡), 𝑡) and

𝑥0(𝑡), 𝑦0(𝑡), 𝑣𝑥0 (𝑡), 𝑣
𝑦
0(𝑡), 𝑡). The pattern of these deviations constitute the

signature of a closed controller. The emulator of an MTC is expected to
mimic these signatures as closely as possible. Likewise, for an emulator,
there is a deviation between the actual trajectory (output) of the emu-
lator denoted by (𝑥𝐸 (𝑡), 𝑦𝐸 (𝑡), 𝑣𝑥𝐸 (𝑡), 𝑣

𝑦
𝐸 (𝑡), 𝑡) and (𝑥0(𝑡), 𝑦0(𝑡), 𝑣𝑥0 (𝑡), 𝑣

𝑦
0(𝑡), 𝑡)

when the same G-code is passed as input to the emulator. The goal
is to learn the emulator such that the deviation in the latter case is
minimized (see Fig. 4).

To emulate an MTC, we minimize the deviation between the actual
trajectory of the MTC (𝑥0(𝑡), 𝑦0(𝑡), 𝑣𝑥0 (𝑡), 𝑣

𝑦
0(𝑡), 𝑡) and the emulator’s actual

trajectory (𝑥𝐸 (𝑡), 𝑦𝐸 (𝑡), 𝑣𝑥𝐸 (𝑡), 𝑣
𝑦
𝐸 (𝑡), 𝑡) for a given G-code. Fig. 3 illustrates

the positional deviation (𝛥𝑋, 𝛥𝑌 ) which is defined as the difference
between the emulator trajectory and the measured MTC trajectory at
698
Fig. 3. Deviation in position between the emulator trajectory (in blue) and the
MTC trajectory (in black). The blue and black circles respectively indicate the times
(𝑇 = {𝑡1 , 𝑡2 , 𝑡3 , 𝑡4}) at which data is sampled from both the trajectories. The inset plot
magnifies the trajectories to geometrically illustrate the position deviation (in red). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

a certain time along each axes. For example, the position deviation
along X-axis is given by 𝛥𝑋 = (𝑥𝐸 (𝑡) − 𝑥0(𝑡)). The actual trajec-
tory (𝑥0(𝑡), 𝑦0(𝑡), 𝑣𝑥0 , 𝑣

𝑦
0, 𝑡) information is obtained from the MTC using

tandard data exchange protocols like OPC UA and MTConnect [24].
Machine data from OPC is collected at a maximum sampling rate of
10 Hz. For example, in Fig. 3, 𝑡𝑖+1 − 𝑡𝑖 ≥ 0.1𝑠 ∀𝑖 = {1, 2, 3}. Although
the maximum sampling rate is set to 10 Hz, machine data points are
not sampled at uniform intervals. Instead the machine data points are
sampled only at certain waypoints when the trajectories undergo a
major ‘‘change of course’’.

Likewise, (𝑥𝐸 (𝑡), 𝑦𝐸 (𝑡), 𝑣𝑥𝐸 (𝑡), 𝑣
𝑦
𝐸 (𝑡), 𝑡) is obtained from the output of

the emulator. Due to the limitation in the sampling rate, the informa-
tion about location and feed rate are obtained at discrete time points.
We use 𝑇 = {𝑡1,… , 𝑡𝑁} to denote the set of timestamps when the
location and feed rate information was sampled. We use 𝑁 to denote
the total number of samples collected, i.e., the cardinality of the set 𝑇 .

An emulator having minimum deviation indicates that it is able to
accurately emulate the dynamics of the MTC. In other words, such
an emulator accurately learns the position, velocity, acceleration and
jerk profiles [18] which describe the performance characteristics of the
MTC and therefore their behavior. The emulator of an MTC is therefore
the structural basis described in Fig. 2 with the corresponding value
f emulator parameters listed in Table 1 which accurately emulate

the characteristic performance of the MTC. The following subsection
describes the setup for learning the emulator parameters 𝐩.

2.3. Learning emulator parameters

Developing an emulator for an MTC can be formulated as an inverse
problem. In the previous section we established the parameters of
the emulator and defined the governing dynamic equations for the
emulator of a 2-axis motion system. The inverse problem refers to
inferring actual value of the model parameters based on measurements
from a real physical system [25].

