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ABSTRACT 

We present HiRA-Pro, a novel procedure to align, at high spatio-temporal resolutions, multimodal signals from real-
world processes and systems that exhibit diverse transient, nonlinear stochastic dynamics, such as manufacturing 
machines. It is based on discerning and synchronizing the process signatures of salient kinematic and dynamic events 
in these disparate signals. HiRA-Pro addresses the challenge of aligning data with sub-millisecond phenomena, where 
traditional timestamp, external trigger, or clock-based alignment methods fall short. The effectiveness of HiRA-Pro 
is demonstrated in a smart manufacturing context, where it aligns data from 13+ channels acquired during 3D-printing 
and milling operations on an Optomec-LENS® MTS 500 hybrid machine. The aligned data is then voxelized to 
generate 0.25 second aligned data chunks that correspond to physical voxels on the produced part. The superiority of 
HiRA-Pro is further showcased through case studies in additive manufacturing, demonstrating improved machine 
learning-based predictive performance due to precise multimodal data alignment. Specifically, testing classification 
accuracies improved by almost 35% with the application of HiRA-Pro, even with limited data, allowing for precise 
localization of artifacts. The paper also provides a comprehensive discussion on the proposed method, its applications, 
and comparative qualitative analysis with a few other alignment methods. HiRA-Pro achieves temporal-spatial 
resolutions of 10-1000 𝜇s and 100 𝜇m in order to generate datasets that register with physical voxels on the 3D-
printed and milled part. These resolutions are at least an order of magnitude finer than the existing alignment methods 
that employ individual timestamps, statistical correlations, or common clocks, which achieve precision of hundreds 
of milliseconds. 

Keywords - Data alignment, Data synchronization, Voxelization, Multimodal sensors, Multimodal data fusion, 
Process signatures, Process physics 

1 Introduction 

Modern manufacturing systems are increasingly becoming instrumented with a variety of sensors. The use of internet-
of-things (IoT) sensors is projected to grow at a 40% rate annually [1, 2], leading to an increased availability of diverse 
multimodal sensor data. In this scenario, different data streams such as those capturing machine vibrations [3, 4], 
acoustic signatures [5, 6], temperature [7, 8], etc., are collected at different frequency rates. Machine communication 
and control data streams, as well as the set points of various supervisory elements, all occur at different sampling rates, 
latencies, and are captured on diverse data acquisition systems (DAQs). They are digitized and handled differently. 
Although combining information from multiple (multimodal) sensors is recognized to greatly improve our capacity to 
monitor and control the process [9-12], drawing conclusions from unaligned sensor data poses considerable risks that 
should not be overlooked. Data alignment is a growing facet with the increasing proliferation of multimodal data with 
various applications, yet it is currently being ignored. 

The issue of alignment is similar to that of the parable, “blind men and an elephant” [13], which is a story of a group 
of blind men who came across an elephant for the first time in their lives. Each blind man touches a different part of 
the elephant’s body and then biasedly describes it according to their limited experience as shown in Fig. 1(a). In case 
of multimodal data alignment, each blind man would represent a sensor and talk in a different language. There is not 
one elephant, but it is a rapidly changing and nonlinear dynamic process [14-16] with many different animals 
streaming through a lane. During the streaming, whatever may happen at one timestamp might differ from other 
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timestamps. The thought that these blind men can infer accurate information together at the same time is the classic 
idea of sensor fusion. For accurate sensor fusion and effective inference, all sensors must touch the same aspect of the 
process at the same time, and this corresponds to alignment. Figure 1(b) provides an illustration of this analogous 
relation of multimodal data alignment with the described parable. It consists of three different stages of the process 
chain, each of which is comprised of monitoring based on high speed camera footage, vibration and acoustic emissions 
signals across the multimodal data axis. The process itself is also depicted in Fig. 1(b). in terms of 3D-printing, milling, 
and precision milling along the direction of the process chain axis. Figure 1(c) illustrates the machine and experimental 
setup employed in this work in terms of an Optomec MTS 500 hybrid machine and annotated depiction of some of 
the multimodal sensors. Our work involves aligning multimodal data at a voxel level of the part as it is being made 
via different stages of a process chain as shown in Fig. 1(d). 

The moral of this alignment problem and the parable is that that humans/sensors tend to claim absolute truth based on 
their limited, subjective experience while ignoring other people’s/sensors limited, subjective experiences which may 
be equally true. With the exponential growth of multimodal data and quality assurance, the aspect of multimodal 
alignment has a lot of importance and is potentially very impactful. 

 
Figure 1. a) The parable of the blind men and an elephant, wherein three men describe three different body parts of an 

elephant with their limited subjective experience b) An analogy to dynamic version of the parable in terms of multimodal 
sensors (video frame set and signals from an accelerometer and acoustic emissions sensor) instrumented to monitor 

dynamic manufacturing process stages such as 3D-printing, milling, and precision milling c) Optomec MTS 500 hybrid 
machine with some of its sensing capabilities d) A voxel (3D pixel) on the physical part  

The importance of data accuracy, consistency, and privacy has spiked up tremendously in recent years [17-20]. The 
National Institute of Standards and Technology (NIST) hosted a small-scale workshop in 2015 to evaluate 
heterogenous data from traffic and weather sensors that are typically collected in highway traffic domain [21]. The 
focus was on addressing major challenges and enhancements necessary to drive the application of data science 
forward. One of those challenges was that of data synchronization and alignment in the case of multimodal sensor 
data. Synchronized and aligned data is crucial in order to harness the full ability of an algorithm or model, as it 



3 
 

improves the efficiency with which computers retrieve and allocate memory [22]. In the highway traffic domain, for 
example, data between the traffic camera and the accident reports will need alignment in order to retrieve the 
timestamps in which the accidents occurred in order to further observe the reason behind a specific accident. 

Issues that might seem like minor errors in the data can have adverse negative effects on the performance of machine 
learning (ML) models and lead to biased decision making [23, 24]. Moreover, the issue of unaligned data gets worse 
as the number of data streams increases. Data alignment issues arise due to unsynchronized and improper collection 
of various sensor data sources and specifications of DAQs, which can adversely affect the quality of the collected 
multi-channel data [25]. With the high rates of data collection in smart manufacturing processes and setups, these 
issues tend to amplify with increasing amounts of non-synchronous times and DAQ clock delays [26, 27]. For 
example, a typical Acoustic Emissions (AE) sensor operates in the frequency range of few hundreds of kHz or MHz 
[6]. In such cases, data synchronization and alignment become essential, especially to make accurate and timely 
millisecond and microsecond decisions. 

Data alignment involves aligning data events by time or in the order they occur in. It is the process of synchronizing 
data pertaining to two or more devices and updating differences between them to provide consistency within DAQs. 
Such alignment enables and assures congruency among all the sources of data and keeps the acquisition consistent. 
Multimodal aligned data can then be segmentized in a way that small segments of aligned data correspond to a small 
part (voxel) of the process physically. 

In this work, we propose a novel algorithmic approach for high-resolution alignment of multimodal spatio-temporal 
data called HiRA-Pro and are looking to bring out the important facet of process physics-driven alignment. Process 
signatures are derived from the underutilized aspect of process kinematics and dynamics. Every process has multiple 
salient kinematic and dynamic events. These usually show up as visible clues in the data acquired from commercial-
off-the-shelf (COTS) or image-based sensors, that can capture many aspects of the underlying physics. HiRA-Pro uses 
them to derive process signatures that can be then used as markers to drive multimodal data alignment. This is 
especially promising in a manufacturing context since the majority of process physics involves sub-millisecond time 
phenomena wherein statistical correlation-based alignment does not suffice. While timestamp or clock-based 
alignment can provide decent resolutions, the requirement for milliseconds scale of alignment makes them insufficient. 
Hence, necessitating the need for process signatures to be brought in the alignment process for obtaining accurate 
results. In a way, HiRA-Pro is registering the data signals back to the physical phenomenon to align them better.  

The effectiveness of the proposed HiRA-Pro approach is demonstrated from a smart manufacturing implementation 
point of view. Myriad COTS sensors are employed via a smart sensor-wrapper and sensing suite to acquire multimodal 
data during 3D-printing and milling operations on an Optomec-LENS® MTS 500 hybrid machine. In total, data pool 
consists of 13+ channels, namely those acquired via an accelerometer, AE sensor, thin-film piezoelectric sensor, 
thermal meltpool sensor, high-speed camera, smartphone camera, and a data logger that keeps track of 7+ machine 
and controller-based variables. The multimodal data was aligned via HiRA-Pro, achieving sub-millisecond 
resolutions, and later voxelized (segmentized) to generate 0.25 second aligned data chunks that correspond to physical 
voxels (segments) on the produced part. Every signal in these voxels then corresponds to an output of a particular 
physical phenomena in the process. The data was also aligned via time-based multimodal alignment and the details 
have been covered in the supplementary section.  

The commercialization value and need for such algorithmic data alignment approach was also evaluated as a part of 
the National Science Foundation (NSF) Texas A&M University I-Corps site program. The interviews suggest a 
significant requirement in the industry for such automated means, especially in process industries such as Intel. 

The remainder of the paper is structured as follows - Section 2 compiles relevant background with review of existing 
literature and gaps. Existing methods for alignment and their usecases have been discussed along with related research 
topics like data registration and voxelization. The alignment problem has been mathematically described in section 3 
with a formal state-observer formulation. The details and algorithms corresponding to the proposed process signature-
based alignment (HiRA-Pro) are covered in section 4. Section 5 demonstrates the superiority of HiRA-Pro by applying 
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it to one specific and another broader case study in the context of additive manufacturing. The specific case study 
showcases improved ML-based predictive performance of porosity in a hybrid Directed Energy Deposition (DED) 
process due to multimodal data alignment while the broader one provides a holistic view and general results with 
many more modalities. The experimental setup and description of the multimodal sensor data extracted during DED-
based 3D-printing and milling operations on the Optomec-LENS® MTS 500 hybrid machine is also covered. Section 
5 also covers some discussion in a comparative manner among major multimodal alignment methods and the paper 
concludes with a few concluding remarks and laying down of future work in section 6. The supplementary section 
covers algorithms and description of time-based multimodal data alignment, that is proposed as a quick and efficient 
means of achieving alignment based on timestamps and DAQ clocks. 

