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ABSTRACT

Automatic speech recognition (ASR) has considerable potential to
model aspects of classroom discourse with the goals of automated
assessment, feedback, and instructional support. However,
modeling student talk is besieged by numerous challenges
including a lack of data for child speech, low signal to noise ratio,
speech disfluencies, and multiparty chatter. This raises the question
as to whether contemporary ASR systems, which are benchmarked
on adult speech in idealized conditions, can be used to transcribe
child speech in classroom settings. To address this question, we
collected a dataset of 32 audio recordings of 30 middle-school
students engaged in small group work (dyads, triads and tetrads) in
authentic classroom settings. The audio was sampled, segmented,
and transcribed by humans as well as three ASR engines (Google,
Rev.ai, IBM Watson). Whereas all three ASRs had high word error
rates, these mainly consisted of deletion errors. Further, Google
successfully transcribed a greater proportion of utterances than the
other two, but with more word substitutions; insertions were low
across the board. ASR accuracy was robust to different speakers
and recording idiosyncrasies evidenced by <5% of variance in error
rates attributable to the student and recording session. We found
that ASR errors had a larger negative effect on downstream natural
language processing tasks at the word, phrase, and semantic levels
rather than at the discourse level. Our findings indicate that ASR
can be used to extract meaningful information from noisy
classroom speech and might be more suitable for applications that
require higher precision but are tolerant of lower recall.
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1. INTRODUCTION

Students learn by telling and doing. Indeed, decades of educational
research has converged on one (among several) perspectives of
learning as a social and collaborative activity [8, 89, 97]. Effective
collaborative learning (CL) activities give students the opportunity
to work together towards a common goal, share their ideas and
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build upon the ideas of others, negotiate strategies, monitor
execution of plans, and reflect on outcomes [17, 28, 33, 39, 72, 75].
Thus, the benefits of CL are manifested not only in the acquisition
of domain knowledge [86], but also in the development of essential
21 century skills such as collaborative problem solving and critical
thinking [27, 29].

Despite a strong consensus on the value and merits of CL, its
widespread implementation in contemporary classrooms is limited.
A key factor limiting its adoption is that it is extremely challenging
for teachers to effectively orchestrate rich CL activities in their
classes. To support successful CL, teachers must monitor group
progress on time-sensitive activities, provide guidance and help
when students get stuck and risk disengagement, and ensure that
students engage in productive knowledge-building conversations,
all while ensuring that classroom norms for respectful discourse are
maintained [71, 88]. To complicate things further, teachers must
perform these demanding activities simultaneously across multiple
(often 5-10) groups — a daunting assignment. Can intelligent
systems, which unlike teachers, are able to be omnipresent across
multiple student groups, enhance teachers’ ability to scaffold rich
CL experiences for all their students?

One exciting possibility is to design systems capable of natural
language understanding (NLU) to support CL in student groups.
Indeed, the linguistic content of discourse during CL is considered
the “gold mine of information” on how students acquire knowledge
and skills [32, 73]. However, despite an extensive body of research
demonstrating the utility of other modalities (e.g., body movement,
gesture, eye-gaze, paralinguistics, see review [62] for automatically
analyzing collaboration, an automated approach for capturing,
transcribing, and analyzing student speech during face-to-face CL
in the classroom has yet to be developed. Most language-based
approaches to date thereby rely on typed transcripts from chats (or
human-transcribed speech) to analyze and support collaborative
discourse [21, 30, 52, 76].

At the heart of this challenge lies an extremely difficult technical
hurdle: using automatic speech recognition (ASR) to obtain
accurate (or even serviceable) transcriptions of student discourse in
noisy, real-world classrooms. This endeavor is complicated by
multiple compounding challenges. Namely, with upwards of 20-30
students in a typical US classroom [57] with multiple student
groups simultaneously engaged in CL activities, speech signals are
obfuscated by background chatter and ambient noise. In addition,
ASR systems already have difficulty recognizing children’s speech
(even in ideal, noise-free environments), as they tend to speak less
clearly than adults [46]. In fact, even the basic acoustic
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characteristics of children’s voices and language use [25, 46], differ
from adults (on whose voices most ASR systems are trained),
resulting in a degradation in performance when these systems are
applied to children’s speech [70]. Multiparty speech recognition is
another challenge for ASR [12, 65], where utterances - from an
unknown number of unique speakers - may overlap, whereas ASR
systems are generally trained on audio where speakers have already
been separated.

Despite these challenges, pursuing technologies capable of
automatically capturing and analyzing student speech during face-
to-face CL in authentic school environments is an important avenue
of research. These technologies have the potential to significantly
improve orchestration and support of CL [73], whether by
providing teachers with feedback on progress of student groups
(e.g., via a teacher dashboard [87]), or enabling real-time
interventions to guide groups of learners towards equitable and
productive collaboration.

In this paper we take a first step towards understanding the
feasibility and challenges of automatically analyzing student
speech in classrooms. Specifically, we investigate: (1) patterns of
errors in widely used commercial ASR systems for transcribing
student discourse in authentic collaborative learning settings; and
(2) the influence of ASR errors on downstream natural language
understanding tasks at the word, phrase, semantic, and discourse
levels. In doing so, we take an important step towards deploying
speech-based collaborative learning technologies in classrooms.

1.1 Background and Related works

There is a large body of research on analyzing student- and teacher-
classroom discourse [10, 54], so to keep scope manageable we
focus on the automatic analysis of student speech and classroom
speech.

1.1.1  Challenges with child speech recognition
Speech recognition in children is a well-documented challenge,
with recognition accuracy substantially lower for children's speech
than adult's [25, 61, 74]. Yet, both commercially-available and
research ASR systems are generally trained with clean audio data
from adult speakers, with one speaker per utterance, and often
reading from a script, which perform substantially worse on
realistic, spontaneous speech [83]. These systems do not easily
generalize to child speech where vocal characteristics such as
higher fundamental and formant frequency and greater variability
in pitch, and linguistic factors such as disfluency rate, differ
between children and adults, as well as changing as children mature
[25, 46]. In an analysis of Google, Bing and Nuance ASR systems,
[70] found that age significantly impacted performance for all
ASRs except Google. Further, accented speech of non-native
speakers impacts ASR performance, as articulation and
pronunciation differ from the training data [19]. The classroom
setting provides an additional challenge. Howard et al. [34]
reported that the typical classroom signal-to-noise ratios range from
—7 dB to +5 dB, further impeding ASR [95]. Finally, microphone
placement impacts recognition - the further the speaker from the
microphone, the greater the impact of reverberation and other
signal degradation on ASR [23, 56].

1.1.2  Child speech recognition in controlled

learning environments

Numerous educational applications which use ASR on children’s
speech have been developed, albeit outside of the hustle and bustle
of the classroom. One strand of research uses ASR as part of
automatic reading tutors for young children learning to read aloud

from text. Here, the reference (ground-truth) transcript is available
in the form of reading materials, and by comparing this to the ASR
output, pronunciation errors can be identified and fed back to the
student or their teacher [3, 51, 60, 66]. Generally, these systems are
used in a quiet environment such as a library [66], and in all cases
are designed with the expectation that only a single speaker is
reading at a time. Another application of ASR is in conversational
tutors, where both speech recognition and language generation are
combined in a real-time system. One example is My Science Tutor
(MyST [92]) which supports one-on-one and small-group science
learning [13]. The MyST ASR system was trained using a dataset
of elementary school students, and achieves a word error rate
(WER) of 0.30 (about 70% accuracy) on a reduced vocabulary of
~6000 words. However tutoring sessions did not take place in the
main classroom, and users wore a headset, both of which avoided
some of the key challenges of classroom ASR. Online learning
environments also simplify the collection of clean, speaker-
separated speech recordings, and several examples exist of
automated analysis of student-teacher dialog starting from ASR
transcripts [47, 94].

1.1.3  Automated analysis of teacher speech in the

classroom

Recent advances in ASR make the prospect of sufficiently accurate
transcription of speech in the classroom a possibility. Most of the
ASR literature focuses on adult speech, and this is mirrored in the
availability of commercially available, cloud-based ASR APIs, (for
examples, see [20] but see [15] for a child-tailored ASR service).
As a result, most automated approaches have focused on analyzing
teacher speech with varying degrees of automation including ASR-
only [9, 37, 38, 42, 81, 96], human transcripts [82], or a
combination of both [7]. There are also differences in the depth of
the construct being modeled. For example, Zylich and Whitehill
[96] recently aimed to automatically detect 21 key phrases (e.g.,
“good job”) in teacher talk from audio, but stopped short of
measuring pertinent discourse constructs. In contrast, Kelly et al.
[42] and Jensen et al. [37, 38] developed fully automated
approaches to model five features of discourse: questions (vs.
statements), authentic (open-ended), instructional utterances,
elaborated evaluations, cognitive level, goal specificity, and
presence of disciplinary terms.

One advantage of focusing on teachers is that it is easier to affix
high-quality microphones on a single teacher than an entire
classroom of students. For example, the Kelly and Jensen studies
used a unidirectional, noise-canceling microphone with cardioid
pickup pattern which is most sensitive to sounds from the front of
the mic, thereby canceling background noise [37, 38, 42]. Despite
a high-quality mic, classroom ASR is still challenging due to
background noise, multidisciplinary chatter, dialectical variations,
and so on. To this point, [5] and [18] compared several ASR
engines for accuracy in transcribing teacher speech recorded in
authentic classrooms. These two studies tested 7 ASRs yielding
word error rates ranging from .31 to 1.00.