We describe a mapping  ∶ { ⟶ }.  ∈ R+34 is the vector space
f parameters listed in Table 1.  is the space of emulator trajectory
𝑥𝐸 (𝑡), 𝑦𝐸 (𝑡), 𝑣𝑥𝐸 (𝑡), 𝑣

𝑦
𝐸 (𝑡), 𝑡). The inverse problem is the identification of

he vector of parameters 𝐩 ∈  such that the deviation between
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(𝑥𝐸 (𝑡), 𝑦𝐸 (𝑡), 𝑣𝑥𝐸 (𝑡), 𝑣
𝑦
𝐸 (𝑡), 𝑡) ∈  and (𝑥0(𝑡), 𝑦0(𝑡), 𝑣𝑥0(𝑡), 𝑣

𝑦
0(𝑡), 𝑡) is minimum.

Learning the parameter values 𝐩 ∈  can be formulated as the following
optimization problem.

Objective Function:
min  = MSE(x) + MSE(y) + 𝜆(MSE(vx) + MSE(vy))
subject to: 𝑝𝑖 > 0∀𝑖 = {1,… , 34}

where MSE(x) = ∑

𝑡∈𝑇 (𝑥0(𝑡)−𝑥𝐸 (𝑡))2∕𝑁 is the Mean Square Error (MSE)
between the MTC trajectory and the emulator trajectory along the X-
axis as described in Section 2.2. Likewise, the MSE for position along
Y-axis MSE(𝑦) and feed rate, MSE(𝑣𝑥) and MSE(𝑣𝑦), are defined. 𝜆 is
introduced for regularization of the feed rate. The minimization of the
above objective function  subject to the linear constraints is performed
using Genetic Algorithm (GA) [26].

In GA, an initial population of size 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 from a feasible space
of parameters 𝐩𝑗 ∈  ∶ 𝑗 ∈ {1,… , 𝑝𝑜𝑝𝑠𝑖𝑧𝑒} is randomly initialized.
The fitness function used is the objective . In each generation of GA,
individuals of the population are scored based on . A proportion of
individuals of current generation (𝑒𝑝𝑟𝑜𝑝 ∈ (0, 1)) are identified as elite
which are chosen to be present in the next generation. The remaining
members of the population undergo selection followed by mutation or
crossover operations to replace remaining individuals of the current
generation to form the next generation. GA stops when maximum
number of generations (𝑔𝑒𝑛𝑚𝑎𝑥) is reached.

Our methodology for training the emulator is illustrated in Fig. 4.
The emulator is trained using set of G-codes  = {𝐺1,… , 𝐺𝑀}. Each
G-code 𝐺𝑚 ∈  is passed as input to the MTC and the emulator.
Data collected from the MTC is used to calculate loss function . In
the following section, we validate our methodology for developing
an emulator for a SIEMENS MTC using a set of G-code designs  =
{𝐺1, 𝐺2, 𝐺3}.

3. Implementation details and results

Our approach to develop an emulator is validated on a Sinumerik
828D MTC from Siemens. This controller operates the Optomec MTS
500 Hybrid Additive (DED) machine tool illustrated in Fig. 5(a). The
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Fig. 5. Hybrid Machine Tool (a) OPTOMEC MTS 500 Hybrid Machine Tool with
available tools (b) Sinumerik 828D Machine Tool Controller.

hybrid machine tool is capable of performing both additive and sub-
tractive manufacturing processes. The machine tool is also equipped
with an automatic tool change carousel which houses milling, grinding,
polishing and Coordinate measuring tools, all of which are operated by
the MTC. The Sinumerik 828D MTC (Fig. 5(b)) serves as an interface
etween operators and the machine tool for handling tool change and
xecuting manufacturing processes. The MTC monitors and controls the
oordination of the multiple axes and process variables to accurately
erform the desired tooling and manufacturing operations. In this
ection, we develop the emulator which emulates the behavior of 2-
xis motion system for contouring operations observed for example in
illing and 3D printing operations.

Complex contouring paths can be broken into simpler paths com-
rised of straight and curved paths. The interpolator described in
ection 2 (see Fig. 2) achieves this simplification and develops ap-
ropriate reference trajectories (𝑥𝑟𝑒𝑓 (𝑡), 𝑦𝑟𝑒𝑓 (𝑡), 𝑣𝑥𝑟𝑒𝑓 (𝑡), 𝑣

𝑦
𝑟𝑒𝑓 (𝑡)) for the

mulator to track. Therefore, to learn an emulator which can accurately
xecute complex contours, such emulators must be capable of executing
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impler paths. For this reason we choose G-codes to train an emulator
hich can execute four motion actions - (i) T1: Travel along straight
aths with minimum deviation. (ii) T2: Execute perpendicular corners
iii) T3: Traveling in opposite directions (iv) T4: Changing feed rate.