2 Background and literature review 

2.1 Multimodal data and its classification 

In a manufacturing setting, multimodal data refers to the integration of diverse types of sensor data such as time series-
based, image- or intensity-based, and machine log-based data, among others. Such data is collected at various stages 
throughout the manufacturing process and can provide a comprehensive understanding of the production workflow. 
The fusion of these disparate data modalities can enhance the decision-making process, enabling more accurate 
predictions and comprehensive insights. For instance, data from machine vibrations can be combined with image data 
from visual inspections to improve defect detection. Similarly, log-based data can be used alongside other sensor data 
to optimize process efficiency and reduce downtime. The aspect of multimodal data plays a crucial role in enhancing 
the intelligence and efficiency of manufacturing systems, triggering the need for fully utilizing it. Such multimodal 
data can be classified mainly into the categories described in sub-sections 2.1.1 through 2.1.3.  

2.1.1 Time series-based data streams 

Most sensors are designed to measure some physical or environmental variable over a period of time and capture the 
measurements in form of sequential data taken at regular or irregular intervals. Such sensors can be referred to as time 
series sensors and typically consist of a sensing element that is responsible for converting the physical variable 
measurements into an electrical signal, typically in voltage or current. This signal is then conditioned and amplified 
before being captured and stored by a DAQ. The sensing element could be a strain gauge, pressure transducer, or a 
thermocouple, depending on the physical variable to be captured.  

 
Figure 2. Time series-based data signal acquired during a manufacturing milling operation 

Examples of such sensors include vibrations captured via an accelerometer or forces captured by a piezoelectric thin-
film sensor. Figure 2 depicts a typical time series-based data stream or signal captured by such sensors. The physical 
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quantity (vibration) being measured is converted to voltage as shown on the y-axis and the sensor captures variations 
of this voltage across time at a rate of 8192 Hz as the process continues. The signal in Fig. 2 corresponds to a part of 
a signal captured during a upmilling process of a 3D-printed part with feed rate of 4.23 mm/sec and a spindle RPM 
of 3000 with a milling tool with 6 teeth. The dimension of the part being milled is approximately 10 mm. In total, 
there are at least 3 salient process events easily differentiable from rest of the baseline signal. The smaller amplitude 
bursts are captured during rapid traverses of the table and the larger one corresponds to a milling pass. Considering 
only the milling pass, the feed per tooth would be 4.23/(3000/60 × 6) = 0.0141 mm and each tooth interacts with 
the workpiece for 0.0141/4.23 ≈ 0.0033 seconds, which in turn translates to 0.0033 × 8192 ≈ 27.306 samples in 
the signal. Time series-based signals possess the ability to capture large amounts of time-varying data and can capture 
the underlying physics behind the process to a great extent, making them viable for state-of-the-art ML modeling 
techniques. In fact, the information on the tooth interactions is captured in the time series depicted in Fig. 2. By 
zooming in further within the milling pass (left subfigure in Fig. 2), it can be noted that it approximately takes 600 
milliseconds, which is lower than expected since the tool did not always interact with the part (due to unfinished 3D-
printed top surface). However, within the pass itself, further zooming in, the tooth interactions are unraveled as shown 
in right subfigure in Fig. 2. Approximately 10 interactions are captured over a span of about 30 milliseconds or 260 
samples. The patterns observed within each interacted as indicated on right subfigure of Fig. 2 are consistent with 
domain expertise wherein upmilling would typically result in a short spike, followed by an increase over time, and 
finish with a larger spike. This is also consistent with the time for individual tooth interaction, i.e. 27.306 samples, 
which becomes 273.06 over 10 tooth interaction events. This makes such time varying signals to be excellent 
candidates for achieving an alignment based on process signatures. Depending on the desired resolutions, it is possible 
to use these tooth interaction dynamic signatures as the driving markers for the alignment.  

2.1.2 Intensity-based data streams 

With the onset of smart sensors and advanced camera videography tools, it is possible to capture beyond just time-
varying data in the form of a time series. Digital image-based sensors or devices can capture image frames and convert 
them into digital data for further analyses. These image-based sensors play a pivotal role in modern manufacturing 
and convert light (photons or intensity values) into electrical signals as well as possess the capability for raw image 
frame collection. We refer to such data as intensity-based data streams. Such devices can be based on charge-coupled 
devices (CCDs) such as common digital cameras or medical imaging devices or on complementary metal-oxide-
semiconductors (CMOS) such as modern smartphones and drone cameras. They can also be classified based on 
chroma and shutter type in the device, frame rate, resolution, and pixel size.  

 
Figure 3. Example of image-based data streams - a) thermogram (melt pool image) that shows thermal variations during 
a 3D-printing process b) high speed camera frame (at 6000 FPS) capturing a high frame rate video during 3D-printing  

The intensities captured can range from video camera clues to any calibrated form of capture such as temperature 
gradients in form of light intensities as shown in Fig. 3(a). Such calibration is typically done for thermal or melt pool-
based sensors. Another typical image-based sensor involves the use of high speed cameras that allow for capturing 
high speed and high resolution processes with capabilities for slow motion analysis of the frames. The frame rates can 
be in the order of several hundred thousand frames per second, but is only capable of capturing frames for equivalently 
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smaller durations of time. Figure 3(b) illustrates a frame captured via a high-speed camera at 6000 frames per second. 
Such intensity-based data streams can successfully capture process signatures on their frames, but the derivative 
information based on these frames can provide additional insights. For instance, Fig. 4 depicts such a derivative in the 
form of average intensities captured across frames for a cropped region of interest. The source video corresponding to 
this was a smartphone camera footage capturing a 3D-printing process, focusing on an individual print layer with 9 
printing tracks and an initial perimeter according to the desired part dimension. It is clear from Fig. 4 that intensities 
capture information about these tracks and the perimeter in the form of intensity spikes and drops. This is because the 
laser is on and off between each of these process events. The aspect of laser turning on and off provides us with process 
signatures that can be utilized to align intensity-based data streams with other modalities and with the process itself.  

 
Figure 4. Derivative information in the form of average pixel intensity across frames for an optical video footage captured 

during part of a 3D-printing process 

2.1.3 Machine log-based data streams 

Modern CNC machines are able to capture logs of the machine component positions, status of ON/OFF components, 
and any form of event triggering. For example, Open Platform Communications (OPC) Unified Architecture (UA) 
data loggers can be used to capture the motion of a table within a CNC in the form of movement in the 𝑥-, 𝑦-, and 𝑧-
direction as shown in Fig. 5. The first column elements, 1 or 2, correspond to the 𝑥 and 𝑦 direction motions 
respectively, second column quantifies this, and third column timestamps the same. Depending on the setup, it is 
possible to capture hundreds and thousands of other such variables. Moreover, such an event log can be considered as 
a table of multiple data streams, each represented by a column.  

 
Figure 5. Example of a machine log-based data stream capturing two variables (1 and 2) in column one with their 

corresponding values in column two and timestamps (UTC format) in column three 

The multimodal data stream classification is not limited to the aforementioned categories but provides for a brief 
categorical allotment. The synchronization and alignment methodology can differ depending on the category to which 
a given sensor stream belongs from such classification. The algorithms proposed in this work take this classification 
into account to exploit the array of techniques to achieve aligned multimodal data.  

2.2 The aspect of multimodal data voxelization and multimodal machine learning 

The concept of voxels has existed in literature relevant to 3D computer graphics, computer vision, and computational 
biology since the mid 1900s. Typically, voxelization refers to the process of converting continuous geometric 
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representations into discrete volumetric data wherein the volume is subdivided into small and regularly spaced cubic 
units known as voxels [28]. These regular grids of voxels can be thought of as 3D counterparts to pixels in 2D images. 
They contain information like material properties and other application dependent attributes, and can be used for tasks 
of part optimization, simulations, and visualization [29]. Another aspect of voxelization emerged recently in the realm 
of manufacturing wherein studies have focused on voxel printing in additive manufacturing by 3D printing parts and 
assembling printed voxels layer-by-layer [30-32]. This has led to possibilities for voxel-wise control over 3D-printed 
part’s volume, allowing for parameter tuning during the process and resulting in multifunctionality in the final product 
[32]. Very few works exist that include the multimodal data aspect into this voxelization, especially in the 
manufacturing domain. Assuming a similar analogy, data voxelization would involve converting continuous data 
signals into discrete or continuous regular grids of the data that correspond to voxels (3D pixels).  

In the proposed work, we extend the voxelization concept to include aligned multimodal data with diverse modalities 
such as videographic data, time-series based signals, and event logs along with the process and product information. 
The resulting voxels thereby represent segmentized aligned multimodal data that corresponds to a grid of 2D/3D-
space on the manufactured part and capture the relevant process information. However, we relax the requirement for 
regular grid nature of these voxels, instead considering cuboidal over cubical voxels. This is somewhat analogous to 
the data registration problem, however since alignment can be a part of it, we refer it as multimodal data voxelization.  

Depending on the desired resolution of alignment, the proposed data voxelization can be implemented after or during 
the multimodal data alignment procedure. In this work, we only demonstrate the former and expect even better 
alignment with the latter. The aligned data can be voxelized to extract portions corresponding to small segments of 
the process (for instance, only first track of the second layer of a 3D-printing process), resulting in aligned multimodal 
data voxels of desired dimensions. Such voxels can be extracted over the entire span of the process as required. By 
doing so, it is possible to obtain a discretized representation of the process while linking various modalities of sensor 
data. These representations, especially in context of additive manufacturing, can be easily translated to tool paths, 
making it viable to generate layer-by-layer or track-by-track instructions and perform subsequent analyses. This can 
allow for precise control of material deposition and other printing parameters due to the high-resolution 
communication between multimodal data and the process itself.  

Such data voxelization also allows for mapping the aligned multimodal data to various aspects of final part’s 
characterization. The case studies in section 5 cover a short discussion on the same in case of DED-based 3D-printing 
process wherein process parameters and surface profiles of the 3D-printed part via optical microscopy and 
profilometry are involved in the alignment and voxelization procedure. Such multimodal data voxelization promotes 
efficient processing and further analyses via ML models given the grid-like form. While most ML techniques can still 
perform adequately with unaligned and low-quality data without grasping the complete power of multimodal nature 
of sensing, it is essential that they interpret multimodal data together at the same time to understand the process 
completely. Multimodal ML is a thriving topic of research with excellent potential but some of the challenges have 
not been studied extensively in literature. Multimodal data alignment is one such issue wherein to truly extract all the 
available information with no noise or false feature-based ML applications, it is extremely important to align and 
synchronize all the available data signals to milli- and micro-second resolutions. The next three sub-sections provide 
some literature review relevant to the alignment problem. 

