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Abstract—Stochastic network models with all components being
observable and controllable have been the focus of classic network
optimization theory for decades. However, in modern network
systems, it is common that the network controller can only
observe and operate on some nodes (i.e., overlay nodes), and
the other nodes (i.e., underlay nodes) are neither observable nor
controllable. Moreover, the dynamics can be non-stochastic or
even adversarial. In this paper, we focus on the network utility
maximization (NUM) problem for networks with overlay-underlay
structures. The network dynamics, such as packet admissions,
external arrivals and control actions of underlay nodes, can be
stochastic, non-stochastic or even adversarial. We propose the
Tracking Drift-plus-Penalty (TDP*)' algorithm that only operates
on the overlay nodes and does not require direct observations
of the underlay nodes, and analyze the tradeoffs between the
average utility and queue backlog. We show that as long as the
peak queue backlog of the network is sublinear in time horizon,
TDP* can solve the NUM problem, i.e., reaching the maximum
utility while preserving stability.

Index Terms—Network control, resource allocation, routing,
queueing theory.

I. INTRODUCTION

Network optimization has been an active research area
for decades. However, most classic control algorithms like
MaxWeight [1] and Drift-plus-Penalty [2] can only be applied
to networks in which the controllers have instantaneous
observations of the global network state (e.g., queue backlogs),
and all nodes cooperatively execute the control commands.
Moreover, the network dynamics like the external arrivals are
usually restricted to be stochastic and time-invariant.

However, with the rapid development of information tech-
nology, modern network systems are too complex to be
characterized by the aforementioned framework. For example,
due to security or economic concerns, many network systems do
not offer full observation and control access to the controllers
[3]. Such networks can be modeled by an overlay-underlay
framework, where the controller can only observe and control
the overlay nodes, with the underlay nodes being “black boxes’
that cannot be directly observed or controlled. The underlay
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'We use TDP* to distinguish from our earlier version of TDP that required
instantaneous observation of uncontrollable nodes.

nodes may apply non-stochastic policies, which leads to
challenges in the design and analysis of overlay optimal policies.
Another example is computer security, where some nodes
may be hijacked by an adversary and become unobservable
and uncontrollable. Even worse, to maximize the damage, the
adversary may change its actions dynamically according to the
controller’s actions [4]-[6].

In this paper, we focus on the network utility maximization
(NUM) problem. Specifically, we aim to maximize the average
network utility while preserving queue stability for networks
with unobservable and uncontrollable nodes. Moreover, the
dynamics, such as packet admissions, external arrivals and
control actions of underlay nodes, can be stochastic, non-
stochastic or even adversarial. We propose an algorithm named
TDP* (Tracking Drift-plus-Penalty), which, to the best of
our knowledge, is the first control algorithm to solve NUM
problems under such challenging network settings.

The major technical challenges addressed in this work are
three-fold: 1) underlay nodes are unobservable and uncon-
trollable, 2) the external arrivals and underlay policies can
be stochastic, non-stochastic or even adversarial, and 3) the
controller aims to maximize general network utilities instead
of merely stabilizing the network. In the following we briefly
discuss prior works pertaining to the above challenges.

Control algorithms for overlay-underlay networks include
the Threshold-based Backpressure (BP-T) algorithm [7], the
Overlay Backpressure (OBP) algorithm [8], the Optimal
Overlay Routing Policy (OORP) algorithm [9] and the Tracking-
MaxWeight (TMW) and Truncated Upper Confidence Re-
inforcement Learning (TUCRL) algorithms [10]. These al-
gorithms apply the Lyapunov optimization framework and
only need to control the overlay nodes. However, they all
require instantaneous observations and can only optimize
the network throughput instead of general network utilities.
An alternative model of the overlay-underlay framework is
a Partially Observable Markov Decision Process (POMDP).
POMDPs seek to optimize general objectives with some system
states being unobservable and uncontrollable. However, most
works on POMDP focus on heuristic algorithms and lack
theoretical performance guarantees. Theoretical studies on
POMDPs [11]-[16] apply value iteration or policy search,
yet are only practical for networks of small size.

There has been a significant number of studies on networks
with non-stochastic and adversarial dynamics. The work of [17]
proposed the Adversarial Queueing Theory (AQT) framework,
which introduced the “W constraint” that restricts the volume
of external arrivals during a certain time window. Using



the W constraint to characterize the network dynamics, the
algorithms proposed in [18], [19] can stabilize single-hop
wireless communication systems. The work of [20] proposed
the Tracking Algorithm (TA) that can stabilize general multi-
hop networks, under a more relaxed constraint named “Vp
constraint”. The Vr constraint only requires the peak queue
backlog under the optimal policy to be constrained to Vr.
However, the aforementioned works all require instantaneous
observations of the underlay dynamics. The work of [21]
proposed the MaxWeight for Networks with Unobservable
Malicious Nodes (MWUM) algorithm, which is a throughput-
optimal algorithm that can be applied to partially observable
and controllable networks. However, the MWUM algorithm
cannot optimize general network utilities. Note that the W and
Vr constraints are conditions for the whole network, i.e., all
external arrivals and underlay actions generated by the network
should satisfy the constraints.

Classic algorithms for NUM problems [2], [22]-[24] require
stochastic dynamics. The work of [25] extended the classic
Drift-plus-Penalty algorithm and Tracking Algorithm (TA) to
networks with adversarial dynamics. However, both algorithms
require full observability and controllability. The conference
version of this paper, [26], proposed a preliminary version of
the Tracking Drift-plus-Penalty (TDP) algorithm for partially
controllable networks with adversarial dynamics. This paper
further extended TDP to partially observable settings, and
applied the Vr constraint to further relax the constraints on
the underlay dynamics.

Our main contributions are summarized below.

We first propose TDP*, which uses estimates of the state
of the underlay nodes instead of direct observations and only
requires to control the overlay nodes. We show that as long as
the NUM problem has at least one solution satisfying the Vp
constraint, TDP* can achieve maximum utility while preserving
stability. Note that this condition is non-trivial for partially
controllable networks, since the uncontrollable nodes may admit
an excessive number of packets such that no overlay policy
can stabilize the system.

We also rigorously derive the upper bounds for the gap to
maximum utility and the queue backlogs, under stochastic,
non-stochastic and adversarial dynamics. The bounds explicitly
reveal the trade-off between the utility gap and the queue
backlog, through a parameter V.

Furthermore, tuning the value of V' requires the value of
time horizon T in advance. In practice, such information may
not be available. Thus, we extended TDP* so that the value
of V is updated in an online manner during the operation.

The rest of this paper is organized as follows. We introduce
the network model and discuss different types of network
dynamics in detail in Section II. We introduce TDP* in Section
II. In Section IV, we derive the bounds to the utility gap and
queue backlog under TDP*, and show that TDP* solves the
NUM problem as long as the network is stabilizable. Section
VI presents simulation results and Section VII concludes the

paper.

II. MODEL

We consider a multi-hop network with N nodes and denote
the set of nodes by V. The nodes are classified into two types:
the set of overlay nodes O and the set of underlay nodes i.
The network has K classes of data and the data of class k is
destined for sink dy. The set of data classes is denoted by K.
The link capacity between node ¢ and j is C;;. We assume
that time is slotted and the time horizon is 7.