Three design contours illustrated in Fig. 6 and described by G-codes
1, 2 and 3 are chosen to learn the emulator parameters. Fig. 6(a)
(representing 1) is a staircase pattern with straight segments which
are 0.012 m in length and have a constant feed rate of 6 mm/sec. After
each straight segment there is a perpendicular turn which makes this
design appropriate for learning T1 and T2. Fig. 6(b) (representing 2)
is again a stair case pattern but mirrored along two perpendicular axis
to resemble a diamond. Again, the feed rate is 6 mm/sec. This design
contour can be used to learn T1-T3. Fig. 6(c) (representing 3) is the
same stair case pattern as in Fig. 6(a) but has three segments with
ifferent speeds. The three speeds chosen are 3 mm/sec, 6 mm/sec and
6 mm/sec. This design contour can be used to learn T1,T2 and T4.

The dynamic equations for the emulator’s structural basis for the 2-
xis X–Y motion control system described in Section 2.1 is implemented
sing MATLAB Simulink 2022a [22]. The emulator takes G-codes ()
s input and emulates the behavior of an MTC to provide output trajec-
ory (𝑥𝐸 (𝑡), 𝑦𝐸 (𝑡), 𝑣𝑥𝐸 (𝑡), 𝑣

𝑦
𝐸 (𝑡), 𝑡). Machine data (𝑥0(𝑡), 𝑦0(𝑡), 𝑣𝑥0 (𝑡), 𝑣

𝑦
0(𝑡), 𝑡)

s collected from the Sinumerik 828D Controller using OPC UA data
xchange protocol.

G-codes for the three contour designs 1, 2 and 3 are used as
nputs to MATLAB Simulink and MTC. The emulator parameters 𝐩 are
earned for two cases (i) 𝜆 = 0 (ii) 𝜆 = 0.8 for each of the three designs
1, 2 and 3. The case of 𝜆 = 0 represents no feed rate regularization
over the objective function , while the case of 𝜆 = 0.8 corresponds to
when feed rate is considered in the optimization. The choice of 𝜆 = 0.8
was chosen arbitrarily to have MSE(𝑣𝑥)+MSE(𝑣𝑦) comparable but lower
than MSE(x)+MSE(y). In the former case, deviation is minimized only
with respect to position while in the latter case deviation is minimized
with respect to both position and feed rate.

3.1. Optimization results and discussion

As described in Section 2, the structure of the MTC has been
modeled essentially as a cascade of transfer functions that translate to a
set of linear differential equations with delays (from Eqs. (4) and (5)).
The data obtained from interrogating the MTCs using G-codes can be
used to learn the parameters of this MTC model. Multiple alternative
machine learning methods have been considered to model such delay
differential equations in the manufacturing literature (e.g., [19,27,28]).
In this work, we employ genetic algorithms, as they can be extended to
not just estimate the model parameters but also allow the adjustment
of the model structure.

GA optimizer routine in MATLAB 2022a is used for optimization.
The optimization routine is performed on a computer with Windows
10 Enterprise 64-bit operating system, Intel Core i7-10700T processor
with 8 cores, clock speed 2.00 GHz, and memory of 16 GB RAM. In
the GA optimizer, Stochastic uniform Selection is the selection strategy
employed. Uniform weighted average of parents are chosen as the
700
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Fig. 7. Transience in emulator position based on difference between MTC and emulator
data for (a) X axis (b) Y axis. The vertical line indicates 𝑡 = 2 s.