2.3 Issues with data acquisition pipelines and time-based multimodal data alignment 

Modern day sensors and imaging systems provide some means of accessing associated time information, either 
directly or indirectly. Most sensors and modern sensing suites come with built-in capabilities to capture timestamps 
associated with the signal to be captured. For example, National Instrument (NI) DAQs come with a built-in clock 
and are able to capture signal amplitudes in a time series format. Usually, these clocks capture time information in the 
form of timestamps, which refer to the time at which a particular reading was taken on a sensor or when a sensor 
detected an event occurring. The timestamps can be set according to the desired format and resolution by modifying 
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the collection sampling rate of the DAQ. For example, a 10 kHz sampling rate will capture 10000 data points in form 
of signal amplitudes and their corresponding timestamps with a resolution of 0.1 ms.  

Depending on the sensor manufacturer or the data acquisition methodology, the definition of a timestamp might vary. 
For example, sophisticated high-speed imaging systems come with IRIG timestamps that correspond to the real time 
at which a given frame is captured. On the other hand, in some COTS sensors which require separate data acquisition 
systems require digitization and might relay this information as the timestamps instead of when the sensor picked up 
something. This delay between when a sensor picks up a signal and when the corresponding data is acquired and 
timestamped can vary depending on a myriad of factors such as signal conditioning, processing time, and 
communication latency between the sensor and the DAQs. Signal conditioning usually involves preparing the analog 
signal that is picked up by the sensor for digitization by the DAQ. Such preparation includes signal amplification as 
well as filtering among others that introduce time delay in the overall system. Processing time corresponds to the time 
required for the digitization and depends on factors such as the speed of the analog-to-digital converter (ADC), the 
system’s overall processing power, and the complexities of the algorithms involved. Communication latency, which 
refers to the time required for transmission of the signal from the sensor to the DAQ and from the DAQ to the storage 
device or system computer, is a common issue in today’s data-driven world. Such latency depends on a variety of 
factors such as the communication protocol that is implemented and the availability of appropriate bandwidth. Overall, 
this time delay can range from a few microseconds to even several milliseconds or more depending on the 
specifications of the system.  

Due to the minute-scale nature of this delay and little-to-no concern by those who have employed a multimodal 
sensing-based implementations, not many efforts are present in current literature to address high resolution time-space 
alignment of the data channels. Prior works tend to mimic multimodal data alignment as a preprocessing step while 
fusing data from various sensors before using the fused dataset for ML modeling. Basic ML and deep learning models 
still work based on the hidden patterns discovered in the data, but there is always a scope for further improvement of 
performance by achieving better alignment resolutions.  

In this paper, we also provide details about our own take on a time-based multimodal data alignment approach (see 
supplemental material section S.1 and corresponding algorithms S0 and S1), which provides means of accessing and 
extracting time information for various types of data streams. Benchmarking and testing these algorithms on various 
data streams indicate results that correspond to time-based alignment with millisecond resolutions. The results can 
vary depending on factors such as acquisition rates of data streams and selection of baseline for clock synchronization. 

While time-based multimodal data alignment (see supplemental material section S.1) provides excellent resolution 
results, it also comes with a few challenges. First, clock delays can be very random in nature, making it difficult to 
align various data streams due to the requirement for proper synchronization of clocks. To further amplify this issue, 
these clocks require maintenance without which the time can quickly go out of sync again. An example of this is 
laptops that require clock synchronization from time to time. An example in the manufacturing domain are controllers 
such as the Siemens 828D controller, that are involved in timestamping of various events and changes in machine log-
based data streams. These controllers can lag by 2 minutes or so every 15 days if not always plugged in to the internet. 
However, such connectivity requirements are often difficult or undesirable in practical settings, especially with the 
onset of 5G and bloom in potential cyber-attacks. Moreover, the variability in the time zones, units, and formats of 
timestamps, as well as other internal delays can create difficulties in generalizability of such time-based alignment 
across a wide range of sensorized processes and setups.  

Another issue that arises is in the form of proprietary restrictions that do not allow extraction of time information from 
data streams. In such cases, time-based multimodal data alignment is not possible without excluding the data stream 
of issue from the alignment methodology. Additionally, as discussed earlier, the timestamps do not necessarily 
represent a particular event accurately in time due to inconsistencies arising from time taken for digitization and 
conditioning of signals, as well as latency issues. To address these issues, we propose another set of algorithms that 
do not rely on timestamp information and instead derives a process signature-based multimodal data alignment.  



9 
 

2.4 Data alignment and synchronization during acquisition 

A methodology for acquiring somewhat aligned datasets involves hard or physical triggering systems that use 
hardware components based on specific physical events to trigger the acquisition of multimodal data. These systems 
gained popularity due to modern sensing capabilities, enabling the acquisition of vast amounts of data, reaching several 
hundreds of millions and billions of samples with a combined volume in terabytes. In real-time execution, such 
acquisitions can lead to data volumes several orders of magnitude higher. For example, experiments at CERN's particle 
accelerator have combined data volumes exceeding 60 million megabytes per second, equivalent to over 5400 
simultaneous 4k video streams [33]. However, in many scenarios, only a subset of the captured data contains events 
with distinguishing and interesting characteristics for further analyses [34]. This is also applicable to fields such as 
manufacturing, which involve high rates of data acquisition. Such selective data acquisition techniques offer another 
approach to data synchronization and alignment [35, 36]. CERN employs this method in their large ion collider 
experiment (ATLAS) using the ATLAS trigger system [37], which employs a special event selection methodology 
(trigger) to pick events useful for further analysis.  

In the field of 3D scanning, object tracking, robotics, and augmented reality (AR), structured light systems (SLS) 
project patterns of lights onto a scene to capture depth information [38]. While their main application is not data 
triggering, SLSs can be repurposed to trigger data acquisition under specific conditions, optimizing the process and 
reducing the amount of data to be processed. Triggers can be pattern-based [39], where a specific pattern is projected 
to initiate data acquisition, or they can rely on changes in the temporal properties of the light pattern, such as object 
movements or surface reflectivity changes [40]. Additionally, triggers can be based on detecting specific geometric 
features like corners or edges [41]. Huang et al. [42] utilized SLS with an event camera to capture pixel-level intensity 
changes asynchronously with high temporal resolution and motion blur reduction. Liu et al. [43] emphasized the 
importance of time synchronization in autonomous systems and achieved precise circuit-based timestamping for 
cameras and inertial measurement units. 

Analogous to the SLS-based methods in 3D scanning, the manufacturing domain employs hardware-based or physical 
triggers for selective data acquisition. These triggers use physical events, like mechanical or light intensity changes, 
to initiate simultaneous data acquisition from multiple sensors, ensuring precise time alignment of all data streams. 
Such triggered acquisition improves the quality of datasets for various manufacturing applications, including real-time 
monitoring and process control.  

However, implementing hard triggering elements introduces additional costs to the sensorization system, becoming 
an integral part of the setup with the need for frequent and accurate calibration, leading to undesirable downtime costs. 
Moreover, due to the diverse sensor modalities, these hardware-based triggers may not be readily compatible with all 
sensors, often requiring substantial additional hardware. Even if implemented, practical challenges arise, such as 
unpredictability and randomness caused by varying lighting conditions, scalability limitations, and sensitivity issues 
with hardware systems. Such triggered acquisition also limits the acquisition to only parts of the process, which is 
undesirable in some situations. Multimodal data alignment done during the acquisition is not applicable to existing 
data that might have been acquired without the necessary hardware. So, there is a need for post-acquisition means of 
achieving such a feat. The next sub-section addresses existing works of post-acquisition multimodal alignment, 
synchronization, and registration, a broader problem involving spatial alignment, in detail.  

2.5 Data alignment and synchronization post-acquisition 

Oftentimes in literature, data alignment and data synchronization are considered synonymous. Recently, there's been 
a growing interest in synchronizing multiple sensors' signals, especially those embedded in wearable devices. Bennett 
et al. [44, 45] have explored various methods for synchronizing multi-sensor data, leveraging physical and cyber 
coupling between sensor data streams. The authors aligned physical events, sensor data, and clock accuracy estimates, 
and achieved a significant 60% reduction in average system drift, from 495.8 ms to 194.8 ms [46]. 
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Cippitelli et al. [47] demonstrated the synchronization of heterogeneous sensors, such as RGB-Depth cameras and 
wearable sensors. They used a test bed with a PC connected to a camera and wireless sensor, achieving synchronization 
by tracking camera activities with a delay and using a LED as a reference. In a related study, Zhang et al. [48] tackled 
synchronization issues between video cameras and wearable sensors. Their novel approach, called Window Induced 
Shift Estimation (SyncWISE), utilized a wearable camera and an accelerometer, achieving an impressive 
synchronization accuracy of 90% with a tolerance of 700 ms.  

Huck et al. [49] proposed a synchronization approach wherein they developed a filter-based method for achieving 
accurate temporal synchronization by removing jitter and minimizing time delays in measurements. Shaabana and 
Zheng [50] introduced CRONOS, a data-driven framework for sensor data synchronization in wearables and IoT 
devices, which employs a graph-based approach. CRONOS extracts common events between sensor streams for 
synchronization and demonstrated a remarkable 98% improvement in system drift, with an error of only 6 ms at a 
100 Hz sampling rate. Wang et al. [51] proposed a hybrid synchronization approach that combines Network Time 
Protocol (NTP) and physical events. This hybrid approach was shown to achieve more precise synchronization than 
standalone techniques, reducing the error to 20 ms over 15 hours.  

There has been limited work pertaining to the synchronization and alignment issue in the manufacturing domain. Feng 
et al. [52] proposed a general data alignment procedure for laser powder bed fusion methods wherein multimodal data 
streams consisted of melt pool images, scan paths, layer images, ex-situ X-ray computer tomography (XCT) 3D model, 
coordinate measurements, and a 3D computer-aided design (CAD) model. The authors established a good foundation 
and provided initial guidance, but the work was only a conceptual exploration. It assumes that data clocks are already 
in-sync and does not consider any time series-based data streams. The authors recommend that manufacturing 
problems like detection of defects, anomalies, and cause analysis should be done via aligned multimodal data. Other 
similar prior works include spatially aligning data streams to a single coordinate system and format.  

A broader version of the data alignment problem is that of data registration [53] wherein both temporal and spatial 
alignment of multimodal data streams are required. Kim et al. [54] proposed a deep learning-based approach for 
registering and aligning meltpool images in laser powder bed fusion-based additive manufacturing. Deep 
convolutional neural network was utilized to extract image features, and the images were registered by a 
transformation model based on the features. Feng et al. [55] proposed a methodology for registering geometric data 
acquired both via in-situ and ex-situ during additive manufacturing process. The work focuses on the importance and 
need of accurate registration and their methodology results in data registration with average error of 0.005 mm. Lu et 
al. [56] proposed methodology for camera-based coaxial melt pool monitoring (MPM) data registration based on the 
coordinate system for the build volume. Only melt pool images and related process information was considered to 
obtain alignment between the images and real laser positions by removing delay during calibration process to achieve 
a positional error of less than 1% for all the frames.  