At the beginning of time slot ¢, a node i € A has Qg (t)
buffered packets of class k and receives a;(t) external packets
of class k. For simplicity, we assume that Q;;(0) = 0 for each
i and k. The controller then admits i, () € [0, a;x(t)] packets
of flow k to node 7. We denote the set of ~;x(t) as «(t), which
can be decomposed into overlay admissions 7, (¢) and underlay
admissions -, (). We assume that we have instantaneous
observations of v, (t). Denote by U (v(t)) = >k Uik (vir (1))
the network utility function, where each Uy (%k (t)) is the
utility gained by admitting ; () € [0, a;x(t)] packets of flow
k to node 4. Common network utilities include:

o Total throughput: U (y(t)) = > ix ik ().

« Proportional fairness: U (y(t)) = 3, . log (1 + yix(t)).

« Power allocation: U ((t)) = — >in Pk (Vik(t)), where

Py (+) is the power cost function.

For an overlay node ¢ € O, we denote by f;;x(t) the number
of packets of class k transmitted to a neighbor j as decided
by the network controller under a given policy. The set of all
fijr(t) at time t is denoted by f(¢). However, there may not
be enough buffered packets (i.e., Q;x(t) + aix(t)) to support
the planned transmissions, and the actual number of packets
transmitted, denoted by f;;1.(t), might be less than f;;x(t). In
this case, the controller can decide the actual transmissions
arbitrarily, as long as the following constraint is satisfied.

2jen fin(t) = Qi (t) + ai(t)
0 < fijr(t) < fijr(t).

For an underlay node i € U, we denote by 1;;i(t) the
number of packets of class k transmitted to a neighbor j from
an underlay node ¢ € U under a given underlay policy and the
actual number of packets transmitted by fi;;(t). The set of all
ijk(t) at time ¢ is denoted by p(t). The network controller
cannot directly observe (;x(t) or implement control policies
at the underlay. We assume that by applying network inference
methods (e.g., probing [27], [28]), the network controller can
obtain estimates sz (t) of underlay queue backlog Q;x, and
that such estimates are only available sporadically. We denote
by I'; the set of time slots when estimates are made for node
1. In other words, for an underlay node ¢ € U, the network
controller only has an estimate Qik(t) of queue backlog Q1 (%)
for t € T';. We denote 7;;(¢) as the time slot when the most
recent state estimate of class k£ at node 7 is obtained, i.e.,

Tik(t) = max T,

7€l Tt

with which we define L(t) £ max; (¢ — 7;%(t)), which denotes
the largest delay in underlay observations at time ¢ and assume



that the average observation delay is sublinear in the time

horizon T, i.e.,
t=0 T

This assumption is needed to control the impact of outdated
underlay observations, and is not hard to satisfy. If the
observations of underlay nodes occur with fixed interval, then
it is easy to show that ZtT;(Jl L(t)/T = O(1). More generally,
the condition is met as long as the k" observation interval
of underlay nodes grows slower than the order of k* where
a > 0.

The estimate can be erroneous. For an underlay node ¢ € U
and t € I';y,, we define the error as ¢;;(t) £ Qik(t) — Qur(t).
Our algorithm is robust to estimation errors. To guarantee the
desired performance, we only need to assume that the errors
grow sublinearly in time, i.e.,

ey

(2)
We further assume the system dynamics to be bounded, i.e.,

for some constant D > 0.
Mathematically, the queue backlogs evolve according to the
following rule (we use the operator []T £ max{xz,0})

[Qit() + 7ir(t) = X jen Fisn ()] +
Yo fi®) + X jeu Myk(t)

[sz( )+ i (t) — ZyeNMJk t)] +
Zjeo f]zk(t) + Zjeu fijik(t), 1 € U.

We use the network event sequence of external ar-
rivals, underlay admissions and underlay transmissions, i.e.,
{a(t),vu(t), “(t)}ogth—v to characterize the underlay be-
haviors. The policy taken by the network controller can be
characterized by a function 7 that maps a network event
sequence to an overlay action sequence, i.e.,

D} ocrer s = {70, £(1

Note that this definition is equivalent to policies that make
decisions based on queue backlogs, since the action sequence
determines the queue backlogs. It is also worthwhile to
emphasize that the underlay actions =, (¢) are unobservable to
the controller.

The packet admissions, external arrivals and control actions
of underlay nodes are generated differently under different
network dynamics. The dynamics can be classified into three
categories: stochastic dynamics, non-stochastic dynamics and
adversarial dynamics, as introduced below.

|eir (8)] = o(t).

Qir(t+1) =

e {a Yult), }ogth—r

A. Stochastic Dynamics

Under stochastic dynamics, the external arrivals a;(t)’s are
i.i.d across time. We assume that control policies of the underlay
nodes are queue agnostic (i.e. the actions are independent of
the queue backlogs), such as randomized routing and shortest
path protocols.

Our goal is to design an algorithm that maximizes the average
network utility while keeping the network rate stable, i.e.,

E[ X150 UG (0)]

max -l T @
E[ Yien s Q5(T)]
s.t. lim =0
T— 00 T

where we use superscript 7 to distinguish the variables under
policy . (e.g., QF.(t) is the queue backlog of class k data
at node ¢ at ¢ under policy 7). We use mean rate stability
to characterize the stability constraint, which implies that as
t — oo, the expected queue backlog grows up to a sublinear
function of ¢ and the arrival rate is no greater than the service
rate.

We assume that there exists a policy 7" that solves (4).
If there are multiple policies satisfying the conditions, we
arbitrarily select any one of them to be 7*. We define V
as the maximum queue backlog under 7* during the whole
process, i.e.,

max

Vr2E
0<t<T

> Qx|

€Nk

We assume that V7 is sublinear in time horizon 7', i.e., Vi =
o(T).

For any policy 7, we use utility regret to characterize the
accumulated gap between the utilities under 7 and 7*, defined
as follows.

Definition 1. The utility regret achieved by applying policy w
is defined to be

T-1 T-1

SUET®) - > UGHT®)
t=0 t=0

It is straightforward to see that maximizing utility is
equivalent to minimizing the utility regret. If an algorithm
obtains the performance of RT. = o(T), then its average utility
converges to the maximum utility asymptotically.

B. Non-Stochastic Dynamics

Under non-stochastic dynamics, the external arrivals and
underlay actions are generated arbitrarily and cannot be
captured by a stochastic process. Instead, we aim to solve

A C ()

max lim
T T— o0 T (5)
. Zz’eN,k Q;Tk (T)
st. lim ———" "~~~ =0
T— o0 T

for any occurred network event sequence.

We assume that, there exists a policy 7* such that for each
possible network event sequence, the overlay action sequence
generated by 7" solves (5). If there are multiple policies
satisfying the conditions, we arbitrarily select any one of them



to be 7*. We define V to be the worst-case peak total queue
backlog under 7* across network event sequences, i.e.,

Vp £ Q7 (1)-

max max Z
{a(®),vu(t),1(t) bogt<r—1 OSEST ek
We assume that Vi is sublinear in time horizon 7', i.e., Vi =
o(T). The definition of V can also be regarded as a constraint
on network dynamics: the network should be benign such that
the peak total queue backlog under 7* is always bounded by
Vr.

We define the utility regret in a worst-case manner, i.e.,

Definition 2. The utility regret achieved by applying policy 7
is defined to be

T— T-1

RY SN UR™))->_ UMR"(1).