Table 2
Position MSE (𝑥, 𝑦) for training design (diagonal entries)
and testing design (off-diagonal entries) without velocity
regularization (𝜆 = 0). The minimum (𝑥, 𝑦) is underlined.
Design 𝐩∗1 𝐩∗2 𝐩∗3
1 (0.25 mm)2 (0.24 mm)2 (0.25 mm)2
2 (1.70 mm)2 (1.60 mm)2 (1.70 mm)2
3 (0.52 mm)2 (0.52 mm)2 (0.51 mm)2

Table 3
Position MSE (𝑥, 𝑦) for training design (diagonal entries) and
testing design (off-diagonal entries) with velocity regularization
(𝜆 = 0.8). The minimum (𝑥, 𝑦) is underlined.
Design 𝐩∗1 𝐩∗2 𝐩∗3
1 (0.53 mm)2 (0.38 mm)2 (0.23 mm)2
2 (1.30 mm)2 (1.40 mm)2 (1.60 mm)2
3 (0.80 mm)2 (0.65 mm)2 (0.53 mm)2

crossover function with a crossover fraction of 0.8. The function used
for mutation is the adaptive feasible mutation. The population size and
generation size are set to 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 = 50 and 𝑔𝑒𝑛𝑚𝑎𝑥 = 100, respectively.
Elite count is set to 𝑒𝑝𝑟𝑜𝑝 = 0.05 proportion of the population size.

The optimal parameters 𝐩∗𝑚 ∀ 𝑚 ∈ {1, 2, 3} are obtained by mini-
mization of fitness function . However, we compare the performance
of the parameter based on position MSE which we denote by (𝑥, 𝑦)
= MSE(x)+MSE(y) when steady state is achieved. Fig. 7 illustrates
the transience in the emulator position for the X and Y axes for 3.
We make a conservative choice of 𝑡 = 2 s, after which the emulator
achieves a steady state for the three designs 1, 2 and 3. (𝑥, 𝑦) is
therefore calculated for 𝑡 ≥ 2 s for all designs. The average training
time on design files 1, 2 and 3 are 182 min, 874 min and 193 min
respectively. The majority of the training lead time is contributed by
the Simulink model simulation. Corresponding ∗

𝑚(𝑥, 𝑦) ∀ 𝑚 ∈ {1, 2, 3}
are presented in Table 2 for 𝜆 = 0 and Table 3 for 𝜆 = 0.8 on training
and testing designs. The diagonal entries of Tables 2 and 3 indicate
osition MSE ∗

𝑚(𝑥, 𝑦). The off diagonal entries represent position MSE
(𝑥, 𝑦) obtained when the optimal parameters 𝐩∗𝑚 are tested on design

ile 𝑛 ∶ 𝑚 ≠ 𝑛 to illustrate the performance of optimal parameters on
nseen design contours (test designs).

The optimal parameters 𝐩∗ learned from training designs show
mproved performance on simpler test designs (𝐩∗ tested on  ∶ 𝑚 ≠ 𝑛)
𝑚 𝑛
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for 1 and 2. For example, based on the off-diagonal entries we observe
at least 6.25% improvement when testing on design 2.

Minimum position deviation is observed for the case when 𝐩∗3 is
applied to 1 for case of 𝜆=0.8. This is likely because the parameter
𝐩∗3 was tested on a simpler design. The emulator learned using 3 was
rained on trajectory features 𝐓𝟏,𝐓𝟐 and 𝐓𝟒, which is a superset of the
rajectory features of 1 (𝐓𝟏,𝐓𝟐).

The emulator performance for design contour 3 is visualized in
ig. 8 with optimal parameters 𝐩∗3 obtained for 𝜆 = 0.8. Fig. 8(a)

illustrates the time series plot for position and velocity along the X and
Y axes. The position MSE (𝑥, 𝑦) observed in this case is (0.53 mm)2 (cor-
responding to (3, 𝐩∗3) in Table 3). Minimum disagreement is observed
between the coordinates of emulator and MTC (1.73% contribution
to ) while larger amount of disagreement is observed for velocities
(98.26% contribution to ). The disagreement in velocities 𝑣𝑥𝐸 (𝑡) and
𝑣𝑦𝐸 (𝑡) (with 𝑣𝑥0 (𝑡) and 𝑣𝑦0(𝑡)) are due to slow attainment of reference
velocities (𝑣𝑥𝑟𝑒𝑓 (𝑡), 𝑣

𝑥
𝑟𝑒𝑓 (𝑡)). This can be observed as steep edges of the

segments with non-zero velocities for the emulator velocity. Further-
more, oscillations are observed in the inset plot within X and Y axes
contour plot for position in Fig. 8(b). These oscillations in contour
are likely to arise again due to oscillations in 𝑣𝑥𝐸 (𝑡). Additionally, we
observe overshoots at corners (trajectory features 𝐓𝟐) as illustrated in
the inset plots of Fig. 8(b) which contribute to larger .