It is important that these studies are replicated due to the rapid
advancement in ASR technologies each year. For example, using
the same microphone and ASR engine on similar classroom data,
Jensen et al. [37] obtained a major reduction in error (from 44%
WER to 28%) in 2020 compared to Blanchard’s (2015) study [5].

1.1.4  Automated analysis of student speech in
classrooms

Examples of automated analysis of classroom audio focused on
student speech are rare, as justified by the many acoustic and



linguistic challenges inherent in the full pipeline from recording
speech, to transcription in the context of overlapping, non-adult
speakers in a noisy environment, to extracting meaning from
language patterns of students still undergoing linguistic
development. Nevertheless, several recent works have utilized non-
specialized commercial ASR services for child speech with
promising results - demonstrating that ASR transcriptions can be
used to derive useful downstream measures despite very high WER
[64, 84].

To our knowledge, the only example where ASR is used to
transcribe conversations among students as input to an NLP model
is in the context of a collaborative problem solving (CPS) study
conducted in both the classroom and lab [64]. Here, students aged
12-15 participated in two CPS activities in math and physics.
Participants wore headsets with microphones and completed the
task (in dyads) over Zoom from a shared computer lab at the school,
or for a subset of participants, in a laboratory. Captured speech was
manually segmented into utterances, then transcribed using the
IBM Watson speech-to-text service [36]. Performance degradation
attributable to the classroom environment was evident, with a word
error rate (WER) of 0.78 in the classroom, meaning only 22% of
human-transcribed words were correctly transcribed, as compared
to a WER of 0.54 for dyads recorded in the laboratory.

ASR has also been used to capture classroom conversation in
preschool children. Lileikyte et al. [48] used LENA’s wearable
audio recorders, which are designed for capturing speech in young
children, to train an ASR with custom acoustic and language
models using data augmentation, obtaining a WER of 0.64 on
spontaneous conversation in 2—5-year-old children. Using the same
wearable devices in preschoolers, Tao et al. [84] ran audio through
Google Cloud ASR [26] and used the transcripts to derive network
representations of groups in social interactions based on word count
vector similarity between utterances, though ASR accuracy is not
reported. Further, the use of LENA is cost-prohibitive, with pricing
in the thousands of dollars, which is infeasible at scale.

Beyond these examples, speech analysis in the classroom is limited
to extraction of non-linguistic (i.e., acoustic/prosodic) features,
which nevertheless show promise for classification of discourse
categories [6, 40, 91], speaker identification [84] and diarization to
identify speaker turns [49, 53].

1.1.5  Is perfect ASR needed?

As reviewed above, ASR in the classroom is beset by many
challenges, especially for analyzing student speech. However, the
goal of many applications is not to obtain perfect transcripts of
speech, but to use the transcripts for downstream NLU tasks
relevant to education (e.g., assessment, feedback, intervention).
Indeed previous research has indicated that useful information can
be obtained from imperfect transcripts. Pugh et al. [64] found that
using ASR instead of human transcripts led to only a 14% decrease
in classifier performance (still significantly above chance) despite
a WER of 0.78. Outside the classroom, Stewart et al. [78] reported
a mere 4.2% decrease in accuracy for classifying collaborative
skills using ASR versus human transcripts. Indeed, the question of
robustness of models of team performance to simulated ASR errors
was addressed by [22], with even a WER of 57% only decreasing
classifier performance by 20% relative to perfect transcription. The
authors suggest that the constrained, contextualized nature of
conversation makes discourse-level NLP models robust to
modifications of individual words.

Of course, there is likely an upper limit to errors beyond which the
signal to noise ratio is too low to be useful, a likely possibility for

analyzing multiparty collaborative child speech in the classroom.
This raises the questions of whether it is feasible to obtain
meaningful information on student collaborative discourse despite
noisy ASR and to what extent do ASR errors impact the meaning
conveyed in an utterance and how does this impact downstream
NLU tasks.

1.2 Current Study, Contribution, &
Novelty

In this study, we take an important first step towards the automated
analysis of student collaborative discourse in noisy, authentic
classrooms. We compare a variety of commercially available ASR
systems on both speech to text transcription, and we investigate the
influence of ASR errors on downstream NLU tasks using a novel
dataset of audio recordings from real-world middle-school
classrooms where multiple student groups are engaged in CL.

Specifically, we quantify ASR performance in terms of traditional
evaluation metrics (e.g., Word Error Rate [WER]), and investigate
the types of speech recognition errors encountered (e.g.,
substitutions, deletions). Further, we seek an understanding of the
sources of variability in ASR errors at the level of the utterance,
student, and session by systematically sampling students across
multiple recording contexts (i.e., across different lessons, student
groups, and days). This information can provide insights into
potential disparities of ASR systems, which may have unequal
impacts on individual student outcomes when used as inputs to
downstream applications. To this point, we also compare ASR
errors and their influence on downstream NLU applications (e.g.,
semantic similarity of transcripts [43], recognition of task-relevant
content words, assessing collaboration skills) to probe the
feasibility of using automated transcripts for NLU-based CL
analytics in the classroom.

To our knowledge, this is the first attempt to systematically analyze
automated transcriptions of face-to-face student collaborative
discourse in a real K-12 school environment. Although other
studies use ASR as input to language-based models of classroom
discourse, the majority of these focus on teacher speech [5, 9, 14,
37, 38] or collaborative problem solving in adult undergraduates
[63, 78, 79]. We also use inexpensive, commercially available
microphones placed on the tabletop, each capturing speech from 2-
4 students, which allows us to expose the challenges of capturing
real-world classroom audio where multiple speakers are intermixed
in a single-channel recording with additional impacts of
reverberation and background noise. This contrasts with prior
studies analyzing classroom audio, which mostly employ
individual microphones to isolate speech [5, 37, 47, 48, 64]. Also,
we use data collected in the context of a live, face-to-face discourse
rather than an online learning environment [47, 94]. The choice to
use table-top mics rather than individual noise-canceling lapel
microphones or headsets is motivated both by practicality and cost
considerations, and by the concern that individually miking
students would feel intrusive and even impede collaboration.

Finally, with respect to scope, we focus on widely available
commercial ASR services in lieu of customized ASR systems with
acoustic and language models trained on our target demographic
and data. This may disadvantage speech recognition performance,
however using publicly available ASR providers is desirable for
practical reasons including the simplicity of integration due to a
well-documented API, and the likely continuation of updates to the
model in the future. We also don’t seek to improve or engineer
better performance out of these systems in the current work because
the goal is to establish baseline performance of out-the-box ASR



systems on the difficult task of analyzing child collaborative talk in
noisy classrooms.

2. METHODS
2.1 Data Collection

The data was collected as part of a larger project involving a
Research-Practice Partnership [41] focused on using co-design and
professional learning to support the use of programmable sensor
technology and computational thinking for authentic inquiry in
middle school science and STEM classrooms [4]. We analyzed
audio and video data from one participating U.S. public middle
school teacher in this work.

2.1.1 Learning Context: Sensor Immersion
Participating teachers implemented a multi-day curriculum unit
called Sensor Immersion that focuses on students working
collaboratively to understand how to program and wire sensors to
collect data about their local environments, empowering students
to be data producers [31] and answer questions that they find
personally meaningful and relevant. The Sensor Immersion
curriculum uses an interactive data display called the Data Sensor
Hub (DaSH [11]; Figure 1) as an anchoring phenomenon [24].
Students explore the system, create scientific models and learn to
replicate its functionality in the context of their own investigations.
Along the way, students develop a program that can control a
variety of physical sensors including a sound sensor, moisture
sensor, and an environmental sensor.

Sensor Immersion is broken down into five lessons, each of which
can span multiple days. Lesson 1 focuses on question generation
and modeling. Throughout the following lessons, students work to
answer their questions about how the DaSH works. To do so they
learn to program and wire the sensors, working in pairs doing a
pair-programming task using MakeCode block programming
(Figure 2). Students gradually build on their understanding of
programming and sensors by working together to program and wire
one sensor and eventually building and programming a sensor

system to answer questions about a personally meaningful
phenomenon. Opportunities for small-group collaboration around
these sensors and their programming are designed into each lesson.

Figure 1. Close-up of the DaSH system which links sensors to
the computing interface. Various sensors can be wired to the
system to measure local environmental conditions such as soil
moisture levels (pictured), CO2, humidity, temperature and
ambient room noise.

2.1.2  Participants

The data sample included 30 students from 4 cohorts taught by a
single teacher in a suburban school district in the US. All
procedures were approved by designated Institutional Reseearch
Boards and data were only collected from students who provided
both personal assent and their parent’s signed consent forms. Most
of the students were in the 6th-8th grades except for one class of
Sth graders. Across the school district, the ethnicity of students
enrolled (as of the 2021-2022 school year) was as follows: 62%
White, 30% Hispanic, 3% Asian, 3% two or more races, 1% Black,
0.3% American Indian or Alaska Native, and 0.1%

Hawaiian/Pacific Islander [77]. About half (49%) were female.
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2.1.3  Microphone

Our choice of microphone was influenced by several factors
including audio quality, cost, power source, form-factor, and ease
of use. We evaluated a range of candidates (e.g., MXL, Sony ICD
PX370,ZOOM Hln, AudioTechnica-ATR, AudioTechnica-Omni,
AudioTechnica-Cardioid, ProCon, Saramonic), we chose the Yeti
Blue. This microphone has a user-configurable effective pickup
pattern: omnidirectional, polar, XY stereo or cardioid, costing
around $100USD. It is USB-powered, enabling use with an iPad
without the need for an external mixer or phantom power.