= max
{a(t),yu(t),n(t) Jogt<T—1 =0 =0

=

Since R is the worst-case regret, if an algorithm obtains

= o(T), then for each possible network event sequence, it
converges to the maximum utility corresponding to the network
event sequence.

C. Adversarial Dynamics

Under non-stochastic dynamics, network event sequences
can be arbitrary but are independent of the controller’s actions.
However, under adversarial dynamics, the underlay nodes are
controlled by an intelligent adversary, who can change packet
admissions, external arrivals and control actions of underlay
nodes according to the control actions up to time ¢ — 1 to
maximize the impact on the achieved utility. For instance, in
Denial-of-Service (DDoS) attack, the attacker hijacks and takes
control of multiple machines in the network by planting Trojans
or scanning for security holes [4]. The adversary may consider
the past queue backlogs and transmission history and send a
large number of requests to the most vulnerable nodes.

Similar to Section II-B, we assume that for each possible
network event sequence, (5) always has a solution, and continue
using the definitions of Vr and R7. of Section II-B.

However, under adversarial dynamics, the coupling between
the controller and adversary brings significant challenges in
solving the NUM problems formulated as (5). As analyzed
in Section IV, we can calculate an optimal action sequence
that maximize average utility while preserving rate stability for
any given network event sequence. However, under adversarial
dynamics, when the optimal action sequence is applied to
the system, the adversary may adjust future network events
so that the optimal action sequence no longer maximizes the
average utility. Coping with the coupling issue remains an open
problem and is beyond the scope of this paper. Nonetheless,
we can show that, no matter how malicious the adversary is,
for any realized network event sequence, the TDP* algorithm
is guaranteed to maximize the utility.

For readers’ convenience, we summarize the variable nota-
tions in Table I.

TABLE I: Variable Notations

N The number of queues in the queueing network
N, O, U  The set of all nodes, overlay nodes, underlay nodes
K The set of data types
C;;  The link capacity between node i and j
dj,  The destination of the data of class k
T  The time horizon
7 A policy, can be characterized as a function that
maps a network event sequence to an overlay
action sequence
m*  The policy that solves the NUM problems
I';  The set of time slots when an estimation of Q;x
was made for node ¢ € U
7;(t)  The most recent time an estimate of node ¢ was
made for node ¢ € U at ¢
L(t) The maximum delay of estimates at ¢, i.e.,
max;ey it — Ti(t)
QT.(t)  Under policy 7, the queue backlog of class k at
node i € N at t
Afk(t) Under policy 7, the estimated queue backlog of
class k at node i € N att € T;
€(t)  the estimation error made at ¢ for class k at node
i eUie., Qi (t) — Qik (t)
aT, (t)  Under policy , the number of external packets
of class k arriving at node i € N at ¢
755 (t)  Under policy 7, the number of admitted packets
of class k at node i € N at ¢
Uik (75, (t))  Under policy 7, the utility of class k at node

EMONGAO)

i € N induced by 7 (t)
Under policy m, the planned and actual number of

packets of class k transmitted from node i € O
tojeNatt

Under policy 7, the planned and actual number of
packets of class k transmitted from node ¢ € U
tojeNatt

In the imaginary network, under policy , the
planned and actual number of packets of class k&
transmitted from node i € U to j € N at t

ijk(t)v ﬁz’]k(t)

gfjk(t), g;k(t)

X7.(t)  Under policy m, the virtual queue backlog of class
katnodet €U att
Y7 (t) T (t) = X7 (t) fori e U

Vr  The peak queue backlog during 0 < ¢ < 7" under
71_*

III. OUR APPROACH

The key challenges in solving the NUM problem are
two-fold. First, the partial observability and controllability
make classical algorithms such as MaxWeight [1] unusable.
Second, the external arrivals and the routing actions taken
by the underlay nodes may not be cooperative and may
even impact the utility and destabilize the network. While
some existing works attempts to solve NUM problems in
partially controllable or adversarial settings, no algorithm is
capable of handling unobservability, uncontrollability, and non-
stochastic/adversarial dynamics together.

A. Overview

The core of our algorithm is to “track” the underlay dynamics
(i.e., the queue backlog and service of the underlay nodes) and
solve the NUM problem based on the tracked information.

Specifically, the controller constructs an “imaginary” system
with the same topology as the real system, yet all nodes are
fully observable and controllable. The actions of each underlay
node ¢ € U in the imaginary system can be decided by the



controller, and we use g;;;(t) to denote the number of packets
of class k transmitted to neighbor j. However, g;;x(t) may
differ from the actual underlay action p;;(t), thus causing
gaps in queue backlogs between the imaginary system (denoted
by X;i) and the real system (still denoted by @;x). Meanwhile,
the controller directly observes the overlay queue backlogs in
the real system, and enforce them as the overlay queue backlog
in the “imaginary” system, so that each overlay node i € O
is always synchronized with the real system, i.e., the queue
backlogs @;i and the action ~y;, and f;;) at overlay nodes are
the same across the imaginary system and the real system.
We define the gap between ;. and X by Yir £ Qi —

The queue backlog in the real system can be decomposed into
the queue backlog in the imaginary system and the queue
backlog gap between the two systems, i.e.,

Z Qir(t)

€Nk

backlog in the real system

=Y Qu)+ > Xu()+

€O,k €U,k

> Vi)

i€U,k

(6)

backlog in the imaginary system gap between systems

Since the imaginary system is easier to control, our approach
is to solve the NUM problem for the imaginary system, while
controlling the gap between the two systems.

B. Algorithm

The Tracking Drift-plus-Penalty (TDP*) algorithm enhances
the classical Drift-plus-Penalty algorithm [2] and can be applied
to stochastic dynamics, non-stochastic dynamics and adversarial
dynamics. To minimize the queue backlog and to maximize
the utility simultaneously in the imaginary system, we aim at
minimizing the following Lyapunov function

el 5 D @A) +%ZXi2k(t)+

zEOk i€U,k

1 t—1

5 2 Yk — VY URm). O
€U,k 7=0

where Y} (t) = max{Y;;(¢),0} and V is a parameter that will
be used to tune the utility-backlog trade-off.

To control the growth of (7), we minimize the Lyapunov
drift A®(t) 2 ®(t + 1) — ®(t) during each time slot. It can
be shown that minimizing A®(t) is equivalent to minimizing

> Qu()6Qin(t) + Y Xin(t)dXuw(t)+

€0,k 1€Uk
SN YLWAYE®) — VU (1), ®)
€U,k

where 0Qx(t), 60X, (t) and AY;,(¢) are defined as

0Qin(t) = in(t) = Cjen fisn(t) + Xjeo Fiin(t)+
> jeu fjik(t), €0

0Xin(t) = yin(t) = Xjen 9ik (t) + Xjeo Fiin(t)+
Zjeu gjik(t), el

AYip(t) & Yip(t+1) = Yip(t), ie€U.

The proof can be found in Appendix B and C. Note that we
use 0 instead of A for §Q;x(t) and d Xy () because they are
not the actual one-slot changes (using f;;, and g;;z) but the
planned one-slot changes (using f;;r and g;;x).