Despite significant advancements in sensor data synchronization, alignment, and registration techniques, current 
approaches primarily cater to sensors of similar or limited modalities, which restricts their applicability. Furthermore, 
to fully harness the capabilities of modern sensors, extremely high sampling rates are essential. However, most existing 
studies limit themselves to sampling rates of only a few hundred to a few thousand Hertz. Additionally, there is a need 
for more versatile calibration or setup procedures, as current methods may not be flexible or adaptable enough to cater 
to different scenarios or requirements. Many existing studies provide mere guidance without any real-world examples 
or use-cases, making it difficult for practitioners to apply these techniques in practical scenarios.  

Almost every process involves underlying physics phenomena that unfolds on a sub-millisecond timescale. Traditional 
statistical correlation-based means of alignment often do not suffice in capturing these rapids events. The underlying 
process physics often goes underutilized, indicating a need for techniques that can effectively capture and utilize the 
process physics to enhance the accuracy and reliability of the results. Addressing these gaps could significantly 
contribute to the field and enhance the applicability and effectiveness of sensor data synchronization, alignment, and 
registration techniques. The process physics signatures need to be leveraged in multimodal data alignment for 
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developing methods that are applicable to most scenarios, are generalizable, and provide accurate and high resolution 
aligned datasets.  

The methodology in the proposed work addresses these literature gaps and limitations by providing such process 
physics-driven algorithms that can be used depending on desired resolution needs of alignment. The validation and 
testing are carried out on real-world use cases that involve sensor data of varying modalities ranging from time series-
based signals that are sampled at very high rates, intensity-based sensor data such as melt pool (thermograms), high 
speed camera videos and optical video captures, as well as other log-based data. The algorithms may also allow for 
including data that captures characterization and process parameters in the form of CAD models, XCT images, process 
information, and material microstructures to a certain extent. This is partially demonstrated in this work in case of 
data from optical microscopy and profilometer images as a part of case study in section 5. Section 3 will introduce 
this multimodal alignment problem as a mathematical treatment. 

3 Formulation of the alignment problem 

This section covers a formal description of the problem in terms of a state-observer structure [57]. In dynamic systems 
theory, a state-observer form is used to estimate unmeasured state variables of a system. The observer relies on 
mathematical equations and available measurements in order to estimate the system’s internal state. Consider a process 
where multimodal data is collected by various sensors working together as shown in Fig. 6. Assuming that the process 
is deterministic (no noise is present), the state space corresponding to it can generally be represented as: 

 𝑥̇ = 𝑓(𝑥(𝑡)) (1) 

wherein state space 𝑥̇ depends on thermo-mechanics involved in the process. The multimodal sensor data such as 
those shown in Fig. 6. can be considered as output from this process. More specifically, each of the sensor data captures 
a particular observable subset (subspace) of the process. The outputs are in the form of discretely sampled data: 

 𝑦1𝑘,  𝑦2𝑘, … , 𝑦𝑖𝑘 
𝑘 = 1,  2,  3,   … , 𝑛𝑖 
𝑖 =  1,  2,  3,   … , 𝑚 

(2) 
 

where 𝑚 is total number of data outputs or streams, 𝑖 corresponds to the data output index, and 𝑘 corresponds to the 
sample index in the discretized data output. For instance, the sample data 𝑦𝑖𝑘 will correspond to the 𝑖th data channel 
and 𝑘th sample index. It is important to note that each channel may have a different number of sample indices 𝑘 since 
they are extracted at different sampling rates. Each of these 𝑦𝑖𝑘s are nothing but some sort of 𝑦𝑖(𝑘). For a fixed sample 
index 𝑘, the 𝑖th channel’s 𝑦𝑖𝑘 might be realized at time 𝑡𝑖𝑘while the 𝑗th channel’s 𝑦𝑗𝑘 might have been obtained at 𝑡𝑗𝑘. 
Therefore, 𝑦𝑖𝑘 might not capture the same thing as 𝑦𝑗𝑘. This is where the misalignment happens! 

Each process is represented by its state space and within the state space the process executes a particular trajectory. 
For simplicity, assume that the process as well as observations are noise free. Such a process has different outputs, 
and each sensor’s data could be a particular function of process’s state. Sensor channel 𝑦1𝑘 could be a particular 
function of the state space 𝑥̇ such that: 

 𝑦1(𝑘) = ℎ1(𝑥(𝑡1𝑘)) (3) 

Similarly, 𝑦2𝑘 could be some other function of the state space 𝑥̇: 

 𝑦2(𝑘) = ℎ2(𝑥(𝑡2𝑘)) (4) 

and so on, where ℎ𝑖𝑠 are some functions of the state space. Both, the function as well as the time might differ from 
𝑦1𝑘 to 𝑦2𝑘 as illustrated in the schema in Fig. 6. We have different states and outputs, and such a representation is 
known as state observer form that incorporates the process and its outputs. From the outputs, one can reconstruct an 
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observable subset of the process. This is equivalent to observing a particular trajectory of a process or particular 
projection of the process on a manifold. Let the reconstructed state space be Φ𝑖(𝑡𝑖𝑘), a function of 𝑦𝑖(𝑘) such that: 

 Φ𝑖(𝑡𝑖𝑘) = 𝑔𝑖(𝑦𝑖(𝑘)) (5) 

where 𝑔𝑖𝑠 are some function of 𝑦𝑖(𝑘), 𝑖 are data output indices, and 𝑘 corresponds to sample indices in discretized 
outputs. From 𝑦1(𝑘), you will get particular trajectory in the subspace Φ1(𝑡1𝑘). Similarly, a particular trajectory in 
the subspace Φ2(𝑡2𝑘) can be reconstructed from 𝑦2(𝑘). This has been illustrated in Fig. 7., wherein Φ1(𝑡1𝑘) and 
Φ2(𝑡2𝑘) are capturing different observable sub spaces or projections of the process on to various manifolds observable 
to 𝑦1(𝑘) and 𝑦2(𝑘) respectively: 

 Φ1(𝑡1𝑘) = 𝑔1(𝑦1(𝑘)) 

Φ2(𝑡2𝑘) = 𝑔2(𝑦2(𝑘)) 

(6) 

 
Figure 6. Mathematical formulation and schema-based explanation of the alignment problem 

Here, Φ1(𝑡1𝑘) is capturing a sub space of the state space only in the 𝑥1𝑥3 plane while Φ2(𝑡2𝑘) has only been realized 
in the 𝑥1𝑥2 plane, both capturing different aspects of the process. However, since Φ1(𝑡1𝑘), Φ2(𝑡2𝑘), … , Φ𝑖(𝑡𝑖𝑘) are 
capturing the same process, they have a particular mapping relative to 𝑥̇ such that: 

 Φ1(𝑡1𝑘) = 𝜓1(𝑥(𝑡1𝑘)) 

Φ2(𝑡2𝑘) = 𝜓2(𝑥(𝑡2𝑘)) 

(7) 

and so on, reconstructed to actual state space mapping. These 𝜓(. ) functions are often time varying (non-autonomous). 
In the sense that, it usually has a time shift operator. In other words, the state space reconstructed from 𝑦1(𝑘) i.e. 
Φ1(𝑡1𝑘) might be time-shifted from the actual process by some unknown value δ1. Similarly, Φ2(𝑡2𝑘) which comes 
from 𝑦2(𝑘) could have shifted by some unknown value δ2 such that: 

 Φ𝑖(𝑡𝑖𝑘) = 𝑔𝑖(𝑦𝑖(𝑘)) = 𝜓𝑖(𝑥(𝑡 − δ𝑖)) 

δ𝑖 = 𝑡 − 𝑡𝑖𝑘 

(8) 
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Figure 7. Process trajectory and state subspace reconstructions 

The alignment problem essentially involves identifying those Φ𝑖s and thereby those δ𝑖s such that the outputs and the 
reconstructed state spaces align with the original state space. The multimodal data alignment problem is a challenging 
one and inherently shares similarities with the synchronization problem in nonlinear, dynamic, and chaotic systems 
[58]. Section 3 covered a formal treatment of this problem for a deterministic process. Even in cases where it is linear 
and autonomous, such alignment is mathematically difficult because it makes the determination of δ𝑖s significantly 
complicated.  

When the dynamics is nonlinear and the process has noise, the system operates in non-stationary regimes with different 
kinds of transience, such synchronization will not be possible due to the extremely cumbersome estimation of δ𝑖s. A 
close form way of aligning various data outputs or developing a function that aligns them is almost impossible. Even 
in the absence of noise, if the process is non-linear, identification of these reconstructions as well as alignment 
becomes cumbersome. Existing methods have looked at addressing such alignment based on physical markers or 
statistical methods (entropy, correlation, etc.). However, they do not effectively work when a process involves a 
combination of nonlinear dynamics and presence of noise. Therefore, one must use domain knowledge, i.e., full 
understanding of the process to accomplish precise alignment. In the proposed work, we take advantage of the 
projections or process signature markers, and we go back to the process of deriving these in a more efficient way. The 
algorithms proposed are aimed at identifying those δ𝑖s and the presented work is one of the first formal attempts at 
deriving a generalizable algorithmic solution for multimodal data alignment. The next section takes a deep dive into 
these algorithms corresponding to HiRA-Pro. Additional time-based multimodal data alignment algorithms are also 
proposed but are not the topic of priority and hence provided as a part of supplementary section.  

4 Process signature-based multimodal data alignment (HiRA-Pro) 

Process signature-based alignment algorithm involves two main steps - 1) identification of right process signatures, 
and 2) segmentizing or chunking various data streams based on identified process signatures to generate aligned 
multimodal data voxels. Process signatures are identifiable in various means depending on the type of data stream. 
They usually occur in the form of amplitude spikes, bursts, or are noticeable as changes in intensity values across the 
data. It is straightforward for machine log-based data wherein discrete event timestamps are usually captured for these 
identifiable signatures. These signatures must be identifiably present across all the data streams to align them using 
this methodology.  