We note that highest position error is observed for 2 and the lowest
rror in position is observed for 1. This can likely be attributed to the
arger number of 𝐓𝟐 features in 2 and the simplicity of 1, respectively.
s we note from the inset plot of Fig. 8(b), there exist overshoots at the

corners. The error in overshoots at 𝐓𝟐 features add up to larger (𝑥, 𝑦)
for 2.

It was expected for the case of velocity regularization (𝜆 ≠ 0)
— learning both position and velocity profiles results in an improved
emulator. However, the counterintuitive result of deterioration of per-
formance in Table 3 can be explained based on the requirement of
a larger sample size to learn higher order profiles such as velocity.
Furthermore, by mitigating sampling rate limitations on the OPC UA
protocol (10 Hz) emulator performance can likely be improved for
complex designs and effectively minimizing deviation between higher
order profiles (e.g.: velocity, acceleration, jerk). Appropriate upsam-
pling approaches can be used to obtain larger number of samples 𝑁
from MTC trajectory.

The results in Tables 2 and 3 points towards using composite
designs. Composite designs can have a combination of features in 1, 2
and 3 along with multiple replications of trajectory features (T1-T4).
Such composite designs can likely result in an improved training data
set.

In the following section, we identify the parameters that are most
likely to be responsible for such variations in the trajectory. Such
parameters are likely to have significant effect on the emulator per-
formance. Therefore, these parameters can carefully tuned to further
improve the emulator performance.

3.2. Emulator parameter analysis

The optimal parameters 𝐩∗ identified from GA optimization in
Section 3.1 are further analyzed to identify the extent of effect the
individual parameters {𝑝𝑖, 𝑖 ∈ {1,… , 34}} have on fitness function value
. The sensitivity of  towards the parameters {𝑝𝑖, 𝑖 ∈ {1,… , 34}}
is called as the importance of the parameters. This quantification of
importance can be used for two purposes. First, to understand impact
of individual parameters {𝑝𝑖, 𝑖 ∈ {1,… , 34}} on emulator performance.
Second, to explain the emulator performance in Section 3.1 based on
which elements of the CLBD (Fig. 2) may be suboptimally tuned and
tune them carefully for improving emulator performance.

To determine parameter importance, a predictive model is built
701

using individuals from each generation of GA optimization. Specifically,
Fig. 8. Visualization of emulator performance (during steady state) with optimal pa-
rameter 𝐩∗ on 3 (a) Emulator trajectory (𝑥𝐸 (𝑡), 𝑦𝐸 (𝑡), 𝑣𝑥𝐸 (𝑡), 𝑣

𝑦
𝐸 (𝑡), 𝑡) and MTC trajectory

𝑥0(𝑡), 𝑦0(𝑡), 𝑣𝑥0 (𝑡), 𝑣
𝑦
0(𝑡), 𝑡) for design 3. MTC data is obtained using OPC UA. (b) X

nd Y axes contour plot for emulator (in blue) and MTC (in red). The inset plots
how a comparison of emulator and OPC data for horizontal and vertical paths. (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

e build a regression tree ensemble [29] because of the likely non-
inear relation between the predictors and output. The predictors used
ere are the parameters {𝑝𝑖, 𝑖 ∈ {1,… , 34}} and output of the regression
s fitness function value . The observations used in developing the re-
ression tree ensemble include predictors corresponding to individuals
rom all generations of GA optimization and corresponding fitness func-
ion value  as outputs. 𝑆 Decision trees are used as the weak learners
nd the regression ensemble are fit using Least Squares Boosting. The
eak learners are represented by 𝑠, 𝑠 ∈ {1,… , 𝑆} The importance 2

𝑖
f parameter 𝑝𝑖 is calculated as the importance of 𝑝𝑖 in tree 𝑠 — 2

𝑖 (𝑠)
averaged over all 𝑆 trees and is given by

2
𝑖 ( ) =

𝐾−1
∑

𝑘=1
𝑟̂2𝑘I(𝑣(𝑘) = 𝑖)

2
𝑖 = 1

𝑆

𝑆
∑

𝑠=1
2

𝑖 (𝑠)
(6)

where I(𝑣(𝑘) = 𝑖) is an indicator of whether splitting in node 𝑘 of tree
 used parameter 𝑝 and 𝑟̂2 is the squared error risk on node 𝑘.
𝑖 𝑘
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Fig. 9. Importance of parameters 𝑝𝑖 , 𝑖 ∈ {1,… , 34} using Regression tree ensembles.
Black triangles identify the top 10 important parameters.