However, for an underlay node ¢ € U/, the network controller
does not have instantaneous access to its queue backlog Q;(t)
and thus the value of Y;;(¢) is unavailable to the network
controller. As discussed in Section II, the network controller
can obtain estimates of ();;, at certain time slots I';. Therefore,
the network controller can use the most recently estimated
(possibly erroneous) Q,k (t) to estimate Yji(t), i.e.,

Yie(t) = Qir(ri(t)) — X (t), ©)
where 7;(t) is the most recent time when an estimation of Q)
was made, ie., 7;(t) £ max-cr,:r<t 7. By replacing YJg(t)
with }A’l;(t) and discarding uncontrollable variables including
air, and pg5,, Eqn (8) can be fomulated as (10), where the
solution is denoted by 477 (t), f™ (t) and g™ (t).

For each time slot, the network controller solves (10) and
applies 477 (t) and f™"(¢) to the overlay nodes in the real
network, meanwhile using ™7 (¢) and g™ (t) to update X (¢)
for all underlay nodes ¢ € U, according to

= > gt ]

JEN

)+ Z gjir (1)

JeEU

Xik(t+1) :[X )+ vir(t

Z Fiin(t

jeEO

(11)

where, for technical reasons, we assume that in the imaginary
network, underlay nodes can transmit dummy packets when
the allotted packets to be transmitted are less than the queue
backlog (i.e., gijx = gijr for i € U). This assumption does
not affect the performance of the algorithm, as analyzed in the
next section.

The complete algorithm is given in Algorithm 1.

IV. PERFORMANCE ANALYSIS

We derive the following universal bounds for stochastic,
non-stochastic and adversarial dynamics, using Vr in Theorem
1. For conciseness, we use Q7" to denote the expected total
queue backlog at T' for stochastic dynamics, and to denote
the worst-case total queue backlog at 7" for non-stochastic and
adversarial dynamics, under policy TDP*.

Theorem 1. Under the TDP* algorithm, we have the following
performance bounds:
R = %

w = O(VHATY 4 VIV + /o (L,6)

o AV%/2T3/2+0(L76))



Yo" (1), £ (E), 97 (1)

=arg min Z Qir(t
o g

|:’sz + Z szk + Zgﬂk

> fijk} + ) Xa(t) - [ijik+zgjik -

Z gijk} +

T f8 ok j€o jeu JEN et k jeo jeu JEN
Y;gr |:m1n { Z Gijk, 'Llc + ’71]@ } Z g]zk:| -V Z Uik (%‘k)> (]O)
zeu k JEN JjeEU €0,k
st. 0 < Yik < afik:(t)a ijk > 07 E}c fijk g K gzyk O Zk: gz_]k C
Algorithm 1 The TDP* algorithm {’y“ } 0 < t <71’ and the overlay action sequence
1: Input: T, Q;1(0), T; fori € U under 7* by {7 ) F™ ) Y ocreqv-

2: Tnitialization: X,;,(0) « Qix(0) for i € N, Yix(0) < 0
fori el
3 fort <+ 0,1,---,T—1do
4:  Obtain Q;(t) and a;x(t) for i € O, v (t) and X (1)
forteld
5: foriecU do
6 if t € T'; then
7: Obtain an estimation Q;(t) for k
8 end if
9 Update Y;;(t) using Eqn (9) for k
10:  end for
11:  Solve Eqn (10) and obtain yZ7 (t), f™*(t) and g™7 (t)
12:  Implement 477 (¢t) and f™7(t) to overlay nodes O in
the real network
13:  Update X, (¢t + 1) using Eqn (11) for ¢ € U and k
14: end for
15: Output: action sequence for overlay nodes f™7(t) for
t=0,---.T—1, ie., mp

where o(L,€) characterizes the impact caused by sparse
observations on underlay nodes and estimation errors, and is
upper bounded by

—o( X+ 3 fentrulon) )
t=0

t=0 il k

Proof. For conciseness, we use superscript 7 to denote the
variables that are obtained under policy m. For example,
o7 (T ) denotes the Lyapunov value at 7' under TDP*, and
>ir Qfy (T') denotes the total queue backlog at 7" under policy
.

The outline of the proof is as follows. We first bound the
queue backlog. By Lemma 1, bounding the queue backlog
can be achieved by bounding the Lyapunov value ®™7 (7). To
bound ™7 (T'), we use Lemma 2, 3 and 4 to bound the one-
slot drift A®™ (¢). By summing up A®™7 (t) over time and
using Lemmas 5 and 6, we bound ®™7(T") and thus bound the
queue backlog. We then bound the utility regret by rearranging
the result in Lemma 4 and reusing Lemmas 5 and 6.

We assume the occurred network event sequence to be
an arbitrary sequence {a(t),v.(t), (t)}o <<+ We denote
the corresponding overlay action sequence under TDP* by

To prove Theorem 1, we first prove the upper bound on the
queue backlog at T'. With the following lemma (see Appendix
A for the proof), to bound the queue backlog, it suffices to
bound @77 (7).

Lemma 1.
> QT

To bound ®™7(T), we start by bounding AP™7 (t). We
upper bound Q% (t + 1) — Q% (t), X2 (t+ 1) — X2 () and
Y;i2(t+1) — Y, ?(t) in Lemmas 2 and 3, respectively (see
Appendices B and C for the proof).

) < V2KN®™(T) + 2K2N2DVT.

Lemma 2. For eacht =0,--- ;T — 1, we have
Bt +1) — Q% (1) < 2Qur(t)dQuk(t) + 6N?D?i € O
XZ(t+1)— ka( ) < 2Xik(t)0Xik(t) + 6N2D%i e U
Lemma 3. For eachi €U, k andt =0, --
Y2 (t+1) - Yi2()
<2Y;; () AYi(t) + (8L(t) + 6) N2D? + AN D e (in(t))] -

, T — 1, we have

With Lemma 2 and Lemma 3, we can upper bound A®™7 ()
as follows,

AD™T(t)
<Y QEMOQIT () + Y XTI ()X (t) +
€0,k €Uk
S OYIITOAYET () - VU (YT (1) +
1€Uk

(4L(t) + 9)KN’D* + 2K N Dley(ri(t))| . (12)

For technical exposition, we consider the following quantities

AQE () & AR (1) = X jen [T () + Xjeo [+
Zjel,{ ﬂjik(t)a €0 _

AXZ () 2 yik(t) = X jen fign() + X jeo Fla )+

~ Zjeu ﬂjik(t)a ieu

AYe(t) = min { X757 (8) + ik (1), X5 e i (t) }—
Zje]\/ ﬂijk(t)a iEU.

Particularly, AQ7*(t) and AX7*(t) are the actual one-slot
changes of the queue backlogs of both the real and imaginary



systems under the policy 7*. On the other hand, AYIT,;*(t)
captures the “hypothetical” one-slot change of the system
gap if, given the current state to be X' (¢), the actions
of n* are applied. To ease analysis, we replace the one-
slot changes QL (t), 0X[I(t) and AY,;"(t) in (12) with
AQT(t), AX]F(t) and AYJ,;*(t) using the following lemma
(see Appendix D for the proof). The intuition behind is that
(10) minimizes the drift.

Lemma 4.