2.1.4  Procedure

During each class, researchers placed microphones (Yeti Blue) at
tables around the classroom. Groups of 2-4 consenting students
were seated at each table. Depending on the lesson the students
either worked as a team or as multiple dyads (during pair
programming). The microphone was placed on the table roughly
equidistant from all students, using the omnidirectional setting
when recording 3 or more students, or the stereo setting when two
students were sitting at either side of the microphoneThe
microphone was connected to an iPAD via USB that hosted the
recording software recording at 48kHz sampling rate. . We also
collected iPAD video from a subset of students. Microphones were
set up by a researcher who recorded field notes on different events
(e.g., start of lesson, start of small group work, technical failures).

2.2 Data Treatment
2.2.1 Sample Selection.

We opted to select recordings with both audio and video to aid in
ground-truth speaker diarization efforts (i.e., who is speaking). Of
atotal of 118 recordings, 79 met this criterion, of which we selected
49 recordings which contained small-group work, where at least
one student in each group appeared in a minimum of 4 recordings.

From each video, five 5-minute candidate samples were selected
from within the small-group work segment of the lesson,
constrained to the middle of the segment such that the random
sample included the midpoint of the small-group interval as
beginning and end of the task tended to include less on-topic
speech. A researcher then listened to each of the five random
samples in turn. If the sample met the 20-word criterion, then it was
selected for the sample. If it did not meet the criteria (n = 17), the
next segment was listened to and so forth. If none of the 5 segments
met the criteria, then the recording was excluded entirely. Through
this process, we ended with 32 samples totaling 160 minutes of
speech from 30 students. A majority (70%) of the students were in
at least two recordings (Table 1).

Table 1. Sample summary

M (SD) Range
No. students per recording 2.6 (0.7) 2-4
No. recordings per student 2.7 (1.6) 1-5
No. utterances per recording 61.6 (29.6) 21-139
No. utterances per student 65.7 (47.2) 10-188

Wordcount per utterance 4.55 (4.03) 1-47

2.2.2  Transcription and annotation

Samples were transcribed in ELAN annotation software by trained
transcribers, who recorded millisecond-resolution timestamps
(based on the audio waveform) for utterance start and end times
along with speaker identity. Where speaker identity was clear, but
speech was too indistinct to transcribe, some or all of the utterance
content was coded as "[inaudible]". This resulted in 2207 student

utterances, of which 1970 contained at least 1 audible word (See
Table 1).

Utterance-level audio segments were automatically transcribed by
three cloud-based ASR services: Google Speech-to-text [26],
Rev.ai [68], and IBM Watson [36]. We selected Google because it
has been shown to work as well for children as adults [70] and in a
recent review was shown to outperform similar services [20].
Watson has been used in multiple publications for ASR
transcription of teacher talk [5, 37, 38] and as input to CPS
linguistic models [63, 64]. Rev.ai was used as they claim equal or
greater performance than Google [69]. We deemed these three
ASRs sufficient for the present purposes of investigating patterns
in and downstream influences of ASR errors and not to evaluate all
available commercial ASR engines.

For Google, audio was first segmented using the human-segmented
utterance-boundaries and individually submitted to the ASR. We
used the video-optimized model as this was determined to
outperform the default model in preliminary testing. For Rev.ai and
Watson, all utterances from a given recording were concatenated
before transcribing, as this theoretically allows the models to use
prior language context to boost performance. The ASR result
contains word-level timestamps which were used to split the full
transcript back into the original utterances. We also tested using
per-utterance transcripts for Watson and the Google streaming
speech recognition API using the single utterance=True option
optimized for short utterances. Due to poorer performance than the
main Watson and Google models, these were not analyzed further.

2.3 Measures

Before computing measures on the transcripts, all texts (human and
ASR transcribed) were normalized to facilitate comparison. Non-
word indicators used by the transcribers and ASR systems such as
"[inaudible]", "[redacted]" and "%HESITATION" were stripped
out. Numbers were spelled out if transcribed as digits. Leading and
trailing punctuation was stripped from each word, and hyphens
replaced by space. Finally, all words were transposed to lowercase.

2.3.1 Word Error Rate.

Using standard procedures [83], for each utterance, we used the
Levenshtein algorithm at the word-level, which finds the minimum
number of word substitution (S), insertion (I) and deletion (D)
operations to align the reference (human transcript) to the
hypothesis (ASR transcript). We used word error rate (WER) as a
measure of transcription accuracy, which is given by: WER =
(S + D + I)/ Nicference (number of words in the reference text).
Proportion of insertion, substitution, and deletion errors were
computed by dividing utterance-level error counts with the number
of words in the human transcript. We also computed the number of
words in the ASR transcripts along with a binary variable indicating
whether the ASR returned any transcript at all.

2.3.2  Downstream NLP Measures

We focused on NLP tasks at the word, semantic, and discourse
levels. In each case, we are interested in the error (distance)
between the ASR (hypothesized) and human (reference) values.

2.3.2.1 BLEU Scores

The BLEU metric was developed to assess the performance of
machine translation systems by comparing a gold standard
translation to an output translation [59]. BLEU scores quantify
sentence similarity based on modified n-gram precision, where
scores vary from O (no match) to 1 (perfect match). This captures
higher-order structure than WER: it is invariant to n-gram order,



and encapsulates longer subsequences than WER which is defined
only at the individual word level. We computed the BLEU score
for unigrams, bigrams, trigrams, and quad-grams and computed an
unweighted average of the four, which was reversed (i.e., I-BLEU)
to get the BLEU distance (or error)

2.3.2.2 Topic Word Analysis.

At the word level, we quantified students’ uses of topic words that
might be indicative of their cognitive engagement with the sensor
immersion unit. The curriculum materials consist of storyboards,
lesson plans, tutorials, etc., from which we generated a frequency
dictionary of the named entities using the Named Entity
Recognition algorithm from the Stanford CoreNLP toolkit [55].
Functional words were removed, resulting in 2,438 candidate
words. Next, we used an existing Latent Dirichlet Allocation
(LDA) topic model (created for an auxiliary purpose), which learns
distinct topics from the document and returns the top 20 words that
have the highest correlation with each of 20 topics. We computed
the intersection of the 400 topic words and the 218 candidate named
entities that occurred more than 20 times. This threshold ensured
candidate words appeared at multiple points in the curriculum
documents while keeping the list to a manageable size. This
produced a set of 66 initial topic words. These topic words were
then reviewed by curriculum experts who selected a subset of 33
topic words aligned to the following categories: science (e.g.
environmental), coding (e.g. function), and wiring (e.g. sensors).
For each utterance, we computed the number of topic words
recognized by each ASR and the human transcript. To measure
ASR fidelity specific to topic words, we compute Topic Distance
as the absolute difference in utterance-level topic word counts
between the human and ASR derived transcripts, with a lower
bound of 0 and an undefined upper bound.

2.3.2.3 Semantic Distance

Beyond words themselves, we also evaluated the ASR transcripts
using the semantic distance metric, which measures the similarity
of a reference and a hypothesis transcript in a sentence-level

embedding space (using a pre-trained language model to obtain the
embeddings), and has been shown to be a better predictor of
performance on downstream NLP tasks than traditional metrics
such as WER [43]. Following the procedure outlined in [43], we
first extracted utterance-level embeddings using the sentence-
transformers Python library [67] and the ‘all-distilroberta-vI’
model [50]. Then, we computed the cosine distances between the
embeddings of each ASR (hypothesized) transcript and the
reference human transcript. The cosine distance is defined as 1-
cosine similarity (which ranges from -1 to 1), so it can take on
values from 0 (identical) to 2 (dissimilar). To obtain a baseline
value, we randomly shuffled the human transcripts within each 5-
minute recording, then computed the semantic distance to each
ASR transcript as described above. The average semantic distance
over all ASRs was used as a baseline.

2.3.2.4 CPS Skill Classification

At the discourse level, we evaluated the utility of our ASR
transcripts for a concrete NLP application: classifying collaborative
problem solving (CPS) skills from student transcripts, which is one
of the target applications noted in Section X. Specifically, we
applied an existing classifier [63], which was trained to identify the
following three CPS skills based on a validated CPS framework
[80]: constructing shared knowledge; negotiation/coordination;
maintaining team function, to our dataset. The classifier was a pre-
trained BERT [16] model fine-tuned on a data set of 31,533 expert-
coded student utterances (transcribed using the Watson ASR).
Although the classifier was trained on a different dataset, it has
been shown to be generalizable across domains [63], so we deemed
it suitable for the present purposes. As such, we submitted both the
human and ASR transcripts to the classifier, which outputs the
predicted probabilities for the three CPS facets on each utterance.
For each ASR, we computed the three-dimensional Euclidean
distance between the ASR- and human- (reference) predicted
probabilities as a measure of dissimilarity (CPS Distance). We also
obtained a baseline shuffled value similar to the baseline Semantic
Distance.