The proposed algorithm A0 is utilized for identifying and extracting a dictionary containing process physics and 
dynamics information in form of identifiable process signatures for each data stream 𝜑𝑖. Depending on the data stream 
classification, extracting this information varies in the methodology. The proposed algorithm A0 takes in a set of 𝑚 
data streams, {𝜑1, 𝜑2, 𝜑3, …, 𝜑𝑚} of dimensions {𝑛1, 𝑛2, 𝑛3, …, 𝑛𝑚} as input along with their classification to 
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indicate whether they are time series-based {𝑇𝑆}, intensity-based {𝐼}, or machine log-based {𝑀}. It provides a 
dictionary 𝑝𝑑 containing process signatures associated with each data stream 𝜑𝑖 in the form {{𝜋1

1, 𝜋2
1, 𝜋3

1, …}, {𝜋1
2, 

𝜋2
2, 𝜋3

2, …}, …, {𝜋1
𝑚, 𝜋2

𝑚, 𝜋3
𝑚, …}}. 

As the first step, it is important to know about the process which comes with experience in the field. Another alternative 
is to study the G-code associated with the process, but this is restricted to applications that involve machine movement 
based on some G-code. For time series-based data streams, the signals capture important events during the process in 
the form of spikes, bursts, or drops in the amplitude values (see Fig. 2.). By using these, it is possible to identify shift 
events such as the point at which the tool started and finished interacting with a workpiece or when the spindle started 
rotating. These depend a lot on the important concept of signal-to-noise ratio in order to capture such phenomena 
based on various settings of signal conditioning, gain, and amplification, among others.  

This is because not all phenomena result in visual changes in the signal of the same orders. For instance, turning the 
spindle on could result in a burst in amplitude values of a vibration sensor, but this burst will be significantly lower in 
amplitude as compared to periodic burst amplitudes when the tool is actually cutting the workpiece. Therefore, these 
settings need to be set appropriately. For example, it should be maintained at higher values in cases where not a lot of 
vibrations are generated. By doing so, we can amplify the signal-to-noise ratio and inherently also catch events such 
as printing tracks (interaction of 3D-printing powder with the baseplate) during a DED-based printing process. It is 
important to note that, even if the conditions are set to one setting, the sensors do capture a lot of process signatures 

Algorithm A0 Process signature extraction 
 Inputs: 
 - Set of data streams: {𝜑1, 𝜑2, 𝜑3, …, 𝜑𝑚}, where 𝑚 is number of data streams with dimensions {𝑛1, 𝑛2, 𝑛3, …, 𝑛𝑚} 

- Data stream classes: time series-based {𝑇𝑆}, intensity-based {𝐼}, and machine log-based {𝑀} 
- Baseline/Reference data stream index: 𝑏 s.t. 𝜑𝑏 ← 𝑇𝑆 

 Outputs: 
 - 𝑝𝑑: a dictionary containing prospective process physics and dynamics information for each data stream 𝜑𝑖: {{𝜋1

1, 𝜋2
1, 

𝜋3
1, …}, {𝜋1

2, 𝜋2
2, 𝜋3

2, …}, …, {𝜋1
𝑚, 𝜋2

𝑚, 𝜋3
𝑚, …}} 

  
1: Extract and delineate process information based on domain knowledge (For example, G-code  
2: provides the machine tool path in machine language) 
3: for 𝑖 = 1 to 𝑚 do 
4:       if 𝜑𝑖 ← 𝑇𝑆 then 
5:             Preprocess the data (For example, demeaning signals)    
6:             Extract actual sampling rate 
7:             Splice or pad the data stream based on comparison with 𝜑𝑏 
8:             Find indices for amplitude spikes, bursts, or drops 
9:       else if 𝜑𝑖 ← 𝐼 then 
10:             Open 𝜑𝑖 as a video file via OpenCV module: 
11:             𝑣𝑖𝑑 = cv2.VideoCapture(𝜑𝑖) 
12:             Intensities = [ ] 
13:             for frame in 𝑣𝑖𝑑 do 
14:                   Find the intensity of the frame 
15:                   Int = frame. 𝑚𝑒𝑎𝑛( ) 
16:                   Intensities. 𝑎𝑝𝑝𝑒𝑛𝑑(Int) 
17:             Find indices for intensity amplitude spikes, bursts, or drops 
18:       else if 𝜑𝑖 ← 𝑀 then 
19:             Open 𝜑𝑖 as dataframe via pandas module 
20:             Find indices for discrete process events (For example, spindle turned on)  
21: return {{𝜋1

1, 𝜋2
1, 𝜋3

1, …}, {𝜋1
2, 𝜋2

2, 𝜋3
2, …}, …, {𝜋1

𝑚, 𝜋2
𝑚, 𝜋3

𝑚, …}} 
  



15 
 

associated with the process. But these captured events are just not prominently visible enough in the time domain, and 
further exploration of frequency domain and time-frequency domain are required. A lot of times, some sensor is 
lagging behind another in terms of acquisition, usually on a millisecond scale. Given that the timestamp itself does 
not matter in this alignment, one can move around the lagging signal such that it coincides with the leading one. The 
two main methodologies for doing so are slicing and padding, but depending on the stack used, the terminology or 
functions would vary. For example, Python provides this in the form of insert(), append(), and extend(), while 
MATLAB allows it in the form of simple addition of two arrays. In the case of intensity-based streams of high speed  

camera and optical camera captures, the imaging sensors capture information about the process that is hidden in the 
frames (see Fig. 4.). With modern Python packages such as OpenCV, it is possible to extract derivatives of these 
frames in the form of changes in the intensity magnitudes across the frames. For generating derivatives, either 
summation of all the pixel intensities is carried out or simply averaged over to generate a set of mean intensity values 
against frame count. It is possible to capture easy-to-identify events like a laser turning on or off, as well as other 
complex events such as a spindle going up and down or a tool interacting with the workpiece as well. This is done by 
mimicking the process followed in case of time series-based data streams by monitoring intensity amplitudes instead 
of forces or vibrations. Most machine logs capture discrete machine events, and it is easy to extract process signatures 
directly from these logs (see Fig. 5.) for the case of machine log-based data streams. The process signatures dictionary 
is generated based on these captured process signatures and their corresponding start and end indices for each of data 
streams in the multimodal data.  

Algorithm A1 Process signature-based data alignment 
 Inputs: 
 - Set of data streams: {𝜑1, 𝜑2, 𝜑3, …, 𝜑𝑚}, where 𝑚 is number of data streams with dimensions {𝑛1, 𝑛2, 𝑛3, …, 𝑛𝑚} 

- Data stream classes: time series-based {𝑇𝑆}, intensity-based {𝐼}, and machine log-based {𝑀} 
 - 𝑝𝑑: a dictionary containing prospective process physics and dynamics information for each data stream 𝜑𝑖: {{𝜋1

1, 𝜋2
1, 

𝜋3
1, …}, {𝜋1

2, 𝜋2
2, 𝜋3

2, …}, …, {𝜋1
𝑚, 𝜋2

𝑚, 𝜋3
𝑚, …}} 

  
 Outputs: 
 - Set of aligned segmented datasets: {{𝜉1

1, 𝜉2
1, 𝜉3

1, …, 𝜉𝑝
1}, {𝜉1

2, 𝜉2
2, 𝜉3

2, …, 𝜉𝑝
2}, …, {𝜉1

𝑚, 𝜉2
𝑚, 𝜉3

𝑚, …, 𝜉𝑝
𝑚}} 

  
1: Find 𝑝 by examining 𝑝𝑑 where 𝑝: prominent process signatures common to all data streams 𝜑𝑖 
2: (For example, 𝑇𝑆 amplitude spikes, bursts, or 𝐼 intensity changes across frames) 
3: for 𝑖 = 1 to 𝑚 do 
4:       if 𝜑𝑖 ← 𝑇𝑆 then 
5:             for 𝑗 in 𝑝 do     
6:                   Find the indices for 𝑗 and 𝑗 + 1 in 𝜑𝑖 
7:                   𝜉𝑗

𝑖 = 𝜑𝑖[𝑖𝑑𝑥𝑖(𝑗): 𝑖𝑑𝑥𝑖(𝑗 + 1)] 
8:       else if 𝜑𝑖 ← 𝐼 then 
9:             Open 𝜑𝑖 as a video file via OpenCV module: 
10:             𝑣𝑖𝑑 = cv2.VideoCapture(𝜑𝑖) 
11:             for 𝑗 in 𝑝 do 
12:                   Find the indices for 𝑗 and 𝑗 + 1 in 𝜑𝑖 
13:                   𝜉𝑗

𝑖 = cv2.VideoWriter(𝜑𝑖 ,  video codec, desired FPS, 𝑖𝑑𝑥𝑖(𝑗), 𝑖𝑑𝑥𝑖(𝑗 + 1)) 
14:       else if 𝜑𝑖 ← 𝑀 then 
15:             Open 𝜑𝑖 as dataframe via pandas module 
16:             for 𝑗 in 𝑝 do     
17:                   Find the indices for 𝑗 and 𝑗 + 1 in 𝜑𝑖 
18:                   𝜉𝑗

𝑖 = 𝜑𝑖[𝑖𝑑𝑥𝑖(𝑗): 𝑖𝑑𝑥𝑖(𝑗 + 1)] 
19: return {{𝜉1

1, 𝜉2
1, 𝜉3

1, …, 𝜉𝑝
1}, {𝜉1

2, 𝜉2
2, 𝜉3

2, …, 𝜉𝑝
2}, …, {𝜉1

𝑚, 𝜉2
𝑚, 𝜉3

𝑚, …, 𝜉𝑝
𝑚}} 
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Once the process signatures dictionary, {{𝜋1
1, 𝜋2

1, 𝜋3
1, …}, {𝜋1

2, 𝜋2
2, 𝜋3

2, …}, …, {𝜋1
𝑚, 𝜋2

𝑚, 𝜋3
𝑚, …}}, is available, 

process signature-based multimodal data alignment is achieved by first finding prominent process signatures 𝑝 that 
are common to all the data streams 𝜑𝑖. These signatures capture the part of the process that are prominently 
differentiable from the rest of the data for each of the data streams. By following algorithm A1 and based on dictionary 
output from algorithm A0, segmentized sections of the process multimodal data are extracted based on indices of 
prominent process signatures that are common to all data streams 𝜑𝑖. It is straightforward for time series-based and 
machine log-based data streams but require reading frames between start and end indices and rewriting smaller 
segments of the video captures for intensity-based ones. This also provides for choosing any alternative FPS and other 
relevant settings as desired. Algorithm A1 results in a set of aligned segmented datasets: {{𝜉1

1, 𝜉2
1, 𝜉3

1, …, 𝜉𝑝
1}, {𝜉1

2, 
𝜉2

2, 𝜉3
2, …, 𝜉𝑝

2}, …, {𝜉1
𝑚, 𝜉2

𝑚, 𝜉3
𝑚, …, 𝜉𝑝

𝑚}} where 𝑝 represents the prominent process signatures common to all data 
streams 𝜑𝑖, 𝑚 is the number of data streams in total, and each {𝜉1

𝑖 , 𝜉2
𝑖 , 𝜉3

𝑖 , …, 𝜉𝑝
𝑖 } represents aligned and segmented 

voxels of a data stream 𝜑𝑖. 