> QIFMSQIT () + Y XTI (H)SX]T(t) +
i€,k ielU k
Y YT OAYGT () — VU (1) +
icU,k

<D QEWAQE () + Y XT(HAXE (1) +
€0,k €U,k
VI OAYE () - VU (v™ ().

ik ik Y
€U,k
With Lemma 4, A®™ (¢) can be further upper bounded as

AD™T (¢)

<) QFMAQR () + Y XIT(AXT(t) +
€O,k €U,k
Y VT OAYE () - V- U(™() +
icU,k

(4L(t) + 9)KN?D* + 2K N*Dlei (i1 (1)) | - (13)

Summing up (13) from ¢ = 0to ¢t =T —1 gives us an upper
bound to ™7 (T"). To assist the analysis, we prove Lemmas 5
and 6 (see Appendices E and F for the proof), as follows.

Lemma 5.

jz:i;k@m +;Z§kw 5
((&&XTZQ ) "1,

Lemma 6.

)

By summing up (13) from ¢ = 0 to t = T — 1, inserting
Lemma 5 and 6, we have

1/
T — 3/2
() ((ogltzixTZQ ) T +U(L’€))'
(14)
By inserting (14) into the result in Lemma 1, we show that

> QT =
ik

1/4
o ((OQ&XT 2}; f,:(t)) T34 L NTV + \/o(L, e)> .
’ (15)

,_.

VT mAYE () <.

cu,k

For stochastic dynamics, by taking expectation over the
network event sequences on both sides of (15), we have

max
ot<T

> Qi (t))1/4] T34 L TV + /o (L, e)>
i,k

max
o<t<T

= o(vy/'T# + \/TT/+ VolLe),

ZQ”* } ST NVTV + 0(L7e)>

(16)

where the second equation holds by apply Jensen’s inequality
and the last equation holds by the definition of Vr in Section
II-A.

For non-stochastic and adversarial dynamics, we consider
the worst case of queue backlog, as

max T T
{a(t),vu (t),(t) YocicT—1 ; Qi (1)
O( ( ZQ t )1/4 T3/4
= max max Zf* X +
{a(t)”y“(t)vl"‘(t)}ogtg:r o<t<T s k ( )
\/ﬁ —+ U(L, 6))
= OV " T+ VIV 4 /o (L,0). (17)

where the last equation holds by the definition of V1 in Section
1I-B.

Equations (16) and (17) complete the bound on the queue
backlog for all types of dynamics.

We now bound the utility regret. By rearranging the result
in Lemma 4, we have

V-UR™(®) =V -UR™ (1))

<) QFmA + ) XITMAXE () +
€0,k €U,k
STVt (A -3 Qi T (t)—
1€U,k €O,k
N7 OXTTWOXTI() — > YT () AYT(¢),
ieU,k ieU,k

which, by inserting Lemma 2 and Lemma 3 to the last three



terms, can be further upper bounded as

V-UMR™() =V -UR™(t)
<Y QEMAQE () + Y XFT(HAXE(H) +

i€0,k iel,k
YT OAYE (1) +

iGZ/f k

= Z Qrr Z QT (t41)?
zEOk 1€Ok

1 T 1 s

5 > X[ - 3 > OXJE(t+1) +
€U,k ieZ/{ k

1 Y™ + T+

5 > v — = Z Yt (e + 1)
€U,k 161/{ k

(4L(t) + 9)KN°D? + 2K N D| e (i (1)) | - (18)

Summing up (18) from ¢ = 0 to time ¢t = T" — 1, applying
Lemma 5 and Lemma 6, we have

VU™ (1) -V -UR™()
} 0((02%2 %35‘<t>)”2 T “@’E)) :
i,k

ZQ ZQ

ZGO k 'LGO k

1 s 1 s

5 Z X5 (0)2 = 5 Z X (T)? +
iGM k ieu k

DI W el
ZGM k zGZ/{ k

<(oglra<XTZQ ) T2 U(L7€)), (19)

where the inequality holds because we assume the initial queue
backlogs are zero.

For stochastic dynamics, similar to the analysis in bounding
the queue backlog, by dividing by V' and taking expectation
over the network event sequences on both sides of (19),
applying Jensen’s inequality, and using Definition 1, we have
R = O(VT1/2T3/2/V + O’(L,G)/V). For non-stochastic
and adversarial dynamics, also similar to the analysis in
bounding the queue backlog, by dividing by V' on both
sides of (19), considering the worst case of network event
sequences, and using Definition 2, we also obtain R;T =

0 (V:,{/2T3/2/V—|—U(L, €)/V ). Therefore, we obtain the bound
on the utility regret for all types of dynamics. O

With Theorem 1, we can easily derive that the TDP*
algorithm can solve the NUM problem, i.e., maximizing the
utility while keeping stable queues, as in Theorem 2.

Theorem 2. For a network with stochastic / non-stochastic
dynamics, the TDP* algorithm solves the NUM problem defined
by (4) / (5), respectively.

Proof. By the assumptions made in Section II, we have Vp =
o(T). By (1) and (2), we have o(L,¢) = o(T?). We assume

that there exists a number 0
and o(L,€e) =
B < 1.

For stochastic dynamics, we have

R T = 0T 0 4 120-5-1)

34+a

E| Sicvs QD) = 0(1%

< a < 1 such that Vpr = O(T%)
O(T?*). We choose V = T# with (1+a)/2 <

n T1+/a + Ta) _ O(T),
(20)
which shows that as 7" — oo, the average utility converges
to the maximum utility, while the queue backlog remains rate
stable. Thus TDP* solves (4) for stochastic dynamics.
For non-stochastic dynamics, we have

RY7 )T = O(T* = 4 2e=0-1)
MAX {a(t) 7, (8), () bocrcr 1 Dk @ik (1)
= (T)7

_ O(T““ + T +TO‘)

2

which shows for any network event sequence, the average
utility converges to the maximum utility and the queue backlog
remains rate stable. Thus TDP* solves (5) for non-stochastic
dynamics. O

Theorem 2 presents a strong result that if a solution to
NUM problems (i.e., maximizing utility while preserving
stability) with stochastic or non-stochastic dynamics exists,
the TDP* algorithm is almost equivalent to the optimal policy.
For adversarial dynamics, the results in (21) still holds. The
queue backlog always remains rate stable. However, the average
utility only converges to the maximum utility for a given
network event sequence. Due to the coupling between the
controller and adversary, when TDP* is actually applied to
the system, the adversary may change the incoming network
events to undermine the utility achieved by TDP*. Nonetheless,
the results in (21) show that, no matter how malicious the
adversary is, for any realized network event sequence, the
TDP* algorithm is guaranteed to maximize the utility.

V. ONLINE TDP*

If the time horizon T is unknown, it is hard set up an
appropriate static V. The controller can dynamically estimate
the time horizon using the doubling trick: in the beginning
the time horizon estimate is T =Tp. Every time the actual
time elapsed exceed T, the controller doubles the estimate, i.e.,
T + 2T'. Meanwhile, the controller uses the estimated 7' to
decide the value of V' dynamically. As defined in the proof
of Theorem 2, there exists a number 0 < o < 1 such that
Vp = O(T®). Given an estimate 7' to the time horizon, we
choose V = T with (14 a)/2 < # < 1. Under the doubling
trick, the value of T at time ¢ is

. T 0<t<T
T={0kr  giig o) @)
25Ty, 2 Ty < t<2T07k/
and the corresponding value of V' at time ¢ is
17 0<t<Ty
Vit)y=< ) .23
®) {zkﬂTf, k1T <t < 28Ty, k> 1 @3)



We replace the static V' in (10) with V' (¢) defined in (23),
and all other operations of TDP* remain unchanged. We can
show that the online TDP* still solves the NUM problems, as
stated below.