Table 2. Sample sentences and their corresponding ASR transcriptions. CPS codes: Const. = constructing shared knowledge; Neg. =

negotiation/coordination; Maintain. = maintaining team function

Speaker Human Transcript Google Watson Rev CPS
Code

A just start with the show start remove the show system started with the  start with the show Const.
number number show numbers number

B oh - okay okay None

A okay so you get rid of the ~ okc get rid of the okay okay so you get rid of the ~ Maintain.
show number sheriff sharon remember

A just drag it stretch dr don't - Maintain.

C don't don't do that don't don't do that don't don't don't do that  don't do that Maintain.

A get rid of it - - get rid of it Maintain.

C just okay just okay it Neg.

B and now put this in this iam for this and this  okay but this in this put this and this thing Const.
thing thing thing yeah

A yes - yeah - Neg.

C no now you eat a taco you know how you  yeah are you talking you need to talk Maintain.

eat a taco

B no do i put it in there - - - Const.

C yeah - - - Neg.
yes - - - Neg.




2.4 Data Treatment

All measures (proportions of insertion, substitution and deletion
errors; BLEU distance, Topic distance, semantic distance, CPS
distance) were averaged per speaker per recording, resulting in 82
observations per ASR. This was done to obtain more reliable
estimates due to the principle of aggregation. Because the distance
metrics are only meaningful for utterances where the ASR returns
anonempty transcript, the averages for BLEU, Topic, Semantic and
CPS distances were computed over nonempty transcripts only. To
analyze the effects of ASR service and word errors on downstream
measures, we used mixed effects linear regression models with
speaker and recording identifier as random intercepts to account for
the nested and repeated structure of the data with multiple speakers
nested within recordings. Further, we used the robust/mm package
in R [45], which provides estimates that are robust to outliers and
other contaminants in the data. We used estimated marginal means
(emmeans package in R) for pairwise comparisons using false-
discovery rate adjustments for multiple comparisons and
Satterthwaite’s degrees of freedom method. We used two-tailed
tests with a p <.05 cutoff for significance.

3. RESULTS
3.1 ASR Errors

3.1.1 Patterns in Error Types

Table 3 provides descriptives on ASR performance measures
averaged by student by recording. Immediately apparent is that the
vast majority of ASR errors were deletion errors (67%) compared
to substitution (17%) and insertion errors (6%; the sum of errors
does not add up to 100% because of words correctly recognized).
Indeed, when error rate was regressed on error type (three level
categorical variable) and number of words in the human transcript
(as a covariate), we found the following significant (ps < .001)
pattern in the errors: Deletion > Substitution > Insertion (Table 3).

3.1.2 Comparing ASR Engines

We regressed each error type on ASR (a three-level categorical
effect with Google as the reference group) and reference (human)
transcript word count as a covariate. For deletion errors, we found
Watson and Rev to be statistically equivalent and higher than
Google suggesting the following significant (ps < .0001, FDR
correction for 3 tests) pattern in the data: [Watson = Rev; p = .61]
> Google. This pattern was largely flipped for substitution errors:
Google > Watson > Rev; p < .004. For insertion errors, Google
resulted in more insertion errors than Watson, but Rev was
intermediate and not significantly different from either. Deletion
errors (p <.001) were less likely as reference word count increased,
but substitution (p = .582) and insertion (p = .137) errors were not.

Since insertion errors were rare, the tradeoff involved deletion and
substitution errors (Figure 3) with Google providing fewest
deletions but the most substitutions, the opposite for Rev, and
Watson was intermediate. All things equal, the choice of ASR thus
depends on obtaining as many transcriptions of speech as possible.
Google provided a non-empty transcript for on average 61% of the
cases, far exceeding the others (47% for Watson, 41% for Rev), and
even among the utterances with nonempty ASR transcriptions,
Google had a lower rate of deletions (0.29) than Rev (0.33) and
Watson (0.44).

Table 3. Summary statistics of ASR results. M (SD) over
utterances

Google Rev Watson
N utterances 1970 1970 1970
N averaged 82 82 82
ASR metrics
ASR wordcount  2.37(1.36) 1.71 (1.46) 1.31(0.95)
Nonempty ASR  0.61 (0.22) 0.41 (0.22) 0.47(0.22)
Perfect ASR 0.05 (0.06) 0.04 (0.05) 0.02(0.06)

Insertion rate 0.06 (0.09) 0.08 (0.16) 0.04 (0.08)
0.21(0.11) 0.12(0.08) 0.19(0.13)
Deletion rate 0.56 (0.18) 0.72(0.17) 0.72(0.17)
WER 0.84 (0.15) 0.91(0.19) 0.95(0.11)
Downstream NLP metrics

Topic Distance 0.05(0.10) 0.05(0.09) 0.05(0.07)
BLEU Distance  0.83 (0.11)  0.82 (0.15) 0.94 (0.06)

Semantic Distance 0.56 (0.14) 0.52 (0.15) 0.68 (0.09)

Substitution rate

CPS Distance 0.29 (0.14)  0.29 (0.15)  0.33 (0.16)
Deletion rate Substitution rate
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Figure 3. Density plots of deletion and substitution errors by
ASR

3.1.3  Sources of Variance

We carried out a multilevel decomposition of variance [35] on each
type of ASR error, at three levels: utterance, speaker and recording.
Utterances are nested within speakers, and speakers within
recordings. We computed the proportion of variance attributable to
speaker and recording by decomposing the data into a linear sum
of cluster-level averages and within-cluster deviations. The
variance between-cluster and within-cluster sums to the total
variance, under the assumption that errors at utterance, speaker, and
recording are independent. We found that the majority of variance
(between 91 and 98%) was at the utterance level for all error types
and ASRs, with just 1-3% attributable to individual students and 1-
5% to the specific recording (Table 4). This suggests that each ASR
system had stable performance across recording contexts and
individual differences in vocal parameters.



Table 4. Multilevel variance decomposition. Proportion of
variance attributable to each hierarchical level.

ASR Error type Utterance Student Recording

Google Insertion rate 0.981 0.009 0.010
Google Substitution rate  0.980 0.010 0.010
Google Deletion rate 0.943 0.032 0.025

Rev Insertion rate 0.980 0.004 0.016
Rev Substitution rate  0.971 0.009 0.020
Rev Deletion rate 0914 0.032 0.053
Watson Insertion rate 0.976 0.009 0.015
Watson Substitution rate  0.972 0.011 0.017
Watson Deletion rate 0.950 0.025 0.025

3.2 Downstream NLP measures

The Spearman correlations between distance metrics for the four
downstream tasks are shown in Table 5. The most highly correlated
metrics were semantic distance and BLEU distance (r = .83),
whereas the CPS distance was only moderately correlated (rs
between .3 and .4) with these measures. Topic distance was not
correlated with any other metric, which may be a result of topic
words being so rare in the utterance (about 5% of words).

Table S. Correlations between transcript distance metrics. ***
p<0.001

BLEU Topic Semantic
Distance Distance Distance
Topic Distance -0.118
Semantic Distance 0.830*** -0.040
CPS Distance 0.321%** 0.076 0.402%**

Figure 4 shows the distributions of CPS and semantic distances.
The peak of the distribution was lower than the baseline (derived
by computing the average distances between ASR and human-
transcribed utterances after shuftling; see Methods) for all three
ASRs and for both CPS and Semantic distances. In fact, 97.5% of
semantic distances were less than the shuffled baseline, and 79%
for CPS, indicating that a degree of higher-order meaning was
generally extracted from the ASR transcripts.
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Figure 4. Density plots of CPS Distance and Semantic Distance
by ASR. Dashed line shows the random baseline for shuffled
utterances.

3.2.1 Comparing ASRs on Downstream NLP

We regressed each distance metric on ASR (a three-level
categorical effect with Google as the reference group) and reference
(human) transcript word count, with random intercept of student
and recording. As indicated in Figure 5, the ASR services did not
vary for Topic word distance (p = .929), but did for the other
measures. Specifically, the pattern of significance (ps < .001) for
BLEU and semantic distances was: Watson > Google > Rev. For
CPS distance it was Watson > Rev, p = 0.03; Watson = Google, p
=0.16; Rev = Google, p = 0.46.
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Figure S. Estimated marginal means and 95% confidence
intervals for NLP distance metrics for each of the ASR services

3.2.2  ASR errors on downstream NLP tasks

To test whether specific ASR errors impact downstream NLP
metrics, we also fit a linear mixed-effects model to predict each
distance metric from the rates of three ASR errors (Table 6).
Whereas insertion errors did not significantly predict any of the
outcomes, both substitution and deletion errors were negatively (ps
< .001) associated with BLEU, semantic, and CPS distance
measures, more so for the former. Specifically, a one standard
deviation increase in each error type was associated with an
approximately equivalent increase for BLEU and semantic
distances, but only about a half a standard deviation increase for the
CPS tasks. Error type was not associated with topic word distance,
presumably due to a restriction of range with this measure.



Table 6. Mixed-effects model predicting distance metrics from ASR errors, showing standardized Beta values

BLEU Distance Topic Distance Semantic Distance CPS Distance
Predictors std. Beta p std. Beta p std. Beta p std. Beta p
(Intercept) 0.07 <0.001 -0.27 0.020 0.05 <0.001 -0.05 0.189
Substitution rate 0.91 <0.001 -0.05 0.231 1.04 <0.001 0.46 <0.001
Deletion rate 1.08 <0.001 -0.05 0.256 1.12 <0.001 0.49 <0.001
Insertion rate -0.03 0.345 0.01 0.676 0.03 0.446 -0.01 0.870

4. DISCUSSION

measures). Whereas this pattern is intuitively plausible it awaits

We investigated the feasibility of using commercially available
ASREs to transcribe student discourse from a collaborative learning
activity in a middle school classroom with an eye for downstream
NLP tasks aimed to support student learning. In the remainder of
this section, we discuss our main findings, applications, limitations,
and areas for future work.