Benchmarking and testing the process signature-based multimodal data alignment on various data streams indicate 
results with sub-millisecond and even microsecond resolutions. However, these are difficult to show quantitative as 
compared to the case of time-based multimodal data alignment since no timestamps are involved as such. Like earlier, 
the results may vary depending on factors such as acquisition rates of various data streams. As a significant benefit, 
such process physics-driven alignment does not rely on the time information available with various streams, 
effectively getting rid of any challenges that come from unsynchronized clocks, their maintenance, and variability in 
their associated formats. These are safer in terms of any cyber-attacks and more applicable to a wide range of practical 
settings, even when some data stream acquisitions are proprietary. Against timestamps, the prominent process 
signatures always represent a particular event that took place accurately and there is no digitization and other 
inconsistencies as such. Such process signature-based synchronization, alignment, and voxelization of multimodal 
sensors is essential for any smart manufacturing implementation to be at forefronts of industry 4.0 due to its ability to 
provide a more accurate representation of a manufacturing process.  

5 Experimentation and case study demonstrations 

5.1 Experimental setup 

The Texas A&M smart manufacturing implementation consists of an Optomec-LENS® MTS 500 hybrid machine 
which is capable of both additive and in-situ finishing operations. The machine tool is essentially a 4-axis CNC 
machine that automatically controls the worktable motion in 𝑋 and 𝑌 directions, motion of the laser and a milling head 
along a Z axis, and the rotation of a horizontal spindle, which can be used to clad and repair a variety of freeform 
parts. The machine, through a Siemens 828D controller, provides control over multiple process parameters such as 
powder composition, laser power, and dwell time. The associated controller variables in a process are always tracked 
via an OPC UA data logger wherein several variables such as the table motion along 𝑋, 𝑌, and 𝑍 directions, RPM of 
the spindle, etc., can be continuously monitored and saved as a log. The experiments consisted of printing stainless 
steel 316L samples of dimensions 10 × 10 × 10 mm3, followed by milling them with sub micrometer precisions via 
an end mill tool of 0.375” diameter.  

The machine has been sensorized by instrumenting various COTS and image-based sensors. In total, the 
implementation is capable of simultaneously collecting 13+ different data streams throughout a process. The 
implementation also hosts videographic capabilities and the entire process is captured via an optical camera, along 
with a Stratonics ThermaViz melt pool sensor capturing the thermal variations during printing. It also consists of a 
Photron Mini AX200 high speed camera that allows observation of milli- or micro-second phenomena at up to 960000 
frames per second. The schematic of the smart manufacturing implementation is illustrated in Fig. 8. The next two 
sub-sections within this section cover a specific and a broader case study respectively to demonstrate the applicative 
power of HiRA-Pro multimodal data alignment methodology.  
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Figure 8. Optomec-LENS® MTS 500 hybrid machine schematic 

5.2 Specific case study: HiRA-Pro enhanced porosity prediction 

In this specific case study, the power of HiRA-Pro has been demonstrated in achieving improved ML-based predictive 
performance for detecting porosity on a voxel-level on a manufacturer part using hybrid DED process [59]. HiRA-
Pro is employed for modalities based on an accelerometer, an AE sensor, and a thermal meltpool sensor. High spatio-
temporal resolutions of 0.5 mm and < 1 ms were achieved, allowing for accurate porosity prediction in surface 
elements measuring 1 × 1 mm2, known as surfels (2D voxels on the top surface). Due to multimodal data alignment 
and synchronization, the integrity of information flow was maintained, correlating it precisely with the manufacturing 
process of each surfel.  

 
Figure 9. Porosity prediction case study graphical illustration 

HiRA-Pro addressed the challenge posed by varying sampling rates and modalities of the thermal, accelerometer, and 
AE data, that were acquired at 30, 10000, and 100000 Hz, respectively. Thereby, this ensured that time-frequency 
patterns across different modalities were accurately aligned, allowing for properly tensorizable training and testing 
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data for further ML-based modeling efforts. Due to the alignment, the classification test accuracies improved from 
around 65% to an impressive 87.5% even with limited (~80) voxels. Figure 9 illustrates this porosity prediction case 
study in a graphical abstract manner, only providing necessary amounts of details. While HiRA-Pro was employed on 
three modalities, only two, namely - accelerometer and AE sensor, are driving the porosity prediction. The thermal 
meltpool sensor is later used to quantify existence of spatter events and successfully correlated to the rest of the 
findings. The findings imply that there is a clear distinction of energy levels between spatter events in porous surfels 
vs spatter events in non-porous surfels.  

The findings underscore the effectiveness of HiRA-Pro in enhancing the quality of porosity prediction in additive 
manufacturing processes. With a very high testing classification accuracy of detecting porosity within surfels, the 
aligned data from the printing cycles proved to be particularly sensitive to such occurrences. This highlights the critical 
role of accurate multimodal data alignment in enabling precise predictive analytics, offering valuable insights for 
future research and applications in improving manufacturing quality control. 

5.3 Broader case study: HiRA-Pro for hybrid 3D-printing operation 

The process signature-based as well as time-based (see supplemental material section S.1) multimodal data alignment 
methodology demonstrated excellent capabilities for achieving high resolution time-space alignment for experiments 
(hybrid 3D-printing operations) carried out on an Optomec-LENS® MTS 500 hybrid machine. The experiments 
involved 3 time series-based data streams, namely those collected via a thin-film sensor (TF), an accelerometer (Acc), 
and an acoustic emission (AE) sensor that were collected at sampling rates of 1024, 8192, and 131062 Hz 
respectively in NI TDMS (technical data management system) file format via LabView throughout the duration of 
experiment that lasted 25 minutes. There was a total of 3 intensity-based data streams in form of high-speed camera 
(HSC) video capture captured at 6400 FPS via Photron Mini ax200, optical camera (smartphone) (OC) recording at 
60 FPS, and a Stratonics ThermaViz melt pool capture (TVM) at 60 Hz. For the machine log-based data stream, OPC 
data logger (OPC) connected with a Siemens 828D controller was responsible for controlling and capturing variables 
pertaining to table motions along X, Y, Z directions and RPM of spindle, among others at around 20-30 Hz.  

Time-based multimodal data alignment (see supplemental material section S.1) alone resulted in a best resolution of 
0.001 seconds with an average resolution of 0.004 seconds among various data streams and the least resolution of 
0.290 seconds, outclassing existing alignment methodologies by at least an order of magnitude. Table 1 captures this 
in the form of average timestamp difference between start and end times of aligned data streams. The least resolution 
is between TVM and OPC data streams while the best resolution is obtained for the case of Acc and TF data streams. 
Upon further analyses, it was found that the least resolution resulted in a larger number due to varying ranges of 
sampling rates. The AE data stream was acquired at a very high sampling rate while the slowest was only around 20 
Hz. This can be easily solved and verified by redoing the time-based alignment with up-sampled slower data streams 
and reinforcing the slower signals. Realignment indicates similar resolutions in the range of 1 millisecond or so.   

Table 1. Time-based multimodal data alignment results (in seconds) on Optomec-LENS® MTS 500 hybrid machine by 
considering Thin-film sensor (TF) as baseline data stream 

 

 Data Stream TF Acc AE OPC TVM HSC OC 

TF 0 0.001 0.005 -0.209 0.081 0.051 -0.044 

Acc  0 0.004 -0.21 0.08 0.05 -0.045 

AE   0 -0.214 0.076 0.046 -0.049 

OPC    0 0.29 0.26 0.164 

TVM     0 -0.03 -0.125 

HSC      0 -0.095 

OC       0 
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Process signature-based multimodal data alignment results in sub-millisecond resolutions of alignment. For the case 
study considered, the list of process signatures that were considered for achieving multimodal data alignment is 
indicated in Table 2. These include process signatures for both printing and milling operations involved in the 
experiments which were carried out on the hybrid machine. Table 2 also illustrates the type of activity that is picked 
up for various process signatures by various data streams. For example, turning the laser on results in an intensity 
spike in intensity-based data streams OC, HSC, and TVM while turning the laser off is captured in form of an intensity 
drop. It is important to note that TVM does not play a role in the case of milling operation since there is no laser head 
involved. Therefore, TVM data stream will not capture any temperature variations for milling. Apart from the process 
signatures listed in Table 2, it is possible to use several others depending on the operation being captured. For instance, 
with proper conditioning and amplification settings, milling tool interactions with a part can be captured via time 
series-based data streams such as Acc (see Fig. 2). Time-based alignment depends primarily on the sampling rates of 
various data streams. If all the streams operate at very high sampling rates such as the AE data stream and synchronized 
time information is available throughout, high resolution alignment among all the data streams is possible. 

Table 2. Process signatures dictionary for process signature-based alignment 

 

In the case of process signatures, a majority of process signatures such as the impact events of start and stop of a 
component in a process do not get captured in the form of a single peak or impulse, but instead are captured as 
waveforms. Such waveforms will vary in width depending on the duration of the impulse or signature being captured. 
For instance, the “laser turn on” event is a very short duration impulse in matter of fractions of a second, resulting in 
around a few thousand points wide waveform on an AE signal. On the other hand, a rapid traverse is a medium duration 
impulse that takes places in several hundreds of milliseconds, and it results in a much wider waveform. The alignment 
precision and resolution would be proportional to the width of the waveform. The alignment resolution therefore varies 
based on the chosen process signature.  

If identified signature is an impulse such as table retraction, it will result in millisecond resolution, while if it is 
something like a tool or tooth interaction during a milling pass, it can result in sub-millisecond or even microsecond 
resolutions. Figure 9 depicts such a signature in the form of a waveform corresponding to a milling tool’s tooth 
interaction with a 3D-printed part. Considering tooth interaction 4, the waveform starts at around index of 3542 and 
ends at approximately 3544.5 milliseconds. This is equivalent to approximately 20-25 samples wide waveform, 

 Process Signature TF, Acc, AE OPC OC, HSC TVM 

Printing 

Laser on and off   Intensity spikes and drops 

Layer starts  Z position Intensity spikes 

Layer perimeter rapid traverses 

Amplitude spikes 

XY positions 

Intensity drops 

Layer track rapid traverses  

Layer ends  Z position 

Layer end rapid traverses Amplitude spikes XYZ positions 

Upward and downward motions of 

printing head 
 Z position 

Intensity 

variations 
 

Milling 

Spindle on and off 

Amplitude spikes 

Spindle RPM 

Intensity 

variations 

Not 

Applicable 

Pass starts 

XYZ positions Pass ends 

Pass end rapid traverses 

Upward and download motions of 

milling tool 
 Z position 
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representing the process signature of a tooth interacting with the part captured via an accelerometer. The worst-case 
alignment resolution in such a case would be 20/8192 ≈ 0.002 to 25/8192 ≈ 0.003 seconds.  