Theorem 3. When applying the doubling trick to estimate the
time horizon T, the results in Theorem 2 still hold.

Proof. We first analyze the queue backlog. The analysis for the
queue backlog in the proof of Theorem 1 still holds, with the
only difference of replacing the static V' in (15), (16) and (17)
with the largest V' (¢). From (22), for any real time horizon T,
the estimated time horizon 7" is at most 27. Thus, the largest
V (t) is bounded as O(T#). By replacing the V' with 7 and
inserting Vi = O(T?) in (15), (16) and (17), the bounds for
queue backlogs in (20) and (21) still hold. Therefore, TDP*
stabilizes the system for all types of dynamics.

We then analyze the utility regret. We consider an arbitray
network event sequence {a(t),~.(t), “(t)}ogth—l' By re-
placing the V' with V (¢) in (18), summing it up from ¢ = 0
to time t = T — 1, and applying Lemma 5 and 6, we have

T-1

V(t)- (U('y”*(t)) —U('y”T(t))) < C-VHPT3? (24)
t=0

for any T > 0, where C' is a constant. For conciseness,

we define R}T, = ?:_tgl (U(’Yﬂ*(t)) —U(y™ (ﬂ)) By

inserting V' (¢) defined in (23) into (24), we have for every
K>1,

K
T(? : R;OT + Z (2jT0)ﬂ 'Rgf*1T0:2JTO

Jj=1

< C'V1/2 . (2}{,1-,0)3/2.

2KTD (25)

Since 5 < 1, for any 1 < k < K, we have

(QKTO)ﬁ — okB . (2kaT0)ﬁ <ok, <2kaTO)/3

)

with which we can bound (2% TO)B - Ry%p, (with K > 1) as

(2°70)° - Rit,

K
=(251,)" - RE +) (25 T)" Ryl gy,

Jj=1

K
<F (1)” Ry + 2K (2,)" - Ry

2i=1T:2i T,
j=1

K-1 k
_ Z oK—k—1 (TOB - RIT + Z (QJ'TO)/H ~R;'T1TO:2JTO)
k=0

=1

=

+TY R+ (2Ty)" - REE i (26)
j=1

By inserting (25) into (26), we have

K-1

K \B pr K—k—1 1/2 krm \3/2
(2 TO) 'R217;T0<22 'O"/QkTO'(2 TO)
k=0
1/2 K \3/2
+C'VzKTO ’ (2 TO)
1/2
<AC - Vil - (25Ty)3?,

which leads to the result that for any 7' = 25T, with K > 1,
we have

1+a

R /T < AC-V? . TV 6 <o 7756,

where C’ is a constant, and the second inequality holds by
using the fact that Vpr = O(T*). We suppose the limit of
RIT /T exists as T — oo, then every subsequence converges
to the same limit. Since (1+a)/2— 3 < 0, the subsequence of
RET )T with T = 2K T, converges to zero. Therefore, R7* /T
also converges to zero. By applying similar analysis as the
end of the proof of Theorem 1, we can show that the average
utility regret converges to zero for all types of dynamics.
Combining the analysis on the queue backlog and the utility
regret, the TDP* algorithm solves the NUM problem for all
types of dynamics, thus completes the proof. O

VI. NUMERICAL EXPERIMENTS

We conduct numerical experiments on two network systems
to validate the performance analysis of TDP*. We study a
complex system of 15 nodes with stochastic dynamics and a
system of 12 nodes with adversarial dynamics to show the
performance of our algorithm under different dynamics.

A. 15-Node Network With Stochastic Dynamics

We study a 15-node queueing network as in Figure 1. The
system consists of 12 overlay nodes and 3 underlay nodes
(node 8, 9 and 13). All link capacities (including the links
5 —d, 11 — d and 15 — d) are 5. For simplicity, there is
only a single class of traffic, and all packets can leave the
system via any of the three sink nodes (5, 11 and 15) leading
to the destination d.
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Fig. 1: The model of the 15-node network with stochastic dynamics.




At the beginning of each time slot, external packets arrive at
nodes 1, 3 and 13 according to a uniform distribution between
0 and 12, i.e.,

al(t), ag(t), alg(t) ~ Unif{O, ey 12}.

Node 1 and 3 are overlay nodes and their packet admissions,
denoted by ~; and 73 respectively, can be decided by the
controller. Node 13 is uncontrollable and applies a greedy
admission policy that admits all incoming packets, i.e., y13(t) =
as (t)
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(b) Stabilizing policies.

Fig. 2: Queue backlog evolution under different policies for the 15-node
network with stochastic dynamics.

The controller then decides, for all overlay nodes, which
neighbors to relay the buffered packets. The underlay nodes 8,
9 and 13 transmit packets on each outgoing link according to
a uniform distribution between 0 and 5, i.e.,

ps—o(t), pro—15(t), to—10(t),
p13—9(t), p13—12(t), 13—14(t) ~ Unif{0,--- ,5}.

We aim to maximize the throughput, i.e., ZtT:_Ol (VT (t) +
Y5 (t) + 773(t)). The expected number of external arrivals
at each time slot is 12 x 0.5 x 3 = 18 (packets), while the
total service rate is Cs5_,g + C11—q + C154 = 15 (packets).
Therefore, to keep the entire network rate stable, the controller
cannot greedily admit packets.

In the simulation, we first compare the evolution of the
queue backlog. We implemented TDP* with different parameter
V’s. We then implemented the online TDP* which uses the
doubling trick to adjust the value of V’s dynamically. We also
directly applied the traditional Drift-plus-Penalty algorithm
(with V' = 10) to the overlay nodes as a baseline method. The
results are in Figure 2.

From Figure 2a, we can see that under the traditional
Drift-plus-Penalty algorithm, the average queue backlog grows
linearly in time. Therefore, traditional Drift-plus-Penalty might
not be capable of stabilizing the network. We then focus on
the performance of stabilizing policies in Figure 2b. It can be
seen that under different choice of V, all TDP* algorithms
stabilize the system. The larger V is, the greater the queue
backlog grows. For online TDP* with the doubling trick, the
value of V'(¢) grows when time elapsed doubles, which leads
to the step increase in the curve.

We then compare the utility evolution in Figure 3.
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Fig. 3: Utility evolution under TDP* for the 15-node network with stochastic
dynamics.

Since the aggregated service capability is 15 packets per
time slot, the maximum throughput that still keeps rate stability
is also 15, which serves as an upper bound. From Figure 3, we
can see that larger average utility can be achieved by choosing
a larger V. If the time horizon T" = 5000 is known in advance,
the controller can choose V' = 25 and obtain an almost optimal
average utility. If the time horizon is unknown, online TDP*
can be applied. As can be seen from the figure, online TDP*
gradually converges to the maximum throughput. Note that
from Figure 2b, the queue backlog also grows larger under
online TDP*.

We finally study the trade-off between the queue backlog and
the utility. We conducted experiments under different values of
V, and obtained the final total queue backlog and the average
utility for each V. The results are in Figure 4. From Figure
4, to achieve a greater utility, the controller needs to choose a
larger V, which leads to larger queue backlog, which matches
the results in Theorem 1.
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Fig. 4: The relationship between the queue backlog and the utility under TDP*
for the 15-node network with stochastic dynamics.