4.1 Main Findings

Overall, WER was very high (.84-.95) compared to performance on
benchmark datasets, and even compared to WER from prior CL
studies using classroom audio, such as in Pugh et al. 2021 who
reported a WER of .78 using Watson, but with individual
microphones in a more restricted in-class data collection setting
compared to the current in-the-wild classroom context. At first
blush, these high WERs suggest that it might be futile to expect
meaningful ASR in noisy classroom environments without
explicitly instrumenting the classroom for this purpose [1] or
resorting to miking individual students with customized high-
fidelity microphones [90]. However, an in-depth analysis of the
pattern of errors suggests that there is hope: specifically, the ASRs
had a large proportion of deletion errors and fewer substitution and
almost no insertion error meaning that they tended towards high
precision but low recall and are thereby feasible for applications
that match this profile (as elaborated below).

Comparing the three ASR engines we examined, Google and Rev
were biased towards more substitutions and deletions respectively,
but also relevant is the proportion of utterances which did not get
transcribed at all. Here, Google provided a clear advantage with
nonempty results returned for 60% of utterances compared to less
than 50% for the other two. Reassuringly, the variance in ASR
errors was overwhelmingly from utterance-level differences, with
very little attributable to recording or student. In addition, of 1970
utterances, only 477 (24%) returned no transcript from any ASR,
raising the possibility of combining outputs from multiple ASRs.

We computed several distance metrics to capture ASR quality as
reflected in downstream NLP measures, in each case computing the
deviations between ASR-produced and human-transcript versions
of each measure. With respect to the four measures, topic word
usage was rare and there was very little variability in this measure
so unsurprisingly there were no differences for it. Turning to the
other measures, Watson was consistently outperformed by Google
and Rev, which were equivalent on CPS distance. However, BLEU
and semantic distance, which were strongly correlated, were best
captured by Rev, despite Google having lower word-level error
rates. Thus, Rev had a slight edge over Google for the downstream
NLP tasks, but not sufficient to compensate for its higher deletion
rate. Finally, as the NLP analyses got more abstract, ASR errors
had less of an impact. The effect of substitutions and deletions on
CPS distance (a discourse-based construct) was about half that of
semantic and BLEU distances, (i.e. word- and semantic-level

replication with additional downstream NLP measures.

4.2  Applications

The ability to automatically capture and transcribe student speech
during CL activities in the classroom opens the door for numerous
applications. Fair and accurate ASR transcripts are the first step for
automated interventions that aim to support CL in classrooms. One
promising strand of research involves designing teacher-facing
applications, such as teacher dashboards, which convey
information about student collaborative talk to the teacher. The
design space for such technologies is broad and relatively
unexplored. While there is potential for abuses such as increased
monitoring and evaluation of student talk, responsible innovations
can also leverage student transcripts to celebrate students’
contributions, build communities within classrooms and foster
authentic collaboration motivated by student interest, not desire for
positive reinforcement. For example, information gathered from
CL discourse could be presented to a teacher offline (i.e., after
class), illustrating any number of relevant details about the CL
activity (e.g., what students talked about when on-task versus off-
task, balance of speaking time, quality of collaboration). To
demonstrate, we created an example dashboard visualization of the
model-estimated occurrence of three CPS facets in student
utterances (Figure 4) using both human- and Google- generated
transcripts. As evident in the figure, model estimations are notably
impacted by ASR error (i.e., in this group, the model
underestimates the use of constructing shared knowledge by
students A and C). Although model estimations will be imperfect,
they can still provide valuable insights, and the impact of errors can
be diminished by aggregating over longer time scales. These after-
action reviews could greatly benefit teachers, giving them insight
into how they might better support CL in their classroom. This
includes designing new activities to better engage students,
understanding which student groups may need additional support
in future classes and what CPS skills students need help developing.

Similarly, these insights could be conveyed to the teacher online
(i.e., during class) via a real-time teacher dashboard. Real-time
feedback on CL groups could also enhance a teacher’s ability for
more effective classroom orchestration by providing them with
novel insights into how groups are working together and what kinds
of feedback and encouragement will help increase productive
collaboration for students. Ultimately, the specifics of these
teacher-facing applications, such as what information to present,
when to present it (e.g., real-time, oftline), how to display it (e.g.,
graphic representations, transcripts of speech) and at what level of
granularity (e.g., individual students, CL groups, whole class) will
require co-design, testing, and refinement with teachers.

In addition to teacher-facing applications, ASR systems could be
used to create student-facing CL supports in the classroom. These
technologies could take many forms, from real-time or after-action



feedback that helps students develop CPS skills to a conversational
agent which serves as a socio-collaborative ‘partner’, working
together with student groups to enhance learning, equitable
participation, and collaboration. Current approaches to support
student collaboration (for example by prompting for the use of
high-quality discourse called academically productive talk) have
been shown to be successful in the context of text chat [85]. Further,
after-action reviews to support CPS by providing feedback based
on ASR/NLP models has demonstrated potential in the lab [64], but
has yet to be tested in classrooms. Whether this is applied to
student- or teacher-facing tools, fair and accurate ASR in
classrooms has the potential to spotlight students’ verbally-
expressed ideas and contributions. This offloads the demand that is
normally placed on written work and provides more multimodal
dimensions for classroom feedback and support.

Whereas perfect ASR should not be a prerequisite for several
applications (as argued in the Introduction), the patterns in ASR
errors should be carefully considered in that the ASRs have high
precision (relatively low substitution and insertion errors) but low
recall (high levels of deletion errors). This suggests that these data
are best suited for applications for which transcription of a
sampling of utterances is sufficient, for example, assessments of
constructs with high-base rates (e.g., CPS skills) rather than those
focused on rare events. This high precision could be helpful in
avoiding unwarranted interventions triggered by CL supports, as
there should be a low rate of false alarms of discourse features
detected based on the ASR results. Nevertheless, our findings
suggest that a real-time conversational partner will likely be off the
table until ASR deletion errors can be reduced. Nevertheless,
robustness of NLP models to ASR errors can be improved by data
augmentation approaches where models are trained on ASR
hypotheses as well as human transcripts [58].
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Figure S. Predicted probabilities of CPS skills over a sample S-
minute recording (using the student group shown in Table 2)
based on human (left) and Google ASR (right) transcripts

4.3 Limitations and Future Work

There were several limitations to this study. First, although we
investigated an automated approach to transcribe student
utterances, we did not incorporate automatic utterance
segmentation in our pipeline. Rather, utterances were manually
identified and segmented by a human observer before being
processed by the ASR systems, which is consistent with prior work
on comparing ASRs [5, 18]. This was done because the present
focus was on speech-to-text transcription and not utterance-
segmentation, so we opted for a gold-standard baseline for the latter
to compare the various ASRs for the former. Further, utterance-
segmentation is technically not needed as a separate step in an
automated pipeline in that the entire five-minute audio segment
could be submitted to the ASR engines for combined utterance

segmentation and speech transcription, albeit less accurately than
human segmentation. Indeed, longer context than single utterances
are beneficial in modeling CL [64].

Another limitation is that we only tested out-of-the-box cloud-
based ASR systems. One problem with this approach is that
reliance on cloud-based services may be unrealistic in the near-
term. In the US, nearly 28 million students did not have sufficient
internet bandwidth for multimedia learning [97]. Similarly, we did
not attempt to improve the performance of these out-of-the-box
systems (e.g., by fine-tuning a custom ASR model on our data or
providing a task-specific vocabulary) because the present goal was
to compare these systems “as-is” since many researchers might not
have the technical expertise needed to train customized models or
fine-tune existing models. However, recent advances in deep-
learning-based ASR mean pretrained models are widely available
and a relatively small amount of data is needed for fine tuning [2,
74], which may provide better performance in this domain than
standard cloud-based systems. To this point, we are currently
developing a customized, locally hosted ASR system to improve
upon the present results and address the limitations above.

One additional limitation is the lack of diversity in our sample.
Whereas student-level demographic data was unavailable, district-
level information suggests that 92% of the students were either
White (62%) or Hispanic (30%). Racial disparities in ASR
performance [44], as well as challenges with non-native English
speakers [93] are well documented and may have
disproportionately adverse effects on underrepresented groups
when ASR is used for downstream applications. Thus, the lack of
variability at the student level might be partly because our sample
was non-representative. To create more fair ASR transcripts, non-
native English speakers and students from non-dominant cultures
should be oversampled to create representation, and thus accuracy,
equal to students from dominant cultures. We also chose to include
data from a single (although multi-lesson and multi-day)
curriculum unit as implemented by one teacher with a small number
of students. In sum, these factors reduce the generalizability of our
findings to groups historically underrepresented in STEM. Our
future work will aim to address these limitations by collecting
classroom speech from racially and socioeconomically diverse
populations, and examining ASR performance across different
groups to identify sources of bias or nonequivalence.

4.4  Conclusion

Automated speech recognition in conjunction with natural
language processing has the potential to unlock collaborative
learning supports in the classroom. We recorded authentic small-
group interactions in middle school STEM classrooms using
inexpensive, commercially-available equipment, and analyzed the
transcripts provided by several cloud providers. We show how
different types of transcription errors influence downstream
linguistic models, and find that the impact of ASR errors is smaller
for the predictive accuracy of a CL model than for upstream
measures capturing more literal aspects of speech content. Our
results demonstrate the challenges of automating speech
recognition in the classroom, but suggest the potential of using
imperfect ASR to gain insights into collaborative discourse.