Three Regression tree ensembles are developed from individuals of
generations from GA optimizer for the three design files 1, 2 and
3. Parameter importance from Eq. (6) is obtained for each of the

three ensembles. Fig. 9 illustrates the parameter importance as box plot
(developed from the ensembles for 1, 2, 3). The top 10 important pa-
rameters (identified by black triangles in Fig. 9) identified based on de-
cending order of average importance are {𝑝17, 𝑝19, 𝑝15, 𝑝4, 𝑝3, 𝑝1, 𝑝24, 𝑝20,
28, 𝑝31}.

Based on parameters listed in Table 1, 5 of the top 10 important pa-
ameters correspond to position controller of the X-axis ({𝑝1, 𝑝3, 𝑝4, 𝑝19,
20}) and one Y-axis position controller parameter (𝑝17). The remain-
ng parameters include gain (𝑝24), PI parameters (𝑝15) and identifi-
ation errors ({𝑝28, 𝑝31, }) common to both axes. The majority of top
0 important parameters correspond to X-axis of position controller.
lso, we have noted in Section 3.1, large values of fitness function
is contributed by the large oscillations in X-axis velocity 𝑣𝑥𝐸 (𝑡) (see

ig. 8(b)). Therefore, careful tuning of the X-axis position controller
an help improve the emulator performance. Furthermore, one can
hoose to tune a subset of the parameters {𝑝1,… , 𝑝34}, and this sub-
et can be chosen based on criteria of parameter importance. This
an allow faster and improved convergence of GA optimizer. Train-
ng is further continued with only the top ten important parameters
𝑝17, 𝑝19, 𝑝15, 𝑝4, 𝑝3, 𝑝1, 𝑝24, 𝑝20, 𝑝28, 𝑝31} and leaving the remaining pa-
ameters unchanged. The GA optimizer settings are unchanged except
or setting 𝑔𝑒𝑛𝑚𝑎𝑥 = 25. The MSE (𝑥, 𝑦) with velocity regularization
s further improved by 36% and 38% for design files 1 and 2,
espectively. However, in 3 the MSE (𝑥, 𝑦) deteriorates by 71%. The
eterioration in 3 is likely due to sub-optimal solutions and warrants
urther investigation by allowing the GA optimizer to run longer. This
mprovement in (𝑥, 𝑦) for 1 and 2, achieved by adjusting only a
ubset of p, validates the importance of the identified subset for the
earning process.

. Conclusions and future work

We have developed a machine learning approach to develop em-
lators for closed architecture MTCs. The approach is intended to be
eneralized to emulate any MTC by tuning the parameters to the MTC
f choice. We validated our approach on a Siemens Sinumerik 828D
ontroller that is integrated with a hybrid additive (DED) machine tool.

Our emulator employs a parameterized base model that captures the
702

tructure of an MTC. Different feedback loops and cascading control
odules are included in the form of various transfer functions as part
f the structure. The basic structure parameterization can be adjusted
o resemble an MTC.

It is important for the emulator to learn from the right design files
nd for sufficient duration. This ensures the emulator has learned to
ccurately emulate the different paths of an MTC. For this purpose
e trained the emulator on multiple design files. We use Genetic
lgorithm to learn the optimal emulator parameters. Variability is
bserved between the optimal parameters learned by the emulator for
he different design files. Our emulator is accurate up to 0.23 mm.
he emulator performance can further be improved by using composite
-code designs which include a combination of complex trajectory

eatures. Several replications of the trajectory features within the design
an ensure that the emulators are trained to high accuracy.

We intend to use the emulator for testing novel cybersecurity as-
urance techniques for MTCs. Approaches like Dynamic Watermarking
hich require knowledge of system can be tested. The future work also

ncludes extension to an active learning framework. The emulator will
eceive G-codes based on where poor performance is observed. This
an be achieved by developing a random G-code generator inclusive
f straight paths (of varying length and angles) and arc motions.
eveloping an emulator which captures all aspects of an MTC, although
ccurate can be restrictive and intractable, therefore we restrict the
evel of detail of our MTC emulator for 2-axis motion control. However,
ur methodology for developing an emulator can be extended beyond
-axis motion control to control rotational axes and various other
anufacturing process parameters.
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