B. 12-Node Network With Adversarial Dynamics

We study a 12-node queueing network as in Figure 5. The
system consists of 8 overlay nodes and 4 underlay nodes (node
2, 3, 4 and 6). All link capacities (including the links 9 — d
and 12 — d) are 5. For simplicity, there is only a single class
of traffic, and all packets can leave the system via either of
the two sink nodes (9 and 12) leading to d.
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Fig. 5: The model of the 12-node network with adversarial dynamics.

At the beginning of each time slot, external packets arrive
at nodes 1, 4 and 10 according to uniform distributions of

ay(t) ~ Unif{0, - - , 10}
a4(t) ~ Unif{0, 1,2}
alo(t) ~ Umf{(), ce ,6}

Node 1 and 10 are overlay nodes and their packet admissions,
denoted by v, and ;¢ respectively, can be decided by the con-
troller. Node 4 is uncontrollable and applies a greedy admission
policy that admits all incoming packets, i.e., y4(t) = a4(t).
Moreover, an adversary attempts to inject at each time slot
a’ = 2 packets into the network through node 1, 4 or 10. In

an attempt to destabilize the network, the adversary chooses
to inject the o packets into the node with the largest queue.

The controller then decides, for all overlay nodes, which
neighbors to relay the buffered packets. Meanwhile, the
underlay nodes, controlled by an adversary, try their best to
destabilize the network. Node 4 and 6 apply the “join the
longest queue” (JLQ) policy that transmits 5 packets to the
neighboring node with the larger queue size and transmits
nothing to the other neighboring node. JLQ, in contrast to the
stabilizing “join the shortest queue” (JSQ) policy, is adversarial
since the node with the larger queue is more heavily loaded
and hence, easier to destabilize. Node 3 simply transmits 5
packets to node 7 at each time slot. Node 2 transmits 5 packets
to node 3 for the first T/2 time slots, but starting at 7'/2, it
only transmits 1 packet to node 3.

The expected number of external arrivals at each time slot
is 10 x 0.54+2x 0.5+ 6 x 0.5+a’ = 11 (packets), while the
total service rate is Cy_,q + C12—q = 10 (packets). Therefore,
to keep the entire network stable, the controller cannot greedily
admit packets. Moreover, starting at 7'/2, the service rate of
node 2 drops sharply, which requires the algorithm to sense
the change in time and alter the policy accordingly.

In the simulation, we first compare the evolution of the
queue backlog. Similar to Section VI-A, we implemented TDP*
with different parameter Vs, the online TDP* which uses the
doubling trick to adjust the value of V’s dynamically, and the
traditional Drift-plus-Penalty algorithm (with V' = 10) to the
overlay nodes. The results are shown in Figure 6.

From Figure 6, we can see that directly applying the
traditional Drift-plus-Penalty algorithm cannot stabilize the
network. Among the stability policies shown in Figure 6b,
larger Vs lead to larger queue backlogs.

We then compare the utility evolution in Figure 7. Since
the aggregated service capability is 10 packets per time slot,
the maximum throughput that still keeps rate stability is also
10, which serves as an upper bound. From Figure 7, larger
throughput can be achieved by selecting larger V’s. For the
given time horizon 7" = 5000, an almost optimal throughput
can be achieved by choosing V' = 25. Similar to the result in
Section VI-B, online TDP* also converges to the maximum
throughput.

We finally study the relationship between queue backlog
and utility by collecting the final total queue backlog and
the average utility under different values of V, as depicted in
Figure 8. From Figure 8, we can conclude that choosing larger
value of V' improves the utility, yet the queue backlogs also
grow larger, which matches the results in Theorem 1.

VII. CONCLUSIONS

In this paper, we focus on networks with unobservable
and uncontrollable nodes, under stochastic, non-stochastic and
adversarial dynamics. We propose the TDP* algorithm that
only needs to operate on overlay nodes with indirect state
information. We rigorously derive the bounds on the utility
gap and queue backlog, which explicitly reveal the trade-offs
between utility and queue backlog. We further show that as
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Fig. 6: Queue backlog evolution under different policies for the 12-node
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Fig. 8: The relationship between the queue backlog and the utility under TDP*
for the 12-node network with adversarial dynamics.

long as the NUM problem is solvable, TDP* can maximize
the network utility while keeping the queue backlogs stable.
A possible direction for future work is to focus on network
inference, i.e., how can the controller develop general methods
to estimate the states of the underlay nodes (e.g., queue backlog)
more accurately and efficiently. Moreover, as a function of only
network admissions, the network utility is a relatively limited
objective. To optimize more general objective functions for
networks (e.g., ones that capture certain end-to-end performance
objectives) may be an interesting and important direction.

APPENDIX A
PROOF OF LEMMA 1

We have
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where the second inequality utilizes Cauchy—Schwarz inequal-
ity, the second equation holds by inserting the definition of
®(T) as in (7), and the last equation holds by using |U/| < N
and U (t) < D.



APPENDIX B
PROOF OF LEMMA 2

We first upper bound Q% (t+1) —
down the update rule for Q% (¢), we have that

quk

JEN

+ ) fijin(t)
jeu
Z fzgk

JEN

)+ Y fjin(t)

Jjeu

Q?k (t + 1) = |:sz + 'Yvk

> Fn(®)
jeo
< |:sz: + 7116

Z fiin(t

JjEO

]+
]+

It is easy to show that for z,y, z > 0, the inequality

(= yl* +2)° <a?+ 92 + 22+ 22(2 — y)

holds. By replacing = with Qr(t) + 7i(t), y with
Z]EN fijk(t) and z with Zje(’) fj1k(t) + Zjel/l ﬂjik(t), we
upper bound Q% (t + 1) as

) 2

2 (1) <Q% (Z Fult
+ Z ﬂjik(@) 2

JjEN
jeu

( > Fil®)
jeO

+ 29 (£)8Qir (1) + 2Qir ()3Qi (1)

<QZ(t) + 2Qir(t)6Qux(t) + 6N?D?,

where the last inequality holds by utilizing (3).
We then upper bound X2 (t + 1) — X2 (t) for i € U. With

= gt ]

JjEN

+ Z gjik(t)

(28)

Xik(t+1) Z{X )+ vir(t

> fin(®)

jeo jeu
+
< |:X + ’sz Z gzgk :|
JEN
> L)+ giik(t)
JjeEO jeu

by applying similar techniques as (28), we have
X2 (t+1) < X2.(8) + 2X,5(£)0 X1, (t) + 6N2D2.
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(29)

and the erroneous estimates of Yy (t) as Yy (t) = Yir(t) +
€k (Tik (1))

To avoid confusion, we define that AY;/(t) = Y/ (t +
1) — Y;{(t). Both AY;,(t) and AY;f(¢) are bounded as the
following lemma (see Appendix G for the proof).