S. ACKNOWLEDGMENTS

This research was supported by the NSF National Al Institute for
Student-AI Teaming (iSAT) (DRL 2019805). The opinions
expressed are those of the authors and do not represent views of the
funding agencies. We also thank Jon Cai (LDA topic models) and
Robert Moulder (variance decomposition).



6. REFERENCES

[1] Ahuja, K., Kim, D., Xhakaj, F., Varga, V., Xie, A., Zhang, S.,
Townsend, J.E., Harrison, C., Ogan, A. and Agarwal, Y.
2019. EduSense: Practical Classroom Sensing at Scale.
Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies. 3, 3 (2019), 1-26.
DOTI:https://doi.org/10.1145/3351229.

[2] Baevski, A., Zhou, H., Mohamed, A. and Auli, M. 2020.
wav2vec 2.0: A Framework for Self-Supervised Learning of
Speech Representations. arXiv. (2020).

[3] Bai, Y., Tejedor-Garcia, C., Hubers, F., Cucchiarini, C. and
Strik, H. 2021. An ASR-Based Tutor for Learning to Read:
How to Optimize Feedback to First Graders. (2021), 58—69.

[4] Biddy, Q., Chakarov, A.G., Bush, J., Elliott, C.H., Jacobs, J.,
Recker, M., Sumner, T. and Penuel, W. 2021. Designing a
Middle School Science Curriculum that Integrates
Computational Thinking and Sensor Technology. Proceedings
of the 50th ACM Technical Symposium on Computer Science
Education. (Dec. 2021), 818-824.
DOTI:https://doi.org/10.1145/3287324.3287476.

[5] Blanchard, N., Brady, M., Olney, A.M., Glaus, M., Sun, X.,
Nystrand, M., Samei, B., Kelly, S. and D’Mello, S. 2015. A
Study of Automatic Speech Recognition in Noisy Classroom

Environments for Automated Dialog Analysis. Proceedings of

the 8th International Conference on Educational Data Mining
283 (2015), 23-33.

[6] Blanchard, N., D’Mello, S., Olney, A.M. and Nystrand, M.
2015. Automatic Classification of Question & Answer
Discourse Segments from Teacher’s Speech in Classrooms.
Proceedings of the 8th International Conference on
Educational Data Mining. (2015), 282-288.

[7] Blanchard, N., Donnelly, P., Olney, A.M., Samei, B., Ward,
B., Sun, X., Kelly, S., Nystrand, M. and D’Mello, S.K. 2016.
Semi-Automatic Detection of Teacher Questions from
Human-Transcripts of Audio in Live Classrooms. (2016).

[8] Bransford, J.D., Brown, A.L. and Cocking, R.R. 2000. How
People Learn: Brain, Mind, Experience, and School.

[9] Caballero, D., Araya, R., Kronholm, H., Viiri, J.,
Mansikkaniemi, A., Lehesvuori, S., Virtanen, T., & Kurimo,
M. (2017). Data Driven Approaches in Digital Education,
12th European Conference on Technology Enhanced
Learning, EC-TEL 2017, Tallinn, Estonia, September 12—15,
2017, Proceedings. Lecture Notes in Computer Science, 541—
544. https://doi.org/10.1007/978-3-319-66610-5_58

[10] Cazden, C.B. 1988. Classroom discourse: The language of
teaching and learning. ERIC.

[11] Chakarov, A.G., Biddy, Q., Elliott, C.H. and Recker, M.
2021. The Data Sensor Hub (DaSH): A Physical Computing
System to Support Middle School Inquiry Science Instruction.
Sensors (Basel, Switzerland). 21, 18 (2021), 6243.
DOI:https://doi.org/10.3390/s21186243.

[12] Chang, X., Zhang, W., Qian, Y., Roux, J.L. and Watanabe, S.
2020. End-To-End Multi-Speaker Speech Recognition With
Transformer. ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). 00, (2020), 6134-6138.
DOL:https://doi.org/10.1109/icassp40776.2020.9054029.

[13] Cole, R., Buchenroth-Martin, C., Weston, T., Devine, L.,
Myatt, J., Helding, B., Pradhan, S., McKeown, M., Messier,

S., Borum, J. and Ward, W. 2018. One-on-one and small
group conversations with an intelligent virtual science tutor.
Computer Speech & Language. 50, (2018), 157-174.
DOTI:https://doi.org/10.1016/j.cs1.2018.01.002.

[14] Cook, C., Olney, A.M., Kelly, S. and D’Mello, S.K. 2018.
An Open Vocabulary Approach for Estimating Teacher Use
of Authentic Questions in Classroom Discourse.

Proceedings of the 11th International Conference on Edu
cational Data Mining. (Jun. 2018), 116-126.

[15] Deng, A. 2021. Fostering Literacy with Speech Recognition:
A Pilot Study.

[16] Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. Proceedings of the 2019
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). (2019),
4171-4186. DOL:https://doi.org/10.18653/v1/n19-1423.

[17] Dillenbourg, P. (1999). What do you mean by collaborative
learning? Chapter 1. In Dillenbourg (Ed.), Collaborative-
learning: Cognitive and Computational Approaches. (Vol. 1,
pp. 1-19). Oxford: Elsevier.

[18] D’Mello, S.K., Olney, A.M., Blanchard, N., Samei, B., Sun,
X., Ward, B. and Kelly, S. 2015. Multimodal Capture of
Teacher-Student Interactions for Automated Dialogic
Analysis in Live Classrooms. Proceedings of the 2015 ACM
on International Conference on Multimodal Interaction.
(2015), 557-566.
DOTI:https://doi.org/10.1145/2818346.2830602.

[19] Feng, S., Kudina, O., Halpern, B.M. and Scharenborg, O.
2021. Quantifying Bias in Automatic Speech Recognition.
arXiv. (2021).

[20] Filippidou, F. and Moussiades, L. 2020. A Benchmarking of
IBM, Google and Wit Automatic Speech Recognition
Systems. Artificial Intelligence Applications and Innovations.
583, (2020), 73—82. DOI:https://doi.org/10.1007/978-3-030-
49161-1 7.

[21] Flor, M., Yoon, S.-Y., Hao, J., Liu, L. and Davier, A. von
2016. Automated classification of collaborative problem
solving interactions in simulated science tasks. Proceedings of
the 11th Workshop on Innovative Use of NLP for Building
Educational Applications. (2016), 31-41.
DOTI:https://doi.org/10.18653/v1/w16-0504.

[22] Foltz, P.W., Laham, D. and Derr, M. 2003. Automated
Speech Recognition for Modeling Team Performance.
Proceedings of the Human Factors and Ergonomics Society
Annual Meeting. 47, 4 (2003), 673—-677.
DOTI:https://doi.org/10.1177/154193120304700402.

[23] Gamper, H., Emmanouilidou, D., Braun, S. and Tashev, L.J.
2020. Predicting Word Error Rate for Reverberant Speech.
ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 00,
(2020), 491-495.
DOL:https://doi.org/10.1109/icassp40776.2020.9053025.

[24] German, S. 2019. Using the Anchoring Phenomenon Routine
to introduce a science unit. Science Scope. 42, 5 (2019), 32—
35.

[25] Gerosa, M., Giuliani, D., Narayanan, S. and Potamianos, A.
2009. A review of ASR technologies for children’s speech.



Proceedings of the 2nd Workshop on Child, Computer and
Interaction - WOCCI °09. (2009), 7.
DOTI:https://doi.org/10.1145/1640377.1640384.

[26] Google Cloud Speech-to-Text:
https://cloud.google.com/speech-to-text/. Accessed: 2022-03-
04.

[27] Graesser, A. C., Greiff, S., Stadler, M., & Shubeck, K. T.
(2019). Collaboration in the 21st Century: The Theory,
Assessment, and Teaching of Collaborative Problem Solving.
Computers in Human Behavior, 104, 106134.
https://doi.org/10.1016/j.chb.2019.09.010

[28] Graesser, A.C., Person, N.K. and Magliano, J.P. 1995.
Collaborative dialogue patterns in naturalistic one-to-one
tutoring. Applied Cognitive Psychology. 9, 6 (1995).
DOTI:https://doi.org/10.1002/acp.2350090604.

[29] Griffin, P., Care, E. and McGaw, B. The changing role of
education and schools. In P. Griffin, B. McGaw, & E. Care
(Eds.), Assessment and Teaching of 21st Century Skills (pp. 1-
16). Dordrecht, Germany: Springer
http://dx.doi.org/10.1007/978-94-007-2324-5 2

[30] Hao, J., Chen, L., Flor, M., Liu, L. and Davier, A.A. von
2017. CPS-Rater: Automated Sequential Annotation for
Conversations in Collaborative Problem-Solving Activities.
ETS Research Report Series. 2017, 1 (2017), 1-9.
DOTI:https://doi.org/10.1002/ets2.12184.

[31] Hardy, L., Dixon, C. and Hsi, S. 2019. From Data Collectors
to Data Producers: Shifting Students’ Relationship to Data.
Journal of the Learning Sciences. 29, 1 (2019), 1-23.
DOTI:https://doi.org/10.1080/10508406.2019.1678164.