 
Figure 9. Example process signature as a waveform 

The hardware-based or physical trigger-based alignment considers the entire waveform (internal triggers) while 
triggering, or even worse the time stamp (external triggers) of a particular event. So, such methods result in time 
resolutions that correspond to at least the entire width of the waveform. However, in the proposed process signature-
based multimodal alignment, we only use specific parts of the wave to achieve desired resolution of alignment, 
namely, central most peaks in waveforms are used across a data stream to capture various process signature stamps. 
This is repeated for all the data streams and the common signatures are then used for aligning the data streams together. 
Additionally, short time impulses such as laser turning on can result in resolutions in the range of ≤ 0.001 seconds. 

Table 3. Alignment methodology resolution comparison 

 

Table 3 provides a comparative study of possible resolutions based on various multimodal alignment methodologies, 
demonstrating the power of the proposed method. While trigger-based methods can provide resolutions of several 
hundreds of milliseconds, the time-based alignment (see supplementary material section S.1) provides resolutions in 
the range of couple of milliseconds and the process signature-based alignment can result in sub-millisecond 
resolutions. Figures 10(a) and (b) provide illustration of aligned multimodal data streams that involve spectrogram 
videos for time series-based data streams, a visualization of 3 channels of machine log-based data streams, and three 
standalone intensity-based data streams for milling and printing operations respectively. In Fig. 10(a), the thermogram 
captured in the thermal meltpool data stream remains at lower temperatures (dark blue on the color bar) consistency 
since no laser is involved during milling operation.  

Process signature-based multimodal data alignment allows for involvement of the physical process or part itself, as 
well as metrological aspects of the part, resulting in high resolution time-space alignment and registration. This is 
done so by identifying the right set of voxels from the aligned multimodal data. Figure 11 illustrates this in the form 

 Alignment methodology Width of the Waveform Resolutions (in seconds) 

External triggering ≥ Highest sampling rate ≥ 1 

Internal triggering 
~

1

1000
 to 

1

10
 of  

Highest sampling rate 

~0.001 to 0.1 
Time-based 

Process signature-based 
~

1

10000
 to 

1

1000
 of  

Highest sampling rate 

≤ 0.001 
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of a stitched optical microscopy capture of the topmost layer of the printed part. Both printing and milling operation 
directions are upwards as indicated in Fig. 11. By additional post-processing of the associated meta-data, it can be 
decomposed back into multiple smaller captures that register back to voxels of aligned multimodal data. This aspect 
of stitching and then decomposing is important in such metrological data because the resolution of the equipment 
capturing these, and the desired voxel dimensions might differ. 

 

 
Figure 10. Process signature-based multimodal data alignment results for a) Milling cycle, b) Printing operation 

Table 4 provides a comparison among the proposed process signature-based alignment, the supplementary time-based 
methodology, and hardware trigger-based alignment methods by covering benefits and disadvantages of each of them. 
While hardware trigger-based methods have specific hardware requirements such as SLS-based acquisition systems, 
the two proposed methodologies do not require any additional hardware. Another advantage of the proposed methods 
lies in the fact that they both operate as post-processing operations and are viable for previously collected experimental 
datasets as well, making them much more robust and generalizable in nature.  

Process signature-based and time-based alignment results in sub-millisecond and millisecond resolutions, 
outperforming the hardware trigger-based methods that usually employ the entire width or timestamp of a particular 
signature for achieving roughly aligned data acquisition. Voxelization or data segmentation corresponding to various 
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event groups in a process is an upcoming research aspect that is much more flexible via process signature-based 
multimodal alignment that captures the process signature information and provides for a voxel-wise alignment.  

 
Figure 11. Metrological aspect of the printed part in the form of a stitched optical microscope capture of the top surface 

Table 4. Comparison of hardware-, time-, and process signature-based multimodal data alignment 

 

The high-resolution spatio-temporal alignment provided by HiRA-Pro also allows for isolation of very short duration 
events such as spatter during printing and chip breakage during milling, making ML and AI model predictions 
powerful by using such aligned and voxelized data. Such alignment also allows for variations in desired resolutions 
depending on the choice of events. For instance, it is very straightforward to obtain events such as engagement of the 
tool with the work piece via machine log-based event logs, but alignment based on this might suffer due to the low 
sampling rate (~20 Hz) and result in low resolution alignment. The same event when identified via time domain 
signals of accelerometer or acoustic emission sensor can provide very high sampling rate availability, resulting in a 
highly precise stamping of the event. However, this can suffer from high computational requirements due to large 
amounts of data and its post processing.  

In certain channels, clock delays are common in the form of DC drifts (fixed delay) and variable delays during 
acquisition. Time-based multimodal data alignment is needed to deal with these delays in some ways. Algorithm S1 
(see supplementary material section S.1) provides a potential solution for such cases, but handling the variable delay 
might be challenging in certain cases. In such scenarios, it is advisable to go for process signature-based alignment 
which allows for highly precise process mechanics-based alignment across multiple channels of data without relying 
on any absolute time information.  

 

Hardware trigger-based Time-based Process signature-based 

Specific hardware required (for 
example: SLS) 

No hardware requirements 

Alignment resolution in several 
hundreds of 𝑚𝑠  

Alignment resolution of up 
to 1𝑚𝑠 

Estimated alignment resolutions in sub-
milliseconds and up to 1𝜇𝑠 

Requires additional steps for data voxelization 
Voxelization (creating voxels) is more 

accurate and easier to generate 

Difficult to isolate defective events 
Easier to identify and localize events 
such as spatter during printing, chip 

breakage during milling, etc. 
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6 Conclusions and future work 

Data alignment is a central problem when dealing with multimodal data. The alignment precisions determine the 
resolution with which one can monitor and control a process in time as well as the quality (e.g., geometry, 
microstructure, porosity, etc.) of a product in space. However, not much attention has been given to how precisely one 
can align data streams in real-time. Conventional approaches depend purely on clock synchronization, statistical 
correlations, and common external triggering. They often lead to erroneous and imprecise alignment, especially for 
identifying anomalies at high temporal and spatial resolutions. The proposed work is perhaps the first attempt to 
demonstrate the use of process signatures to enhance the precisions of alignment of multimodal data. Process 
signature-based multimodal data alignment can result in highly precise alignment with millisecond and sub-
millisecond resolutions. The proposed method results in aligned data in a voxelized manner, further paving the way 
for accurately registering the data with the actual process, part, or any associated metrological scans.  

We envision the following as future work in this untapped area of research based around multimodal data alignment. 
In the proposed work, the alignment is process physics-driven, requiring some understanding of the physical process 
and linking it with the data streams. To address this, the Texas A&M team is currently involved in pitching the 
proposed alignment methodology into the market as a generalizable and scalable end-to-end solution, in turn 
minimizing the domain expertise to some extent. Another interesting area to explore would involve adding in a layer 
of uncertainty quantification, especially when dealing with complex, stochastic, and dynamic processes. A rigorous 
quantification and communication of uncertainty in such alignment further enhance the reliability of alignment results, 
providing a better understanding of confidence levels associated with the aligned data and facilitating informed 
decision-making in uncertain environments. Given the algorithmic nature, reducing the associated time and space 
complexity would be an interesting follow-up work. Additionally, algorithmizing the data registration process in terms 
of substantiating metrological micrographs such as profilometer and microscopic images with the aligned and 
voxelized data, would be a viable future work. Furthermore, with the onset of 5G and increasing cyberthreats, security, 
and privacy concerns, potential future work also involves benchmarking the proposed multimodal data alignment 
methodology with existing works and unaligned datasets in terms of the security. It would be interesting to quantify 
the security implications as a comparative study between unaligned raw data against aligned data derived from such 
process signature-based alignment. The issues related to data privacy, bias, and fairness can also be evaluated. 
Nonetheless, this work resides in a largely unexplored, yet critical intersection of data science and process physics. Its 
potential to improve the quality of data and decision-making, coupled with inherent challenges, should serve as a 
strong motivation for future innovation in this exciting domain of research.   
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Supplemental Material 

The supplemental material for this paper covers description and algorithm details about a time-based multimodal data 
alignment methodology, which provides for a highly viable and scalable algorithmic route of achieving millisecond 
and sub-millimeter scale temporal-spatial resolutions.  

S.1 Time-based multimodal data alignment 

The approach consists of two main steps derived in the form of two algorithms wherein one is used for extracting 
timestamps associated with data streams and other for synchronizing the extracted timestamps or the clocks of various 
data streams. While most modern data acquisition suites provide timestamp information, aligning data streams based 
on their timestamps can result in bizarre synchronization because there is no guarantee that all data source clocks are 
in-sync in the first place. One protocol allows for pre-synchronization of these individual clocks before any data 
acquisition and then extract time information associated with various channels by following algorithm S0 proposed in 
this work. However, such a protocol can quickly become tedious as the number of separate data channels being 
collected increases. Moreover, pre-synchronization of clocks do not necessarily last forever. Due to the inherent nature 
of the systems handling data acquisition, clocks quickly go out of sync, worsening it every time due to randomness. 
So, in this paper, we also propose a supplemental algorithm that allows for a post-synchronization of extracted 
timestamps of data streams. By doing so, the randomness of unsynchronous data acquisition for every iteration of data 
collection can be minimized significantly. The protocol for the post-synchronization does so by deriving formulae that 
remain consistent across various data acquisition iterations. The proposed work provides this in the form of 
supplemental algorithm S1.  