, T —1 and k, we have
—2ND < AYj(t),AY;} (t) < 2ND,

Lemma 7. For eacht €U, t=0,---

2.(t) for i € O. Writing

Since Y;;?(t + 1) — Y;£?(t) can be decomposed as

Y2t +1) = Y2t
) v
(aviw)’

upper bounding Y} (t)AY;] (¢) suffices and we have that

(m LAY

=2V, 5 (H)AY,](t) + (30)

Vi ()AY;(2)
<Y (t) - max{AYix(t), =Y;/ (£)}
=V (AYin(1) + max(0, ~Yi{(1) =~ Yi{ ()AYie(0)}
<Y} () AYik(t) + max{0, —Y;F%(t) + 2NDY;} (1)}
=Y} (t)AY;1.(t) + max{0, —(Y;;2(t) - ND)? + N*D?}
<Y (H)AYi(t) + N2D?, 1)

where the first inequality comes from the fact that Y;; (t) > 0
and AY;} (t) < max{AYx(t), Y} (t)}. The second inequal-
ity holds because Y} (t) > 0 and AYj(t) > —2ND.

By inserting (31) into (30) and utilizing Lemma 7, we have
that

Y2+ 1) — Y2(0)
+ (AY;E () +2N?D?

)+
)
k(t) + 6N2D? +2(YiE (1) — Yii () - AYir(t)
) +6N?D*+

2ND +|e(t)]) - 2ND

+ (8L(t) + 6) N2D? + AN D|e (r31(1))] ,

which completes the proof.
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Since mp is obtained by solving (10), i.e.
(Yorf.8) = (77 ().£77(t),g""(t)) minimizes (10),
substituting (7., f,g) = (v7*(¢),f™*(¢), 1(t)) would result in
sub-optimal objective. That is:



SR [rw) = > I+ > )
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From the queue dynamics and the definitions of AQT(t)
and AX7*(¢) in Section IV, we have for i € O:

i€0,k JEN jeo
+ /:l 7,k(t) + Tk Tk Tk 7% +
g, ! Tt +1) = (QF(t) + 1k (t)_z Tr() "+
JEN
D XE®- [ SR+ i) - > gt ;
= jEO jeu JEN ;9 Jik (1) + ;”jik(t)
. J J
}/;kT+(t) : [mll’l {XWT + ’ylk gz k s Tk £k
iezu:k gj;/ J = Qi (t) +vip (1) — Z;/ i)+
JjE
-V.U Pk ~
;gﬂk o) Z fiw(t) + Z fijik ()
T ‘n'* £ % 7€0 jeu
<D QR DEO =Y O+ i = QI () + AQ (1), (33)
€O,k JEN Jjeo
+ Z ﬂjik(t)] + and for i € U,
jeu
T (1) - frx () — i -
Z X () [Z Tie(t) + Zuﬂk(t) Z i (t)] + Tt+1) = (QIF () + vkt Z i (t
€U,k JjeEO JjeUu JEN ien
ST . T _
D V) [min {XE () + k(D). 3 gt ST+ ()
ek jeN j€o jeu
- Z :ujzk -V U( ( )) (32) = Q + ’sz Z l’l’ljk)
JjeU JeN
DR+ D ()
jeo jeu
We now conduct the following operations on both sides of = Qi (t) + AXJ (1) (34)
(32):
We define M £ T mod H and there exists an integer .J
e Add ) . X7 (t) - var(t such that T = JH + M. Next, we provide bounds on the
€U,k ik

« Add Y, Y;f*(t) ) (Zjel,[ fjir(t) — Zje/\f ﬁijk(t)) multi-slot changes of the queue backlogs under 7*.

From (33) and by telescoping, we have for i € O:

After the operations, by using the notions of Q7" (¢),0.X " (t)

and AY}” (t) defined in Section III-B, and A

equivalent to

ST QI (1)0QIF (1) +

€0,k €U,k
> VTTOAYET () - V- Uy (1))
€U,k

<D QEMAQR () + > X (HAX
€0,k €U,k
SV WAYE () - VUG ()),
€U,k

which completes the proof.

A 7 (), 0X7x(2)
and AY7*(t) defined in Section IV, the inequality (32) is

ST OXITOX L () +

(J+1)H-1

Y AQR(h =

t=3H

w (G +DH) = QF (GH),

which leads to

(+1)H-1
> AQE ()| <max {QF ((j+ VH),Qfy (FH)}
t=jH
(35)
< max ). (36)

Similarly, from (34) and by telescoping, we have for i € U:

(j+1)H-1

iy < i
> AXTM|< max > QE®. 6D
t=jH i,k



Now, back to the main proof, we have the following
decomposition for i € O and k € K,

T—1
Qi (DAQ7 ()
t=0
J—1 (j+1)H-1
= Qi (GH) Z AQ7 (H)+
Jj=0 t=jH
(j+1)H-1
> (QF®-QFGH)) - AQE ()| +
t=jH
T—1
ST QI MAQE (t)
t=JH
J—1 (j+1)H 1
2NDT Y~ AQK(H)+
7=0 t=jH
(j+1)H-1
> 2NDH-2ND|+ M -2NDT-2ND
t=jH
J 1
2NDT - max m(t) + 8N D?HT
0<t<T 4
j=0 ik
_2JNDT [nax Z )+ 8N2D?HT
INDT?
< Tk 212
STE e > Qi (t) + 8N“D*HT, (38)

/l'7

where inequalities hold by using (3), and the fact that M < H
and J < T/H.

Similarly, we show that for ¢ € i and k € I,

T-1
> NG MAXE ()
t=0

2N DT?
<
H

T*(t)+8N*D?*HT.  (39)

max
0<t<T 4
i,k

Summing up (38) and (39) over all nodes and traffic classes,

we have

T—1
D> Qi

t=0 i€O,k

4K N2DT?
<7
= 0<t<TZ Qi

WS Y X

t=0 i€l ,k

zk()

) +16KN3D*HT.

T-maxo<e<T 2o Qi (1)
ND

Taking H = C\/ where c is any

positive constant that makes H an integer completes the proof.
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From the definition of AY;7*(¢) in Section IV, we have for
i€,

A 25 (t) =min {Xl.”T + ik (t Z fhijn(t } Z g (t
JEN JeEN
< Z figr(t) — Z fuiji(t) =
JEN JEN

Therefore, we have for ¢ € U,
Yo TOAYE () <0

Summing up the above inequality from ¢t = 0 to 71" over
1 €U and k € KC completes the proof.

APPENDIX G
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Here we fix an ¢ and a ¢ arbitrarily. We first discuss the
range of AY;;(t). From the definition of AY;x(t), we have

AYi(t)
=Qir(t+1) — Qir(t) — (Xir(t +1)

D k() + D Fin(t)

JEN JjEO =2

ar(t)+ Y i) = D Fran(®) =D gjan(t)

JEN jeo jeu
Z gjik(t)

=3 figin(t) = Y fuige(t) + > Giget) —
jeu

Jjeu JEN JEN

— Xi(t))

+ Z fjik (t)

=a;x(t) —

By applying (3), we have

—2ND < AYi(t) < 2ND. (40)

With (40) at hand, we first have

AY (8) = max{ Y (t + 1),0} — Y1 (t)
=max{Yi(t + 1) - Y;; (), -Y;1 ()}
Smax{Y(t +1) = Vi (t), Y, (1)}

=max{AYjx(t), =Y} (t

K2

For the lower bound Y} (¢), we have

AY(t) =Y (t+1) - max{mt), 0}
=min{Y;; (t +1) — Yir(t), Yy (¢ + 1)}
>min{Y,(t + 1) — Yie(t), Y, (t + 1)}

) —
=min{AYj(t), ng(tJrl)}/fQND. (42)

Combining (40), (41) and (42) completes the proof.
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