[32] Henri, F. 1992. Computer Conferencing and Content
Analysis. Collaborative Learning Through Computer
Conferencing.

[33] Hmelo-Silver, C. E., & Barrows, H. S. (2008). Facilitating
collaborative knowledge building. Cognition and Instruction,
26(1), 48-94. https://doi.org/10.1080/07370000701798495

[34] Howard, C.S., Munro, K.J. and Plack, C.J. 2010. Listening
effort at signal-to-noise ratios that are typical of the school
classroom. International Journal of Audiology. 49, 12 (2010),
928-932.
DOTI:https://doi.org/10.3109/14992027.2010.520036.

[35] Husson, F., Josse, J., Narasimhan, B. and Robin, G. 2019.
Imputation of Mixed Data With Multilevel Singular Value
Decomposition. Journal of Computational and Graphical
Statistics. 28, 3 (2019), 552-566.
DOI:https://doi.org/10.1080/10618600.2019.1585261.

[36] IBM Watson: https.://www.ibm.com/watson/services/speech-
to-text/. Accessed: 2022-03-04.

[37] Jensen, E., Dale, M., Donnelly, P.J., Stone, C., Kelly, S.,
Godley, A. and D’Mello, S.K. 2020. Toward Automated
Feedback on Teacher Discourse to Enhance Teacher
Learning. Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. (2020), 1-13.
DOL:https://doi.org/10.1145/3313831.3376418.

[38] Jensen, E., Pugh, S.L. and D’Mello, S.K. 2021. A Deep
Transfer Learning Approach to Modeling Teacher Discourse
in the Classroom. LAK21: 11th International Learning
Analytics and Knowledge Conference. (2021), 302-312.
DOTI:https://doi.org/10.1145/3448139.3448168.

[39] Jeong, H., & Hmelo-Silver, C. E. (2016). Seven Affordances
of Computer-Supported Collaborative Learning: How to
Support Collaborative Learning? How Can Technologies
Help? Educational Psychologist, 51(2), 247-265.
https://doi.org/10.1080/00461520.2016.1158654

[40] Jiang, D., Chen, Y. and Garg, A. 2018. A hybrid method for
overlapping speech detection in classroom environment.
Computer Applications in Engineering Education. 26, 1
(2018), 171-180. DOI:https://doi.org/10.1002/cae.21855.

[41] Johnson, R., Severance, S., Penuel, W.R. and Leary, H. 2016.
Teachers, tasks, and tensions: lessons from a research—
practice partnership. Journal of Mathematics Teacher
Education. 19, 2-3 (2016), 169-185.
DOL:https://doi.org/10.1007/s10857-015-9338-3.

[42] Kelly, S., Olney, A.M., Donnelly, P., Nystrand, M. and
D’Mello, S.K. 2018. Automatically Measuring Question
Authenticity in Real-World Classrooms. Educational
Researcher. 47, 7 (2018), 451-464.
DOL:https://doi.org/10.3102/0013189x18785613.

[43] Kim, S., Arora, A., Le, D., Yeh, C.-F., Fuegen, C., Kalinli, O.
and Seltzer, M.L. 2021. Semantic Distance: A New Metric for
ASR Performance Analysis Towards Spoken Language
Understanding. Proceedings of the Annual Conference of the
International Speech Communication Association,
INTERSPEECH (2021), 1977-1981.

[44] Koenecke, A., Nam, A., Lake, E., Nudell, J., Quartey, M.,
Mengesha, Z., Toups, C., Rickford, J.R., Jurafsky, D. and
Goel, S. 2020. Racial disparities in automated speech
recognition. Proceedings of the National Academy of Sciences
of the United States of America. 117, 14 (2020), 7684—7689.
DOTI:https://doi.org/10.1073/pnas.1915768117.

[45] Koller, M. (2016). robustlmm : An R Package for Robust
Estimation of Linear Mixed-Effects Models. Journal of
Statistical Software, 75(6), 1-24.
https://doi.org/10.18637/jss.v075.106

[46] Lee, S., Potamianos, A. and Narayanan, S. 1999. Acoustics
of children’s speech: Developmental changes of temporal and
spectral parameters. The Journal of the Acoustical Society of
America. 105, 3 (1999), 1455-1468.
DOIL:https://doi.org/10.1121/1.426686.

[47] Li, H., Ding, W. and Liu, Z. 2020. Identifying At-Risk K-12
Students in Multimodal Online Environments: A Machine
Learning Approach. arXiv. (2020).

[48] Lileikyte, R., Irvin, D. and Hansen, J.H.L. 2020. Assessing
Child Communication Engagement via Speech Recognition in
Naturalistic Active Learning Spaces. The Speaker and
Language Recognition Workshop (Odyssey 2020). (2020),
396-401. DOL:https://doi.org/10.21437/odyssey.2020-56.

[49] Ling, H., Han, P., Qiu, J., Peng, L., Liu, D. and Luo, K. 2021.
A Method of Speech Separation between Teachers and
Students in Smart Classrooms Based on Speaker Diarization.
2021 13th International Conference on Education Technology
and Computers. (2021), 53-61.
DOL:https://doi.org/10.1145/3498765.3498774.

[50] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
0., Lewis, M., Zettlemoyer, L. and Stoyanov, V. 2019.
RoBERTa: A Robustly Optimized BERT Pretraining
Approach. arXiv. (2019).



[51] Loukina, A., Madnani, N., Klebanov, B.B., Misra, A.,
Angelov, G. and Todic, O. 2018. Evaluating on-device ASR
on Field Recordings from an Interactive Reading Companion.
2018 IEEE Spoken Language Technology Workshop (SLT).
00, (2018), 964-970.
DOTI:https://doi.org/10.1109/s1t.2018.8639603.

[52] Lugini, L., Olshefski, C., Singh, R., Litman, D. and Godley,
A. 2020. Discussion Tracker: Supporting Teacher Learning
about Students’ Collaborative Argumentation in High School
Classrooms. Proceedings of the 28th International
Conference on Computational Linguistics: System
Demonstrations. (2020), 53-58.
DOTI:https://doi.org/10.18653/v1/2020.coling-demos.10.

[53] Ma, Y., Wiggins, J.B., Celepkolu, M., Boyer, K.E., Lynch, C.
and Wiebe, E. 2021. The Challenge of Noisy Classrooms:
Speaker Detection During Elementary Students’ Collaborative
Dialogue. (2021), 268-281.

[54] MacNeilley, L.H., Nystrand, M., Gamoran, A., Kachur, R.
and Prendergast, C. 1998. Opening Dialogue: Understanding
the Dynamics of Language and Learning in the English
Classroom. Language. 74, 2 (1998), 444.
DOTI:https://doi.org/10.2307/417942.

[55] Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.
and McClosky, D. 2020. The Stanford CoreNLP Natural
Language Processing Toolkit. Proceedings of 52nd Annual
Meeting of the Association for Computational Linguistics:
System Demonstrations. 55-60.
DOTI:https://doi.org/10.3115/v1/p14-5010.

[56] Mutlu, B., Tscheligi, M., Weiss, A., Young, J.E., Kennedy,
J., Lemaignan, S., Montassier, C., Lavalade, P., Irfan, B.,
Papadopoulos, F., Senft, E. and Belpaeme, T. 2017. Child
Speech Recognition in Human-Robot Interaction.
Proceedings of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction. (2017), 82-90.
DOL:https://doi.org/10.1145/2909824.3020229.

[57] National Teacher and Principal Survey: 2022.
https://nces.ed.gov/surveys/ntps/tables/ntps1718_fltable06 tls

.asp.

[58] Nechaev, Y., Ruan, W. and Kiss, I. 2021. Towards NLU
Model Robustness to ASR Errors at Scale. (2021).

[59] Papineni, K., Roukos, S., Ward, T. and Zhu, W.-J. 2002.
BLEU: a method for automatic evaluation of machine
translation. Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics - ACL °02. (2002),
311-318. DOL:https://doi.org/10.3115/1073083.1073135.

[60] Pascual, R.M. 2020. Effectiveness of an Automated Reading
Tutor Design for Filipino Speaking Children. 2020 [EEE Sth
R10 Humanitarian Technology Conference (R10-HTC). 00,
(2020), 1-5. DOI:https://doi.org/10.1109/r10-
htc49770.2020.9357059.

[61] Potamianos, A. and Narayanan, S. 2003. Robust recognition
of children’s speech. IEEE Transactions on Speech and Audio
Processing. 11, 6 (2003), 603-616.
DOTI:https://doi.org/10.1109/tsa.2003.818026.

[62] Praharaj, S., Scheffel, M., Drachsler, H. and Specht, M.
2019. Literature Review on Co-Located Collaboration
Modeling Using Multimodal Learning AnalyticsCan We Go
the Whole Nine Yards? IEEE Transactions on Learning
Technologies. 14, 3 (2019), 367-385.
DOTI:https://doi.org/10.1109/t1t.2021.3097766.

[63] Pugh, S.L., Rao, A.R., Stewart, A.E.B. and D’Mello, S.K.
2022. Do Speech-Based Collaboration Analytics Generalize
Across Task Contexts? Learning and Knowledge 22. (Apr.
2022), 208-218.

[64] Pugh, S.L., Subburaj, S.K., Rao, A.R., Stewart, A.E.B.,
Andrews-Todd, J. and D’Mello, S.K. 2021. Say What?
Automatic Modeling of Collaborative Problem Solving Skills
from Student Speech in the Wild. Proceedings of The 14th
International Conference on Educational Data Mining (EDM
2021. (Mar. 2021), 55-67.