 

Algorithm S0 Data stream timestamps extraction 
 Inputs: 
 - Set of data streams: {𝜑1, 𝜑2, 𝜑3, …, 𝜑𝑚}, where 𝑚 is number of data streams with dimensions {𝑛1, 𝑛2, 𝑛3, …, 𝑛𝑚} 

- Data stream classes: time series-based {𝑇𝑆}, intensity-based {𝐼}, and machine log-based {𝑀} 
  
 Outputs: 
 - Set of corresponding clock timestamps: {𝑡1, 𝑡2, 𝑡3, …, 𝑡𝑚} in local time format with dimensions {𝑛1, 𝑛2, 𝑛3, …, 𝑛𝑚} 
  
1: for 𝑖 = 1 to 𝑚 do 
2:       if 𝜑𝑖 ← 𝑇𝑆 then 
3:             Extract the clock timestamps {𝑡𝑖} in local time format via nptdms module:     
4:             𝑡𝑖 = 𝜑𝑖 .time_track(absolution_time = 𝑇𝑟𝑢𝑒) 
5:       else if 𝜑𝑖 ← 𝐼 then 
6:             Open 𝜑𝑖 as a video file via OpenCV module: 
7:             𝑣𝑖𝑑 = cv2.VideoCapture(𝜑𝑖) 
8:             if 𝑣𝑖𝑑.metadata = 𝑇𝑟𝑢𝑒 then 
9:                   Extract the clock timestamps {𝑡𝑖} in local time format via OpenCV module: 
10:                   𝑡𝑖 = 𝑣𝑖𝑑.get(cv2.CAP_PROP_POS_MSEC) 
11:             else then 
12:                   Apply OCR to extract clock timestamps {𝑡𝑖} in local time format via pytesseract 
13:                   module: 
14:                   𝑡𝑖 = pytesseract. imagetostring(𝑣𝑖𝑑) 
15:       else if 𝜑𝑖 ← 𝑀 then 
16:             Extract the clock timestamps {𝑡𝑖} column in the local time format via pandas module 
17:             𝑡𝑖 = pandas. read_csv(𝜑𝑖, usecols = ['timestamps']) 
18: return {𝑡1, 𝑡2, 𝑡3, …, 𝑡𝑚} 
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Based on the data stream classification, the steps involved vary as demonstrated in algorithm S0. Benchmarking and 
testing the algorithm on various data streams indicate results that correspond to time-based alignment with millisecond 
resolutions. The results can vary depending on factors such as acquisition rates of various data streams and selection 
of baseline for clock synchronization.  

The proposed supplemental algorithm S0 for data stream timestamps extraction takes in a set of 𝑚 data streams, {𝜑1, 
𝜑2, 𝜑3, …, 𝜑𝑚} of dimensions {𝑛1, 𝑛2, 𝑛3, …, 𝑛𝑚} as input along with their classification to indicate whether they 
are time series-based {𝑇𝑆}, intensity-based {𝐼}, or machine log-based {𝑀}. For each data stream 𝜑𝑖, the algorithm 
first checks its classification. If 𝜑𝑖 is a time series-based data stream (𝜑𝑖 ← 𝑇𝑆), the timestamps are extracted in local 
time format by using Python’s nptdms module. To enable availability of this timestamp information, it is important to 
enable it while setting up the LabView-based data acquisition by adding a virtual clock in the architecture. If the 
acquisition of such signals is not via LabView, it is still possible to extract the time information by using suitable 
wrappers such as the NI-DAQmx for NI data acquisition and conditioning devices. If 𝜑𝑖 is an intensity-based data 
stream (𝜑𝑖 ← 𝐼), the extraction of timestamps require use of accessing associated meta-data or directly extracting 

Algorithm S1: Clock synchronization for data streams 
 Inputs: 
 - Set of data streams: {𝜑1, 𝜑2, 𝜑3, …, 𝜑𝑚}, where 𝑚 is number of data streams 
 - Set of corresponding clock timestamps: {𝑡1, 𝑡2, 𝑡3, …, 𝑡𝑚} in local time format with dimensions {𝑛1, 𝑛2, 𝑛3, …, 𝑛𝑚}  
 - Baseline/Reference data stream index: 𝑏 s.t. 1 ≤ 𝑏 ≤ 𝑚 
  
 Outputs: 
 - Set of synchronized clock timestamps: {𝜏1, 𝜏2, 𝜏3, …, 𝜏𝑚} in UTC time format (For example,    𝑦𝑦𝑦𝑦-𝑀𝑀-𝑑𝑑 

𝐻𝐻:𝑚𝑚:𝑠𝑠.𝑓𝑓𝑓) 
 - Set of synchronized clock timestamps: {𝑡1

′ , 𝑡2
′ , 𝑡3

′ , …, 𝑡𝑚
′ } in local time format 

 - Set of clock start times: {𝑠1, 𝑠2, 𝑠3, …, 𝑠𝑚} 
 - Set of clock delays: {𝑑1, 𝑑2, 𝑑3, …, 𝑑𝑚} 
  
1: Specify desired UTC time format for clock timestamps as a string 𝑓 
2: Extract clock start time for baseline data stream: 
3: 𝑠𝑏 = 𝑡𝑏[0] 
4: for 𝑖 = 1 to 𝑚 do 
5:       Extract clock start time {𝑠𝑖} for data stream clock timestamps {𝑡𝑖}: 
6:       𝑠𝑖 = 𝑡𝑖[0] 
7:       Calculate clock start time delay {𝑑𝑖} using clock start time {𝑠𝑖} and baseline data stream  
8:       clock start time {𝑠𝑏}: 
9:       𝑑𝑖 = (𝑠𝑖 − 𝑠𝑏).total_seconds() 
10:       Check if data stream clock is leading or lagging compared to baseline data stream clock: 
11:       if 𝑑𝑖 ≥ 0 then 
12:             Synchronized clock timestamps {𝑡𝑖

′} in local time format are calculated by subtracting     
13:             clock start time delay {𝑑𝑖} in seconds from clock timestamps {𝑡𝑖}: 
14:             𝑡𝑖

′ = 𝑡𝑖 − timedelta(seconds = 𝑑𝑖) 
15:       else if 𝑑𝑖 < 0 then 
16:             Synchronized clock timestamps {𝑡𝑖

′} in local time format are calculated by adding clock   
17:             start time delay {𝑑𝑖} in seconds to clock timestamps {𝑡𝑖}: 
18:             𝑡𝑖

′ = 𝑡𝑖 + timedelta(seconds = 𝑑𝑖) 
19:       Convert synchronized clock timestamps {𝑡𝑖

′} to specified UTC time format 
20:       for 𝑗 = 1 to 𝑛𝑖 do 
21:             𝜏𝑖[𝑗] = 𝑡𝑖

′[𝑗].replace(tzinfo=timestamp.utc).strftime(𝑓) 
22: return {𝜏1, 𝜏2, 𝜏3, …, 𝜏𝑚}, {𝑡1

′ , 𝑡2
′ , 𝑡3

′ , …, 𝑡𝑚
′ }, {𝑠1, 𝑠2, 𝑠3, …, 𝑠𝑚}, {𝑑1, 𝑑2, 𝑑3, …, 𝑑𝑚} 
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timestamp information that is usually available on the frame via optical character recognition (OCR) algorithms. For 
both, Python’s OpenCV module was used to read the data stream frame-by-frame. For extracting timestamps via meta-
data, video capture properties were used to identify every frame’s position in millisecond. These frame timestamps 
can then be converted into proper format through some postprocessing. In the case of OCR, Python’s pytesseract 
module was utilized to directly read the information available on the screen. To extract only the timestamp, the frames 
can be cropped to the region containing the time information and then OCR can be applied on a frame-by-frame basis. 
If 𝜑𝑖 is a machine log-based data stream (𝜑𝑖 ← 𝑀), the Python’s pandas module can be used to directly extract the 
timestamps that are usually available in such machine logs in form of time information for various events. The 
algorithm returns the set of 𝑚 timestamps {𝑡1, 𝑡2, 𝑡3, …, 𝑡𝑚} in local time format with dimensions {𝑛1, 𝑛2, 𝑛3, …, 
𝑛𝑚} corresponding to the 𝑚 data streams, {𝜑1, 𝜑2, 𝜑3, …, 𝜑𝑚}. 

Once the timestamps {𝑡1, 𝑡2, 𝑡3, …, 𝑡𝑚} in local time format corresponding to the set of 𝑚 data streams {𝜑1, 𝜑2, 𝜑3, 
…, 𝜑𝑚} are available, synchronization is required. The proposed supplemental algorithm S1 takes in these timestamps 
along with a specified baseline or reference data stream among them as input. The desired time format, usually UTC 
format, for the timestamps is also taken as input to achieve formatting consistency. Given the myriad of sensing 
technology options that can operate at various contrasting sampling rates, some acquisition can be as slow as a few 
hundred Hz (imaging systems) while others can be several hundred kHz (time series-based sensors). In such cases, 
the selection of the baseline data stream is important and usually preferred to be the slowest acquisition sensor stream. 
As the first step of the algorithm, the clock start time for the baseline data stream 𝜑𝑏 is extracted by taking the first 
timestamp 𝑠𝑏 from 𝑡𝑏. Followed by this, for every data stream 𝜑𝑖, the algorithm compares the first timestamp of 𝑡𝑖, 𝑠𝑖 
with 𝑠𝑏 to calculate the start time delay 𝑑𝑖 between various data streams and baseline. If 𝑑𝑖 ≥ 0, the data stream 𝜑𝑖 is 
leading ahead of 𝜑𝑏 in terms of timestamps. On the other hand, if 𝑑𝑖 < 0, the data stream 𝜑𝑖 is lagging behind 𝜑𝑏 in 
terms of timestamps. Based on these delays, the algorithm either adds or subtracts the delay (in seconds) from 𝑡𝑖 to 
come up with synchronized timestamps {𝑡1

′ , 𝑡2
′ , 𝑡3

′ , …, 𝑡𝑚
′ } for the 𝑚 data streams {𝜑1, 𝜑2, 𝜑3, …, 𝜑𝑚}. As the final 

step, using the specified time format, all the synchronized timestamps are converted from local time format to a unified 
and consistent format, resulting in a set of synchronized clock timestamps {𝜏1, 𝜏2, 𝜏3, …, 𝜏𝑚} in UTC time format 
(For example, 𝑦𝑦𝑦𝑦-𝑀𝑀-𝑑𝑑 𝐻𝐻:𝑚𝑚:𝑠𝑠.𝑓𝑓𝑓).  

Both time-based and process signature-based multimodal data alignment can provide excellent alignment with 
millisecond and microsecond resolutions. As discussed, time-based alignment is not always possible and good enough, 
and process signature-based alignment is difficult to quantify in terms of resolution numbers. Thereby, the proposed 
work also allows for a combination of algorithms S0 and S1 with A0 and A1. In such a combined multimodal data 
alignment process, while it is not required, it is advisable for clocks corresponding to all time series-based data streams 
to be in-sync and format. Other formatting consistencies such as timestamp formats and postprocessing are also 
required. For example, one sensor might be outputting UTC timestamps in the format, 2023-03-27T13:54:21Z, while 
other might be relying on ISO format, 2023-03-27T13:54:21+00:00. Both of these correspond to the same time and 
date but differ in their format. It is therefore desirable to bring all timestamps to a common format, ideally some UTC 
format.   

 

 

 

 

 

 

 