[65] Qian, Y., Weng, C., Chang, X., Wang, S. and Yu, D. 2018.
Past review, current progress, and challenges ahead on the
cocktail party problem. Frontiers of Information Technology
& Electronic Engineering. 19, 1 (2018), 40-63.
DOI:https://doi.org/10.1631/fitee.1700814.

[66] Reeder, K., Shapiro, J., Wakefield, J. and D’Silva, R. 2015.
Speech Recognition Software Contributes to Reading
Development for Young Learners of English. International
Journal of Computer-Assisted Language Learning and
Teaching (IJCALLT). 5, 3 (2015), 60-74.
DOTI:https://doi.org/10.4018/ijcallt.2015070104.

[67] Reimers, N. and Gurevych, 1. 2019. Sentence-BERT:
Sentence Embeddings using Siamese BERT-Networks. arXiv.
(2019).

[68] Rev Speech-to-Text API: https://www.rev.ai/. Accessed:
2022-03-04.

[69] Rev vs Google ASR: https://www.rev.com/blog/google-
speech-recognition-api-vs-rev-ai-api. Accessed: 2022-03-11.

[70] Rodrigues, A., Santos, R., Abreu, J., Bega, P., Almeida, P.
and Fernandes, S. 2019. Analyzing the performance of ASR
systems. Proceedings of the XX International Conference on
Human Computer Interaction. (2019), 1-8.
DOTI:https://doi.org/10.1145/3335595.3335635.

[71] Roschelle, J., Dimitriadis, Y., and Hoppe, U. (2013).
Classroom orchestration: Synthesis. Computers & Education,
69, 523-526. https://doi.org/10.1016/j.compedu.2013.04.010

[72] Roschelle, J. and Teasley, S.D. 1995. Computer Supported
Collaborative Learning. Computer Supported Collaborative
Learning. 69-97.

[73] Rosé, C., Wang, Y.-C., Cui, Y., Arguello, J., Stegmann, K.,
Weinberger, A. and Fischer, F. 2008. Analyzing collaborative
learning processes automatically: Exploiting the advances of
computational linguistics in computer-supported collaborative
learning. International Journal of Computer-Supported
Collaborative Learning. 3, 3 (2008), 237-271.
DOTI:https://doi.org/10.1007/s11412-007-9034-0.

[74] Shivakumar, P.G. and Narayanan, S. 2022. End-to-end neural
systems for automatic children speech recognition: An
empirical study. Computer Speech & Language. 72, (2022),
101289. DOL:https://doi.org/10.1016/j.cs1.2021.101289.

[75] Smith, L. and Macgregor, J.T. 1992. What is Collaborative
Learning ? Assessment. 117, 5 (1992), 1-11.

[76] Song, Y., Lei, S., Hao, T., Lan, Z. and Ding, Y. 2021.
Automatic Classification of Semantic Content of Classroom
Dialogue. Journal of Educational Computing Research. 59, 3
(2021), 496-521.
DOL:https://doi.org/10.1177/0735633120968554.



[77] St Vrain Demographics:
https://edx.cde.state.co.us/SchoolView/DataCenter/reports.jsp
x?Dis=0470& _afrLoop=3057061758625614& afrWindowM
ode=0&tab=pro&_adyf.ctril-state=nxjl1z2wS8s_4. Accessed:
2022-03-09.

[78] Stewart, A.E.B., Keirn, Z. and D’Mello, S.K. 2021.
Multimodal modeling of collaborative problem-solving facets
in triads. User Modeling and User-Adapted Interaction. 31, 4
(2021), 713-751. DOI:https://doi.org/10.1007/s11257-021-
09290-y.

[79] Stewart, A.E.B., Vrzakova, H., Sun, C., Yonehiro, J., Stone,
C.A., Duran, N.D., Shute, V. and D’Mello, S.K. 2019. I Say,
You Say, We Say. Proceedings of the ACM on Human-
Computer Interaction. 3, CSCW (Sep. 2019), 1-19.
DOTI:https://doi.org/10.1145/3359296.

[80] Sun, C., Shute, V.J., Stewart, A., Yonehiro, J., Duran, N. and
D’Mello, S. 2020. Towards a generalized competency model
of collaborative problem solving. Computers & Education.
143, (2020), 103672.
DOTI:https://doi.org/10.1016/j.compedu.2019.103672.

[81] Suresh, A., Jacobs, J., Lai, V., Tan, C., Ward, W., Martin,
J.H. and Sumner, T. 2021. Using Transformers to Provide
Teachers with Personalized Feedback on their Classroom
Discourse: The TalkMoves Application. arXiv. (2021).

[82] Suresh, A., Sumner, T., Jacobs, J., Foland, B. and Ward, W.
2019. Automating Analysis and Feedback to Improve
Mathematics Teachers’ Classroom Discourse. Proceedings of
the AAAI Conference on Artificial Intelligence. 33, (2019),
9721-9728.
DOTI:https://doi.org/10.1609/aaai.v33i01.33019721.

[83] Szymanski, P., Zelasko, P., Morzy, M., Szymczak, A., Zyta-
Hoppe, M., Banaszczak, J., Augustyniak, L., Mizgajski, J. and
Carmiel, Y. 2020. WER we are and WER we think we are.
arXiv. (2020).

[84] Tao, Y., Mitsven, S.G., Perry, L.K., Messinger, D.S. and
Shyu, M.-L. 2019. Audio-Based Group Detection for
Classroom Dynamics Analysis. 2019 International
Conference on Data Mining Workshops (ICDMW). 00,
(2019), 855-862.
DOL:https://doi.org/10.1109/icdmw.2019.00125.

[85] Tegos, S., Demetriadis, S. and Karakostas, A. 2015.
Promoting academically productive talk with conversational
agent interventions in collaborative learning settings.
Computers & Education. 87, (2015), 309-325.
DOTI:https://doi.org/10.1016/j.compedu.2015.07.014.

[86] Terenzini, P.T., Cabrera, A.F., Colbeck, C.L., Parente, J.M.
and Bjorklund, S.A. 2001. Collaborative Learning vs.
Lecture/Discussion: Students’ Reported Learning Gains*.
Journal of Engineering Education. 90, 1 (2001), 123-130.
DOTI:https://doi.org/10.1002/.2168-9830.2001.tb00579.x.

[87] Tissenbaum, M. and Slotta, J.D. 2019. Developing a smart
classroom infrastructure to support real-time student
collaboration and inquiry: a 4-year design study. Instructional
Science. 47, 4 (2019), 423—-462.
DOTI:https://doi.org/10.1007/s11251-019-09486-1.

[88] Tissenbaum, M. and Slotta, J.D. 2015. Seamless Learning in
the Age of Mobile Connectivity. Seamless Learning in the
Age of Mobile Connectivity. 223-257.

[89] Vygotsky, L.S. 1978. Mind and society: The Development of
Higher Mental Processes. Harvard University Press.

[90] Wang, Z., Miller, K. and Cortina, K. 2013. Using the LENA
in Teacher Training: Promoting Student Involement through
automated feedback. Unterrichtswissenschaft. 4, (2013), 290—
305.

[91] Wang, Z., Pan, X., Miller, K.F. and Cortina, K.S. 2014.
Automatic classification of activities in classroom discourse.
Computers & Education. 78, (2014), 115-123.
DOTI:https://doi.org/10.1016/j.compedu.2014.05.010.

[92] Ward, W., Cole, R., Bolafios, D., Buchenroth-Martin, C.,
Svirsky, E., Vuuren, S.V., Weston, T., Zheng, J. and Becker,
L. 2011. My science tutor: A conversational multimedia
virtual tutor for elementary school science. ACM Transactions
on Speech and Language Processing (TSLP). 7,4 (2011), 18.
DOL:https://doi.org/10.1145/1998384.1998392.

[93] Wu, Y., Rough, D., Bleakley, A., Edwards, J., Cooney, O.,
Doyle, P.R., Clark, L. and Cowan, B.R. 2020. See What 'm
Saying? Comparing Intelligent Personal Assistant Use for
Native and Non-Native Language Speakers. 22nd
International Conference on Human-Computer Interaction
with Mobile Devices and Services. (2020), 1-9.
DOTI:https://doi.org/10.1145/3379503.3403563.

[94] Xu, S., Ding, W. and Liu, Z. 2020. Automatic Dialogic
Instruction Detection for K-12 Online One-on-One Classes.
Artificial Intelligence in Education. 12164, (2020), 340-345.
DOL:https://doi.org/10.1007/978-3-030-52240-7 62.

[95] Yasin, L., Liu, F., Drga, V., Demosthenous, A. and Meddis,
R. 2018. Effect of auditory efferent time-constant duration on
speech recognition in noise. The Journal of the Acoustical
Society of America. 143,2 (2018), EL112-EL115.
DOI:https://doi.org/10.1121/1.5023502.

[96] Zylich, B. and Whitehill, J. 2020. Noise-Robust Key-Phrase
Detectors for Automated Classroom Feedback. ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 00, (2020), 9215-9219.
DOTI:https://doi.org/10.1109/icassp40776.2020.9053173.

[97] How people learn II: Learners, contexts, and cultures. 2021.
REPORT ON SCHOOL CONNECTIVITY FUNDING YEAR
2021. Connect K-12.



